GNU Linux-libre 6.9.1-gnu
[releases.git] / drivers / dma / xilinx / xdma.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * DMA driver for Xilinx DMA/Bridge Subsystem
4  *
5  * Copyright (C) 2017-2020 Xilinx, Inc. All rights reserved.
6  * Copyright (C) 2022, Advanced Micro Devices, Inc.
7  */
8
9 /*
10  * The DMA/Bridge Subsystem for PCI Express allows for the movement of data
11  * between Host memory and the DMA subsystem. It does this by operating on
12  * 'descriptors' that contain information about the source, destination and
13  * amount of data to transfer. These direct memory transfers can be both in
14  * the Host to Card (H2C) and Card to Host (C2H) transfers. The DMA can be
15  * configured to have a single AXI4 Master interface shared by all channels
16  * or one AXI4-Stream interface for each channel enabled. Memory transfers are
17  * specified on a per-channel basis in descriptor linked lists, which the DMA
18  * fetches from host memory and processes. Events such as descriptor completion
19  * and errors are signaled using interrupts. The core also provides up to 16
20  * user interrupt wires that generate interrupts to the host.
21  */
22
23 #include <linux/mod_devicetable.h>
24 #include <linux/bitfield.h>
25 #include <linux/dmapool.h>
26 #include <linux/regmap.h>
27 #include <linux/dmaengine.h>
28 #include <linux/dma/amd_xdma.h>
29 #include <linux/platform_device.h>
30 #include <linux/platform_data/amd_xdma.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/pci.h>
33 #include "../virt-dma.h"
34 #include "xdma-regs.h"
35
36 /* mmio regmap config for all XDMA registers */
37 static const struct regmap_config xdma_regmap_config = {
38         .reg_bits = 32,
39         .val_bits = 32,
40         .reg_stride = 4,
41         .max_register = XDMA_REG_SPACE_LEN,
42 };
43
44 /**
45  * struct xdma_desc_block - Descriptor block
46  * @virt_addr: Virtual address of block start
47  * @dma_addr: DMA address of block start
48  */
49 struct xdma_desc_block {
50         void            *virt_addr;
51         dma_addr_t      dma_addr;
52 };
53
54 /**
55  * struct xdma_chan - Driver specific DMA channel structure
56  * @vchan: Virtual channel
57  * @xdev_hdl: Pointer to DMA device structure
58  * @base: Offset of channel registers
59  * @desc_pool: Descriptor pool
60  * @busy: Busy flag of the channel
61  * @dir: Transferring direction of the channel
62  * @cfg: Transferring config of the channel
63  * @irq: IRQ assigned to the channel
64  */
65 struct xdma_chan {
66         struct virt_dma_chan            vchan;
67         void                            *xdev_hdl;
68         u32                             base;
69         struct dma_pool                 *desc_pool;
70         bool                            busy;
71         enum dma_transfer_direction     dir;
72         struct dma_slave_config         cfg;
73         u32                             irq;
74         struct completion               last_interrupt;
75         bool                            stop_requested;
76 };
77
78 /**
79  * struct xdma_desc - DMA desc structure
80  * @vdesc: Virtual DMA descriptor
81  * @chan: DMA channel pointer
82  * @dir: Transferring direction of the request
83  * @desc_blocks: Hardware descriptor blocks
84  * @dblk_num: Number of hardware descriptor blocks
85  * @desc_num: Number of hardware descriptors
86  * @completed_desc_num: Completed hardware descriptors
87  * @cyclic: Cyclic transfer vs. scatter-gather
88  * @interleaved_dma: Interleaved DMA transfer
89  * @periods: Number of periods in the cyclic transfer
90  * @period_size: Size of a period in bytes in cyclic transfers
91  * @frames_left: Number of frames left in interleaved DMA transfer
92  * @error: tx error flag
93  */
94 struct xdma_desc {
95         struct virt_dma_desc            vdesc;
96         struct xdma_chan                *chan;
97         enum dma_transfer_direction     dir;
98         struct xdma_desc_block          *desc_blocks;
99         u32                             dblk_num;
100         u32                             desc_num;
101         u32                             completed_desc_num;
102         bool                            cyclic;
103         bool                            interleaved_dma;
104         u32                             periods;
105         u32                             period_size;
106         u32                             frames_left;
107         bool                            error;
108 };
109
110 #define XDMA_DEV_STATUS_REG_DMA         BIT(0)
111 #define XDMA_DEV_STATUS_INIT_MSIX       BIT(1)
112
113 /**
114  * struct xdma_device - DMA device structure
115  * @pdev: Platform device pointer
116  * @dma_dev: DMA device structure
117  * @rmap: MMIO regmap for DMA registers
118  * @h2c_chans: Host to Card channels
119  * @c2h_chans: Card to Host channels
120  * @h2c_chan_num: Number of H2C channels
121  * @c2h_chan_num: Number of C2H channels
122  * @irq_start: Start IRQ assigned to device
123  * @irq_num: Number of IRQ assigned to device
124  * @status: Initialization status
125  */
126 struct xdma_device {
127         struct platform_device  *pdev;
128         struct dma_device       dma_dev;
129         struct regmap           *rmap;
130         struct xdma_chan        *h2c_chans;
131         struct xdma_chan        *c2h_chans;
132         u32                     h2c_chan_num;
133         u32                     c2h_chan_num;
134         u32                     irq_start;
135         u32                     irq_num;
136         u32                     status;
137 };
138
139 #define xdma_err(xdev, fmt, args...)                                    \
140         dev_err(&(xdev)->pdev->dev, fmt, ##args)
141 #define XDMA_CHAN_NUM(_xd) ({                                           \
142         typeof(_xd) (xd) = (_xd);                                       \
143         ((xd)->h2c_chan_num + (xd)->c2h_chan_num); })
144
145 /* Get the last desc in a desc block */
146 static inline void *xdma_blk_last_desc(struct xdma_desc_block *block)
147 {
148         return block->virt_addr + (XDMA_DESC_ADJACENT - 1) * XDMA_DESC_SIZE;
149 }
150
151 /**
152  * xdma_link_sg_desc_blocks - Link SG descriptor blocks for DMA transfer
153  * @sw_desc: Tx descriptor pointer
154  */
155 static void xdma_link_sg_desc_blocks(struct xdma_desc *sw_desc)
156 {
157         struct xdma_desc_block *block;
158         u32 last_blk_desc, desc_control;
159         struct xdma_hw_desc *desc;
160         int i;
161
162         desc_control = XDMA_DESC_CONTROL(XDMA_DESC_ADJACENT, 0);
163         for (i = 1; i < sw_desc->dblk_num; i++) {
164                 block = &sw_desc->desc_blocks[i - 1];
165                 desc = xdma_blk_last_desc(block);
166
167                 if (!(i & XDMA_DESC_BLOCK_MASK)) {
168                         desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
169                         continue;
170                 }
171                 desc->control = cpu_to_le32(desc_control);
172                 desc->next_desc = cpu_to_le64(block[1].dma_addr);
173         }
174
175         /* update the last block */
176         last_blk_desc = (sw_desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
177         if (((sw_desc->dblk_num - 1) & XDMA_DESC_BLOCK_MASK) > 0) {
178                 block = &sw_desc->desc_blocks[sw_desc->dblk_num - 2];
179                 desc = xdma_blk_last_desc(block);
180                 desc_control = XDMA_DESC_CONTROL(last_blk_desc + 1, 0);
181                 desc->control = cpu_to_le32(desc_control);
182         }
183
184         block = &sw_desc->desc_blocks[sw_desc->dblk_num - 1];
185         desc = block->virt_addr + last_blk_desc * XDMA_DESC_SIZE;
186         desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
187 }
188
189 /**
190  * xdma_link_cyclic_desc_blocks - Link cyclic descriptor blocks for DMA transfer
191  * @sw_desc: Tx descriptor pointer
192  */
193 static void xdma_link_cyclic_desc_blocks(struct xdma_desc *sw_desc)
194 {
195         struct xdma_desc_block *block;
196         struct xdma_hw_desc *desc;
197         int i;
198
199         block = sw_desc->desc_blocks;
200         for (i = 0; i < sw_desc->desc_num - 1; i++) {
201                 desc = block->virt_addr + i * XDMA_DESC_SIZE;
202                 desc->next_desc = cpu_to_le64(block->dma_addr + ((i + 1) * XDMA_DESC_SIZE));
203         }
204         desc = block->virt_addr + i * XDMA_DESC_SIZE;
205         desc->next_desc = cpu_to_le64(block->dma_addr);
206 }
207
208 static inline struct xdma_chan *to_xdma_chan(struct dma_chan *chan)
209 {
210         return container_of(chan, struct xdma_chan, vchan.chan);
211 }
212
213 static inline struct xdma_desc *to_xdma_desc(struct virt_dma_desc *vdesc)
214 {
215         return container_of(vdesc, struct xdma_desc, vdesc);
216 }
217
218 /**
219  * xdma_channel_init - Initialize DMA channel registers
220  * @chan: DMA channel pointer
221  */
222 static int xdma_channel_init(struct xdma_chan *chan)
223 {
224         struct xdma_device *xdev = chan->xdev_hdl;
225         int ret;
226
227         ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_CONTROL_W1C,
228                            CHAN_CTRL_NON_INCR_ADDR);
229         if (ret)
230                 return ret;
231
232         ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_INTR_ENABLE,
233                            CHAN_IM_ALL);
234         if (ret)
235                 return ret;
236
237         return 0;
238 }
239
240 /**
241  * xdma_free_desc - Free descriptor
242  * @vdesc: Virtual DMA descriptor
243  */
244 static void xdma_free_desc(struct virt_dma_desc *vdesc)
245 {
246         struct xdma_desc *sw_desc;
247         int i;
248
249         sw_desc = to_xdma_desc(vdesc);
250         for (i = 0; i < sw_desc->dblk_num; i++) {
251                 if (!sw_desc->desc_blocks[i].virt_addr)
252                         break;
253                 dma_pool_free(sw_desc->chan->desc_pool,
254                               sw_desc->desc_blocks[i].virt_addr,
255                               sw_desc->desc_blocks[i].dma_addr);
256         }
257         kfree(sw_desc->desc_blocks);
258         kfree(sw_desc);
259 }
260
261 /**
262  * xdma_alloc_desc - Allocate descriptor
263  * @chan: DMA channel pointer
264  * @desc_num: Number of hardware descriptors
265  * @cyclic: Whether this is a cyclic transfer
266  */
267 static struct xdma_desc *
268 xdma_alloc_desc(struct xdma_chan *chan, u32 desc_num, bool cyclic)
269 {
270         struct xdma_desc *sw_desc;
271         struct xdma_hw_desc *desc;
272         dma_addr_t dma_addr;
273         u32 dblk_num;
274         u32 control;
275         void *addr;
276         int i, j;
277
278         sw_desc = kzalloc(sizeof(*sw_desc), GFP_NOWAIT);
279         if (!sw_desc)
280                 return NULL;
281
282         sw_desc->chan = chan;
283         sw_desc->desc_num = desc_num;
284         sw_desc->cyclic = cyclic;
285         sw_desc->error = false;
286         dblk_num = DIV_ROUND_UP(desc_num, XDMA_DESC_ADJACENT);
287         sw_desc->desc_blocks = kcalloc(dblk_num, sizeof(*sw_desc->desc_blocks),
288                                        GFP_NOWAIT);
289         if (!sw_desc->desc_blocks)
290                 goto failed;
291
292         if (cyclic)
293                 control = XDMA_DESC_CONTROL_CYCLIC;
294         else
295                 control = XDMA_DESC_CONTROL(1, 0);
296
297         sw_desc->dblk_num = dblk_num;
298         for (i = 0; i < sw_desc->dblk_num; i++) {
299                 addr = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &dma_addr);
300                 if (!addr)
301                         goto failed;
302
303                 sw_desc->desc_blocks[i].virt_addr = addr;
304                 sw_desc->desc_blocks[i].dma_addr = dma_addr;
305                 for (j = 0, desc = addr; j < XDMA_DESC_ADJACENT; j++)
306                         desc[j].control = cpu_to_le32(control);
307         }
308
309         if (cyclic)
310                 xdma_link_cyclic_desc_blocks(sw_desc);
311         else
312                 xdma_link_sg_desc_blocks(sw_desc);
313
314         return sw_desc;
315
316 failed:
317         xdma_free_desc(&sw_desc->vdesc);
318         return NULL;
319 }
320
321 /**
322  * xdma_xfer_start - Start DMA transfer
323  * @xchan: DMA channel pointer
324  */
325 static int xdma_xfer_start(struct xdma_chan *xchan)
326 {
327         struct virt_dma_desc *vd = vchan_next_desc(&xchan->vchan);
328         struct xdma_device *xdev = xchan->xdev_hdl;
329         struct xdma_desc_block *block;
330         u32 val, completed_blocks;
331         struct xdma_desc *desc;
332         int ret;
333
334         /*
335          * check if there is not any submitted descriptor or channel is busy.
336          * vchan lock should be held where this function is called.
337          */
338         if (!vd || xchan->busy)
339                 return -EINVAL;
340
341         /* clear run stop bit to get ready for transfer */
342         ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
343                            CHAN_CTRL_RUN_STOP);
344         if (ret)
345                 return ret;
346
347         desc = to_xdma_desc(vd);
348         if (desc->dir != xchan->dir) {
349                 xdma_err(xdev, "incorrect request direction");
350                 return -EINVAL;
351         }
352
353         /* set DMA engine to the first descriptor block */
354         completed_blocks = desc->completed_desc_num / XDMA_DESC_ADJACENT;
355         block = &desc->desc_blocks[completed_blocks];
356         val = lower_32_bits(block->dma_addr);
357         ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_LO, val);
358         if (ret)
359                 return ret;
360
361         val = upper_32_bits(block->dma_addr);
362         ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_HI, val);
363         if (ret)
364                 return ret;
365
366         if (completed_blocks + 1 == desc->dblk_num)
367                 val = (desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
368         else
369                 val = XDMA_DESC_ADJACENT - 1;
370         ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_ADJ, val);
371         if (ret)
372                 return ret;
373
374         /* kick off DMA transfer */
375         ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL,
376                            CHAN_CTRL_START);
377         if (ret)
378                 return ret;
379
380         xchan->busy = true;
381         xchan->stop_requested = false;
382         reinit_completion(&xchan->last_interrupt);
383
384         return 0;
385 }
386
387 /**
388  * xdma_xfer_stop - Stop DMA transfer
389  * @xchan: DMA channel pointer
390  */
391 static int xdma_xfer_stop(struct xdma_chan *xchan)
392 {
393         int ret;
394         struct xdma_device *xdev = xchan->xdev_hdl;
395
396         /* clear run stop bit to prevent any further auto-triggering */
397         ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
398                            CHAN_CTRL_RUN_STOP);
399         if (ret)
400                 return ret;
401         return ret;
402 }
403
404 /**
405  * xdma_alloc_channels - Detect and allocate DMA channels
406  * @xdev: DMA device pointer
407  * @dir: Channel direction
408  */
409 static int xdma_alloc_channels(struct xdma_device *xdev,
410                                enum dma_transfer_direction dir)
411 {
412         struct xdma_platdata *pdata = dev_get_platdata(&xdev->pdev->dev);
413         struct xdma_chan **chans, *xchan;
414         u32 base, identifier, target;
415         u32 *chan_num;
416         int i, j, ret;
417
418         if (dir == DMA_MEM_TO_DEV) {
419                 base = XDMA_CHAN_H2C_OFFSET;
420                 target = XDMA_CHAN_H2C_TARGET;
421                 chans = &xdev->h2c_chans;
422                 chan_num = &xdev->h2c_chan_num;
423         } else if (dir == DMA_DEV_TO_MEM) {
424                 base = XDMA_CHAN_C2H_OFFSET;
425                 target = XDMA_CHAN_C2H_TARGET;
426                 chans = &xdev->c2h_chans;
427                 chan_num = &xdev->c2h_chan_num;
428         } else {
429                 xdma_err(xdev, "invalid direction specified");
430                 return -EINVAL;
431         }
432
433         /* detect number of available DMA channels */
434         for (i = 0, *chan_num = 0; i < pdata->max_dma_channels; i++) {
435                 ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
436                                   &identifier);
437                 if (ret)
438                         return ret;
439
440                 /* check if it is available DMA channel */
441                 if (XDMA_CHAN_CHECK_TARGET(identifier, target))
442                         (*chan_num)++;
443         }
444
445         if (!*chan_num) {
446                 xdma_err(xdev, "does not probe any channel");
447                 return -EINVAL;
448         }
449
450         *chans = devm_kcalloc(&xdev->pdev->dev, *chan_num, sizeof(**chans),
451                               GFP_KERNEL);
452         if (!*chans)
453                 return -ENOMEM;
454
455         for (i = 0, j = 0; i < pdata->max_dma_channels; i++) {
456                 ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
457                                   &identifier);
458                 if (ret)
459                         return ret;
460
461                 if (!XDMA_CHAN_CHECK_TARGET(identifier, target))
462                         continue;
463
464                 if (j == *chan_num) {
465                         xdma_err(xdev, "invalid channel number");
466                         return -EIO;
467                 }
468
469                 /* init channel structure and hardware */
470                 xchan = &(*chans)[j];
471                 xchan->xdev_hdl = xdev;
472                 xchan->base = base + i * XDMA_CHAN_STRIDE;
473                 xchan->dir = dir;
474                 xchan->stop_requested = false;
475                 init_completion(&xchan->last_interrupt);
476
477                 ret = xdma_channel_init(xchan);
478                 if (ret)
479                         return ret;
480                 xchan->vchan.desc_free = xdma_free_desc;
481                 vchan_init(&xchan->vchan, &xdev->dma_dev);
482
483                 j++;
484         }
485
486         dev_info(&xdev->pdev->dev, "configured %d %s channels", j,
487                  (dir == DMA_MEM_TO_DEV) ? "H2C" : "C2H");
488
489         return 0;
490 }
491
492 /**
493  * xdma_issue_pending - Issue pending transactions
494  * @chan: DMA channel pointer
495  */
496 static void xdma_issue_pending(struct dma_chan *chan)
497 {
498         struct xdma_chan *xdma_chan = to_xdma_chan(chan);
499         unsigned long flags;
500
501         spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
502         if (vchan_issue_pending(&xdma_chan->vchan))
503                 xdma_xfer_start(xdma_chan);
504         spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
505 }
506
507 /**
508  * xdma_terminate_all - Terminate all transactions
509  * @chan: DMA channel pointer
510  */
511 static int xdma_terminate_all(struct dma_chan *chan)
512 {
513         struct xdma_chan *xdma_chan = to_xdma_chan(chan);
514         struct virt_dma_desc *vd;
515         unsigned long flags;
516         LIST_HEAD(head);
517
518         xdma_xfer_stop(xdma_chan);
519
520         spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
521
522         xdma_chan->busy = false;
523         xdma_chan->stop_requested = true;
524         vd = vchan_next_desc(&xdma_chan->vchan);
525         if (vd) {
526                 list_del(&vd->node);
527                 dma_cookie_complete(&vd->tx);
528                 vchan_terminate_vdesc(vd);
529         }
530         vchan_get_all_descriptors(&xdma_chan->vchan, &head);
531         list_splice_tail(&head, &xdma_chan->vchan.desc_terminated);
532
533         spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
534
535         return 0;
536 }
537
538 /**
539  * xdma_synchronize - Synchronize terminated transactions
540  * @chan: DMA channel pointer
541  */
542 static void xdma_synchronize(struct dma_chan *chan)
543 {
544         struct xdma_chan *xdma_chan = to_xdma_chan(chan);
545         struct xdma_device *xdev = xdma_chan->xdev_hdl;
546         int st = 0;
547
548         /* If the engine continues running, wait for the last interrupt */
549         regmap_read(xdev->rmap, xdma_chan->base + XDMA_CHAN_STATUS, &st);
550         if (st & XDMA_CHAN_STATUS_BUSY)
551                 wait_for_completion_timeout(&xdma_chan->last_interrupt, msecs_to_jiffies(1000));
552
553         vchan_synchronize(&xdma_chan->vchan);
554 }
555
556 /**
557  * xdma_fill_descs() - Fill hardware descriptors for one contiguous memory chunk.
558  *                     More than one descriptor will be used if the size is bigger
559  *                     than XDMA_DESC_BLEN_MAX.
560  * @sw_desc: Descriptor container
561  * @src_addr: First value for the ->src_addr field
562  * @dst_addr: First value for the ->dst_addr field
563  * @size: Size of the contiguous memory block
564  * @filled_descs_num: Index of the first descriptor to take care of in @sw_desc
565  */
566 static inline u32 xdma_fill_descs(struct xdma_desc *sw_desc, u64 src_addr,
567                                   u64 dst_addr, u32 size, u32 filled_descs_num)
568 {
569         u32 left = size, len, desc_num = filled_descs_num;
570         struct xdma_desc_block *dblk;
571         struct xdma_hw_desc *desc;
572
573         dblk = sw_desc->desc_blocks + (desc_num / XDMA_DESC_ADJACENT);
574         desc = dblk->virt_addr;
575         desc += desc_num & XDMA_DESC_ADJACENT_MASK;
576         do {
577                 len = min_t(u32, left, XDMA_DESC_BLEN_MAX);
578                 /* set hardware descriptor */
579                 desc->bytes = cpu_to_le32(len);
580                 desc->src_addr = cpu_to_le64(src_addr);
581                 desc->dst_addr = cpu_to_le64(dst_addr);
582                 if (!(++desc_num & XDMA_DESC_ADJACENT_MASK))
583                         desc = (++dblk)->virt_addr;
584                 else
585                         desc++;
586
587                 src_addr += len;
588                 dst_addr += len;
589                 left -= len;
590         } while (left);
591
592         return desc_num - filled_descs_num;
593 }
594
595 /**
596  * xdma_prep_device_sg - prepare a descriptor for a DMA transaction
597  * @chan: DMA channel pointer
598  * @sgl: Transfer scatter gather list
599  * @sg_len: Length of scatter gather list
600  * @dir: Transfer direction
601  * @flags: transfer ack flags
602  * @context: APP words of the descriptor
603  */
604 static struct dma_async_tx_descriptor *
605 xdma_prep_device_sg(struct dma_chan *chan, struct scatterlist *sgl,
606                     unsigned int sg_len, enum dma_transfer_direction dir,
607                     unsigned long flags, void *context)
608 {
609         struct xdma_chan *xdma_chan = to_xdma_chan(chan);
610         struct dma_async_tx_descriptor *tx_desc;
611         struct xdma_desc *sw_desc;
612         u32 desc_num = 0, i;
613         u64 addr, dev_addr, *src, *dst;
614         struct scatterlist *sg;
615
616         for_each_sg(sgl, sg, sg_len, i)
617                 desc_num += DIV_ROUND_UP(sg_dma_len(sg), XDMA_DESC_BLEN_MAX);
618
619         sw_desc = xdma_alloc_desc(xdma_chan, desc_num, false);
620         if (!sw_desc)
621                 return NULL;
622         sw_desc->dir = dir;
623         sw_desc->cyclic = false;
624         sw_desc->interleaved_dma = false;
625
626         if (dir == DMA_MEM_TO_DEV) {
627                 dev_addr = xdma_chan->cfg.dst_addr;
628                 src = &addr;
629                 dst = &dev_addr;
630         } else {
631                 dev_addr = xdma_chan->cfg.src_addr;
632                 src = &dev_addr;
633                 dst = &addr;
634         }
635
636         desc_num = 0;
637         for_each_sg(sgl, sg, sg_len, i) {
638                 addr = sg_dma_address(sg);
639                 desc_num += xdma_fill_descs(sw_desc, *src, *dst, sg_dma_len(sg), desc_num);
640                 dev_addr += sg_dma_len(sg);
641         }
642
643         tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
644         if (!tx_desc)
645                 goto failed;
646
647         return tx_desc;
648
649 failed:
650         xdma_free_desc(&sw_desc->vdesc);
651
652         return NULL;
653 }
654
655 /**
656  * xdma_prep_dma_cyclic - prepare for cyclic DMA transactions
657  * @chan: DMA channel pointer
658  * @address: Device DMA address to access
659  * @size: Total length to transfer
660  * @period_size: Period size to use for each transfer
661  * @dir: Transfer direction
662  * @flags: Transfer ack flags
663  */
664 static struct dma_async_tx_descriptor *
665 xdma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t address,
666                      size_t size, size_t period_size,
667                      enum dma_transfer_direction dir,
668                      unsigned long flags)
669 {
670         struct xdma_chan *xdma_chan = to_xdma_chan(chan);
671         struct xdma_device *xdev = xdma_chan->xdev_hdl;
672         unsigned int periods = size / period_size;
673         struct dma_async_tx_descriptor *tx_desc;
674         struct xdma_desc *sw_desc;
675         u64 addr, dev_addr, *src, *dst;
676         u32 desc_num;
677         unsigned int i;
678
679         /*
680          * Simplify the whole logic by preventing an abnormally high number of
681          * periods and periods size.
682          */
683         if (period_size > XDMA_DESC_BLEN_MAX) {
684                 xdma_err(xdev, "period size limited to %lu bytes\n", XDMA_DESC_BLEN_MAX);
685                 return NULL;
686         }
687
688         if (periods > XDMA_DESC_ADJACENT) {
689                 xdma_err(xdev, "number of periods limited to %u\n", XDMA_DESC_ADJACENT);
690                 return NULL;
691         }
692
693         sw_desc = xdma_alloc_desc(xdma_chan, periods, true);
694         if (!sw_desc)
695                 return NULL;
696
697         sw_desc->periods = periods;
698         sw_desc->period_size = period_size;
699         sw_desc->dir = dir;
700         sw_desc->interleaved_dma = false;
701
702         addr = address;
703         if (dir == DMA_MEM_TO_DEV) {
704                 dev_addr = xdma_chan->cfg.dst_addr;
705                 src = &addr;
706                 dst = &dev_addr;
707         } else {
708                 dev_addr = xdma_chan->cfg.src_addr;
709                 src = &dev_addr;
710                 dst = &addr;
711         }
712
713         desc_num = 0;
714         for (i = 0; i < periods; i++) {
715                 desc_num += xdma_fill_descs(sw_desc, *src, *dst, period_size, desc_num);
716                 addr += period_size;
717         }
718
719         tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
720         if (!tx_desc)
721                 goto failed;
722
723         return tx_desc;
724
725 failed:
726         xdma_free_desc(&sw_desc->vdesc);
727
728         return NULL;
729 }
730
731 /**
732  * xdma_prep_interleaved_dma - Prepare virtual descriptor for interleaved DMA transfers
733  * @chan: DMA channel
734  * @xt: DMA transfer template
735  * @flags: tx flags
736  */
737 static struct dma_async_tx_descriptor *
738 xdma_prep_interleaved_dma(struct dma_chan *chan,
739                           struct dma_interleaved_template *xt,
740                           unsigned long flags)
741 {
742         int i;
743         u32 desc_num = 0, period_size = 0;
744         struct dma_async_tx_descriptor *tx_desc;
745         struct xdma_chan *xchan = to_xdma_chan(chan);
746         struct xdma_desc *sw_desc;
747         u64 src_addr, dst_addr;
748
749         for (i = 0; i < xt->frame_size; ++i)
750                 desc_num += DIV_ROUND_UP(xt->sgl[i].size, XDMA_DESC_BLEN_MAX);
751
752         sw_desc = xdma_alloc_desc(xchan, desc_num, false);
753         if (!sw_desc)
754                 return NULL;
755         sw_desc->dir = xt->dir;
756         sw_desc->interleaved_dma = true;
757         sw_desc->cyclic = flags & DMA_PREP_REPEAT;
758         sw_desc->frames_left = xt->numf;
759         sw_desc->periods = xt->numf;
760
761         desc_num = 0;
762         src_addr = xt->src_start;
763         dst_addr = xt->dst_start;
764         for (i = 0; i < xt->frame_size; ++i) {
765                 desc_num += xdma_fill_descs(sw_desc, src_addr, dst_addr, xt->sgl[i].size, desc_num);
766                 src_addr += dmaengine_get_src_icg(xt, &xt->sgl[i]) + (xt->src_inc ?
767                                                               xt->sgl[i].size : 0);
768                 dst_addr += dmaengine_get_dst_icg(xt, &xt->sgl[i]) + (xt->dst_inc ?
769                                                               xt->sgl[i].size : 0);
770                 period_size += xt->sgl[i].size;
771         }
772         sw_desc->period_size = period_size;
773
774         tx_desc = vchan_tx_prep(&xchan->vchan, &sw_desc->vdesc, flags);
775         if (tx_desc)
776                 return tx_desc;
777
778         xdma_free_desc(&sw_desc->vdesc);
779         return NULL;
780 }
781
782 /**
783  * xdma_device_config - Configure the DMA channel
784  * @chan: DMA channel
785  * @cfg: channel configuration
786  */
787 static int xdma_device_config(struct dma_chan *chan,
788                               struct dma_slave_config *cfg)
789 {
790         struct xdma_chan *xdma_chan = to_xdma_chan(chan);
791
792         memcpy(&xdma_chan->cfg, cfg, sizeof(*cfg));
793
794         return 0;
795 }
796
797 /**
798  * xdma_free_chan_resources - Free channel resources
799  * @chan: DMA channel
800  */
801 static void xdma_free_chan_resources(struct dma_chan *chan)
802 {
803         struct xdma_chan *xdma_chan = to_xdma_chan(chan);
804
805         vchan_free_chan_resources(&xdma_chan->vchan);
806         dma_pool_destroy(xdma_chan->desc_pool);
807         xdma_chan->desc_pool = NULL;
808 }
809
810 /**
811  * xdma_alloc_chan_resources - Allocate channel resources
812  * @chan: DMA channel
813  */
814 static int xdma_alloc_chan_resources(struct dma_chan *chan)
815 {
816         struct xdma_chan *xdma_chan = to_xdma_chan(chan);
817         struct xdma_device *xdev = xdma_chan->xdev_hdl;
818         struct device *dev = xdev->dma_dev.dev;
819
820         while (dev && !dev_is_pci(dev))
821                 dev = dev->parent;
822         if (!dev) {
823                 xdma_err(xdev, "unable to find pci device");
824                 return -EINVAL;
825         }
826
827         xdma_chan->desc_pool = dma_pool_create(dma_chan_name(chan), dev, XDMA_DESC_BLOCK_SIZE,
828                                                XDMA_DESC_BLOCK_ALIGN, XDMA_DESC_BLOCK_BOUNDARY);
829         if (!xdma_chan->desc_pool) {
830                 xdma_err(xdev, "unable to allocate descriptor pool");
831                 return -ENOMEM;
832         }
833
834         return 0;
835 }
836
837 static enum dma_status xdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
838                                       struct dma_tx_state *state)
839 {
840         struct xdma_chan *xdma_chan = to_xdma_chan(chan);
841         struct xdma_desc *desc = NULL;
842         struct virt_dma_desc *vd;
843         enum dma_status ret;
844         unsigned long flags;
845         unsigned int period_idx;
846         u32 residue = 0;
847
848         ret = dma_cookie_status(chan, cookie, state);
849         if (ret == DMA_COMPLETE)
850                 return ret;
851
852         spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
853
854         vd = vchan_find_desc(&xdma_chan->vchan, cookie);
855         if (!vd)
856                 goto out;
857
858         desc = to_xdma_desc(vd);
859         if (desc->error) {
860                 ret = DMA_ERROR;
861         } else if (desc->cyclic) {
862                 period_idx = desc->completed_desc_num % desc->periods;
863                 residue = (desc->periods - period_idx) * desc->period_size;
864                 dma_set_residue(state, residue);
865         }
866 out:
867         spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
868
869         return ret;
870 }
871
872 /**
873  * xdma_channel_isr - XDMA channel interrupt handler
874  * @irq: IRQ number
875  * @dev_id: Pointer to the DMA channel structure
876  */
877 static irqreturn_t xdma_channel_isr(int irq, void *dev_id)
878 {
879         struct xdma_chan *xchan = dev_id;
880         u32 complete_desc_num = 0;
881         struct xdma_device *xdev = xchan->xdev_hdl;
882         struct virt_dma_desc *vd, *next_vd;
883         struct xdma_desc *desc;
884         int ret;
885         u32 st;
886         bool repeat_tx;
887
888         if (xchan->stop_requested)
889                 complete(&xchan->last_interrupt);
890
891         spin_lock(&xchan->vchan.lock);
892
893         /* get submitted request */
894         vd = vchan_next_desc(&xchan->vchan);
895         if (!vd)
896                 goto out;
897
898         /* Clear-on-read the status register */
899         ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_STATUS_RC, &st);
900         if (ret)
901                 goto out;
902
903         desc = to_xdma_desc(vd);
904
905         st &= XDMA_CHAN_STATUS_MASK;
906         if ((st & XDMA_CHAN_ERROR_MASK) ||
907             !(st & (CHAN_CTRL_IE_DESC_COMPLETED | CHAN_CTRL_IE_DESC_STOPPED))) {
908                 desc->error = true;
909                 xdma_err(xdev, "channel error, status register value: 0x%x", st);
910                 goto out;
911         }
912
913         ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_COMPLETED_DESC,
914                           &complete_desc_num);
915         if (ret)
916                 goto out;
917
918         if (desc->interleaved_dma) {
919                 xchan->busy = false;
920                 desc->completed_desc_num += complete_desc_num;
921                 if (complete_desc_num == XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT) {
922                         xdma_xfer_start(xchan);
923                         goto out;
924                 }
925
926                 /* last desc of any frame */
927                 desc->frames_left--;
928                 if (desc->frames_left)
929                         goto out;
930
931                 /* last desc of the last frame  */
932                 repeat_tx = vd->tx.flags & DMA_PREP_REPEAT;
933                 next_vd = list_first_entry_or_null(&vd->node, struct virt_dma_desc, node);
934                 if (next_vd)
935                         repeat_tx = repeat_tx && !(next_vd->tx.flags & DMA_PREP_LOAD_EOT);
936                 if (repeat_tx) {
937                         desc->frames_left = desc->periods;
938                         desc->completed_desc_num = 0;
939                         vchan_cyclic_callback(vd);
940                 } else {
941                         list_del(&vd->node);
942                         vchan_cookie_complete(vd);
943                 }
944                 /* start (or continue) the tx of a first desc on the vc.desc_issued list, if any */
945                 xdma_xfer_start(xchan);
946         } else if (!desc->cyclic) {
947                 xchan->busy = false;
948                 desc->completed_desc_num += complete_desc_num;
949
950                 /* if all data blocks are transferred, remove and complete the request */
951                 if (desc->completed_desc_num == desc->desc_num) {
952                         list_del(&vd->node);
953                         vchan_cookie_complete(vd);
954                         goto out;
955                 }
956
957                 if (desc->completed_desc_num > desc->desc_num ||
958                     complete_desc_num != XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT)
959                         goto out;
960
961                 /* transfer the rest of data */
962                 xdma_xfer_start(xchan);
963         } else {
964                 desc->completed_desc_num = complete_desc_num;
965                 vchan_cyclic_callback(vd);
966         }
967
968 out:
969         spin_unlock(&xchan->vchan.lock);
970         return IRQ_HANDLED;
971 }
972
973 /**
974  * xdma_irq_fini - Uninitialize IRQ
975  * @xdev: DMA device pointer
976  */
977 static void xdma_irq_fini(struct xdma_device *xdev)
978 {
979         int i;
980
981         /* disable interrupt */
982         regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1C, ~0);
983
984         /* free irq handler */
985         for (i = 0; i < xdev->h2c_chan_num; i++)
986                 free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);
987
988         for (i = 0; i < xdev->c2h_chan_num; i++)
989                 free_irq(xdev->c2h_chans[i].irq, &xdev->c2h_chans[i]);
990 }
991
992 /**
993  * xdma_set_vector_reg - configure hardware IRQ registers
994  * @xdev: DMA device pointer
995  * @vec_tbl_start: Start of IRQ registers
996  * @irq_start: Start of IRQ
997  * @irq_num: Number of IRQ
998  */
999 static int xdma_set_vector_reg(struct xdma_device *xdev, u32 vec_tbl_start,
1000                                u32 irq_start, u32 irq_num)
1001 {
1002         u32 shift, i, val = 0;
1003         int ret;
1004
1005         /* Each IRQ register is 32 bit and contains 4 IRQs */
1006         while (irq_num > 0) {
1007                 for (i = 0; i < 4; i++) {
1008                         shift = XDMA_IRQ_VEC_SHIFT * i;
1009                         val |= irq_start << shift;
1010                         irq_start++;
1011                         irq_num--;
1012                         if (!irq_num)
1013                                 break;
1014                 }
1015
1016                 /* write IRQ register */
1017                 ret = regmap_write(xdev->rmap, vec_tbl_start, val);
1018                 if (ret)
1019                         return ret;
1020                 vec_tbl_start += sizeof(u32);
1021                 val = 0;
1022         }
1023
1024         return 0;
1025 }
1026
1027 /**
1028  * xdma_irq_init - initialize IRQs
1029  * @xdev: DMA device pointer
1030  */
1031 static int xdma_irq_init(struct xdma_device *xdev)
1032 {
1033         u32 irq = xdev->irq_start;
1034         u32 user_irq_start;
1035         int i, j, ret;
1036
1037         /* return failure if there are not enough IRQs */
1038         if (xdev->irq_num < XDMA_CHAN_NUM(xdev)) {
1039                 xdma_err(xdev, "not enough irq");
1040                 return -EINVAL;
1041         }
1042
1043         /* setup H2C interrupt handler */
1044         for (i = 0; i < xdev->h2c_chan_num; i++) {
1045                 ret = request_irq(irq, xdma_channel_isr, 0,
1046                                   "xdma-h2c-channel", &xdev->h2c_chans[i]);
1047                 if (ret) {
1048                         xdma_err(xdev, "H2C channel%d request irq%d failed: %d",
1049                                  i, irq, ret);
1050                         goto failed_init_h2c;
1051                 }
1052                 xdev->h2c_chans[i].irq = irq;
1053                 irq++;
1054         }
1055
1056         /* setup C2H interrupt handler */
1057         for (j = 0; j < xdev->c2h_chan_num; j++) {
1058                 ret = request_irq(irq, xdma_channel_isr, 0,
1059                                   "xdma-c2h-channel", &xdev->c2h_chans[j]);
1060                 if (ret) {
1061                         xdma_err(xdev, "C2H channel%d request irq%d failed: %d",
1062                                  j, irq, ret);
1063                         goto failed_init_c2h;
1064                 }
1065                 xdev->c2h_chans[j].irq = irq;
1066                 irq++;
1067         }
1068
1069         /* config hardware IRQ registers */
1070         ret = xdma_set_vector_reg(xdev, XDMA_IRQ_CHAN_VEC_NUM, 0,
1071                                   XDMA_CHAN_NUM(xdev));
1072         if (ret) {
1073                 xdma_err(xdev, "failed to set channel vectors: %d", ret);
1074                 goto failed_init_c2h;
1075         }
1076
1077         /* config user IRQ registers if needed */
1078         user_irq_start = XDMA_CHAN_NUM(xdev);
1079         if (xdev->irq_num > user_irq_start) {
1080                 ret = xdma_set_vector_reg(xdev, XDMA_IRQ_USER_VEC_NUM,
1081                                           user_irq_start,
1082                                           xdev->irq_num - user_irq_start);
1083                 if (ret) {
1084                         xdma_err(xdev, "failed to set user vectors: %d", ret);
1085                         goto failed_init_c2h;
1086                 }
1087         }
1088
1089         /* enable interrupt */
1090         ret = regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1S, ~0);
1091         if (ret)
1092                 goto failed_init_c2h;
1093
1094         return 0;
1095
1096 failed_init_c2h:
1097         while (j--)
1098                 free_irq(xdev->c2h_chans[j].irq, &xdev->c2h_chans[j]);
1099 failed_init_h2c:
1100         while (i--)
1101                 free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);
1102
1103         return ret;
1104 }
1105
1106 static bool xdma_filter_fn(struct dma_chan *chan, void *param)
1107 {
1108         struct xdma_chan *xdma_chan = to_xdma_chan(chan);
1109         struct xdma_chan_info *chan_info = param;
1110
1111         return chan_info->dir == xdma_chan->dir;
1112 }
1113
1114 /**
1115  * xdma_disable_user_irq - Disable user interrupt
1116  * @pdev: Pointer to the platform_device structure
1117  * @irq_num: System IRQ number
1118  */
1119 void xdma_disable_user_irq(struct platform_device *pdev, u32 irq_num)
1120 {
1121         struct xdma_device *xdev = platform_get_drvdata(pdev);
1122         u32 index;
1123
1124         index = irq_num - xdev->irq_start;
1125         if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
1126                 xdma_err(xdev, "invalid user irq number");
1127                 return;
1128         }
1129         index -= XDMA_CHAN_NUM(xdev);
1130
1131         regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1C, 1 << index);
1132 }
1133 EXPORT_SYMBOL(xdma_disable_user_irq);
1134
1135 /**
1136  * xdma_enable_user_irq - Enable user logic interrupt
1137  * @pdev: Pointer to the platform_device structure
1138  * @irq_num: System IRQ number
1139  */
1140 int xdma_enable_user_irq(struct platform_device *pdev, u32 irq_num)
1141 {
1142         struct xdma_device *xdev = platform_get_drvdata(pdev);
1143         u32 index;
1144         int ret;
1145
1146         index = irq_num - xdev->irq_start;
1147         if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
1148                 xdma_err(xdev, "invalid user irq number");
1149                 return -EINVAL;
1150         }
1151         index -= XDMA_CHAN_NUM(xdev);
1152
1153         ret = regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1S, 1 << index);
1154         if (ret)
1155                 return ret;
1156
1157         return 0;
1158 }
1159 EXPORT_SYMBOL(xdma_enable_user_irq);
1160
1161 /**
1162  * xdma_get_user_irq - Get system IRQ number
1163  * @pdev: Pointer to the platform_device structure
1164  * @user_irq_index: User logic IRQ wire index
1165  *
1166  * Return: The system IRQ number allocated for the given wire index.
1167  */
1168 int xdma_get_user_irq(struct platform_device *pdev, u32 user_irq_index)
1169 {
1170         struct xdma_device *xdev = platform_get_drvdata(pdev);
1171
1172         if (XDMA_CHAN_NUM(xdev) + user_irq_index >= xdev->irq_num) {
1173                 xdma_err(xdev, "invalid user irq index");
1174                 return -EINVAL;
1175         }
1176
1177         return xdev->irq_start + XDMA_CHAN_NUM(xdev) + user_irq_index;
1178 }
1179 EXPORT_SYMBOL(xdma_get_user_irq);
1180
1181 /**
1182  * xdma_remove - Driver remove function
1183  * @pdev: Pointer to the platform_device structure
1184  */
1185 static void xdma_remove(struct platform_device *pdev)
1186 {
1187         struct xdma_device *xdev = platform_get_drvdata(pdev);
1188
1189         if (xdev->status & XDMA_DEV_STATUS_INIT_MSIX)
1190                 xdma_irq_fini(xdev);
1191
1192         if (xdev->status & XDMA_DEV_STATUS_REG_DMA)
1193                 dma_async_device_unregister(&xdev->dma_dev);
1194 }
1195
1196 /**
1197  * xdma_probe - Driver probe function
1198  * @pdev: Pointer to the platform_device structure
1199  */
1200 static int xdma_probe(struct platform_device *pdev)
1201 {
1202         struct xdma_platdata *pdata = dev_get_platdata(&pdev->dev);
1203         struct xdma_device *xdev;
1204         void __iomem *reg_base;
1205         struct resource *res;
1206         int ret = -ENODEV;
1207
1208         if (pdata->max_dma_channels > XDMA_MAX_CHANNELS) {
1209                 dev_err(&pdev->dev, "invalid max dma channels %d",
1210                         pdata->max_dma_channels);
1211                 return -EINVAL;
1212         }
1213
1214         xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL);
1215         if (!xdev)
1216                 return -ENOMEM;
1217
1218         platform_set_drvdata(pdev, xdev);
1219         xdev->pdev = pdev;
1220
1221         res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1222         if (!res) {
1223                 xdma_err(xdev, "failed to get irq resource");
1224                 goto failed;
1225         }
1226         xdev->irq_start = res->start;
1227         xdev->irq_num = resource_size(res);
1228
1229         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1230         if (!res) {
1231                 xdma_err(xdev, "failed to get io resource");
1232                 goto failed;
1233         }
1234
1235         reg_base = devm_ioremap_resource(&pdev->dev, res);
1236         if (IS_ERR(reg_base)) {
1237                 xdma_err(xdev, "ioremap failed");
1238                 goto failed;
1239         }
1240
1241         xdev->rmap = devm_regmap_init_mmio(&pdev->dev, reg_base,
1242                                            &xdma_regmap_config);
1243         if (!xdev->rmap) {
1244                 xdma_err(xdev, "config regmap failed: %d", ret);
1245                 goto failed;
1246         }
1247         INIT_LIST_HEAD(&xdev->dma_dev.channels);
1248
1249         ret = xdma_alloc_channels(xdev, DMA_MEM_TO_DEV);
1250         if (ret) {
1251                 xdma_err(xdev, "config H2C channels failed: %d", ret);
1252                 goto failed;
1253         }
1254
1255         ret = xdma_alloc_channels(xdev, DMA_DEV_TO_MEM);
1256         if (ret) {
1257                 xdma_err(xdev, "config C2H channels failed: %d", ret);
1258                 goto failed;
1259         }
1260
1261         dma_cap_set(DMA_SLAVE, xdev->dma_dev.cap_mask);
1262         dma_cap_set(DMA_PRIVATE, xdev->dma_dev.cap_mask);
1263         dma_cap_set(DMA_CYCLIC, xdev->dma_dev.cap_mask);
1264         dma_cap_set(DMA_INTERLEAVE, xdev->dma_dev.cap_mask);
1265         dma_cap_set(DMA_REPEAT, xdev->dma_dev.cap_mask);
1266         dma_cap_set(DMA_LOAD_EOT, xdev->dma_dev.cap_mask);
1267
1268         xdev->dma_dev.dev = &pdev->dev;
1269         xdev->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1270         xdev->dma_dev.device_free_chan_resources = xdma_free_chan_resources;
1271         xdev->dma_dev.device_alloc_chan_resources = xdma_alloc_chan_resources;
1272         xdev->dma_dev.device_tx_status = xdma_tx_status;
1273         xdev->dma_dev.device_prep_slave_sg = xdma_prep_device_sg;
1274         xdev->dma_dev.device_config = xdma_device_config;
1275         xdev->dma_dev.device_issue_pending = xdma_issue_pending;
1276         xdev->dma_dev.device_terminate_all = xdma_terminate_all;
1277         xdev->dma_dev.device_synchronize = xdma_synchronize;
1278         xdev->dma_dev.filter.map = pdata->device_map;
1279         xdev->dma_dev.filter.mapcnt = pdata->device_map_cnt;
1280         xdev->dma_dev.filter.fn = xdma_filter_fn;
1281         xdev->dma_dev.device_prep_dma_cyclic = xdma_prep_dma_cyclic;
1282         xdev->dma_dev.device_prep_interleaved_dma = xdma_prep_interleaved_dma;
1283
1284         ret = dma_async_device_register(&xdev->dma_dev);
1285         if (ret) {
1286                 xdma_err(xdev, "failed to register Xilinx XDMA: %d", ret);
1287                 goto failed;
1288         }
1289         xdev->status |= XDMA_DEV_STATUS_REG_DMA;
1290
1291         ret = xdma_irq_init(xdev);
1292         if (ret) {
1293                 xdma_err(xdev, "failed to init msix: %d", ret);
1294                 goto failed;
1295         }
1296         xdev->status |= XDMA_DEV_STATUS_INIT_MSIX;
1297
1298         return 0;
1299
1300 failed:
1301         xdma_remove(pdev);
1302
1303         return ret;
1304 }
1305
1306 static const struct platform_device_id xdma_id_table[] = {
1307         { "xdma", 0},
1308         { },
1309 };
1310
1311 static struct platform_driver xdma_driver = {
1312         .driver         = {
1313                 .name = "xdma",
1314         },
1315         .id_table       = xdma_id_table,
1316         .probe          = xdma_probe,
1317         .remove_new     = xdma_remove,
1318 };
1319
1320 module_platform_driver(xdma_driver);
1321
1322 MODULE_DESCRIPTION("AMD XDMA driver");
1323 MODULE_AUTHOR("XRT Team <runtimeca39d@amd.com>");
1324 MODULE_LICENSE("GPL");