2 * EDAC driver for Intel(R) Xeon(R) Skylake processors
3 * Copyright (c) 2016, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/pci_ids.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/edac.h>
22 #include <linux/mmzone.h>
23 #include <linux/smp.h>
24 #include <linux/bitmap.h>
25 #include <linux/math64.h>
26 #include <linux/mod_devicetable.h>
27 #include <asm/cpu_device_id.h>
28 #include <asm/processor.h>
31 #include "edac_core.h"
33 #define SKX_REVISION " Ver: 1.0 "
38 #define skx_printk(level, fmt, arg...) \
39 edac_printk(level, "skx", fmt, ##arg)
41 #define skx_mc_printk(mci, level, fmt, arg...) \
42 edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
45 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
47 #define GET_BITFIELD(v, lo, hi) \
48 (((v) & GENMASK_ULL((hi), (lo))) >> (lo))
50 static LIST_HEAD(skx_edac_list);
52 static u64 skx_tolm, skx_tohm;
54 #define NUM_IMC 2 /* memory controllers per socket */
55 #define NUM_CHANNELS 3 /* channels per memory controller */
56 #define NUM_DIMMS 2 /* Max DIMMS per channel */
58 #define MASK26 0x3FFFFFF /* Mask for 2^26 */
59 #define MASK29 0x1FFFFFFF /* Mask for 2^29 */
62 * Each cpu socket contains some pci devices that provide global
63 * information, and also some that are local to each of the two
64 * memory controllers on the die.
67 struct list_head list;
69 struct pci_dev *sad_all;
70 struct pci_dev *util_all;
73 struct mem_ctl_info *mci;
74 u8 mc; /* system wide mc# */
75 u8 lmc; /* socket relative mc# */
89 static int skx_num_sockets;
114 static struct skx_dev *get_skx_dev(u8 bus, u8 idx)
118 list_for_each_entry(d, &skx_edac_list, list) {
119 if (d->bus[idx] == bus)
127 CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
135 enum munittype mtype;
139 * List of PCI device ids that we need together with some device
140 * number and function numbers to tell which memory controller the
143 static const struct munit skx_all_munits[] = {
144 { 0x2054, { }, 1, 1, SAD_ALL },
145 { 0x2055, { }, 1, 1, UTIL_ALL },
146 { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
147 { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
148 { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
149 { 0x208e, { }, 1, 0, SAD },
154 * We use the per-socket device 0x2016 to count how many sockets are present,
155 * and to detemine which PCI buses are associated with each socket. Allocate
156 * and build the full list of all the skx_dev structures that we need here.
158 static int get_all_bus_mappings(void)
160 struct pci_dev *pdev, *prev;
167 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev);
171 d = kzalloc(sizeof(*d), GFP_KERNEL);
176 pci_read_config_dword(pdev, 0xCC, ®);
177 d->bus[0] = GET_BITFIELD(reg, 0, 7);
178 d->bus[1] = GET_BITFIELD(reg, 8, 15);
179 d->bus[2] = GET_BITFIELD(reg, 16, 23);
180 d->bus[3] = GET_BITFIELD(reg, 24, 31);
181 edac_dbg(2, "busses: %x, %x, %x, %x\n",
182 d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
183 list_add_tail(&d->list, &skx_edac_list);
191 static int get_all_munits(const struct munit *m)
193 struct pci_dev *pdev, *prev;
200 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
204 if (m->per_socket == NUM_IMC) {
205 for (i = 0; i < NUM_IMC; i++)
206 if (m->devfn[i] == pdev->devfn)
211 d = get_skx_dev(pdev->bus->number, m->busidx);
215 /* Be sure that the device is enabled */
216 if (unlikely(pci_enable_device(pdev) < 0)) {
218 "Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did);
223 case CHAN0: case CHAN1: case CHAN2:
225 d->imc[i].chan[m->mtype].cdev = pdev;
237 * one of these devices per core, including cores
238 * that don't exist on this SKU. Ignore any that
239 * read a route table of zero, make sure all the
240 * non-zero values match.
242 pci_read_config_dword(pdev, 0xB4, ®);
246 else if (d->mcroute != reg) {
248 "mcroute mismatch\n");
265 const struct x86_cpu_id skx_cpuids[] = {
266 { X86_VENDOR_INTEL, 6, 0x55, 0, 0 }, /* Skylake */
269 MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
271 static u8 get_src_id(struct skx_dev *d)
275 pci_read_config_dword(d->util_all, 0xF0, ®);
277 return GET_BITFIELD(reg, 12, 14);
280 static u8 skx_get_node_id(struct skx_dev *d)
284 pci_read_config_dword(d->util_all, 0xF4, ®);
286 return GET_BITFIELD(reg, 0, 2);
289 static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval,
290 int maxval, char *name)
292 u32 val = GET_BITFIELD(reg, lobit, hibit);
294 if (val < minval || val > maxval) {
295 edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg);
301 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD((mtr), 15, 15)
303 #define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 1, 2, "ranks")
304 #define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows")
305 #define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols")
307 static int get_width(u32 mtr)
309 switch (GET_BITFIELD(mtr, 8, 9)) {
320 static int skx_get_hi_lo(void)
322 struct pci_dev *pdev;
325 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL);
327 edac_dbg(0, "Can't get tolm/tohm\n");
331 pci_read_config_dword(pdev, 0xD0, ®);
333 pci_read_config_dword(pdev, 0xD4, ®);
335 pci_read_config_dword(pdev, 0xD8, ®);
336 skx_tohm |= (u64)reg << 32;
339 edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm);
344 static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
345 struct skx_imc *imc, int chan, int dimmno)
347 int banks = 16, ranks, rows, cols, npages;
350 if (!IS_DIMM_PRESENT(mtr))
352 ranks = numrank(mtr);
357 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
359 size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
360 npages = MiB_TO_PAGES(size);
362 edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
363 imc->mc, chan, dimmno, size, npages,
364 banks, ranks, rows, cols);
366 imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
367 imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
368 imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
369 imc->chan[chan].dimms[dimmno].rowbits = rows;
370 imc->chan[chan].dimms[dimmno].colbits = cols;
372 dimm->nr_pages = npages;
374 dimm->dtype = get_width(mtr);
375 dimm->mtype = MEM_DDR4;
376 dimm->edac_mode = EDAC_SECDED; /* likely better than this */
377 snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
378 imc->src_id, imc->lmc, chan, dimmno);
383 #define SKX_GET_MTMTR(dev, reg) \
384 pci_read_config_dword((dev), 0x87c, ®)
386 static bool skx_check_ecc(struct pci_dev *pdev)
390 SKX_GET_MTMTR(pdev, mtmtr);
392 return !!GET_BITFIELD(mtmtr, 2, 2);
395 static int skx_get_dimm_config(struct mem_ctl_info *mci)
397 struct skx_pvt *pvt = mci->pvt_info;
398 struct skx_imc *imc = pvt->imc;
399 struct dimm_info *dimm;
404 for (i = 0; i < NUM_CHANNELS; i++) {
406 pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
407 for (j = 0; j < NUM_DIMMS; j++) {
408 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
409 mci->n_layers, i, j, 0);
410 pci_read_config_dword(imc->chan[i].cdev,
412 ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j);
414 if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
415 skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
423 static void skx_unregister_mci(struct skx_imc *imc)
425 struct mem_ctl_info *mci = imc->mci;
430 edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
432 /* Remove MC sysfs nodes */
433 edac_mc_del_mc(mci->pdev);
435 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
436 kfree(mci->ctl_name);
440 static int skx_register_mci(struct skx_imc *imc)
442 struct mem_ctl_info *mci;
443 struct edac_mc_layer layers[2];
444 struct pci_dev *pdev = imc->chan[0].cdev;
448 /* allocate a new MC control structure */
449 layers[0].type = EDAC_MC_LAYER_CHANNEL;
450 layers[0].size = NUM_CHANNELS;
451 layers[0].is_virt_csrow = false;
452 layers[1].type = EDAC_MC_LAYER_SLOT;
453 layers[1].size = NUM_DIMMS;
454 layers[1].is_virt_csrow = true;
455 mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
456 sizeof(struct skx_pvt));
461 edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
463 /* Associate skx_dev and mci for future usage */
468 mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d",
469 imc->node_id, imc->lmc);
470 mci->mtype_cap = MEM_FLAG_DDR4;
471 mci->edac_ctl_cap = EDAC_FLAG_NONE;
472 mci->edac_cap = EDAC_FLAG_NONE;
473 mci->mod_name = "skx_edac.c";
474 mci->dev_name = pci_name(imc->chan[0].cdev);
475 mci->mod_ver = SKX_REVISION;
476 mci->ctl_page_to_phys = NULL;
478 rc = skx_get_dimm_config(mci);
482 /* record ptr to the generic device */
483 mci->pdev = &pdev->dev;
485 /* add this new MC control structure to EDAC's list of MCs */
486 if (unlikely(edac_mc_add_mc(mci))) {
487 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
495 kfree(mci->ctl_name);
501 #define SKX_MAX_SAD 24
503 #define SKX_GET_SAD(d, i, reg) \
504 pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), ®)
505 #define SKX_GET_ILV(d, i, reg) \
506 pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), ®)
508 #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31)
509 #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27)
510 #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
511 #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
512 #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4)
513 #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
514 #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0)
516 #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0)
517 #define SKX_ILV_TARGET(tgt) ((tgt) & 7)
519 static bool skx_sad_decode(struct decoded_addr *res)
521 struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list);
522 u64 addr = res->addr;
523 int i, idx, tgt, lchan, shift;
525 u64 limit, prev_limit;
528 /* Simple sanity check for I/O space or out of range */
529 if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
530 edac_dbg(0, "Address %llx out of range\n", addr);
536 for (i = 0; i < SKX_MAX_SAD; i++) {
537 SKX_GET_SAD(d, i, sad);
538 limit = SKX_SAD_LIMIT(sad);
539 if (SKX_SAD_ENABLE(sad)) {
540 if (addr >= prev_limit && addr <= limit)
543 prev_limit = limit + 1;
545 edac_dbg(0, "No SAD entry for %llx\n", addr);
549 SKX_GET_ILV(d, i, ilv);
551 switch (SKX_SAD_INTERLEAVE(sad)) {
553 idx = GET_BITFIELD(addr, 6, 8);
556 idx = GET_BITFIELD(addr, 8, 10);
559 idx = GET_BITFIELD(addr, 12, 14);
562 idx = GET_BITFIELD(addr, 30, 32);
566 tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
568 /* If point to another node, find it and start over */
569 if (SKX_ILV_REMOTE(tgt)) {
571 edac_dbg(0, "Double remote!\n");
575 list_for_each_entry(d, &skx_edac_list, list) {
576 if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
579 edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
583 if (SKX_SAD_MOD3(sad) == 0)
584 lchan = SKX_ILV_TARGET(tgt);
586 switch (SKX_SAD_MOD3MODE(sad)) {
597 edac_dbg(0, "illegal mod3mode\n");
600 switch (SKX_SAD_MOD3ASMOD2(sad)) {
602 lchan = (addr >> shift) % 3;
605 lchan = (addr >> shift) % 2;
608 lchan = (addr >> shift) % 2;
609 lchan = (lchan << 1) | !lchan;
612 lchan = ((addr >> shift) % 2) << 1;
615 lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
619 res->socket = d->imc[0].src_id;
620 res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
621 res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
623 edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n",
624 res->addr, res->socket, res->imc, res->channel);
628 #define SKX_MAX_TAD 8
630 #define SKX_GET_TADBASE(d, mc, i, reg) \
631 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), ®)
632 #define SKX_GET_TADWAYNESS(d, mc, i, reg) \
633 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), ®)
634 #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \
635 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), ®)
637 #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26)
638 #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5)
639 #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7)
640 #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
641 #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26)
642 #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11))
643 #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1)
645 /* which bit used for both socket and channel interleave */
646 static int skx_granularity[] = { 6, 8, 12, 30 };
648 static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
654 return addr | (lowbits & ((1ull << shift) - 1));
657 static bool skx_tad_decode(struct decoded_addr *res)
660 u32 base, wayness, chnilvoffset;
661 int skt_interleave_bit, chn_interleave_bit;
664 for (i = 0; i < SKX_MAX_TAD; i++) {
665 SKX_GET_TADBASE(res->dev, res->imc, i, base);
666 SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
667 if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
670 edac_dbg(0, "No TAD entry for %llx\n", res->addr);
674 res->sktways = SKX_TAD_SKTWAYS(wayness);
675 res->chanways = SKX_TAD_CHNWAYS(wayness);
676 skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
677 chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
679 SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
680 channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
682 if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
683 /* Must handle channel first, then socket */
684 channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
685 res->chanways, channel_addr);
686 channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
687 res->sktways, channel_addr);
689 /* Handle socket then channel. Preserve low bits from original address */
690 channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
691 res->sktways, res->addr);
692 channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
693 res->chanways, res->addr);
696 res->chan_addr = channel_addr;
698 edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n",
699 res->addr, res->chan_addr, res->sktways, res->chanways);
703 #define SKX_MAX_RIR 4
705 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \
706 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
707 0x108 + 4 * (i), ®)
708 #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \
709 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
710 0x120 + 16 * idx + 4 * (i), ®)
712 #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
713 #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
714 #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
715 #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
716 #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
718 static bool skx_rir_decode(struct decoded_addr *res)
720 int i, idx, chan_rank;
723 u64 rank_addr, prev_limit = 0, limit;
725 if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
730 for (i = 0; i < SKX_MAX_RIR; i++) {
731 SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
732 limit = SKX_RIR_LIMIT(rirway);
733 if (SKX_RIR_VALID(rirway)) {
734 if (prev_limit <= res->chan_addr &&
735 res->chan_addr <= limit)
740 edac_dbg(0, "No RIR entry for %llx\n", res->addr);
744 rank_addr = res->chan_addr >> shift;
745 rank_addr /= SKX_RIR_WAYS(rirway);
747 rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
749 res->rank_address = rank_addr;
750 idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
752 SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
753 res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
754 chan_rank = SKX_RIR_CHAN_RANK(rirlv);
755 res->channel_rank = chan_rank;
756 res->dimm = chan_rank / 4;
757 res->rank = chan_rank % 4;
759 edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n",
760 res->addr, res->dimm, res->rank,
761 res->channel_rank, res->rank_address);
765 static u8 skx_close_row[] = {
766 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
768 static u8 skx_close_column[] = {
769 3, 4, 5, 14, 19, 23, 24, 25, 26, 27
771 static u8 skx_open_row[] = {
772 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
774 static u8 skx_open_column[] = {
775 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
777 static u8 skx_open_fine_column[] = {
778 3, 4, 5, 7, 8, 9, 10, 11, 12, 13
781 static int skx_bits(u64 addr, int nbits, u8 *bits)
785 for (i = 0; i < nbits; i++)
786 res |= ((addr >> bits[i]) & 1) << i;
790 static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
792 int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
795 ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
800 static bool skx_mad_decode(struct decoded_addr *r)
802 struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
803 int bg0 = dimm->fine_grain_bank ? 6 : 13;
805 if (dimm->close_pg) {
806 r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
807 r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
808 r->column |= 0x400; /* C10 is autoprecharge, always set */
809 r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
810 r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
812 r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
813 if (dimm->fine_grain_bank)
814 r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
816 r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
817 r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
818 r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
820 r->row &= (1u << dimm->rowbits) - 1;
822 edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n",
823 r->addr, r->row, r->column, r->bank_address,
828 static bool skx_decode(struct decoded_addr *res)
831 return skx_sad_decode(res) && skx_tad_decode(res) &&
832 skx_rir_decode(res) && skx_mad_decode(res);
835 #ifdef CONFIG_EDAC_DEBUG
837 * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr.
838 * Write an address to this file to exercise the address decode
839 * logic in this driver.
841 static struct dentry *skx_test;
842 static u64 skx_fake_addr;
844 static int debugfs_u64_set(void *data, u64 val)
846 struct decoded_addr res;
854 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
856 static struct dentry *mydebugfs_create(const char *name, umode_t mode,
857 struct dentry *parent, u64 *value)
859 return debugfs_create_file(name, mode, parent, value, &fops_u64_wo);
862 static void setup_skx_debug(void)
864 skx_test = debugfs_create_dir("skx_edac_test", NULL);
865 mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr);
868 static void teardown_skx_debug(void)
870 debugfs_remove_recursive(skx_test);
873 static void setup_skx_debug(void)
877 static void teardown_skx_debug(void)
880 #endif /*CONFIG_EDAC_DEBUG*/
882 static void skx_mce_output_error(struct mem_ctl_info *mci,
884 struct decoded_addr *res)
886 enum hw_event_mc_err_type tp_event;
887 char *type, *optype, msg[256];
888 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
889 bool overflow = GET_BITFIELD(m->status, 62, 62);
890 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
892 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
893 u32 mscod = GET_BITFIELD(m->status, 16, 31);
894 u32 errcode = GET_BITFIELD(m->status, 0, 15);
895 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
897 recoverable = GET_BITFIELD(m->status, 56, 56);
899 if (uncorrected_error) {
903 tp_event = HW_EVENT_ERR_FATAL;
906 tp_event = HW_EVENT_ERR_UNCORRECTED;
910 tp_event = HW_EVENT_ERR_CORRECTED;
914 * According with Table 15-9 of the Intel Architecture spec vol 3A,
915 * memory errors should fit in this mask:
916 * 000f 0000 1mmm cccc (binary)
918 * f = Correction Report Filtering Bit. If 1, subsequent errors
922 * If the mask doesn't match, report an error to the parsing logic
924 if (!((errcode & 0xef80) == 0x80)) {
925 optype = "Can't parse: it is not a mem";
929 optype = "generic undef request error";
932 optype = "memory read error";
935 optype = "memory write error";
938 optype = "addr/cmd error";
941 optype = "memory scrubbing error";
949 snprintf(msg, sizeof(msg),
950 "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x",
951 overflow ? " OVERFLOW" : "",
952 (uncorrected_error && recoverable) ? " recoverable" : "",
954 res->socket, res->imc, res->rank,
955 res->bank_group, res->bank_address, res->row, res->column);
957 edac_dbg(0, "%s\n", msg);
959 /* Call the helper to output message */
960 edac_mc_handle_error(tp_event, mci, core_err_cnt,
961 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
962 res->channel, res->dimm, -1,
966 static int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
969 struct mce *mce = (struct mce *)data;
970 struct decoded_addr res;
971 struct mem_ctl_info *mci;
974 if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
977 /* ignore unless this is memory related with an address */
978 if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
981 res.addr = mce->addr;
982 if (!skx_decode(&res))
984 mci = res.dev->imc[res.imc].mci;
986 if (mce->mcgstatus & MCG_STATUS_MCIP)
991 skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
993 skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
994 "Bank %d: %016Lx\n", mce->extcpu, type,
995 mce->mcgstatus, mce->bank, mce->status);
996 skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
997 skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
998 skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
1000 skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
1001 "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
1002 mce->time, mce->socketid, mce->apicid);
1004 skx_mce_output_error(mci, mce, &res);
1009 static struct notifier_block skx_mce_dec = {
1010 .notifier_call = skx_mce_check_error,
1013 static void skx_remove(void)
1016 struct skx_dev *d, *tmp;
1020 list_for_each_entry_safe(d, tmp, &skx_edac_list, list) {
1022 for (i = 0; i < NUM_IMC; i++) {
1023 skx_unregister_mci(&d->imc[i]);
1024 for (j = 0; j < NUM_CHANNELS; j++)
1025 pci_dev_put(d->imc[i].chan[j].cdev);
1027 pci_dev_put(d->util_all);
1028 pci_dev_put(d->sad_all);
1036 * make sure we are running on the correct cpu model
1037 * search for all the devices we need
1038 * check which DIMMs are present.
1040 int __init skx_init(void)
1042 const struct x86_cpu_id *id;
1043 const struct munit *m;
1045 u8 mc = 0, src_id, node_id;
1050 id = x86_match_cpu(skx_cpuids);
1054 rc = skx_get_hi_lo();
1058 rc = get_all_bus_mappings();
1062 edac_dbg(2, "No memory controllers found\n");
1066 for (m = skx_all_munits; m->did; m++) {
1067 rc = get_all_munits(m);
1070 if (rc != m->per_socket * skx_num_sockets) {
1071 edac_dbg(2, "Expected %d, got %d of %x\n",
1072 m->per_socket * skx_num_sockets, rc, m->did);
1078 list_for_each_entry(d, &skx_edac_list, list) {
1079 src_id = get_src_id(d);
1080 node_id = skx_get_node_id(d);
1081 edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
1082 for (i = 0; i < NUM_IMC; i++) {
1083 d->imc[i].mc = mc++;
1085 d->imc[i].src_id = src_id;
1086 d->imc[i].node_id = node_id;
1087 rc = skx_register_mci(&d->imc[i]);
1093 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1098 mce_register_decode_chain(&skx_mce_dec);
1106 static void __exit skx_exit(void)
1109 mce_unregister_decode_chain(&skx_mce_dec);
1111 teardown_skx_debug();
1114 module_init(skx_init);
1115 module_exit(skx_exit);
1117 module_param(edac_op_state, int, 0444);
1118 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1120 MODULE_LICENSE("GPL v2");
1121 MODULE_AUTHOR("Tony Luck");
1122 MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");