GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / edac / edac_mc_sysfs.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *      The entire API were re-written, and ported to use struct device
12  *
13  */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_mc.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static unsigned int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34         return edac_mc_log_ue;
35 }
36
37 int edac_mc_get_log_ce(void)
38 {
39         return edac_mc_log_ce;
40 }
41
42 int edac_mc_get_panic_on_ue(void)
43 {
44         return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
48 unsigned int edac_mc_get_poll_msec(void)
49 {
50         return edac_mc_poll_msec;
51 }
52
53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp)
54 {
55         unsigned int i;
56         int ret;
57
58         if (!val)
59                 return -EINVAL;
60
61         ret = kstrtouint(val, 0, &i);
62         if (ret)
63                 return ret;
64
65         if (i < 1000)
66                 return -EINVAL;
67
68         *((unsigned int *)kp->arg) = i;
69
70         /* notify edac_mc engine to reset the poll period */
71         edac_mc_reset_delay_period(i);
72
73         return 0;
74 }
75
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81                  "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84                  "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint,
86                   &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88
89 static struct device *mci_pdev;
90
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const dev_types[] = {
95         [DEV_UNKNOWN] = "Unknown",
96         [DEV_X1] = "x1",
97         [DEV_X2] = "x2",
98         [DEV_X4] = "x4",
99         [DEV_X8] = "x8",
100         [DEV_X16] = "x16",
101         [DEV_X32] = "x32",
102         [DEV_X64] = "x64"
103 };
104
105 static const char * const edac_caps[] = {
106         [EDAC_UNKNOWN] = "Unknown",
107         [EDAC_NONE] = "None",
108         [EDAC_RESERVED] = "Reserved",
109         [EDAC_PARITY] = "PARITY",
110         [EDAC_EC] = "EC",
111         [EDAC_SECDED] = "SECDED",
112         [EDAC_S2ECD2ED] = "S2ECD2ED",
113         [EDAC_S4ECD4ED] = "S4ECD4ED",
114         [EDAC_S8ECD8ED] = "S8ECD8ED",
115         [EDAC_S16ECD16ED] = "S16ECD16ED"
116 };
117
118 #ifdef CONFIG_EDAC_LEGACY_SYSFS
119 /*
120  * EDAC sysfs CSROW data structures and methods
121  */
122
123 #define to_csrow(k) container_of(k, struct csrow_info, dev)
124
125 /*
126  * We need it to avoid namespace conflicts between the legacy API
127  * and the per-dimm/per-rank one
128  */
129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
130         static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
131
132 struct dev_ch_attribute {
133         struct device_attribute attr;
134         int channel;
135 };
136
137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
138         static struct dev_ch_attribute dev_attr_legacy_##_name = \
139                 { __ATTR(_name, _mode, _show, _store), (_var) }
140
141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
142
143 /* Set of more default csrow<id> attribute show/store functions */
144 static ssize_t csrow_ue_count_show(struct device *dev,
145                                    struct device_attribute *mattr, char *data)
146 {
147         struct csrow_info *csrow = to_csrow(dev);
148
149         return sprintf(data, "%u\n", csrow->ue_count);
150 }
151
152 static ssize_t csrow_ce_count_show(struct device *dev,
153                                    struct device_attribute *mattr, char *data)
154 {
155         struct csrow_info *csrow = to_csrow(dev);
156
157         return sprintf(data, "%u\n", csrow->ce_count);
158 }
159
160 static ssize_t csrow_size_show(struct device *dev,
161                                struct device_attribute *mattr, char *data)
162 {
163         struct csrow_info *csrow = to_csrow(dev);
164         int i;
165         u32 nr_pages = 0;
166
167         for (i = 0; i < csrow->nr_channels; i++)
168                 nr_pages += csrow->channels[i]->dimm->nr_pages;
169         return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
170 }
171
172 static ssize_t csrow_mem_type_show(struct device *dev,
173                                    struct device_attribute *mattr, char *data)
174 {
175         struct csrow_info *csrow = to_csrow(dev);
176
177         return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]);
178 }
179
180 static ssize_t csrow_dev_type_show(struct device *dev,
181                                    struct device_attribute *mattr, char *data)
182 {
183         struct csrow_info *csrow = to_csrow(dev);
184
185         return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
186 }
187
188 static ssize_t csrow_edac_mode_show(struct device *dev,
189                                     struct device_attribute *mattr,
190                                     char *data)
191 {
192         struct csrow_info *csrow = to_csrow(dev);
193
194         return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
195 }
196
197 /* show/store functions for DIMM Label attributes */
198 static ssize_t channel_dimm_label_show(struct device *dev,
199                                        struct device_attribute *mattr,
200                                        char *data)
201 {
202         struct csrow_info *csrow = to_csrow(dev);
203         unsigned chan = to_channel(mattr);
204         struct rank_info *rank = csrow->channels[chan];
205
206         /* if field has not been initialized, there is nothing to send */
207         if (!rank->dimm->label[0])
208                 return 0;
209
210         return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
211                         rank->dimm->label);
212 }
213
214 static ssize_t channel_dimm_label_store(struct device *dev,
215                                         struct device_attribute *mattr,
216                                         const char *data, size_t count)
217 {
218         struct csrow_info *csrow = to_csrow(dev);
219         unsigned chan = to_channel(mattr);
220         struct rank_info *rank = csrow->channels[chan];
221         size_t copy_count = count;
222
223         if (count == 0)
224                 return -EINVAL;
225
226         if (data[count - 1] == '\0' || data[count - 1] == '\n')
227                 copy_count -= 1;
228
229         if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
230                 return -EINVAL;
231
232         strncpy(rank->dimm->label, data, copy_count);
233         rank->dimm->label[copy_count] = '\0';
234
235         return count;
236 }
237
238 /* show function for dynamic chX_ce_count attribute */
239 static ssize_t channel_ce_count_show(struct device *dev,
240                                      struct device_attribute *mattr, char *data)
241 {
242         struct csrow_info *csrow = to_csrow(dev);
243         unsigned chan = to_channel(mattr);
244         struct rank_info *rank = csrow->channels[chan];
245
246         return sprintf(data, "%u\n", rank->ce_count);
247 }
248
249 /* cwrow<id>/attribute files */
250 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
251 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
252 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
253 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
254 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
255 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
256
257 /* default attributes of the CSROW<id> object */
258 static struct attribute *csrow_attrs[] = {
259         &dev_attr_legacy_dev_type.attr,
260         &dev_attr_legacy_mem_type.attr,
261         &dev_attr_legacy_edac_mode.attr,
262         &dev_attr_legacy_size_mb.attr,
263         &dev_attr_legacy_ue_count.attr,
264         &dev_attr_legacy_ce_count.attr,
265         NULL,
266 };
267
268 static const struct attribute_group csrow_attr_grp = {
269         .attrs  = csrow_attrs,
270 };
271
272 static const struct attribute_group *csrow_attr_groups[] = {
273         &csrow_attr_grp,
274         NULL
275 };
276
277 static void csrow_attr_release(struct device *dev)
278 {
279         struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
280
281         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
282         kfree(csrow);
283 }
284
285 static const struct device_type csrow_attr_type = {
286         .groups         = csrow_attr_groups,
287         .release        = csrow_attr_release,
288 };
289
290 /*
291  * possible dynamic channel DIMM Label attribute files
292  *
293  */
294 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
295         channel_dimm_label_show, channel_dimm_label_store, 0);
296 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
297         channel_dimm_label_show, channel_dimm_label_store, 1);
298 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
299         channel_dimm_label_show, channel_dimm_label_store, 2);
300 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
301         channel_dimm_label_show, channel_dimm_label_store, 3);
302 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
303         channel_dimm_label_show, channel_dimm_label_store, 4);
304 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
305         channel_dimm_label_show, channel_dimm_label_store, 5);
306 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
307         channel_dimm_label_show, channel_dimm_label_store, 6);
308 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
309         channel_dimm_label_show, channel_dimm_label_store, 7);
310
311 /* Total possible dynamic DIMM Label attribute file table */
312 static struct attribute *dynamic_csrow_dimm_attr[] = {
313         &dev_attr_legacy_ch0_dimm_label.attr.attr,
314         &dev_attr_legacy_ch1_dimm_label.attr.attr,
315         &dev_attr_legacy_ch2_dimm_label.attr.attr,
316         &dev_attr_legacy_ch3_dimm_label.attr.attr,
317         &dev_attr_legacy_ch4_dimm_label.attr.attr,
318         &dev_attr_legacy_ch5_dimm_label.attr.attr,
319         &dev_attr_legacy_ch6_dimm_label.attr.attr,
320         &dev_attr_legacy_ch7_dimm_label.attr.attr,
321         NULL
322 };
323
324 /* possible dynamic channel ce_count attribute files */
325 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
326                    channel_ce_count_show, NULL, 0);
327 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
328                    channel_ce_count_show, NULL, 1);
329 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
330                    channel_ce_count_show, NULL, 2);
331 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
332                    channel_ce_count_show, NULL, 3);
333 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
334                    channel_ce_count_show, NULL, 4);
335 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
336                    channel_ce_count_show, NULL, 5);
337 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
338                    channel_ce_count_show, NULL, 6);
339 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
340                    channel_ce_count_show, NULL, 7);
341
342 /* Total possible dynamic ce_count attribute file table */
343 static struct attribute *dynamic_csrow_ce_count_attr[] = {
344         &dev_attr_legacy_ch0_ce_count.attr.attr,
345         &dev_attr_legacy_ch1_ce_count.attr.attr,
346         &dev_attr_legacy_ch2_ce_count.attr.attr,
347         &dev_attr_legacy_ch3_ce_count.attr.attr,
348         &dev_attr_legacy_ch4_ce_count.attr.attr,
349         &dev_attr_legacy_ch5_ce_count.attr.attr,
350         &dev_attr_legacy_ch6_ce_count.attr.attr,
351         &dev_attr_legacy_ch7_ce_count.attr.attr,
352         NULL
353 };
354
355 static umode_t csrow_dev_is_visible(struct kobject *kobj,
356                                     struct attribute *attr, int idx)
357 {
358         struct device *dev = kobj_to_dev(kobj);
359         struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
360
361         if (idx >= csrow->nr_channels)
362                 return 0;
363
364         if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
365                 WARN_ONCE(1, "idx: %d\n", idx);
366                 return 0;
367         }
368
369         /* Only expose populated DIMMs */
370         if (!csrow->channels[idx]->dimm->nr_pages)
371                 return 0;
372
373         return attr->mode;
374 }
375
376
377 static const struct attribute_group csrow_dev_dimm_group = {
378         .attrs = dynamic_csrow_dimm_attr,
379         .is_visible = csrow_dev_is_visible,
380 };
381
382 static const struct attribute_group csrow_dev_ce_count_group = {
383         .attrs = dynamic_csrow_ce_count_attr,
384         .is_visible = csrow_dev_is_visible,
385 };
386
387 static const struct attribute_group *csrow_dev_groups[] = {
388         &csrow_dev_dimm_group,
389         &csrow_dev_ce_count_group,
390         NULL
391 };
392
393 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
394 {
395         int chan, nr_pages = 0;
396
397         for (chan = 0; chan < csrow->nr_channels; chan++)
398                 nr_pages += csrow->channels[chan]->dimm->nr_pages;
399
400         return nr_pages;
401 }
402
403 /* Create a CSROW object under specifed edac_mc_device */
404 static int edac_create_csrow_object(struct mem_ctl_info *mci,
405                                     struct csrow_info *csrow, int index)
406 {
407         int err;
408
409         csrow->dev.type = &csrow_attr_type;
410         csrow->dev.bus = mci->bus;
411         csrow->dev.groups = csrow_dev_groups;
412         device_initialize(&csrow->dev);
413         csrow->dev.parent = &mci->dev;
414         csrow->mci = mci;
415         dev_set_name(&csrow->dev, "csrow%d", index);
416         dev_set_drvdata(&csrow->dev, csrow);
417
418         edac_dbg(0, "creating (virtual) csrow node %s\n",
419                  dev_name(&csrow->dev));
420
421         err = device_add(&csrow->dev);
422         if (err)
423                 put_device(&csrow->dev);
424
425         return err;
426 }
427
428 /* Create a CSROW object under specifed edac_mc_device */
429 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
430 {
431         int err, i;
432         struct csrow_info *csrow;
433
434         for (i = 0; i < mci->nr_csrows; i++) {
435                 csrow = mci->csrows[i];
436                 if (!nr_pages_per_csrow(csrow))
437                         continue;
438                 err = edac_create_csrow_object(mci, mci->csrows[i], i);
439                 if (err < 0) {
440                         edac_dbg(1,
441                                  "failure: create csrow objects for csrow %d\n",
442                                  i);
443                         goto error;
444                 }
445         }
446         return 0;
447
448 error:
449         for (--i; i >= 0; i--) {
450                 csrow = mci->csrows[i];
451                 if (!nr_pages_per_csrow(csrow))
452                         continue;
453                 put_device(&mci->csrows[i]->dev);
454         }
455
456         return err;
457 }
458
459 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
460 {
461         int i;
462         struct csrow_info *csrow;
463
464         for (i = mci->nr_csrows - 1; i >= 0; i--) {
465                 csrow = mci->csrows[i];
466                 if (!nr_pages_per_csrow(csrow))
467                         continue;
468                 device_unregister(&mci->csrows[i]->dev);
469         }
470 }
471 #endif
472
473 /*
474  * Per-dimm (or per-rank) devices
475  */
476
477 #define to_dimm(k) container_of(k, struct dimm_info, dev)
478
479 /* show/store functions for DIMM Label attributes */
480 static ssize_t dimmdev_location_show(struct device *dev,
481                                      struct device_attribute *mattr, char *data)
482 {
483         struct dimm_info *dimm = to_dimm(dev);
484
485         return edac_dimm_info_location(dimm, data, PAGE_SIZE);
486 }
487
488 static ssize_t dimmdev_label_show(struct device *dev,
489                                   struct device_attribute *mattr, char *data)
490 {
491         struct dimm_info *dimm = to_dimm(dev);
492
493         /* if field has not been initialized, there is nothing to send */
494         if (!dimm->label[0])
495                 return 0;
496
497         return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
498 }
499
500 static ssize_t dimmdev_label_store(struct device *dev,
501                                    struct device_attribute *mattr,
502                                    const char *data,
503                                    size_t count)
504 {
505         struct dimm_info *dimm = to_dimm(dev);
506         size_t copy_count = count;
507
508         if (count == 0)
509                 return -EINVAL;
510
511         if (data[count - 1] == '\0' || data[count - 1] == '\n')
512                 copy_count -= 1;
513
514         if (copy_count == 0 || copy_count >= sizeof(dimm->label))
515                 return -EINVAL;
516
517         strncpy(dimm->label, data, copy_count);
518         dimm->label[copy_count] = '\0';
519
520         return count;
521 }
522
523 static ssize_t dimmdev_size_show(struct device *dev,
524                                  struct device_attribute *mattr, char *data)
525 {
526         struct dimm_info *dimm = to_dimm(dev);
527
528         return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
529 }
530
531 static ssize_t dimmdev_mem_type_show(struct device *dev,
532                                      struct device_attribute *mattr, char *data)
533 {
534         struct dimm_info *dimm = to_dimm(dev);
535
536         return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]);
537 }
538
539 static ssize_t dimmdev_dev_type_show(struct device *dev,
540                                      struct device_attribute *mattr, char *data)
541 {
542         struct dimm_info *dimm = to_dimm(dev);
543
544         return sprintf(data, "%s\n", dev_types[dimm->dtype]);
545 }
546
547 static ssize_t dimmdev_edac_mode_show(struct device *dev,
548                                       struct device_attribute *mattr,
549                                       char *data)
550 {
551         struct dimm_info *dimm = to_dimm(dev);
552
553         return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
554 }
555
556 static ssize_t dimmdev_ce_count_show(struct device *dev,
557                                       struct device_attribute *mattr,
558                                       char *data)
559 {
560         struct dimm_info *dimm = to_dimm(dev);
561         u32 count;
562         int off;
563
564         off = EDAC_DIMM_OFF(dimm->mci->layers,
565                             dimm->mci->n_layers,
566                             dimm->location[0],
567                             dimm->location[1],
568                             dimm->location[2]);
569         count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][off];
570         return sprintf(data, "%u\n", count);
571 }
572
573 static ssize_t dimmdev_ue_count_show(struct device *dev,
574                                       struct device_attribute *mattr,
575                                       char *data)
576 {
577         struct dimm_info *dimm = to_dimm(dev);
578         u32 count;
579         int off;
580
581         off = EDAC_DIMM_OFF(dimm->mci->layers,
582                             dimm->mci->n_layers,
583                             dimm->location[0],
584                             dimm->location[1],
585                             dimm->location[2]);
586         count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][off];
587         return sprintf(data, "%u\n", count);
588 }
589
590 /* dimm/rank attribute files */
591 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
592                    dimmdev_label_show, dimmdev_label_store);
593 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
594 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
595 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
596 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
597 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
598 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL);
599 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL);
600
601 /* attributes of the dimm<id>/rank<id> object */
602 static struct attribute *dimm_attrs[] = {
603         &dev_attr_dimm_label.attr,
604         &dev_attr_dimm_location.attr,
605         &dev_attr_size.attr,
606         &dev_attr_dimm_mem_type.attr,
607         &dev_attr_dimm_dev_type.attr,
608         &dev_attr_dimm_edac_mode.attr,
609         &dev_attr_dimm_ce_count.attr,
610         &dev_attr_dimm_ue_count.attr,
611         NULL,
612 };
613
614 static const struct attribute_group dimm_attr_grp = {
615         .attrs  = dimm_attrs,
616 };
617
618 static const struct attribute_group *dimm_attr_groups[] = {
619         &dimm_attr_grp,
620         NULL
621 };
622
623 static void dimm_attr_release(struct device *dev)
624 {
625         struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
626
627         edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
628         kfree(dimm);
629 }
630
631 static const struct device_type dimm_attr_type = {
632         .groups         = dimm_attr_groups,
633         .release        = dimm_attr_release,
634 };
635
636 /* Create a DIMM object under specifed memory controller device */
637 static int edac_create_dimm_object(struct mem_ctl_info *mci,
638                                    struct dimm_info *dimm,
639                                    int index)
640 {
641         int err;
642         dimm->mci = mci;
643
644         dimm->dev.type = &dimm_attr_type;
645         dimm->dev.bus = mci->bus;
646         device_initialize(&dimm->dev);
647
648         dimm->dev.parent = &mci->dev;
649         if (mci->csbased)
650                 dev_set_name(&dimm->dev, "rank%d", index);
651         else
652                 dev_set_name(&dimm->dev, "dimm%d", index);
653         dev_set_drvdata(&dimm->dev, dimm);
654         pm_runtime_forbid(&mci->dev);
655
656         err =  device_add(&dimm->dev);
657
658         edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
659
660         return err;
661 }
662
663 /*
664  * Memory controller device
665  */
666
667 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
668
669 static ssize_t mci_reset_counters_store(struct device *dev,
670                                         struct device_attribute *mattr,
671                                         const char *data, size_t count)
672 {
673         struct mem_ctl_info *mci = to_mci(dev);
674         int cnt, row, chan, i;
675         mci->ue_mc = 0;
676         mci->ce_mc = 0;
677         mci->ue_noinfo_count = 0;
678         mci->ce_noinfo_count = 0;
679
680         for (row = 0; row < mci->nr_csrows; row++) {
681                 struct csrow_info *ri = mci->csrows[row];
682
683                 ri->ue_count = 0;
684                 ri->ce_count = 0;
685
686                 for (chan = 0; chan < ri->nr_channels; chan++)
687                         ri->channels[chan]->ce_count = 0;
688         }
689
690         cnt = 1;
691         for (i = 0; i < mci->n_layers; i++) {
692                 cnt *= mci->layers[i].size;
693                 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
694                 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
695         }
696
697         mci->start_time = jiffies;
698         return count;
699 }
700
701 /* Memory scrubbing interface:
702  *
703  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
704  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
705  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
706  *
707  * Negative value still means that an error has occurred while setting
708  * the scrub rate.
709  */
710 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
711                                           struct device_attribute *mattr,
712                                           const char *data, size_t count)
713 {
714         struct mem_ctl_info *mci = to_mci(dev);
715         unsigned long bandwidth = 0;
716         int new_bw = 0;
717
718         if (kstrtoul(data, 10, &bandwidth) < 0)
719                 return -EINVAL;
720
721         new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
722         if (new_bw < 0) {
723                 edac_printk(KERN_WARNING, EDAC_MC,
724                             "Error setting scrub rate to: %lu\n", bandwidth);
725                 return -EINVAL;
726         }
727
728         return count;
729 }
730
731 /*
732  * ->get_sdram_scrub_rate() return value semantics same as above.
733  */
734 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
735                                          struct device_attribute *mattr,
736                                          char *data)
737 {
738         struct mem_ctl_info *mci = to_mci(dev);
739         int bandwidth = 0;
740
741         bandwidth = mci->get_sdram_scrub_rate(mci);
742         if (bandwidth < 0) {
743                 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
744                 return bandwidth;
745         }
746
747         return sprintf(data, "%d\n", bandwidth);
748 }
749
750 /* default attribute files for the MCI object */
751 static ssize_t mci_ue_count_show(struct device *dev,
752                                  struct device_attribute *mattr,
753                                  char *data)
754 {
755         struct mem_ctl_info *mci = to_mci(dev);
756
757         return sprintf(data, "%d\n", mci->ue_mc);
758 }
759
760 static ssize_t mci_ce_count_show(struct device *dev,
761                                  struct device_attribute *mattr,
762                                  char *data)
763 {
764         struct mem_ctl_info *mci = to_mci(dev);
765
766         return sprintf(data, "%d\n", mci->ce_mc);
767 }
768
769 static ssize_t mci_ce_noinfo_show(struct device *dev,
770                                   struct device_attribute *mattr,
771                                   char *data)
772 {
773         struct mem_ctl_info *mci = to_mci(dev);
774
775         return sprintf(data, "%d\n", mci->ce_noinfo_count);
776 }
777
778 static ssize_t mci_ue_noinfo_show(struct device *dev,
779                                   struct device_attribute *mattr,
780                                   char *data)
781 {
782         struct mem_ctl_info *mci = to_mci(dev);
783
784         return sprintf(data, "%d\n", mci->ue_noinfo_count);
785 }
786
787 static ssize_t mci_seconds_show(struct device *dev,
788                                 struct device_attribute *mattr,
789                                 char *data)
790 {
791         struct mem_ctl_info *mci = to_mci(dev);
792
793         return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
794 }
795
796 static ssize_t mci_ctl_name_show(struct device *dev,
797                                  struct device_attribute *mattr,
798                                  char *data)
799 {
800         struct mem_ctl_info *mci = to_mci(dev);
801
802         return sprintf(data, "%s\n", mci->ctl_name);
803 }
804
805 static ssize_t mci_size_mb_show(struct device *dev,
806                                 struct device_attribute *mattr,
807                                 char *data)
808 {
809         struct mem_ctl_info *mci = to_mci(dev);
810         int total_pages = 0, csrow_idx, j;
811
812         for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
813                 struct csrow_info *csrow = mci->csrows[csrow_idx];
814
815                 for (j = 0; j < csrow->nr_channels; j++) {
816                         struct dimm_info *dimm = csrow->channels[j]->dimm;
817
818                         total_pages += dimm->nr_pages;
819                 }
820         }
821
822         return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
823 }
824
825 static ssize_t mci_max_location_show(struct device *dev,
826                                      struct device_attribute *mattr,
827                                      char *data)
828 {
829         struct mem_ctl_info *mci = to_mci(dev);
830         int i;
831         char *p = data;
832
833         for (i = 0; i < mci->n_layers; i++) {
834                 p += sprintf(p, "%s %d ",
835                              edac_layer_name[mci->layers[i].type],
836                              mci->layers[i].size - 1);
837         }
838
839         return p - data;
840 }
841
842 /* default Control file */
843 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
844
845 /* default Attribute files */
846 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
847 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
848 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
849 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
850 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
851 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
852 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
853 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
854
855 /* memory scrubber attribute file */
856 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
857             mci_sdram_scrub_rate_store); /* umode set later in is_visible */
858
859 static struct attribute *mci_attrs[] = {
860         &dev_attr_reset_counters.attr,
861         &dev_attr_mc_name.attr,
862         &dev_attr_size_mb.attr,
863         &dev_attr_seconds_since_reset.attr,
864         &dev_attr_ue_noinfo_count.attr,
865         &dev_attr_ce_noinfo_count.attr,
866         &dev_attr_ue_count.attr,
867         &dev_attr_ce_count.attr,
868         &dev_attr_max_location.attr,
869         &dev_attr_sdram_scrub_rate.attr,
870         NULL
871 };
872
873 static umode_t mci_attr_is_visible(struct kobject *kobj,
874                                    struct attribute *attr, int idx)
875 {
876         struct device *dev = kobj_to_dev(kobj);
877         struct mem_ctl_info *mci = to_mci(dev);
878         umode_t mode = 0;
879
880         if (attr != &dev_attr_sdram_scrub_rate.attr)
881                 return attr->mode;
882         if (mci->get_sdram_scrub_rate)
883                 mode |= S_IRUGO;
884         if (mci->set_sdram_scrub_rate)
885                 mode |= S_IWUSR;
886         return mode;
887 }
888
889 static const struct attribute_group mci_attr_grp = {
890         .attrs  = mci_attrs,
891         .is_visible = mci_attr_is_visible,
892 };
893
894 static const struct attribute_group *mci_attr_groups[] = {
895         &mci_attr_grp,
896         NULL
897 };
898
899 static void mci_attr_release(struct device *dev)
900 {
901         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
902
903         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
904         kfree(mci);
905 }
906
907 static const struct device_type mci_attr_type = {
908         .groups         = mci_attr_groups,
909         .release        = mci_attr_release,
910 };
911
912 /*
913  * Create a new Memory Controller kobject instance,
914  *      mc<id> under the 'mc' directory
915  *
916  * Return:
917  *      0       Success
918  *      !0      Failure
919  */
920 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
921                                  const struct attribute_group **groups)
922 {
923         char *name;
924         int i, err;
925
926         /*
927          * The memory controller needs its own bus, in order to avoid
928          * namespace conflicts at /sys/bus/edac.
929          */
930         name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
931         if (!name)
932                 return -ENOMEM;
933
934         mci->bus->name = name;
935
936         edac_dbg(0, "creating bus %s\n", mci->bus->name);
937
938         err = bus_register(mci->bus);
939         if (err < 0) {
940                 kfree(name);
941                 return err;
942         }
943
944         /* get the /sys/devices/system/edac subsys reference */
945         mci->dev.type = &mci_attr_type;
946         device_initialize(&mci->dev);
947
948         mci->dev.parent = mci_pdev;
949         mci->dev.bus = mci->bus;
950         mci->dev.groups = groups;
951         dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
952         dev_set_drvdata(&mci->dev, mci);
953         pm_runtime_forbid(&mci->dev);
954
955         edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
956         err = device_add(&mci->dev);
957         if (err < 0) {
958                 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
959                 goto fail_unregister_bus;
960         }
961
962         /*
963          * Create the dimm/rank devices
964          */
965         for (i = 0; i < mci->tot_dimms; i++) {
966                 struct dimm_info *dimm = mci->dimms[i];
967                 /* Only expose populated DIMMs */
968                 if (!dimm->nr_pages)
969                         continue;
970
971 #ifdef CONFIG_EDAC_DEBUG
972                 edac_dbg(1, "creating dimm%d, located at ", i);
973                 if (edac_debug_level >= 1) {
974                         int lay;
975                         for (lay = 0; lay < mci->n_layers; lay++)
976                                 printk(KERN_CONT "%s %d ",
977                                         edac_layer_name[mci->layers[lay].type],
978                                         dimm->location[lay]);
979                         printk(KERN_CONT "\n");
980                 }
981 #endif
982                 err = edac_create_dimm_object(mci, dimm, i);
983                 if (err) {
984                         edac_dbg(1, "failure: create dimm %d obj\n", i);
985                         goto fail_unregister_dimm;
986                 }
987         }
988
989 #ifdef CONFIG_EDAC_LEGACY_SYSFS
990         err = edac_create_csrow_objects(mci);
991         if (err < 0)
992                 goto fail_unregister_dimm;
993 #endif
994
995         edac_create_debugfs_nodes(mci);
996         return 0;
997
998 fail_unregister_dimm:
999         for (i--; i >= 0; i--) {
1000                 struct dimm_info *dimm = mci->dimms[i];
1001                 if (!dimm->nr_pages)
1002                         continue;
1003
1004                 device_unregister(&dimm->dev);
1005         }
1006         device_unregister(&mci->dev);
1007 fail_unregister_bus:
1008         bus_unregister(mci->bus);
1009         kfree(name);
1010
1011         return err;
1012 }
1013
1014 /*
1015  * remove a Memory Controller instance
1016  */
1017 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1018 {
1019         int i;
1020
1021         edac_dbg(0, "\n");
1022
1023 #ifdef CONFIG_EDAC_DEBUG
1024         edac_debugfs_remove_recursive(mci->debugfs);
1025 #endif
1026 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1027         edac_delete_csrow_objects(mci);
1028 #endif
1029
1030         for (i = 0; i < mci->tot_dimms; i++) {
1031                 struct dimm_info *dimm = mci->dimms[i];
1032                 if (dimm->nr_pages == 0)
1033                         continue;
1034                 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1035                 device_unregister(&dimm->dev);
1036         }
1037 }
1038
1039 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1040 {
1041         struct bus_type *bus = mci->bus;
1042         const char *name = mci->bus->name;
1043
1044         edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1045         device_unregister(&mci->dev);
1046         bus_unregister(bus);
1047         kfree(name);
1048 }
1049
1050 static void mc_attr_release(struct device *dev)
1051 {
1052         /*
1053          * There's no container structure here, as this is just the mci
1054          * parent device, used to create the /sys/devices/mc sysfs node.
1055          * So, there are no attributes on it.
1056          */
1057         edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1058         kfree(dev);
1059 }
1060
1061 static const struct device_type mc_attr_type = {
1062         .release        = mc_attr_release,
1063 };
1064 /*
1065  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1066  */
1067 int __init edac_mc_sysfs_init(void)
1068 {
1069         int err;
1070
1071         mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1072         if (!mci_pdev) {
1073                 err = -ENOMEM;
1074                 goto out;
1075         }
1076
1077         mci_pdev->bus = edac_get_sysfs_subsys();
1078         mci_pdev->type = &mc_attr_type;
1079         device_initialize(mci_pdev);
1080         dev_set_name(mci_pdev, "mc");
1081
1082         err = device_add(mci_pdev);
1083         if (err < 0)
1084                 goto out_put_device;
1085
1086         edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1087
1088         return 0;
1089
1090  out_put_device:
1091         put_device(mci_pdev);
1092  out:
1093         return err;
1094 }
1095
1096 void edac_mc_sysfs_exit(void)
1097 {
1098         device_unregister(mci_pdev);
1099 }