GNU Linux-libre 4.4.289-gnu1
[releases.git] / drivers / dma / xgene-dma.c
1 /*
2  * Applied Micro X-Gene SoC DMA engine Driver
3  *
4  * Copyright (c) 2015, Applied Micro Circuits Corporation
5  * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
6  *          Loc Ho <lho@apm.com>
7  *
8  * This program is free software; you can redistribute  it and/or modify it
9  * under  the terms of  the GNU General  Public License as published by the
10  * Free Software Foundation;  either version 2 of the  License, or (at your
11  * option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  *
21  * NOTE: PM support is currently not available.
22  */
23
24 #include <linux/acpi.h>
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dmapool.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/irq.h>
33 #include <linux/module.h>
34 #include <linux/of_device.h>
35
36 #include "dmaengine.h"
37
38 /* X-Gene DMA ring csr registers and bit definations */
39 #define XGENE_DMA_RING_CONFIG                   0x04
40 #define XGENE_DMA_RING_ENABLE                   BIT(31)
41 #define XGENE_DMA_RING_ID                       0x08
42 #define XGENE_DMA_RING_ID_SETUP(v)              ((v) | BIT(31))
43 #define XGENE_DMA_RING_ID_BUF                   0x0C
44 #define XGENE_DMA_RING_ID_BUF_SETUP(v)          (((v) << 9) | BIT(21))
45 #define XGENE_DMA_RING_THRESLD0_SET1            0x30
46 #define XGENE_DMA_RING_THRESLD0_SET1_VAL        0X64
47 #define XGENE_DMA_RING_THRESLD1_SET1            0x34
48 #define XGENE_DMA_RING_THRESLD1_SET1_VAL        0xC8
49 #define XGENE_DMA_RING_HYSTERESIS               0x68
50 #define XGENE_DMA_RING_HYSTERESIS_VAL           0xFFFFFFFF
51 #define XGENE_DMA_RING_STATE                    0x6C
52 #define XGENE_DMA_RING_STATE_WR_BASE            0x70
53 #define XGENE_DMA_RING_NE_INT_MODE              0x017C
54 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v)    \
55         ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
56 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v)  \
57         ((m) &= (~BIT(31 - (v))))
58 #define XGENE_DMA_RING_CLKEN                    0xC208
59 #define XGENE_DMA_RING_SRST                     0xC200
60 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN         0xD070
61 #define XGENE_DMA_RING_BLK_MEM_RDY              0xD074
62 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL          0xFFFFFFFF
63 #define XGENE_DMA_RING_ID_GET(owner, num)       (((owner) << 6) | (num))
64 #define XGENE_DMA_RING_DST_ID(v)                ((1 << 10) | (v))
65 #define XGENE_DMA_RING_CMD_OFFSET               0x2C
66 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v)       ((v) << 6)
67 #define XGENE_DMA_RING_COHERENT_SET(m)          \
68         (((u32 *)(m))[2] |= BIT(4))
69 #define XGENE_DMA_RING_ADDRL_SET(m, v)          \
70         (((u32 *)(m))[2] |= (((v) >> 8) << 5))
71 #define XGENE_DMA_RING_ADDRH_SET(m, v)          \
72         (((u32 *)(m))[3] |= ((v) >> 35))
73 #define XGENE_DMA_RING_ACCEPTLERR_SET(m)        \
74         (((u32 *)(m))[3] |= BIT(19))
75 #define XGENE_DMA_RING_SIZE_SET(m, v)           \
76         (((u32 *)(m))[3] |= ((v) << 23))
77 #define XGENE_DMA_RING_RECOMBBUF_SET(m)         \
78         (((u32 *)(m))[3] |= BIT(27))
79 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m)     \
80         (((u32 *)(m))[3] |= (0x7 << 28))
81 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m)     \
82         (((u32 *)(m))[4] |= 0x3)
83 #define XGENE_DMA_RING_SELTHRSH_SET(m)          \
84         (((u32 *)(m))[4] |= BIT(3))
85 #define XGENE_DMA_RING_TYPE_SET(m, v)           \
86         (((u32 *)(m))[4] |= ((v) << 19))
87
88 /* X-Gene DMA device csr registers and bit definitions */
89 #define XGENE_DMA_IPBRR                         0x0
90 #define XGENE_DMA_DEV_ID_RD(v)                  ((v) & 0x00000FFF)
91 #define XGENE_DMA_BUS_ID_RD(v)                  (((v) >> 12) & 3)
92 #define XGENE_DMA_REV_NO_RD(v)                  (((v) >> 14) & 3)
93 #define XGENE_DMA_GCR                           0x10
94 #define XGENE_DMA_CH_SETUP(v)                   \
95         ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
96 #define XGENE_DMA_ENABLE(v)                     ((v) |= BIT(31))
97 #define XGENE_DMA_DISABLE(v)                    ((v) &= ~BIT(31))
98 #define XGENE_DMA_RAID6_CONT                    0x14
99 #define XGENE_DMA_RAID6_MULTI_CTRL(v)           ((v) << 24)
100 #define XGENE_DMA_INT                           0x70
101 #define XGENE_DMA_INT_MASK                      0x74
102 #define XGENE_DMA_INT_ALL_MASK                  0xFFFFFFFF
103 #define XGENE_DMA_INT_ALL_UNMASK                0x0
104 #define XGENE_DMA_INT_MASK_SHIFT                0x14
105 #define XGENE_DMA_RING_INT0_MASK                0x90A0
106 #define XGENE_DMA_RING_INT1_MASK                0x90A8
107 #define XGENE_DMA_RING_INT2_MASK                0x90B0
108 #define XGENE_DMA_RING_INT3_MASK                0x90B8
109 #define XGENE_DMA_RING_INT4_MASK                0x90C0
110 #define XGENE_DMA_CFG_RING_WQ_ASSOC             0x90E0
111 #define XGENE_DMA_ASSOC_RING_MNGR1              0xFFFFFFFF
112 #define XGENE_DMA_MEM_RAM_SHUTDOWN              0xD070
113 #define XGENE_DMA_BLK_MEM_RDY                   0xD074
114 #define XGENE_DMA_BLK_MEM_RDY_VAL               0xFFFFFFFF
115 #define XGENE_DMA_RING_CMD_SM_OFFSET            0x8000
116
117 /* X-Gene SoC EFUSE csr register and bit defination */
118 #define XGENE_SOC_JTAG1_SHADOW                  0x18
119 #define XGENE_DMA_PQ_DISABLE_MASK               BIT(13)
120
121 /* X-Gene DMA Descriptor format */
122 #define XGENE_DMA_DESC_NV_BIT                   BIT_ULL(50)
123 #define XGENE_DMA_DESC_IN_BIT                   BIT_ULL(55)
124 #define XGENE_DMA_DESC_C_BIT                    BIT_ULL(63)
125 #define XGENE_DMA_DESC_DR_BIT                   BIT_ULL(61)
126 #define XGENE_DMA_DESC_ELERR_POS                46
127 #define XGENE_DMA_DESC_RTYPE_POS                56
128 #define XGENE_DMA_DESC_LERR_POS                 60
129 #define XGENE_DMA_DESC_BUFLEN_POS               48
130 #define XGENE_DMA_DESC_HOENQ_NUM_POS            48
131 #define XGENE_DMA_DESC_ELERR_RD(m)              \
132         (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
133 #define XGENE_DMA_DESC_LERR_RD(m)               \
134         (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
135 #define XGENE_DMA_DESC_STATUS(elerr, lerr)      \
136         (((elerr) << 4) | (lerr))
137
138 /* X-Gene DMA descriptor empty s/w signature */
139 #define XGENE_DMA_DESC_EMPTY_SIGNATURE          ~0ULL
140
141 /* X-Gene DMA configurable parameters defines */
142 #define XGENE_DMA_RING_NUM              512
143 #define XGENE_DMA_BUFNUM                0x0
144 #define XGENE_DMA_CPU_BUFNUM            0x18
145 #define XGENE_DMA_RING_OWNER_DMA        0x03
146 #define XGENE_DMA_RING_OWNER_CPU        0x0F
147 #define XGENE_DMA_RING_TYPE_REGULAR     0x01
148 #define XGENE_DMA_RING_WQ_DESC_SIZE     32      /* 32 Bytes */
149 #define XGENE_DMA_RING_NUM_CONFIG       5
150 #define XGENE_DMA_MAX_CHANNEL           4
151 #define XGENE_DMA_XOR_CHANNEL           0
152 #define XGENE_DMA_PQ_CHANNEL            1
153 #define XGENE_DMA_MAX_BYTE_CNT          0x4000  /* 16 KB */
154 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */
155 #define XGENE_DMA_MAX_XOR_SRC           5
156 #define XGENE_DMA_16K_BUFFER_LEN_CODE   0x0
157 #define XGENE_DMA_INVALID_LEN_CODE      0x7800000000000000ULL
158
159 /* X-Gene DMA descriptor error codes */
160 #define ERR_DESC_AXI                    0x01
161 #define ERR_BAD_DESC                    0x02
162 #define ERR_READ_DATA_AXI               0x03
163 #define ERR_WRITE_DATA_AXI              0x04
164 #define ERR_FBP_TIMEOUT                 0x05
165 #define ERR_ECC                         0x06
166 #define ERR_DIFF_SIZE                   0x08
167 #define ERR_SCT_GAT_LEN                 0x09
168 #define ERR_CRC_ERR                     0x11
169 #define ERR_CHKSUM                      0x12
170 #define ERR_DIF                         0x13
171
172 /* X-Gene DMA error interrupt codes */
173 #define ERR_DIF_SIZE_INT                0x0
174 #define ERR_GS_ERR_INT                  0x1
175 #define ERR_FPB_TIMEO_INT               0x2
176 #define ERR_WFIFO_OVF_INT               0x3
177 #define ERR_RFIFO_OVF_INT               0x4
178 #define ERR_WR_TIMEO_INT                0x5
179 #define ERR_RD_TIMEO_INT                0x6
180 #define ERR_WR_ERR_INT                  0x7
181 #define ERR_RD_ERR_INT                  0x8
182 #define ERR_BAD_DESC_INT                0x9
183 #define ERR_DESC_DST_INT                0xA
184 #define ERR_DESC_SRC_INT                0xB
185
186 /* X-Gene DMA flyby operation code */
187 #define FLYBY_2SRC_XOR                  0x80
188 #define FLYBY_3SRC_XOR                  0x90
189 #define FLYBY_4SRC_XOR                  0xA0
190 #define FLYBY_5SRC_XOR                  0xB0
191
192 /* X-Gene DMA SW descriptor flags */
193 #define XGENE_DMA_FLAG_64B_DESC         BIT(0)
194
195 /* Define to dump X-Gene DMA descriptor */
196 #define XGENE_DMA_DESC_DUMP(desc, m)    \
197         print_hex_dump(KERN_ERR, (m),   \
198                         DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
199
200 #define to_dma_desc_sw(tx)              \
201         container_of(tx, struct xgene_dma_desc_sw, tx)
202 #define to_dma_chan(dchan)              \
203         container_of(dchan, struct xgene_dma_chan, dma_chan)
204
205 #define chan_dbg(chan, fmt, arg...)     \
206         dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
207 #define chan_err(chan, fmt, arg...)     \
208         dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
209
210 struct xgene_dma_desc_hw {
211         __le64 m0;
212         __le64 m1;
213         __le64 m2;
214         __le64 m3;
215 };
216
217 enum xgene_dma_ring_cfgsize {
218         XGENE_DMA_RING_CFG_SIZE_512B,
219         XGENE_DMA_RING_CFG_SIZE_2KB,
220         XGENE_DMA_RING_CFG_SIZE_16KB,
221         XGENE_DMA_RING_CFG_SIZE_64KB,
222         XGENE_DMA_RING_CFG_SIZE_512KB,
223         XGENE_DMA_RING_CFG_SIZE_INVALID
224 };
225
226 struct xgene_dma_ring {
227         struct xgene_dma *pdma;
228         u8 buf_num;
229         u16 id;
230         u16 num;
231         u16 head;
232         u16 owner;
233         u16 slots;
234         u16 dst_ring_num;
235         u32 size;
236         void __iomem *cmd;
237         void __iomem *cmd_base;
238         dma_addr_t desc_paddr;
239         u32 state[XGENE_DMA_RING_NUM_CONFIG];
240         enum xgene_dma_ring_cfgsize cfgsize;
241         union {
242                 void *desc_vaddr;
243                 struct xgene_dma_desc_hw *desc_hw;
244         };
245 };
246
247 struct xgene_dma_desc_sw {
248         struct xgene_dma_desc_hw desc1;
249         struct xgene_dma_desc_hw desc2;
250         u32 flags;
251         struct list_head node;
252         struct list_head tx_list;
253         struct dma_async_tx_descriptor tx;
254 };
255
256 /**
257  * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
258  * @dma_chan: dmaengine channel object member
259  * @pdma: X-Gene DMA device structure reference
260  * @dev: struct device reference for dma mapping api
261  * @id: raw id of this channel
262  * @rx_irq: channel IRQ
263  * @name: name of X-Gene DMA channel
264  * @lock: serializes enqueue/dequeue operations to the descriptor pool
265  * @pending: number of transaction request pushed to DMA controller for
266  *      execution, but still waiting for completion,
267  * @max_outstanding: max number of outstanding request we can push to channel
268  * @ld_pending: descriptors which are queued to run, but have not yet been
269  *      submitted to the hardware for execution
270  * @ld_running: descriptors which are currently being executing by the hardware
271  * @ld_completed: descriptors which have finished execution by the hardware.
272  *      These descriptors have already had their cleanup actions run. They
273  *      are waiting for the ACK bit to be set by the async tx API.
274  * @desc_pool: descriptor pool for DMA operations
275  * @tasklet: bottom half where all completed descriptors cleans
276  * @tx_ring: transmit ring descriptor that we use to prepare actual
277  *      descriptors for further executions
278  * @rx_ring: receive ring descriptor that we use to get completed DMA
279  *      descriptors during cleanup time
280  */
281 struct xgene_dma_chan {
282         struct dma_chan dma_chan;
283         struct xgene_dma *pdma;
284         struct device *dev;
285         int id;
286         int rx_irq;
287         char name[10];
288         spinlock_t lock;
289         int pending;
290         int max_outstanding;
291         struct list_head ld_pending;
292         struct list_head ld_running;
293         struct list_head ld_completed;
294         struct dma_pool *desc_pool;
295         struct tasklet_struct tasklet;
296         struct xgene_dma_ring tx_ring;
297         struct xgene_dma_ring rx_ring;
298 };
299
300 /**
301  * struct xgene_dma - internal representation of an X-Gene DMA device
302  * @err_irq: DMA error irq number
303  * @ring_num: start id number for DMA ring
304  * @csr_dma: base for DMA register access
305  * @csr_ring: base for DMA ring register access
306  * @csr_ring_cmd: base for DMA ring command register access
307  * @csr_efuse: base for efuse register access
308  * @dma_dev: embedded struct dma_device
309  * @chan: reference to X-Gene DMA channels
310  */
311 struct xgene_dma {
312         struct device *dev;
313         struct clk *clk;
314         int err_irq;
315         int ring_num;
316         void __iomem *csr_dma;
317         void __iomem *csr_ring;
318         void __iomem *csr_ring_cmd;
319         void __iomem *csr_efuse;
320         struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
321         struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
322 };
323
324 static const char * const xgene_dma_desc_err[] = {
325         [ERR_DESC_AXI] = "AXI error when reading src/dst link list",
326         [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
327         [ERR_READ_DATA_AXI] = "AXI error when reading data",
328         [ERR_WRITE_DATA_AXI] = "AXI error when writing data",
329         [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
330         [ERR_ECC] = "ECC double bit error",
331         [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
332         [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
333         [ERR_CRC_ERR] = "CRC error",
334         [ERR_CHKSUM] = "Checksum error",
335         [ERR_DIF] = "DIF error",
336 };
337
338 static const char * const xgene_dma_err[] = {
339         [ERR_DIF_SIZE_INT] = "DIF size error",
340         [ERR_GS_ERR_INT] = "Gather scatter not same size error",
341         [ERR_FPB_TIMEO_INT] = "Free pool time out error",
342         [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
343         [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
344         [ERR_WR_TIMEO_INT] = "Write time out error",
345         [ERR_RD_TIMEO_INT] = "Read time out error",
346         [ERR_WR_ERR_INT] = "HBF bus write error",
347         [ERR_RD_ERR_INT] = "HBF bus read error",
348         [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
349         [ERR_DESC_DST_INT] = "HFB reading dst link address error",
350         [ERR_DESC_SRC_INT] = "HFB reading src link address error",
351 };
352
353 static bool is_pq_enabled(struct xgene_dma *pdma)
354 {
355         u32 val;
356
357         val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
358         return !(val & XGENE_DMA_PQ_DISABLE_MASK);
359 }
360
361 static u64 xgene_dma_encode_len(size_t len)
362 {
363         return (len < XGENE_DMA_MAX_BYTE_CNT) ?
364                 ((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
365                 XGENE_DMA_16K_BUFFER_LEN_CODE;
366 }
367
368 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
369 {
370         static u8 flyby_type[] = {
371                 FLYBY_2SRC_XOR, /* Dummy */
372                 FLYBY_2SRC_XOR, /* Dummy */
373                 FLYBY_2SRC_XOR,
374                 FLYBY_3SRC_XOR,
375                 FLYBY_4SRC_XOR,
376                 FLYBY_5SRC_XOR
377         };
378
379         return flyby_type[src_cnt];
380 }
381
382 static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
383                                      dma_addr_t *paddr)
384 {
385         size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
386                         *len : XGENE_DMA_MAX_BYTE_CNT;
387
388         *ext8 |= cpu_to_le64(*paddr);
389         *ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
390         *len -= nbytes;
391         *paddr += nbytes;
392 }
393
394 static void xgene_dma_invalidate_buffer(__le64 *ext8)
395 {
396         *ext8 |= cpu_to_le64(XGENE_DMA_INVALID_LEN_CODE);
397 }
398
399 static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
400 {
401         switch (idx) {
402         case 0:
403                 return &desc->m1;
404         case 1:
405                 return &desc->m0;
406         case 2:
407                 return &desc->m3;
408         case 3:
409                 return &desc->m2;
410         default:
411                 pr_err("Invalid dma descriptor index\n");
412         }
413
414         return NULL;
415 }
416
417 static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
418                                 u16 dst_ring_num)
419 {
420         desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
421         desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
422                                 XGENE_DMA_DESC_RTYPE_POS);
423         desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
424         desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
425                                 XGENE_DMA_DESC_HOENQ_NUM_POS);
426 }
427
428 static void xgene_dma_prep_cpy_desc(struct xgene_dma_chan *chan,
429                                     struct xgene_dma_desc_sw *desc_sw,
430                                     dma_addr_t dst, dma_addr_t src,
431                                     size_t len)
432 {
433         struct xgene_dma_desc_hw *desc1, *desc2;
434         int i;
435
436         /* Get 1st descriptor */
437         desc1 = &desc_sw->desc1;
438         xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
439
440         /* Set destination address */
441         desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
442         desc1->m3 |= cpu_to_le64(dst);
443
444         /* Set 1st source address */
445         xgene_dma_set_src_buffer(&desc1->m1, &len, &src);
446
447         if (!len)
448                 return;
449
450         /*
451          * We need to split this source buffer,
452          * and need to use 2nd descriptor
453          */
454         desc2 = &desc_sw->desc2;
455         desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
456
457         /* Set 2nd to 5th source address */
458         for (i = 0; i < 4 && len; i++)
459                 xgene_dma_set_src_buffer(xgene_dma_lookup_ext8(desc2, i),
460                                          &len, &src);
461
462         /* Invalidate unused source address field */
463         for (; i < 4; i++)
464                 xgene_dma_invalidate_buffer(xgene_dma_lookup_ext8(desc2, i));
465
466         /* Updated flag that we have prepared 64B descriptor */
467         desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
468 }
469
470 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
471                                     struct xgene_dma_desc_sw *desc_sw,
472                                     dma_addr_t *dst, dma_addr_t *src,
473                                     u32 src_cnt, size_t *nbytes,
474                                     const u8 *scf)
475 {
476         struct xgene_dma_desc_hw *desc1, *desc2;
477         size_t len = *nbytes;
478         int i;
479
480         desc1 = &desc_sw->desc1;
481         desc2 = &desc_sw->desc2;
482
483         /* Initialize DMA descriptor */
484         xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
485
486         /* Set destination address */
487         desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
488         desc1->m3 |= cpu_to_le64(*dst);
489
490         /* We have multiple source addresses, so need to set NV bit*/
491         desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
492
493         /* Set flyby opcode */
494         desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
495
496         /* Set 1st to 5th source addresses */
497         for (i = 0; i < src_cnt; i++) {
498                 len = *nbytes;
499                 xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
500                                          xgene_dma_lookup_ext8(desc2, i - 1),
501                                          &len, &src[i]);
502                 desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
503         }
504
505         /* Update meta data */
506         *nbytes = len;
507         *dst += XGENE_DMA_MAX_BYTE_CNT;
508
509         /* We need always 64B descriptor to perform xor or pq operations */
510         desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
511 }
512
513 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
514 {
515         struct xgene_dma_desc_sw *desc;
516         struct xgene_dma_chan *chan;
517         dma_cookie_t cookie;
518
519         if (unlikely(!tx))
520                 return -EINVAL;
521
522         chan = to_dma_chan(tx->chan);
523         desc = to_dma_desc_sw(tx);
524
525         spin_lock_bh(&chan->lock);
526
527         cookie = dma_cookie_assign(tx);
528
529         /* Add this transaction list onto the tail of the pending queue */
530         list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
531
532         spin_unlock_bh(&chan->lock);
533
534         return cookie;
535 }
536
537 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
538                                        struct xgene_dma_desc_sw *desc)
539 {
540         list_del(&desc->node);
541         chan_dbg(chan, "LD %p free\n", desc);
542         dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
543 }
544
545 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
546                                  struct xgene_dma_chan *chan)
547 {
548         struct xgene_dma_desc_sw *desc;
549         dma_addr_t phys;
550
551         desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
552         if (!desc) {
553                 chan_err(chan, "Failed to allocate LDs\n");
554                 return NULL;
555         }
556
557         INIT_LIST_HEAD(&desc->tx_list);
558         desc->tx.phys = phys;
559         desc->tx.tx_submit = xgene_dma_tx_submit;
560         dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
561
562         chan_dbg(chan, "LD %p allocated\n", desc);
563
564         return desc;
565 }
566
567 /**
568  * xgene_dma_clean_completed_descriptor - free all descriptors which
569  * has been completed and acked
570  * @chan: X-Gene DMA channel
571  *
572  * This function is used on all completed and acked descriptors.
573  */
574 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
575 {
576         struct xgene_dma_desc_sw *desc, *_desc;
577
578         /* Run the callback for each descriptor, in order */
579         list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
580                 if (async_tx_test_ack(&desc->tx))
581                         xgene_dma_clean_descriptor(chan, desc);
582         }
583 }
584
585 /**
586  * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
587  * @chan: X-Gene DMA channel
588  * @desc: descriptor to cleanup and free
589  *
590  * This function is used on a descriptor which has been executed by the DMA
591  * controller. It will run any callbacks, submit any dependencies.
592  */
593 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
594                                               struct xgene_dma_desc_sw *desc)
595 {
596         struct dma_async_tx_descriptor *tx = &desc->tx;
597
598         /*
599          * If this is not the last transaction in the group,
600          * then no need to complete cookie and run any callback as
601          * this is not the tx_descriptor which had been sent to caller
602          * of this DMA request
603          */
604
605         if (tx->cookie == 0)
606                 return;
607
608         dma_cookie_complete(tx);
609
610         /* Run the link descriptor callback function */
611         if (tx->callback)
612                 tx->callback(tx->callback_param);
613
614         dma_descriptor_unmap(tx);
615
616         /* Run any dependencies */
617         dma_run_dependencies(tx);
618 }
619
620 /**
621  * xgene_dma_clean_running_descriptor - move the completed descriptor from
622  * ld_running to ld_completed
623  * @chan: X-Gene DMA channel
624  * @desc: the descriptor which is completed
625  *
626  * Free the descriptor directly if acked by async_tx api,
627  * else move it to queue ld_completed.
628  */
629 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
630                                                struct xgene_dma_desc_sw *desc)
631 {
632         /* Remove from the list of running transactions */
633         list_del(&desc->node);
634
635         /*
636          * the client is allowed to attach dependent operations
637          * until 'ack' is set
638          */
639         if (!async_tx_test_ack(&desc->tx)) {
640                 /*
641                  * Move this descriptor to the list of descriptors which is
642                  * completed, but still awaiting the 'ack' bit to be set.
643                  */
644                 list_add_tail(&desc->node, &chan->ld_completed);
645                 return;
646         }
647
648         chan_dbg(chan, "LD %p free\n", desc);
649         dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
650 }
651
652 static void xgene_chan_xfer_request(struct xgene_dma_chan *chan,
653                                     struct xgene_dma_desc_sw *desc_sw)
654 {
655         struct xgene_dma_ring *ring = &chan->tx_ring;
656         struct xgene_dma_desc_hw *desc_hw;
657
658         /* Get hw descriptor from DMA tx ring */
659         desc_hw = &ring->desc_hw[ring->head];
660
661         /*
662          * Increment the head count to point next
663          * descriptor for next time
664          */
665         if (++ring->head == ring->slots)
666                 ring->head = 0;
667
668         /* Copy prepared sw descriptor data to hw descriptor */
669         memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
670
671         /*
672          * Check if we have prepared 64B descriptor,
673          * in this case we need one more hw descriptor
674          */
675         if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
676                 desc_hw = &ring->desc_hw[ring->head];
677
678                 if (++ring->head == ring->slots)
679                         ring->head = 0;
680
681                 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
682         }
683
684         /* Increment the pending transaction count */
685         chan->pending += ((desc_sw->flags &
686                           XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
687
688         /* Notify the hw that we have descriptor ready for execution */
689         iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
690                   2 : 1, ring->cmd);
691 }
692
693 /**
694  * xgene_chan_xfer_ld_pending - push any pending transactions to hw
695  * @chan : X-Gene DMA channel
696  *
697  * LOCKING: must hold chan->lock
698  */
699 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
700 {
701         struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
702
703         /*
704          * If the list of pending descriptors is empty, then we
705          * don't need to do any work at all
706          */
707         if (list_empty(&chan->ld_pending)) {
708                 chan_dbg(chan, "No pending LDs\n");
709                 return;
710         }
711
712         /*
713          * Move elements from the queue of pending transactions onto the list
714          * of running transactions and push it to hw for further executions
715          */
716         list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
717                 /*
718                  * Check if have pushed max number of transactions to hw
719                  * as capable, so let's stop here and will push remaining
720                  * elements from pening ld queue after completing some
721                  * descriptors that we have already pushed
722                  */
723                 if (chan->pending >= chan->max_outstanding)
724                         return;
725
726                 xgene_chan_xfer_request(chan, desc_sw);
727
728                 /*
729                  * Delete this element from ld pending queue and append it to
730                  * ld running queue
731                  */
732                 list_move_tail(&desc_sw->node, &chan->ld_running);
733         }
734 }
735
736 /**
737  * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
738  * and move them to ld_completed to free until flag 'ack' is set
739  * @chan: X-Gene DMA channel
740  *
741  * This function is used on descriptors which have been executed by the DMA
742  * controller. It will run any callbacks, submit any dependencies, then
743  * free these descriptors if flag 'ack' is set.
744  */
745 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
746 {
747         struct xgene_dma_ring *ring = &chan->rx_ring;
748         struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
749         struct xgene_dma_desc_hw *desc_hw;
750         struct list_head ld_completed;
751         u8 status;
752
753         INIT_LIST_HEAD(&ld_completed);
754
755         spin_lock_bh(&chan->lock);
756
757         /* Clean already completed and acked descriptors */
758         xgene_dma_clean_completed_descriptor(chan);
759
760         /* Move all completed descriptors to ld completed queue, in order */
761         list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
762                 /* Get subsequent hw descriptor from DMA rx ring */
763                 desc_hw = &ring->desc_hw[ring->head];
764
765                 /* Check if this descriptor has been completed */
766                 if (unlikely(le64_to_cpu(desc_hw->m0) ==
767                              XGENE_DMA_DESC_EMPTY_SIGNATURE))
768                         break;
769
770                 if (++ring->head == ring->slots)
771                         ring->head = 0;
772
773                 /* Check if we have any error with DMA transactions */
774                 status = XGENE_DMA_DESC_STATUS(
775                                 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
776                                                         desc_hw->m0)),
777                                 XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
778                                                        desc_hw->m0)));
779                 if (status) {
780                         /* Print the DMA error type */
781                         chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
782
783                         /*
784                          * We have DMA transactions error here. Dump DMA Tx
785                          * and Rx descriptors for this request */
786                         XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
787                                             "X-Gene DMA TX DESC1: ");
788
789                         if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
790                                 XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
791                                                     "X-Gene DMA TX DESC2: ");
792
793                         XGENE_DMA_DESC_DUMP(desc_hw,
794                                             "X-Gene DMA RX ERR DESC: ");
795                 }
796
797                 /* Notify the hw about this completed descriptor */
798                 iowrite32(-1, ring->cmd);
799
800                 /* Mark this hw descriptor as processed */
801                 desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
802
803                 /*
804                  * Decrement the pending transaction count
805                  * as we have processed one
806                  */
807                 chan->pending -= ((desc_sw->flags &
808                                   XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
809
810                 /*
811                  * Delete this node from ld running queue and append it to
812                  * ld completed queue for further processing
813                  */
814                 list_move_tail(&desc_sw->node, &ld_completed);
815         }
816
817         /*
818          * Start any pending transactions automatically
819          * In the ideal case, we keep the DMA controller busy while we go
820          * ahead and free the descriptors below.
821          */
822         xgene_chan_xfer_ld_pending(chan);
823
824         spin_unlock_bh(&chan->lock);
825
826         /* Run the callback for each descriptor, in order */
827         list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
828                 xgene_dma_run_tx_complete_actions(chan, desc_sw);
829                 xgene_dma_clean_running_descriptor(chan, desc_sw);
830         }
831 }
832
833 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
834 {
835         struct xgene_dma_chan *chan = to_dma_chan(dchan);
836
837         /* Has this channel already been allocated? */
838         if (chan->desc_pool)
839                 return 1;
840
841         chan->desc_pool = dma_pool_create(chan->name, chan->dev,
842                                           sizeof(struct xgene_dma_desc_sw),
843                                           0, 0);
844         if (!chan->desc_pool) {
845                 chan_err(chan, "Failed to allocate descriptor pool\n");
846                 return -ENOMEM;
847         }
848
849         chan_dbg(chan, "Allocate descripto pool\n");
850
851         return 1;
852 }
853
854 /**
855  * xgene_dma_free_desc_list - Free all descriptors in a queue
856  * @chan: X-Gene DMA channel
857  * @list: the list to free
858  *
859  * LOCKING: must hold chan->lock
860  */
861 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
862                                      struct list_head *list)
863 {
864         struct xgene_dma_desc_sw *desc, *_desc;
865
866         list_for_each_entry_safe(desc, _desc, list, node)
867                 xgene_dma_clean_descriptor(chan, desc);
868 }
869
870 static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
871 {
872         struct xgene_dma_chan *chan = to_dma_chan(dchan);
873
874         chan_dbg(chan, "Free all resources\n");
875
876         if (!chan->desc_pool)
877                 return;
878
879         /* Process all running descriptor */
880         xgene_dma_cleanup_descriptors(chan);
881
882         spin_lock_bh(&chan->lock);
883
884         /* Clean all link descriptor queues */
885         xgene_dma_free_desc_list(chan, &chan->ld_pending);
886         xgene_dma_free_desc_list(chan, &chan->ld_running);
887         xgene_dma_free_desc_list(chan, &chan->ld_completed);
888
889         spin_unlock_bh(&chan->lock);
890
891         /* Delete this channel DMA pool */
892         dma_pool_destroy(chan->desc_pool);
893         chan->desc_pool = NULL;
894 }
895
896 static struct dma_async_tx_descriptor *xgene_dma_prep_sg(
897         struct dma_chan *dchan, struct scatterlist *dst_sg,
898         u32 dst_nents, struct scatterlist *src_sg,
899         u32 src_nents, unsigned long flags)
900 {
901         struct xgene_dma_desc_sw *first = NULL, *new = NULL;
902         struct xgene_dma_chan *chan;
903         size_t dst_avail, src_avail;
904         dma_addr_t dst, src;
905         size_t len;
906
907         if (unlikely(!dchan))
908                 return NULL;
909
910         if (unlikely(!dst_nents || !src_nents))
911                 return NULL;
912
913         if (unlikely(!dst_sg || !src_sg))
914                 return NULL;
915
916         chan = to_dma_chan(dchan);
917
918         /* Get prepared for the loop */
919         dst_avail = sg_dma_len(dst_sg);
920         src_avail = sg_dma_len(src_sg);
921         dst_nents--;
922         src_nents--;
923
924         /* Run until we are out of scatterlist entries */
925         while (true) {
926                 /* Create the largest transaction possible */
927                 len = min_t(size_t, src_avail, dst_avail);
928                 len = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
929                 if (len == 0)
930                         goto fetch;
931
932                 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
933                 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
934
935                 /* Allocate the link descriptor from DMA pool */
936                 new = xgene_dma_alloc_descriptor(chan);
937                 if (!new)
938                         goto fail;
939
940                 /* Prepare DMA descriptor */
941                 xgene_dma_prep_cpy_desc(chan, new, dst, src, len);
942
943                 if (!first)
944                         first = new;
945
946                 new->tx.cookie = 0;
947                 async_tx_ack(&new->tx);
948
949                 /* update metadata */
950                 dst_avail -= len;
951                 src_avail -= len;
952
953                 /* Insert the link descriptor to the LD ring */
954                 list_add_tail(&new->node, &first->tx_list);
955
956 fetch:
957                 /* fetch the next dst scatterlist entry */
958                 if (dst_avail == 0) {
959                         /* no more entries: we're done */
960                         if (dst_nents == 0)
961                                 break;
962
963                         /* fetch the next entry: if there are no more: done */
964                         dst_sg = sg_next(dst_sg);
965                         if (!dst_sg)
966                                 break;
967
968                         dst_nents--;
969                         dst_avail = sg_dma_len(dst_sg);
970                 }
971
972                 /* fetch the next src scatterlist entry */
973                 if (src_avail == 0) {
974                         /* no more entries: we're done */
975                         if (src_nents == 0)
976                                 break;
977
978                         /* fetch the next entry: if there are no more: done */
979                         src_sg = sg_next(src_sg);
980                         if (!src_sg)
981                                 break;
982
983                         src_nents--;
984                         src_avail = sg_dma_len(src_sg);
985                 }
986         }
987
988         if (!new)
989                 return NULL;
990
991         new->tx.flags = flags; /* client is in control of this ack */
992         new->tx.cookie = -EBUSY;
993         list_splice(&first->tx_list, &new->tx_list);
994
995         return &new->tx;
996 fail:
997         if (!first)
998                 return NULL;
999
1000         xgene_dma_free_desc_list(chan, &first->tx_list);
1001         return NULL;
1002 }
1003
1004 static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
1005         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src,
1006         u32 src_cnt, size_t len, unsigned long flags)
1007 {
1008         struct xgene_dma_desc_sw *first = NULL, *new;
1009         struct xgene_dma_chan *chan;
1010         static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
1011                                 0x01, 0x01, 0x01, 0x01, 0x01};
1012
1013         if (unlikely(!dchan || !len))
1014                 return NULL;
1015
1016         chan = to_dma_chan(dchan);
1017
1018         do {
1019                 /* Allocate the link descriptor from DMA pool */
1020                 new = xgene_dma_alloc_descriptor(chan);
1021                 if (!new)
1022                         goto fail;
1023
1024                 /* Prepare xor DMA descriptor */
1025                 xgene_dma_prep_xor_desc(chan, new, &dst, src,
1026                                         src_cnt, &len, multi);
1027
1028                 if (!first)
1029                         first = new;
1030
1031                 new->tx.cookie = 0;
1032                 async_tx_ack(&new->tx);
1033
1034                 /* Insert the link descriptor to the LD ring */
1035                 list_add_tail(&new->node, &first->tx_list);
1036         } while (len);
1037
1038         new->tx.flags = flags; /* client is in control of this ack */
1039         new->tx.cookie = -EBUSY;
1040         list_splice(&first->tx_list, &new->tx_list);
1041
1042         return &new->tx;
1043
1044 fail:
1045         if (!first)
1046                 return NULL;
1047
1048         xgene_dma_free_desc_list(chan, &first->tx_list);
1049         return NULL;
1050 }
1051
1052 static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
1053         struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
1054         u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
1055 {
1056         struct xgene_dma_desc_sw *first = NULL, *new;
1057         struct xgene_dma_chan *chan;
1058         size_t _len = len;
1059         dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
1060         static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
1061
1062         if (unlikely(!dchan || !len))
1063                 return NULL;
1064
1065         chan = to_dma_chan(dchan);
1066
1067         /*
1068          * Save source addresses on local variable, may be we have to
1069          * prepare two descriptor to generate P and Q if both enabled
1070          * in the flags by client
1071          */
1072         memcpy(_src, src, sizeof(*src) * src_cnt);
1073
1074         if (flags & DMA_PREP_PQ_DISABLE_P)
1075                 len = 0;
1076
1077         if (flags & DMA_PREP_PQ_DISABLE_Q)
1078                 _len = 0;
1079
1080         do {
1081                 /* Allocate the link descriptor from DMA pool */
1082                 new = xgene_dma_alloc_descriptor(chan);
1083                 if (!new)
1084                         goto fail;
1085
1086                 if (!first)
1087                         first = new;
1088
1089                 new->tx.cookie = 0;
1090                 async_tx_ack(&new->tx);
1091
1092                 /* Insert the link descriptor to the LD ring */
1093                 list_add_tail(&new->node, &first->tx_list);
1094
1095                 /*
1096                  * Prepare DMA descriptor to generate P,
1097                  * if DMA_PREP_PQ_DISABLE_P flag is not set
1098                  */
1099                 if (len) {
1100                         xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
1101                                                 src_cnt, &len, multi);
1102                         continue;
1103                 }
1104
1105                 /*
1106                  * Prepare DMA descriptor to generate Q,
1107                  * if DMA_PREP_PQ_DISABLE_Q flag is not set
1108                  */
1109                 if (_len) {
1110                         xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
1111                                                 src_cnt, &_len, scf);
1112                 }
1113         } while (len || _len);
1114
1115         new->tx.flags = flags; /* client is in control of this ack */
1116         new->tx.cookie = -EBUSY;
1117         list_splice(&first->tx_list, &new->tx_list);
1118
1119         return &new->tx;
1120
1121 fail:
1122         if (!first)
1123                 return NULL;
1124
1125         xgene_dma_free_desc_list(chan, &first->tx_list);
1126         return NULL;
1127 }
1128
1129 static void xgene_dma_issue_pending(struct dma_chan *dchan)
1130 {
1131         struct xgene_dma_chan *chan = to_dma_chan(dchan);
1132
1133         spin_lock_bh(&chan->lock);
1134         xgene_chan_xfer_ld_pending(chan);
1135         spin_unlock_bh(&chan->lock);
1136 }
1137
1138 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
1139                                            dma_cookie_t cookie,
1140                                            struct dma_tx_state *txstate)
1141 {
1142         return dma_cookie_status(dchan, cookie, txstate);
1143 }
1144
1145 static void xgene_dma_tasklet_cb(unsigned long data)
1146 {
1147         struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;
1148
1149         /* Run all cleanup for descriptors which have been completed */
1150         xgene_dma_cleanup_descriptors(chan);
1151
1152         /* Re-enable DMA channel IRQ */
1153         enable_irq(chan->rx_irq);
1154 }
1155
1156 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
1157 {
1158         struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
1159
1160         BUG_ON(!chan);
1161
1162         /*
1163          * Disable DMA channel IRQ until we process completed
1164          * descriptors
1165          */
1166         disable_irq_nosync(chan->rx_irq);
1167
1168         /*
1169          * Schedule the tasklet to handle all cleanup of the current
1170          * transaction. It will start a new transaction if there is
1171          * one pending.
1172          */
1173         tasklet_schedule(&chan->tasklet);
1174
1175         return IRQ_HANDLED;
1176 }
1177
1178 static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1179 {
1180         struct xgene_dma *pdma = (struct xgene_dma *)id;
1181         unsigned long int_mask;
1182         u32 val, i;
1183
1184         val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1185
1186         /* Clear DMA interrupts */
1187         iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1188
1189         /* Print DMA error info */
1190         int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1191         for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1192                 dev_err(pdma->dev,
1193                         "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1194
1195         return IRQ_HANDLED;
1196 }
1197
1198 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1199 {
1200         int i;
1201
1202         iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1203
1204         for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1205                 iowrite32(ring->state[i], ring->pdma->csr_ring +
1206                           XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1207 }
1208
1209 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1210 {
1211         memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1212         xgene_dma_wr_ring_state(ring);
1213 }
1214
1215 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1216 {
1217         void *ring_cfg = ring->state;
1218         u64 addr = ring->desc_paddr;
1219         u32 i, val;
1220
1221         ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1222
1223         /* Clear DMA ring state */
1224         xgene_dma_clr_ring_state(ring);
1225
1226         /* Set DMA ring type */
1227         XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1228
1229         if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1230                 /* Set recombination buffer and timeout */
1231                 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1232                 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1233                 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1234         }
1235
1236         /* Initialize DMA ring state */
1237         XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1238         XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1239         XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1240         XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1241         XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1242         XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1243
1244         /* Write DMA ring configurations */
1245         xgene_dma_wr_ring_state(ring);
1246
1247         /* Set DMA ring id */
1248         iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1249                   ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1250
1251         /* Set DMA ring buffer */
1252         iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1253                   ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1254
1255         if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1256                 return;
1257
1258         /* Set empty signature to DMA Rx ring descriptors */
1259         for (i = 0; i < ring->slots; i++) {
1260                 struct xgene_dma_desc_hw *desc;
1261
1262                 desc = &ring->desc_hw[i];
1263                 desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1264         }
1265
1266         /* Enable DMA Rx ring interrupt */
1267         val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1268         XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1269         iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1270 }
1271
1272 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1273 {
1274         u32 ring_id, val;
1275
1276         if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1277                 /* Disable DMA Rx ring interrupt */
1278                 val = ioread32(ring->pdma->csr_ring +
1279                                XGENE_DMA_RING_NE_INT_MODE);
1280                 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1281                 iowrite32(val, ring->pdma->csr_ring +
1282                           XGENE_DMA_RING_NE_INT_MODE);
1283         }
1284
1285         /* Clear DMA ring state */
1286         ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1287         iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1288
1289         iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1290         xgene_dma_clr_ring_state(ring);
1291 }
1292
1293 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1294 {
1295         ring->cmd_base = ring->pdma->csr_ring_cmd +
1296                                 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1297                                                           XGENE_DMA_RING_NUM));
1298
1299         ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1300 }
1301
1302 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1303                                    enum xgene_dma_ring_cfgsize cfgsize)
1304 {
1305         int size;
1306
1307         switch (cfgsize) {
1308         case XGENE_DMA_RING_CFG_SIZE_512B:
1309                 size = 0x200;
1310                 break;
1311         case XGENE_DMA_RING_CFG_SIZE_2KB:
1312                 size = 0x800;
1313                 break;
1314         case XGENE_DMA_RING_CFG_SIZE_16KB:
1315                 size = 0x4000;
1316                 break;
1317         case XGENE_DMA_RING_CFG_SIZE_64KB:
1318                 size = 0x10000;
1319                 break;
1320         case XGENE_DMA_RING_CFG_SIZE_512KB:
1321                 size = 0x80000;
1322                 break;
1323         default:
1324                 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1325                 return -EINVAL;
1326         }
1327
1328         return size;
1329 }
1330
1331 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1332 {
1333         /* Clear DMA ring configurations */
1334         xgene_dma_clear_ring(ring);
1335
1336         /* De-allocate DMA ring descriptor */
1337         if (ring->desc_vaddr) {
1338                 dma_free_coherent(ring->pdma->dev, ring->size,
1339                                   ring->desc_vaddr, ring->desc_paddr);
1340                 ring->desc_vaddr = NULL;
1341         }
1342 }
1343
1344 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1345 {
1346         xgene_dma_delete_ring_one(&chan->rx_ring);
1347         xgene_dma_delete_ring_one(&chan->tx_ring);
1348 }
1349
1350 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1351                                      struct xgene_dma_ring *ring,
1352                                      enum xgene_dma_ring_cfgsize cfgsize)
1353 {
1354         int ret;
1355
1356         /* Setup DMA ring descriptor variables */
1357         ring->pdma = chan->pdma;
1358         ring->cfgsize = cfgsize;
1359         ring->num = chan->pdma->ring_num++;
1360         ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1361
1362         ret = xgene_dma_get_ring_size(chan, cfgsize);
1363         if (ret <= 0)
1364                 return ret;
1365         ring->size = ret;
1366
1367         /* Allocate memory for DMA ring descriptor */
1368         ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size,
1369                                                &ring->desc_paddr, GFP_KERNEL);
1370         if (!ring->desc_vaddr) {
1371                 chan_err(chan, "Failed to allocate ring desc\n");
1372                 return -ENOMEM;
1373         }
1374
1375         /* Configure and enable DMA ring */
1376         xgene_dma_set_ring_cmd(ring);
1377         xgene_dma_setup_ring(ring);
1378
1379         return 0;
1380 }
1381
1382 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1383 {
1384         struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1385         struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1386         int ret;
1387
1388         /* Create DMA Rx ring descriptor */
1389         rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1390         rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1391
1392         ret = xgene_dma_create_ring_one(chan, rx_ring,
1393                                         XGENE_DMA_RING_CFG_SIZE_64KB);
1394         if (ret)
1395                 return ret;
1396
1397         chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1398                  rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1399
1400         /* Create DMA Tx ring descriptor */
1401         tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1402         tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1403
1404         ret = xgene_dma_create_ring_one(chan, tx_ring,
1405                                         XGENE_DMA_RING_CFG_SIZE_64KB);
1406         if (ret) {
1407                 xgene_dma_delete_ring_one(rx_ring);
1408                 return ret;
1409         }
1410
1411         tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1412
1413         chan_dbg(chan,
1414                  "Tx ring id 0x%X num %d desc 0x%p\n",
1415                  tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1416
1417         /* Set the max outstanding request possible to this channel */
1418         chan->max_outstanding = tx_ring->slots;
1419
1420         return ret;
1421 }
1422
1423 static int xgene_dma_init_rings(struct xgene_dma *pdma)
1424 {
1425         int ret, i, j;
1426
1427         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1428                 ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1429                 if (ret) {
1430                         for (j = 0; j < i; j++)
1431                                 xgene_dma_delete_chan_rings(&pdma->chan[j]);
1432                         return ret;
1433                 }
1434         }
1435
1436         return ret;
1437 }
1438
1439 static void xgene_dma_enable(struct xgene_dma *pdma)
1440 {
1441         u32 val;
1442
1443         /* Configure and enable DMA engine */
1444         val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1445         XGENE_DMA_CH_SETUP(val);
1446         XGENE_DMA_ENABLE(val);
1447         iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1448 }
1449
1450 static void xgene_dma_disable(struct xgene_dma *pdma)
1451 {
1452         u32 val;
1453
1454         val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1455         XGENE_DMA_DISABLE(val);
1456         iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1457 }
1458
1459 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1460 {
1461         /*
1462          * Mask DMA ring overflow, underflow and
1463          * AXI write/read error interrupts
1464          */
1465         iowrite32(XGENE_DMA_INT_ALL_MASK,
1466                   pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1467         iowrite32(XGENE_DMA_INT_ALL_MASK,
1468                   pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1469         iowrite32(XGENE_DMA_INT_ALL_MASK,
1470                   pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1471         iowrite32(XGENE_DMA_INT_ALL_MASK,
1472                   pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1473         iowrite32(XGENE_DMA_INT_ALL_MASK,
1474                   pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1475
1476         /* Mask DMA error interrupts */
1477         iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1478 }
1479
1480 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1481 {
1482         /*
1483          * Unmask DMA ring overflow, underflow and
1484          * AXI write/read error interrupts
1485          */
1486         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1487                   pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1488         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1489                   pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1490         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1491                   pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1492         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1493                   pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1494         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1495                   pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1496
1497         /* Unmask DMA error interrupts */
1498         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1499                   pdma->csr_dma + XGENE_DMA_INT_MASK);
1500 }
1501
1502 static void xgene_dma_init_hw(struct xgene_dma *pdma)
1503 {
1504         u32 val;
1505
1506         /* Associate DMA ring to corresponding ring HW */
1507         iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1508                   pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1509
1510         /* Configure RAID6 polynomial control setting */
1511         if (is_pq_enabled(pdma))
1512                 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1513                           pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1514         else
1515                 dev_info(pdma->dev, "PQ is disabled in HW\n");
1516
1517         xgene_dma_enable(pdma);
1518         xgene_dma_unmask_interrupts(pdma);
1519
1520         /* Get DMA id and version info */
1521         val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1522
1523         /* DMA device info */
1524         dev_info(pdma->dev,
1525                  "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1526                  XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1527                  XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1528 }
1529
1530 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1531 {
1532         if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1533             (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1534                 return 0;
1535
1536         iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1537         iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1538
1539         /* Bring up memory */
1540         iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1541
1542         /* Force a barrier */
1543         ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1544
1545         /* reset may take up to 1ms */
1546         usleep_range(1000, 1100);
1547
1548         if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1549                 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1550                 dev_err(pdma->dev,
1551                         "Failed to release ring mngr memory from shutdown\n");
1552                 return -ENODEV;
1553         }
1554
1555         /* program threshold set 1 and all hysteresis */
1556         iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1557                   pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1558         iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1559                   pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1560         iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1561                   pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1562
1563         /* Enable QPcore and assign error queue */
1564         iowrite32(XGENE_DMA_RING_ENABLE,
1565                   pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1566
1567         return 0;
1568 }
1569
1570 static int xgene_dma_init_mem(struct xgene_dma *pdma)
1571 {
1572         int ret;
1573
1574         ret = xgene_dma_init_ring_mngr(pdma);
1575         if (ret)
1576                 return ret;
1577
1578         /* Bring up memory */
1579         iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1580
1581         /* Force a barrier */
1582         ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1583
1584         /* reset may take up to 1ms */
1585         usleep_range(1000, 1100);
1586
1587         if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1588                 != XGENE_DMA_BLK_MEM_RDY_VAL) {
1589                 dev_err(pdma->dev,
1590                         "Failed to release DMA memory from shutdown\n");
1591                 return -ENODEV;
1592         }
1593
1594         return 0;
1595 }
1596
1597 static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1598 {
1599         struct xgene_dma_chan *chan;
1600         int ret, i, j;
1601
1602         /* Register DMA error irq */
1603         ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1604                                0, "dma_error", pdma);
1605         if (ret) {
1606                 dev_err(pdma->dev,
1607                         "Failed to register error IRQ %d\n", pdma->err_irq);
1608                 return ret;
1609         }
1610
1611         /* Register DMA channel rx irq */
1612         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1613                 chan = &pdma->chan[i];
1614                 irq_set_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1615                 ret = devm_request_irq(chan->dev, chan->rx_irq,
1616                                        xgene_dma_chan_ring_isr,
1617                                        0, chan->name, chan);
1618                 if (ret) {
1619                         chan_err(chan, "Failed to register Rx IRQ %d\n",
1620                                  chan->rx_irq);
1621                         devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1622
1623                         for (j = 0; j < i; j++) {
1624                                 chan = &pdma->chan[i];
1625                                 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1626                                 devm_free_irq(chan->dev, chan->rx_irq, chan);
1627                         }
1628
1629                         return ret;
1630                 }
1631         }
1632
1633         return 0;
1634 }
1635
1636 static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1637 {
1638         struct xgene_dma_chan *chan;
1639         int i;
1640
1641         /* Free DMA device error irq */
1642         devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1643
1644         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1645                 chan = &pdma->chan[i];
1646                 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1647                 devm_free_irq(chan->dev, chan->rx_irq, chan);
1648         }
1649 }
1650
1651 static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1652                                struct dma_device *dma_dev)
1653 {
1654         /* Initialize DMA device capability mask */
1655         dma_cap_zero(dma_dev->cap_mask);
1656
1657         /* Set DMA device capability */
1658         dma_cap_set(DMA_SG, dma_dev->cap_mask);
1659
1660         /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1661          * and channel 1 supports XOR, PQ both. First thing here is we have
1662          * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1663          * we can make sure this by reading SoC Efuse register.
1664          * Second thing, we have hw errata that if we run channel 0 and
1665          * channel 1 simultaneously with executing XOR and PQ request,
1666          * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1667          * if XOR and PQ supports on channel 1 is disabled.
1668          */
1669         if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1670             is_pq_enabled(chan->pdma)) {
1671                 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1672                 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1673         } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1674                    !is_pq_enabled(chan->pdma)) {
1675                 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1676         }
1677
1678         /* Set base and prep routines */
1679         dma_dev->dev = chan->dev;
1680         dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1681         dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1682         dma_dev->device_issue_pending = xgene_dma_issue_pending;
1683         dma_dev->device_tx_status = xgene_dma_tx_status;
1684         dma_dev->device_prep_dma_sg = xgene_dma_prep_sg;
1685
1686         if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1687                 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1688                 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1689                 dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
1690         }
1691
1692         if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1693                 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1694                 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1695                 dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
1696         }
1697 }
1698
1699 static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1700 {
1701         struct xgene_dma_chan *chan = &pdma->chan[id];
1702         struct dma_device *dma_dev = &pdma->dma_dev[id];
1703         int ret;
1704
1705         chan->dma_chan.device = dma_dev;
1706
1707         spin_lock_init(&chan->lock);
1708         INIT_LIST_HEAD(&chan->ld_pending);
1709         INIT_LIST_HEAD(&chan->ld_running);
1710         INIT_LIST_HEAD(&chan->ld_completed);
1711         tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
1712                      (unsigned long)chan);
1713
1714         chan->pending = 0;
1715         chan->desc_pool = NULL;
1716         dma_cookie_init(&chan->dma_chan);
1717
1718         /* Setup dma device capabilities and prep routines */
1719         xgene_dma_set_caps(chan, dma_dev);
1720
1721         /* Initialize DMA device list head */
1722         INIT_LIST_HEAD(&dma_dev->channels);
1723         list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1724
1725         /* Register with Linux async DMA framework*/
1726         ret = dma_async_device_register(dma_dev);
1727         if (ret) {
1728                 chan_err(chan, "Failed to register async device %d", ret);
1729                 tasklet_kill(&chan->tasklet);
1730
1731                 return ret;
1732         }
1733
1734         /* DMA capability info */
1735         dev_info(pdma->dev,
1736                  "%s: CAPABILITY ( %s%s%s)\n", dma_chan_name(&chan->dma_chan),
1737                  dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "SGCPY " : "",
1738                  dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1739                  dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1740
1741         return 0;
1742 }
1743
1744 static int xgene_dma_init_async(struct xgene_dma *pdma)
1745 {
1746         int ret, i, j;
1747
1748         for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1749                 ret = xgene_dma_async_register(pdma, i);
1750                 if (ret) {
1751                         for (j = 0; j < i; j++) {
1752                                 dma_async_device_unregister(&pdma->dma_dev[j]);
1753                                 tasklet_kill(&pdma->chan[j].tasklet);
1754                         }
1755
1756                         return ret;
1757                 }
1758         }
1759
1760         return ret;
1761 }
1762
1763 static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1764 {
1765         int i;
1766
1767         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1768                 dma_async_device_unregister(&pdma->dma_dev[i]);
1769 }
1770
1771 static void xgene_dma_init_channels(struct xgene_dma *pdma)
1772 {
1773         struct xgene_dma_chan *chan;
1774         int i;
1775
1776         pdma->ring_num = XGENE_DMA_RING_NUM;
1777
1778         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1779                 chan = &pdma->chan[i];
1780                 chan->dev = pdma->dev;
1781                 chan->pdma = pdma;
1782                 chan->id = i;
1783                 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1784         }
1785 }
1786
1787 static int xgene_dma_get_resources(struct platform_device *pdev,
1788                                    struct xgene_dma *pdma)
1789 {
1790         struct resource *res;
1791         int irq, i;
1792
1793         /* Get DMA csr region */
1794         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1795         if (!res) {
1796                 dev_err(&pdev->dev, "Failed to get csr region\n");
1797                 return -ENXIO;
1798         }
1799
1800         pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1801                                      resource_size(res));
1802         if (!pdma->csr_dma) {
1803                 dev_err(&pdev->dev, "Failed to ioremap csr region");
1804                 return -ENOMEM;
1805         }
1806
1807         /* Get DMA ring csr region */
1808         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1809         if (!res) {
1810                 dev_err(&pdev->dev, "Failed to get ring csr region\n");
1811                 return -ENXIO;
1812         }
1813
1814         pdma->csr_ring =  devm_ioremap(&pdev->dev, res->start,
1815                                        resource_size(res));
1816         if (!pdma->csr_ring) {
1817                 dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1818                 return -ENOMEM;
1819         }
1820
1821         /* Get DMA ring cmd csr region */
1822         res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1823         if (!res) {
1824                 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1825                 return -ENXIO;
1826         }
1827
1828         pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1829                                           resource_size(res));
1830         if (!pdma->csr_ring_cmd) {
1831                 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1832                 return -ENOMEM;
1833         }
1834
1835         pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1836
1837         /* Get efuse csr region */
1838         res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1839         if (!res) {
1840                 dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1841                 return -ENXIO;
1842         }
1843
1844         pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1845                                        resource_size(res));
1846         if (!pdma->csr_efuse) {
1847                 dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1848                 return -ENOMEM;
1849         }
1850
1851         /* Get DMA error interrupt */
1852         irq = platform_get_irq(pdev, 0);
1853         if (irq <= 0) {
1854                 dev_err(&pdev->dev, "Failed to get Error IRQ\n");
1855                 return -ENXIO;
1856         }
1857
1858         pdma->err_irq = irq;
1859
1860         /* Get DMA Rx ring descriptor interrupts for all DMA channels */
1861         for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1862                 irq = platform_get_irq(pdev, i);
1863                 if (irq <= 0) {
1864                         dev_err(&pdev->dev, "Failed to get Rx IRQ\n");
1865                         return -ENXIO;
1866                 }
1867
1868                 pdma->chan[i - 1].rx_irq = irq;
1869         }
1870
1871         return 0;
1872 }
1873
1874 static int xgene_dma_probe(struct platform_device *pdev)
1875 {
1876         struct xgene_dma *pdma;
1877         int ret, i;
1878
1879         pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1880         if (!pdma)
1881                 return -ENOMEM;
1882
1883         pdma->dev = &pdev->dev;
1884         platform_set_drvdata(pdev, pdma);
1885
1886         ret = xgene_dma_get_resources(pdev, pdma);
1887         if (ret)
1888                 return ret;
1889
1890         pdma->clk = devm_clk_get(&pdev->dev, NULL);
1891         if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
1892                 dev_err(&pdev->dev, "Failed to get clk\n");
1893                 return PTR_ERR(pdma->clk);
1894         }
1895
1896         /* Enable clk before accessing registers */
1897         if (!IS_ERR(pdma->clk)) {
1898                 ret = clk_prepare_enable(pdma->clk);
1899                 if (ret) {
1900                         dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1901                         return ret;
1902                 }
1903         }
1904
1905         /* Remove DMA RAM out of shutdown */
1906         ret = xgene_dma_init_mem(pdma);
1907         if (ret)
1908                 goto err_clk_enable;
1909
1910         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1911         if (ret) {
1912                 dev_err(&pdev->dev, "No usable DMA configuration\n");
1913                 goto err_dma_mask;
1914         }
1915
1916         /* Initialize DMA channels software state */
1917         xgene_dma_init_channels(pdma);
1918
1919         /* Configue DMA rings */
1920         ret = xgene_dma_init_rings(pdma);
1921         if (ret)
1922                 goto err_clk_enable;
1923
1924         ret = xgene_dma_request_irqs(pdma);
1925         if (ret)
1926                 goto err_request_irq;
1927
1928         /* Configure and enable DMA engine */
1929         xgene_dma_init_hw(pdma);
1930
1931         /* Register DMA device with linux async framework */
1932         ret = xgene_dma_init_async(pdma);
1933         if (ret)
1934                 goto err_async_init;
1935
1936         return 0;
1937
1938 err_async_init:
1939         xgene_dma_free_irqs(pdma);
1940
1941 err_request_irq:
1942         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1943                 xgene_dma_delete_chan_rings(&pdma->chan[i]);
1944
1945 err_dma_mask:
1946 err_clk_enable:
1947         if (!IS_ERR(pdma->clk))
1948                 clk_disable_unprepare(pdma->clk);
1949
1950         return ret;
1951 }
1952
1953 static int xgene_dma_remove(struct platform_device *pdev)
1954 {
1955         struct xgene_dma *pdma = platform_get_drvdata(pdev);
1956         struct xgene_dma_chan *chan;
1957         int i;
1958
1959         xgene_dma_async_unregister(pdma);
1960
1961         /* Mask interrupts and disable DMA engine */
1962         xgene_dma_mask_interrupts(pdma);
1963         xgene_dma_disable(pdma);
1964         xgene_dma_free_irqs(pdma);
1965
1966         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1967                 chan = &pdma->chan[i];
1968                 tasklet_kill(&chan->tasklet);
1969                 xgene_dma_delete_chan_rings(chan);
1970         }
1971
1972         if (!IS_ERR(pdma->clk))
1973                 clk_disable_unprepare(pdma->clk);
1974
1975         return 0;
1976 }
1977
1978 #ifdef CONFIG_ACPI
1979 static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
1980         {"APMC0D43", 0},
1981         {},
1982 };
1983 MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
1984 #endif
1985
1986 static const struct of_device_id xgene_dma_of_match_ptr[] = {
1987         {.compatible = "apm,xgene-storm-dma",},
1988         {},
1989 };
1990 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
1991
1992 static struct platform_driver xgene_dma_driver = {
1993         .probe = xgene_dma_probe,
1994         .remove = xgene_dma_remove,
1995         .driver = {
1996                 .name = "X-Gene-DMA",
1997                 .of_match_table = xgene_dma_of_match_ptr,
1998                 .acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
1999         },
2000 };
2001
2002 module_platform_driver(xgene_dma_driver);
2003
2004 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
2005 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
2006 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
2007 MODULE_LICENSE("GPL");
2008 MODULE_VERSION("1.0");