GNU Linux-libre 4.14.303-gnu1
[releases.git] / drivers / edac / edac_mc_sysfs.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *      The entire API were re-written, and ported to use struct device
12  *
13  */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_mc.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static unsigned int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34         return edac_mc_log_ue;
35 }
36
37 int edac_mc_get_log_ce(void)
38 {
39         return edac_mc_log_ce;
40 }
41
42 int edac_mc_get_panic_on_ue(void)
43 {
44         return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
48 unsigned int edac_mc_get_poll_msec(void)
49 {
50         return edac_mc_poll_msec;
51 }
52
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55         unsigned int i;
56         int ret;
57
58         if (!val)
59                 return -EINVAL;
60
61         ret = kstrtouint(val, 0, &i);
62         if (ret)
63                 return ret;
64
65         if (i < 1000)
66                 return -EINVAL;
67
68         *((unsigned int *)kp->arg) = i;
69
70         /* notify edac_mc engine to reset the poll period */
71         edac_mc_reset_delay_period(i);
72
73         return 0;
74 }
75
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81                  "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84                  "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint,
86                   &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88
89 static struct device *mci_pdev;
90
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const mem_types[] = {
95         [MEM_EMPTY] = "Empty",
96         [MEM_RESERVED] = "Reserved",
97         [MEM_UNKNOWN] = "Unknown",
98         [MEM_FPM] = "FPM",
99         [MEM_EDO] = "EDO",
100         [MEM_BEDO] = "BEDO",
101         [MEM_SDR] = "Unbuffered-SDR",
102         [MEM_RDR] = "Registered-SDR",
103         [MEM_DDR] = "Unbuffered-DDR",
104         [MEM_RDDR] = "Registered-DDR",
105         [MEM_RMBS] = "RMBS",
106         [MEM_DDR2] = "Unbuffered-DDR2",
107         [MEM_FB_DDR2] = "FullyBuffered-DDR2",
108         [MEM_RDDR2] = "Registered-DDR2",
109         [MEM_XDR] = "XDR",
110         [MEM_DDR3] = "Unbuffered-DDR3",
111         [MEM_RDDR3] = "Registered-DDR3",
112         [MEM_DDR4] = "Unbuffered-DDR4",
113         [MEM_RDDR4] = "Registered-DDR4"
114 };
115
116 static const char * const dev_types[] = {
117         [DEV_UNKNOWN] = "Unknown",
118         [DEV_X1] = "x1",
119         [DEV_X2] = "x2",
120         [DEV_X4] = "x4",
121         [DEV_X8] = "x8",
122         [DEV_X16] = "x16",
123         [DEV_X32] = "x32",
124         [DEV_X64] = "x64"
125 };
126
127 static const char * const edac_caps[] = {
128         [EDAC_UNKNOWN] = "Unknown",
129         [EDAC_NONE] = "None",
130         [EDAC_RESERVED] = "Reserved",
131         [EDAC_PARITY] = "PARITY",
132         [EDAC_EC] = "EC",
133         [EDAC_SECDED] = "SECDED",
134         [EDAC_S2ECD2ED] = "S2ECD2ED",
135         [EDAC_S4ECD4ED] = "S4ECD4ED",
136         [EDAC_S8ECD8ED] = "S8ECD8ED",
137         [EDAC_S16ECD16ED] = "S16ECD16ED"
138 };
139
140 #ifdef CONFIG_EDAC_LEGACY_SYSFS
141 /*
142  * EDAC sysfs CSROW data structures and methods
143  */
144
145 #define to_csrow(k) container_of(k, struct csrow_info, dev)
146
147 /*
148  * We need it to avoid namespace conflicts between the legacy API
149  * and the per-dimm/per-rank one
150  */
151 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
152         static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
153
154 struct dev_ch_attribute {
155         struct device_attribute attr;
156         int channel;
157 };
158
159 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
160         static struct dev_ch_attribute dev_attr_legacy_##_name = \
161                 { __ATTR(_name, _mode, _show, _store), (_var) }
162
163 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
164
165 /* Set of more default csrow<id> attribute show/store functions */
166 static ssize_t csrow_ue_count_show(struct device *dev,
167                                    struct device_attribute *mattr, char *data)
168 {
169         struct csrow_info *csrow = to_csrow(dev);
170
171         return sprintf(data, "%u\n", csrow->ue_count);
172 }
173
174 static ssize_t csrow_ce_count_show(struct device *dev,
175                                    struct device_attribute *mattr, char *data)
176 {
177         struct csrow_info *csrow = to_csrow(dev);
178
179         return sprintf(data, "%u\n", csrow->ce_count);
180 }
181
182 static ssize_t csrow_size_show(struct device *dev,
183                                struct device_attribute *mattr, char *data)
184 {
185         struct csrow_info *csrow = to_csrow(dev);
186         int i;
187         u32 nr_pages = 0;
188
189         for (i = 0; i < csrow->nr_channels; i++)
190                 nr_pages += csrow->channels[i]->dimm->nr_pages;
191         return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
192 }
193
194 static ssize_t csrow_mem_type_show(struct device *dev,
195                                    struct device_attribute *mattr, char *data)
196 {
197         struct csrow_info *csrow = to_csrow(dev);
198
199         return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
200 }
201
202 static ssize_t csrow_dev_type_show(struct device *dev,
203                                    struct device_attribute *mattr, char *data)
204 {
205         struct csrow_info *csrow = to_csrow(dev);
206
207         return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
208 }
209
210 static ssize_t csrow_edac_mode_show(struct device *dev,
211                                     struct device_attribute *mattr,
212                                     char *data)
213 {
214         struct csrow_info *csrow = to_csrow(dev);
215
216         return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
217 }
218
219 /* show/store functions for DIMM Label attributes */
220 static ssize_t channel_dimm_label_show(struct device *dev,
221                                        struct device_attribute *mattr,
222                                        char *data)
223 {
224         struct csrow_info *csrow = to_csrow(dev);
225         unsigned chan = to_channel(mattr);
226         struct rank_info *rank = csrow->channels[chan];
227
228         /* if field has not been initialized, there is nothing to send */
229         if (!rank->dimm->label[0])
230                 return 0;
231
232         return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
233                         rank->dimm->label);
234 }
235
236 static ssize_t channel_dimm_label_store(struct device *dev,
237                                         struct device_attribute *mattr,
238                                         const char *data, size_t count)
239 {
240         struct csrow_info *csrow = to_csrow(dev);
241         unsigned chan = to_channel(mattr);
242         struct rank_info *rank = csrow->channels[chan];
243         size_t copy_count = count;
244
245         if (count == 0)
246                 return -EINVAL;
247
248         if (data[count - 1] == '\0' || data[count - 1] == '\n')
249                 copy_count -= 1;
250
251         if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
252                 return -EINVAL;
253
254         strncpy(rank->dimm->label, data, copy_count);
255         rank->dimm->label[copy_count] = '\0';
256
257         return count;
258 }
259
260 /* show function for dynamic chX_ce_count attribute */
261 static ssize_t channel_ce_count_show(struct device *dev,
262                                      struct device_attribute *mattr, char *data)
263 {
264         struct csrow_info *csrow = to_csrow(dev);
265         unsigned chan = to_channel(mattr);
266         struct rank_info *rank = csrow->channels[chan];
267
268         return sprintf(data, "%u\n", rank->ce_count);
269 }
270
271 /* cwrow<id>/attribute files */
272 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
273 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
274 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
275 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
276 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
277 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
278
279 /* default attributes of the CSROW<id> object */
280 static struct attribute *csrow_attrs[] = {
281         &dev_attr_legacy_dev_type.attr,
282         &dev_attr_legacy_mem_type.attr,
283         &dev_attr_legacy_edac_mode.attr,
284         &dev_attr_legacy_size_mb.attr,
285         &dev_attr_legacy_ue_count.attr,
286         &dev_attr_legacy_ce_count.attr,
287         NULL,
288 };
289
290 static const struct attribute_group csrow_attr_grp = {
291         .attrs  = csrow_attrs,
292 };
293
294 static const struct attribute_group *csrow_attr_groups[] = {
295         &csrow_attr_grp,
296         NULL
297 };
298
299 static void csrow_attr_release(struct device *dev)
300 {
301         struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
302
303         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
304         kfree(csrow);
305 }
306
307 static const struct device_type csrow_attr_type = {
308         .groups         = csrow_attr_groups,
309         .release        = csrow_attr_release,
310 };
311
312 /*
313  * possible dynamic channel DIMM Label attribute files
314  *
315  */
316 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
317         channel_dimm_label_show, channel_dimm_label_store, 0);
318 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
319         channel_dimm_label_show, channel_dimm_label_store, 1);
320 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
321         channel_dimm_label_show, channel_dimm_label_store, 2);
322 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
323         channel_dimm_label_show, channel_dimm_label_store, 3);
324 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
325         channel_dimm_label_show, channel_dimm_label_store, 4);
326 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
327         channel_dimm_label_show, channel_dimm_label_store, 5);
328 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
329         channel_dimm_label_show, channel_dimm_label_store, 6);
330 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
331         channel_dimm_label_show, channel_dimm_label_store, 7);
332
333 /* Total possible dynamic DIMM Label attribute file table */
334 static struct attribute *dynamic_csrow_dimm_attr[] = {
335         &dev_attr_legacy_ch0_dimm_label.attr.attr,
336         &dev_attr_legacy_ch1_dimm_label.attr.attr,
337         &dev_attr_legacy_ch2_dimm_label.attr.attr,
338         &dev_attr_legacy_ch3_dimm_label.attr.attr,
339         &dev_attr_legacy_ch4_dimm_label.attr.attr,
340         &dev_attr_legacy_ch5_dimm_label.attr.attr,
341         &dev_attr_legacy_ch6_dimm_label.attr.attr,
342         &dev_attr_legacy_ch7_dimm_label.attr.attr,
343         NULL
344 };
345
346 /* possible dynamic channel ce_count attribute files */
347 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
348                    channel_ce_count_show, NULL, 0);
349 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
350                    channel_ce_count_show, NULL, 1);
351 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
352                    channel_ce_count_show, NULL, 2);
353 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
354                    channel_ce_count_show, NULL, 3);
355 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
356                    channel_ce_count_show, NULL, 4);
357 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
358                    channel_ce_count_show, NULL, 5);
359 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
360                    channel_ce_count_show, NULL, 6);
361 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
362                    channel_ce_count_show, NULL, 7);
363
364 /* Total possible dynamic ce_count attribute file table */
365 static struct attribute *dynamic_csrow_ce_count_attr[] = {
366         &dev_attr_legacy_ch0_ce_count.attr.attr,
367         &dev_attr_legacy_ch1_ce_count.attr.attr,
368         &dev_attr_legacy_ch2_ce_count.attr.attr,
369         &dev_attr_legacy_ch3_ce_count.attr.attr,
370         &dev_attr_legacy_ch4_ce_count.attr.attr,
371         &dev_attr_legacy_ch5_ce_count.attr.attr,
372         &dev_attr_legacy_ch6_ce_count.attr.attr,
373         &dev_attr_legacy_ch7_ce_count.attr.attr,
374         NULL
375 };
376
377 static umode_t csrow_dev_is_visible(struct kobject *kobj,
378                                     struct attribute *attr, int idx)
379 {
380         struct device *dev = kobj_to_dev(kobj);
381         struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
382
383         if (idx >= csrow->nr_channels)
384                 return 0;
385
386         if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
387                 WARN_ONCE(1, "idx: %d\n", idx);
388                 return 0;
389         }
390
391         /* Only expose populated DIMMs */
392         if (!csrow->channels[idx]->dimm->nr_pages)
393                 return 0;
394
395         return attr->mode;
396 }
397
398
399 static const struct attribute_group csrow_dev_dimm_group = {
400         .attrs = dynamic_csrow_dimm_attr,
401         .is_visible = csrow_dev_is_visible,
402 };
403
404 static const struct attribute_group csrow_dev_ce_count_group = {
405         .attrs = dynamic_csrow_ce_count_attr,
406         .is_visible = csrow_dev_is_visible,
407 };
408
409 static const struct attribute_group *csrow_dev_groups[] = {
410         &csrow_dev_dimm_group,
411         &csrow_dev_ce_count_group,
412         NULL
413 };
414
415 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
416 {
417         int chan, nr_pages = 0;
418
419         for (chan = 0; chan < csrow->nr_channels; chan++)
420                 nr_pages += csrow->channels[chan]->dimm->nr_pages;
421
422         return nr_pages;
423 }
424
425 /* Create a CSROW object under specifed edac_mc_device */
426 static int edac_create_csrow_object(struct mem_ctl_info *mci,
427                                     struct csrow_info *csrow, int index)
428 {
429         int err;
430
431         csrow->dev.type = &csrow_attr_type;
432         csrow->dev.bus = mci->bus;
433         csrow->dev.groups = csrow_dev_groups;
434         device_initialize(&csrow->dev);
435         csrow->dev.parent = &mci->dev;
436         csrow->mci = mci;
437         dev_set_name(&csrow->dev, "csrow%d", index);
438         dev_set_drvdata(&csrow->dev, csrow);
439
440         edac_dbg(0, "creating (virtual) csrow node %s\n",
441                  dev_name(&csrow->dev));
442
443         err = device_add(&csrow->dev);
444         if (err)
445                 put_device(&csrow->dev);
446
447         return err;
448 }
449
450 /* Create a CSROW object under specifed edac_mc_device */
451 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
452 {
453         int err, i;
454         struct csrow_info *csrow;
455
456         for (i = 0; i < mci->nr_csrows; i++) {
457                 csrow = mci->csrows[i];
458                 if (!nr_pages_per_csrow(csrow))
459                         continue;
460                 err = edac_create_csrow_object(mci, mci->csrows[i], i);
461                 if (err < 0) {
462                         edac_dbg(1,
463                                  "failure: create csrow objects for csrow %d\n",
464                                  i);
465                         goto error;
466                 }
467         }
468         return 0;
469
470 error:
471         for (--i; i >= 0; i--) {
472                 csrow = mci->csrows[i];
473                 if (!nr_pages_per_csrow(csrow))
474                         continue;
475                 put_device(&mci->csrows[i]->dev);
476         }
477
478         return err;
479 }
480
481 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
482 {
483         int i;
484         struct csrow_info *csrow;
485
486         for (i = mci->nr_csrows - 1; i >= 0; i--) {
487                 csrow = mci->csrows[i];
488                 if (!nr_pages_per_csrow(csrow))
489                         continue;
490                 device_unregister(&mci->csrows[i]->dev);
491         }
492 }
493 #endif
494
495 /*
496  * Per-dimm (or per-rank) devices
497  */
498
499 #define to_dimm(k) container_of(k, struct dimm_info, dev)
500
501 /* show/store functions for DIMM Label attributes */
502 static ssize_t dimmdev_location_show(struct device *dev,
503                                      struct device_attribute *mattr, char *data)
504 {
505         struct dimm_info *dimm = to_dimm(dev);
506
507         return edac_dimm_info_location(dimm, data, PAGE_SIZE);
508 }
509
510 static ssize_t dimmdev_label_show(struct device *dev,
511                                   struct device_attribute *mattr, char *data)
512 {
513         struct dimm_info *dimm = to_dimm(dev);
514
515         /* if field has not been initialized, there is nothing to send */
516         if (!dimm->label[0])
517                 return 0;
518
519         return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
520 }
521
522 static ssize_t dimmdev_label_store(struct device *dev,
523                                    struct device_attribute *mattr,
524                                    const char *data,
525                                    size_t count)
526 {
527         struct dimm_info *dimm = to_dimm(dev);
528         size_t copy_count = count;
529
530         if (count == 0)
531                 return -EINVAL;
532
533         if (data[count - 1] == '\0' || data[count - 1] == '\n')
534                 copy_count -= 1;
535
536         if (copy_count == 0 || copy_count >= sizeof(dimm->label))
537                 return -EINVAL;
538
539         strncpy(dimm->label, data, copy_count);
540         dimm->label[copy_count] = '\0';
541
542         return count;
543 }
544
545 static ssize_t dimmdev_size_show(struct device *dev,
546                                  struct device_attribute *mattr, char *data)
547 {
548         struct dimm_info *dimm = to_dimm(dev);
549
550         return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
551 }
552
553 static ssize_t dimmdev_mem_type_show(struct device *dev,
554                                      struct device_attribute *mattr, char *data)
555 {
556         struct dimm_info *dimm = to_dimm(dev);
557
558         return sprintf(data, "%s\n", mem_types[dimm->mtype]);
559 }
560
561 static ssize_t dimmdev_dev_type_show(struct device *dev,
562                                      struct device_attribute *mattr, char *data)
563 {
564         struct dimm_info *dimm = to_dimm(dev);
565
566         return sprintf(data, "%s\n", dev_types[dimm->dtype]);
567 }
568
569 static ssize_t dimmdev_edac_mode_show(struct device *dev,
570                                       struct device_attribute *mattr,
571                                       char *data)
572 {
573         struct dimm_info *dimm = to_dimm(dev);
574
575         return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
576 }
577
578 static ssize_t dimmdev_ce_count_show(struct device *dev,
579                                       struct device_attribute *mattr,
580                                       char *data)
581 {
582         struct dimm_info *dimm = to_dimm(dev);
583         u32 count;
584         int off;
585
586         off = EDAC_DIMM_OFF(dimm->mci->layers,
587                             dimm->mci->n_layers,
588                             dimm->location[0],
589                             dimm->location[1],
590                             dimm->location[2]);
591         count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][off];
592         return sprintf(data, "%u\n", count);
593 }
594
595 static ssize_t dimmdev_ue_count_show(struct device *dev,
596                                       struct device_attribute *mattr,
597                                       char *data)
598 {
599         struct dimm_info *dimm = to_dimm(dev);
600         u32 count;
601         int off;
602
603         off = EDAC_DIMM_OFF(dimm->mci->layers,
604                             dimm->mci->n_layers,
605                             dimm->location[0],
606                             dimm->location[1],
607                             dimm->location[2]);
608         count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][off];
609         return sprintf(data, "%u\n", count);
610 }
611
612 /* dimm/rank attribute files */
613 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
614                    dimmdev_label_show, dimmdev_label_store);
615 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
616 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
617 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
618 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
619 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
620 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL);
621 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL);
622
623 /* attributes of the dimm<id>/rank<id> object */
624 static struct attribute *dimm_attrs[] = {
625         &dev_attr_dimm_label.attr,
626         &dev_attr_dimm_location.attr,
627         &dev_attr_size.attr,
628         &dev_attr_dimm_mem_type.attr,
629         &dev_attr_dimm_dev_type.attr,
630         &dev_attr_dimm_edac_mode.attr,
631         &dev_attr_dimm_ce_count.attr,
632         &dev_attr_dimm_ue_count.attr,
633         NULL,
634 };
635
636 static const struct attribute_group dimm_attr_grp = {
637         .attrs  = dimm_attrs,
638 };
639
640 static const struct attribute_group *dimm_attr_groups[] = {
641         &dimm_attr_grp,
642         NULL
643 };
644
645 static void dimm_attr_release(struct device *dev)
646 {
647         struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
648
649         edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
650         kfree(dimm);
651 }
652
653 static const struct device_type dimm_attr_type = {
654         .groups         = dimm_attr_groups,
655         .release        = dimm_attr_release,
656 };
657
658 /* Create a DIMM object under specifed memory controller device */
659 static int edac_create_dimm_object(struct mem_ctl_info *mci,
660                                    struct dimm_info *dimm,
661                                    int index)
662 {
663         int err;
664         dimm->mci = mci;
665
666         dimm->dev.type = &dimm_attr_type;
667         dimm->dev.bus = mci->bus;
668         device_initialize(&dimm->dev);
669
670         dimm->dev.parent = &mci->dev;
671         if (mci->csbased)
672                 dev_set_name(&dimm->dev, "rank%d", index);
673         else
674                 dev_set_name(&dimm->dev, "dimm%d", index);
675         dev_set_drvdata(&dimm->dev, dimm);
676         pm_runtime_forbid(&mci->dev);
677
678         err =  device_add(&dimm->dev);
679
680         edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
681
682         return err;
683 }
684
685 /*
686  * Memory controller device
687  */
688
689 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
690
691 static ssize_t mci_reset_counters_store(struct device *dev,
692                                         struct device_attribute *mattr,
693                                         const char *data, size_t count)
694 {
695         struct mem_ctl_info *mci = to_mci(dev);
696         int cnt, row, chan, i;
697         mci->ue_mc = 0;
698         mci->ce_mc = 0;
699         mci->ue_noinfo_count = 0;
700         mci->ce_noinfo_count = 0;
701
702         for (row = 0; row < mci->nr_csrows; row++) {
703                 struct csrow_info *ri = mci->csrows[row];
704
705                 ri->ue_count = 0;
706                 ri->ce_count = 0;
707
708                 for (chan = 0; chan < ri->nr_channels; chan++)
709                         ri->channels[chan]->ce_count = 0;
710         }
711
712         cnt = 1;
713         for (i = 0; i < mci->n_layers; i++) {
714                 cnt *= mci->layers[i].size;
715                 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
716                 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
717         }
718
719         mci->start_time = jiffies;
720         return count;
721 }
722
723 /* Memory scrubbing interface:
724  *
725  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
726  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
727  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
728  *
729  * Negative value still means that an error has occurred while setting
730  * the scrub rate.
731  */
732 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
733                                           struct device_attribute *mattr,
734                                           const char *data, size_t count)
735 {
736         struct mem_ctl_info *mci = to_mci(dev);
737         unsigned long bandwidth = 0;
738         int new_bw = 0;
739
740         if (kstrtoul(data, 10, &bandwidth) < 0)
741                 return -EINVAL;
742
743         new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
744         if (new_bw < 0) {
745                 edac_printk(KERN_WARNING, EDAC_MC,
746                             "Error setting scrub rate to: %lu\n", bandwidth);
747                 return -EINVAL;
748         }
749
750         return count;
751 }
752
753 /*
754  * ->get_sdram_scrub_rate() return value semantics same as above.
755  */
756 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
757                                          struct device_attribute *mattr,
758                                          char *data)
759 {
760         struct mem_ctl_info *mci = to_mci(dev);
761         int bandwidth = 0;
762
763         bandwidth = mci->get_sdram_scrub_rate(mci);
764         if (bandwidth < 0) {
765                 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
766                 return bandwidth;
767         }
768
769         return sprintf(data, "%d\n", bandwidth);
770 }
771
772 /* default attribute files for the MCI object */
773 static ssize_t mci_ue_count_show(struct device *dev,
774                                  struct device_attribute *mattr,
775                                  char *data)
776 {
777         struct mem_ctl_info *mci = to_mci(dev);
778
779         return sprintf(data, "%d\n", mci->ue_mc);
780 }
781
782 static ssize_t mci_ce_count_show(struct device *dev,
783                                  struct device_attribute *mattr,
784                                  char *data)
785 {
786         struct mem_ctl_info *mci = to_mci(dev);
787
788         return sprintf(data, "%d\n", mci->ce_mc);
789 }
790
791 static ssize_t mci_ce_noinfo_show(struct device *dev,
792                                   struct device_attribute *mattr,
793                                   char *data)
794 {
795         struct mem_ctl_info *mci = to_mci(dev);
796
797         return sprintf(data, "%d\n", mci->ce_noinfo_count);
798 }
799
800 static ssize_t mci_ue_noinfo_show(struct device *dev,
801                                   struct device_attribute *mattr,
802                                   char *data)
803 {
804         struct mem_ctl_info *mci = to_mci(dev);
805
806         return sprintf(data, "%d\n", mci->ue_noinfo_count);
807 }
808
809 static ssize_t mci_seconds_show(struct device *dev,
810                                 struct device_attribute *mattr,
811                                 char *data)
812 {
813         struct mem_ctl_info *mci = to_mci(dev);
814
815         return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
816 }
817
818 static ssize_t mci_ctl_name_show(struct device *dev,
819                                  struct device_attribute *mattr,
820                                  char *data)
821 {
822         struct mem_ctl_info *mci = to_mci(dev);
823
824         return sprintf(data, "%s\n", mci->ctl_name);
825 }
826
827 static ssize_t mci_size_mb_show(struct device *dev,
828                                 struct device_attribute *mattr,
829                                 char *data)
830 {
831         struct mem_ctl_info *mci = to_mci(dev);
832         int total_pages = 0, csrow_idx, j;
833
834         for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
835                 struct csrow_info *csrow = mci->csrows[csrow_idx];
836
837                 for (j = 0; j < csrow->nr_channels; j++) {
838                         struct dimm_info *dimm = csrow->channels[j]->dimm;
839
840                         total_pages += dimm->nr_pages;
841                 }
842         }
843
844         return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
845 }
846
847 static ssize_t mci_max_location_show(struct device *dev,
848                                      struct device_attribute *mattr,
849                                      char *data)
850 {
851         struct mem_ctl_info *mci = to_mci(dev);
852         int i;
853         char *p = data;
854
855         for (i = 0; i < mci->n_layers; i++) {
856                 p += sprintf(p, "%s %d ",
857                              edac_layer_name[mci->layers[i].type],
858                              mci->layers[i].size - 1);
859         }
860
861         return p - data;
862 }
863
864 /* default Control file */
865 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
866
867 /* default Attribute files */
868 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
869 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
870 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
871 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
872 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
873 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
874 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
875 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
876
877 /* memory scrubber attribute file */
878 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
879             mci_sdram_scrub_rate_store); /* umode set later in is_visible */
880
881 static struct attribute *mci_attrs[] = {
882         &dev_attr_reset_counters.attr,
883         &dev_attr_mc_name.attr,
884         &dev_attr_size_mb.attr,
885         &dev_attr_seconds_since_reset.attr,
886         &dev_attr_ue_noinfo_count.attr,
887         &dev_attr_ce_noinfo_count.attr,
888         &dev_attr_ue_count.attr,
889         &dev_attr_ce_count.attr,
890         &dev_attr_max_location.attr,
891         &dev_attr_sdram_scrub_rate.attr,
892         NULL
893 };
894
895 static umode_t mci_attr_is_visible(struct kobject *kobj,
896                                    struct attribute *attr, int idx)
897 {
898         struct device *dev = kobj_to_dev(kobj);
899         struct mem_ctl_info *mci = to_mci(dev);
900         umode_t mode = 0;
901
902         if (attr != &dev_attr_sdram_scrub_rate.attr)
903                 return attr->mode;
904         if (mci->get_sdram_scrub_rate)
905                 mode |= S_IRUGO;
906         if (mci->set_sdram_scrub_rate)
907                 mode |= S_IWUSR;
908         return mode;
909 }
910
911 static const struct attribute_group mci_attr_grp = {
912         .attrs  = mci_attrs,
913         .is_visible = mci_attr_is_visible,
914 };
915
916 static const struct attribute_group *mci_attr_groups[] = {
917         &mci_attr_grp,
918         NULL
919 };
920
921 static void mci_attr_release(struct device *dev)
922 {
923         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
924
925         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
926         kfree(mci);
927 }
928
929 static const struct device_type mci_attr_type = {
930         .groups         = mci_attr_groups,
931         .release        = mci_attr_release,
932 };
933
934 /*
935  * Create a new Memory Controller kobject instance,
936  *      mc<id> under the 'mc' directory
937  *
938  * Return:
939  *      0       Success
940  *      !0      Failure
941  */
942 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
943                                  const struct attribute_group **groups)
944 {
945         char *name;
946         int i, err;
947
948         /*
949          * The memory controller needs its own bus, in order to avoid
950          * namespace conflicts at /sys/bus/edac.
951          */
952         name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
953         if (!name)
954                 return -ENOMEM;
955
956         mci->bus->name = name;
957
958         edac_dbg(0, "creating bus %s\n", mci->bus->name);
959
960         err = bus_register(mci->bus);
961         if (err < 0) {
962                 kfree(name);
963                 return err;
964         }
965
966         /* get the /sys/devices/system/edac subsys reference */
967         mci->dev.type = &mci_attr_type;
968         device_initialize(&mci->dev);
969
970         mci->dev.parent = mci_pdev;
971         mci->dev.bus = mci->bus;
972         mci->dev.groups = groups;
973         dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
974         dev_set_drvdata(&mci->dev, mci);
975         pm_runtime_forbid(&mci->dev);
976
977         edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
978         err = device_add(&mci->dev);
979         if (err < 0) {
980                 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
981                 goto fail_unregister_bus;
982         }
983
984         /*
985          * Create the dimm/rank devices
986          */
987         for (i = 0; i < mci->tot_dimms; i++) {
988                 struct dimm_info *dimm = mci->dimms[i];
989                 /* Only expose populated DIMMs */
990                 if (!dimm->nr_pages)
991                         continue;
992
993 #ifdef CONFIG_EDAC_DEBUG
994                 edac_dbg(1, "creating dimm%d, located at ", i);
995                 if (edac_debug_level >= 1) {
996                         int lay;
997                         for (lay = 0; lay < mci->n_layers; lay++)
998                                 printk(KERN_CONT "%s %d ",
999                                         edac_layer_name[mci->layers[lay].type],
1000                                         dimm->location[lay]);
1001                         printk(KERN_CONT "\n");
1002                 }
1003 #endif
1004                 err = edac_create_dimm_object(mci, dimm, i);
1005                 if (err) {
1006                         edac_dbg(1, "failure: create dimm %d obj\n", i);
1007                         goto fail_unregister_dimm;
1008                 }
1009         }
1010
1011 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1012         err = edac_create_csrow_objects(mci);
1013         if (err < 0)
1014                 goto fail_unregister_dimm;
1015 #endif
1016
1017         edac_create_debugfs_nodes(mci);
1018         return 0;
1019
1020 fail_unregister_dimm:
1021         for (i--; i >= 0; i--) {
1022                 struct dimm_info *dimm = mci->dimms[i];
1023                 if (!dimm->nr_pages)
1024                         continue;
1025
1026                 device_unregister(&dimm->dev);
1027         }
1028         device_unregister(&mci->dev);
1029 fail_unregister_bus:
1030         bus_unregister(mci->bus);
1031         kfree(name);
1032
1033         return err;
1034 }
1035
1036 /*
1037  * remove a Memory Controller instance
1038  */
1039 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1040 {
1041         int i;
1042
1043         edac_dbg(0, "\n");
1044
1045 #ifdef CONFIG_EDAC_DEBUG
1046         edac_debugfs_remove_recursive(mci->debugfs);
1047 #endif
1048 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1049         edac_delete_csrow_objects(mci);
1050 #endif
1051
1052         for (i = 0; i < mci->tot_dimms; i++) {
1053                 struct dimm_info *dimm = mci->dimms[i];
1054                 if (dimm->nr_pages == 0)
1055                         continue;
1056                 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1057                 device_unregister(&dimm->dev);
1058         }
1059 }
1060
1061 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1062 {
1063         struct bus_type *bus = mci->bus;
1064         const char *name = mci->bus->name;
1065
1066         edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1067         device_unregister(&mci->dev);
1068         bus_unregister(bus);
1069         kfree(name);
1070 }
1071
1072 static void mc_attr_release(struct device *dev)
1073 {
1074         /*
1075          * There's no container structure here, as this is just the mci
1076          * parent device, used to create the /sys/devices/mc sysfs node.
1077          * So, there are no attributes on it.
1078          */
1079         edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1080         kfree(dev);
1081 }
1082
1083 static const struct device_type mc_attr_type = {
1084         .release        = mc_attr_release,
1085 };
1086 /*
1087  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1088  */
1089 int __init edac_mc_sysfs_init(void)
1090 {
1091         int err;
1092
1093         mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1094         if (!mci_pdev) {
1095                 err = -ENOMEM;
1096                 goto out;
1097         }
1098
1099         mci_pdev->bus = edac_get_sysfs_subsys();
1100         mci_pdev->type = &mc_attr_type;
1101         device_initialize(mci_pdev);
1102         dev_set_name(mci_pdev, "mc");
1103
1104         err = device_add(mci_pdev);
1105         if (err < 0)
1106                 goto out_put_device;
1107
1108         edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1109
1110         return 0;
1111
1112  out_put_device:
1113         put_device(mci_pdev);
1114  out:
1115         return err;
1116 }
1117
1118 void edac_mc_sysfs_exit(void)
1119 {
1120         device_unregister(mci_pdev);
1121 }