GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / dma / xgene-dma.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Applied Micro X-Gene SoC DMA engine Driver
4  *
5  * Copyright (c) 2015, Applied Micro Circuits Corporation
6  * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
7  *          Loc Ho <lho@apm.com>
8  *
9  * NOTE: PM support is currently not available.
10  */
11
12 #include <linux/acpi.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmaengine.h>
17 #include <linux/dmapool.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/irq.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
23
24 #include "dmaengine.h"
25
26 /* X-Gene DMA ring csr registers and bit definations */
27 #define XGENE_DMA_RING_CONFIG                   0x04
28 #define XGENE_DMA_RING_ENABLE                   BIT(31)
29 #define XGENE_DMA_RING_ID                       0x08
30 #define XGENE_DMA_RING_ID_SETUP(v)              ((v) | BIT(31))
31 #define XGENE_DMA_RING_ID_BUF                   0x0C
32 #define XGENE_DMA_RING_ID_BUF_SETUP(v)          (((v) << 9) | BIT(21))
33 #define XGENE_DMA_RING_THRESLD0_SET1            0x30
34 #define XGENE_DMA_RING_THRESLD0_SET1_VAL        0X64
35 #define XGENE_DMA_RING_THRESLD1_SET1            0x34
36 #define XGENE_DMA_RING_THRESLD1_SET1_VAL        0xC8
37 #define XGENE_DMA_RING_HYSTERESIS               0x68
38 #define XGENE_DMA_RING_HYSTERESIS_VAL           0xFFFFFFFF
39 #define XGENE_DMA_RING_STATE                    0x6C
40 #define XGENE_DMA_RING_STATE_WR_BASE            0x70
41 #define XGENE_DMA_RING_NE_INT_MODE              0x017C
42 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v)    \
43         ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
44 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v)  \
45         ((m) &= (~BIT(31 - (v))))
46 #define XGENE_DMA_RING_CLKEN                    0xC208
47 #define XGENE_DMA_RING_SRST                     0xC200
48 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN         0xD070
49 #define XGENE_DMA_RING_BLK_MEM_RDY              0xD074
50 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL          0xFFFFFFFF
51 #define XGENE_DMA_RING_ID_GET(owner, num)       (((owner) << 6) | (num))
52 #define XGENE_DMA_RING_DST_ID(v)                ((1 << 10) | (v))
53 #define XGENE_DMA_RING_CMD_OFFSET               0x2C
54 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v)       ((v) << 6)
55 #define XGENE_DMA_RING_COHERENT_SET(m)          \
56         (((u32 *)(m))[2] |= BIT(4))
57 #define XGENE_DMA_RING_ADDRL_SET(m, v)          \
58         (((u32 *)(m))[2] |= (((v) >> 8) << 5))
59 #define XGENE_DMA_RING_ADDRH_SET(m, v)          \
60         (((u32 *)(m))[3] |= ((v) >> 35))
61 #define XGENE_DMA_RING_ACCEPTLERR_SET(m)        \
62         (((u32 *)(m))[3] |= BIT(19))
63 #define XGENE_DMA_RING_SIZE_SET(m, v)           \
64         (((u32 *)(m))[3] |= ((v) << 23))
65 #define XGENE_DMA_RING_RECOMBBUF_SET(m)         \
66         (((u32 *)(m))[3] |= BIT(27))
67 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m)     \
68         (((u32 *)(m))[3] |= (0x7 << 28))
69 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m)     \
70         (((u32 *)(m))[4] |= 0x3)
71 #define XGENE_DMA_RING_SELTHRSH_SET(m)          \
72         (((u32 *)(m))[4] |= BIT(3))
73 #define XGENE_DMA_RING_TYPE_SET(m, v)           \
74         (((u32 *)(m))[4] |= ((v) << 19))
75
76 /* X-Gene DMA device csr registers and bit definitions */
77 #define XGENE_DMA_IPBRR                         0x0
78 #define XGENE_DMA_DEV_ID_RD(v)                  ((v) & 0x00000FFF)
79 #define XGENE_DMA_BUS_ID_RD(v)                  (((v) >> 12) & 3)
80 #define XGENE_DMA_REV_NO_RD(v)                  (((v) >> 14) & 3)
81 #define XGENE_DMA_GCR                           0x10
82 #define XGENE_DMA_CH_SETUP(v)                   \
83         ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
84 #define XGENE_DMA_ENABLE(v)                     ((v) |= BIT(31))
85 #define XGENE_DMA_DISABLE(v)                    ((v) &= ~BIT(31))
86 #define XGENE_DMA_RAID6_CONT                    0x14
87 #define XGENE_DMA_RAID6_MULTI_CTRL(v)           ((v) << 24)
88 #define XGENE_DMA_INT                           0x70
89 #define XGENE_DMA_INT_MASK                      0x74
90 #define XGENE_DMA_INT_ALL_MASK                  0xFFFFFFFF
91 #define XGENE_DMA_INT_ALL_UNMASK                0x0
92 #define XGENE_DMA_INT_MASK_SHIFT                0x14
93 #define XGENE_DMA_RING_INT0_MASK                0x90A0
94 #define XGENE_DMA_RING_INT1_MASK                0x90A8
95 #define XGENE_DMA_RING_INT2_MASK                0x90B0
96 #define XGENE_DMA_RING_INT3_MASK                0x90B8
97 #define XGENE_DMA_RING_INT4_MASK                0x90C0
98 #define XGENE_DMA_CFG_RING_WQ_ASSOC             0x90E0
99 #define XGENE_DMA_ASSOC_RING_MNGR1              0xFFFFFFFF
100 #define XGENE_DMA_MEM_RAM_SHUTDOWN              0xD070
101 #define XGENE_DMA_BLK_MEM_RDY                   0xD074
102 #define XGENE_DMA_BLK_MEM_RDY_VAL               0xFFFFFFFF
103 #define XGENE_DMA_RING_CMD_SM_OFFSET            0x8000
104
105 /* X-Gene SoC EFUSE csr register and bit defination */
106 #define XGENE_SOC_JTAG1_SHADOW                  0x18
107 #define XGENE_DMA_PQ_DISABLE_MASK               BIT(13)
108
109 /* X-Gene DMA Descriptor format */
110 #define XGENE_DMA_DESC_NV_BIT                   BIT_ULL(50)
111 #define XGENE_DMA_DESC_IN_BIT                   BIT_ULL(55)
112 #define XGENE_DMA_DESC_C_BIT                    BIT_ULL(63)
113 #define XGENE_DMA_DESC_DR_BIT                   BIT_ULL(61)
114 #define XGENE_DMA_DESC_ELERR_POS                46
115 #define XGENE_DMA_DESC_RTYPE_POS                56
116 #define XGENE_DMA_DESC_LERR_POS                 60
117 #define XGENE_DMA_DESC_BUFLEN_POS               48
118 #define XGENE_DMA_DESC_HOENQ_NUM_POS            48
119 #define XGENE_DMA_DESC_ELERR_RD(m)              \
120         (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
121 #define XGENE_DMA_DESC_LERR_RD(m)               \
122         (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
123 #define XGENE_DMA_DESC_STATUS(elerr, lerr)      \
124         (((elerr) << 4) | (lerr))
125
126 /* X-Gene DMA descriptor empty s/w signature */
127 #define XGENE_DMA_DESC_EMPTY_SIGNATURE          ~0ULL
128
129 /* X-Gene DMA configurable parameters defines */
130 #define XGENE_DMA_RING_NUM              512
131 #define XGENE_DMA_BUFNUM                0x0
132 #define XGENE_DMA_CPU_BUFNUM            0x18
133 #define XGENE_DMA_RING_OWNER_DMA        0x03
134 #define XGENE_DMA_RING_OWNER_CPU        0x0F
135 #define XGENE_DMA_RING_TYPE_REGULAR     0x01
136 #define XGENE_DMA_RING_WQ_DESC_SIZE     32      /* 32 Bytes */
137 #define XGENE_DMA_RING_NUM_CONFIG       5
138 #define XGENE_DMA_MAX_CHANNEL           4
139 #define XGENE_DMA_XOR_CHANNEL           0
140 #define XGENE_DMA_PQ_CHANNEL            1
141 #define XGENE_DMA_MAX_BYTE_CNT          0x4000  /* 16 KB */
142 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */
143 #define XGENE_DMA_MAX_XOR_SRC           5
144 #define XGENE_DMA_16K_BUFFER_LEN_CODE   0x0
145 #define XGENE_DMA_INVALID_LEN_CODE      0x7800000000000000ULL
146
147 /* X-Gene DMA descriptor error codes */
148 #define ERR_DESC_AXI                    0x01
149 #define ERR_BAD_DESC                    0x02
150 #define ERR_READ_DATA_AXI               0x03
151 #define ERR_WRITE_DATA_AXI              0x04
152 #define ERR_FBP_TIMEOUT                 0x05
153 #define ERR_ECC                         0x06
154 #define ERR_DIFF_SIZE                   0x08
155 #define ERR_SCT_GAT_LEN                 0x09
156 #define ERR_CRC_ERR                     0x11
157 #define ERR_CHKSUM                      0x12
158 #define ERR_DIF                         0x13
159
160 /* X-Gene DMA error interrupt codes */
161 #define ERR_DIF_SIZE_INT                0x0
162 #define ERR_GS_ERR_INT                  0x1
163 #define ERR_FPB_TIMEO_INT               0x2
164 #define ERR_WFIFO_OVF_INT               0x3
165 #define ERR_RFIFO_OVF_INT               0x4
166 #define ERR_WR_TIMEO_INT                0x5
167 #define ERR_RD_TIMEO_INT                0x6
168 #define ERR_WR_ERR_INT                  0x7
169 #define ERR_RD_ERR_INT                  0x8
170 #define ERR_BAD_DESC_INT                0x9
171 #define ERR_DESC_DST_INT                0xA
172 #define ERR_DESC_SRC_INT                0xB
173
174 /* X-Gene DMA flyby operation code */
175 #define FLYBY_2SRC_XOR                  0x80
176 #define FLYBY_3SRC_XOR                  0x90
177 #define FLYBY_4SRC_XOR                  0xA0
178 #define FLYBY_5SRC_XOR                  0xB0
179
180 /* X-Gene DMA SW descriptor flags */
181 #define XGENE_DMA_FLAG_64B_DESC         BIT(0)
182
183 /* Define to dump X-Gene DMA descriptor */
184 #define XGENE_DMA_DESC_DUMP(desc, m)    \
185         print_hex_dump(KERN_ERR, (m),   \
186                         DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
187
188 #define to_dma_desc_sw(tx)              \
189         container_of(tx, struct xgene_dma_desc_sw, tx)
190 #define to_dma_chan(dchan)              \
191         container_of(dchan, struct xgene_dma_chan, dma_chan)
192
193 #define chan_dbg(chan, fmt, arg...)     \
194         dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
195 #define chan_err(chan, fmt, arg...)     \
196         dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
197
198 struct xgene_dma_desc_hw {
199         __le64 m0;
200         __le64 m1;
201         __le64 m2;
202         __le64 m3;
203 };
204
205 enum xgene_dma_ring_cfgsize {
206         XGENE_DMA_RING_CFG_SIZE_512B,
207         XGENE_DMA_RING_CFG_SIZE_2KB,
208         XGENE_DMA_RING_CFG_SIZE_16KB,
209         XGENE_DMA_RING_CFG_SIZE_64KB,
210         XGENE_DMA_RING_CFG_SIZE_512KB,
211         XGENE_DMA_RING_CFG_SIZE_INVALID
212 };
213
214 struct xgene_dma_ring {
215         struct xgene_dma *pdma;
216         u8 buf_num;
217         u16 id;
218         u16 num;
219         u16 head;
220         u16 owner;
221         u16 slots;
222         u16 dst_ring_num;
223         u32 size;
224         void __iomem *cmd;
225         void __iomem *cmd_base;
226         dma_addr_t desc_paddr;
227         u32 state[XGENE_DMA_RING_NUM_CONFIG];
228         enum xgene_dma_ring_cfgsize cfgsize;
229         union {
230                 void *desc_vaddr;
231                 struct xgene_dma_desc_hw *desc_hw;
232         };
233 };
234
235 struct xgene_dma_desc_sw {
236         struct xgene_dma_desc_hw desc1;
237         struct xgene_dma_desc_hw desc2;
238         u32 flags;
239         struct list_head node;
240         struct list_head tx_list;
241         struct dma_async_tx_descriptor tx;
242 };
243
244 /**
245  * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
246  * @dma_chan: dmaengine channel object member
247  * @pdma: X-Gene DMA device structure reference
248  * @dev: struct device reference for dma mapping api
249  * @id: raw id of this channel
250  * @rx_irq: channel IRQ
251  * @name: name of X-Gene DMA channel
252  * @lock: serializes enqueue/dequeue operations to the descriptor pool
253  * @pending: number of transaction request pushed to DMA controller for
254  *      execution, but still waiting for completion,
255  * @max_outstanding: max number of outstanding request we can push to channel
256  * @ld_pending: descriptors which are queued to run, but have not yet been
257  *      submitted to the hardware for execution
258  * @ld_running: descriptors which are currently being executing by the hardware
259  * @ld_completed: descriptors which have finished execution by the hardware.
260  *      These descriptors have already had their cleanup actions run. They
261  *      are waiting for the ACK bit to be set by the async tx API.
262  * @desc_pool: descriptor pool for DMA operations
263  * @tasklet: bottom half where all completed descriptors cleans
264  * @tx_ring: transmit ring descriptor that we use to prepare actual
265  *      descriptors for further executions
266  * @rx_ring: receive ring descriptor that we use to get completed DMA
267  *      descriptors during cleanup time
268  */
269 struct xgene_dma_chan {
270         struct dma_chan dma_chan;
271         struct xgene_dma *pdma;
272         struct device *dev;
273         int id;
274         int rx_irq;
275         char name[10];
276         spinlock_t lock;
277         int pending;
278         int max_outstanding;
279         struct list_head ld_pending;
280         struct list_head ld_running;
281         struct list_head ld_completed;
282         struct dma_pool *desc_pool;
283         struct tasklet_struct tasklet;
284         struct xgene_dma_ring tx_ring;
285         struct xgene_dma_ring rx_ring;
286 };
287
288 /**
289  * struct xgene_dma - internal representation of an X-Gene DMA device
290  * @dev: reference to this device's struct device
291  * @clk: reference to this device's clock
292  * @err_irq: DMA error irq number
293  * @ring_num: start id number for DMA ring
294  * @csr_dma: base for DMA register access
295  * @csr_ring: base for DMA ring register access
296  * @csr_ring_cmd: base for DMA ring command register access
297  * @csr_efuse: base for efuse register access
298  * @dma_dev: embedded struct dma_device
299  * @chan: reference to X-Gene DMA channels
300  */
301 struct xgene_dma {
302         struct device *dev;
303         struct clk *clk;
304         int err_irq;
305         int ring_num;
306         void __iomem *csr_dma;
307         void __iomem *csr_ring;
308         void __iomem *csr_ring_cmd;
309         void __iomem *csr_efuse;
310         struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
311         struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
312 };
313
314 static const char * const xgene_dma_desc_err[] = {
315         [ERR_DESC_AXI] = "AXI error when reading src/dst link list",
316         [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
317         [ERR_READ_DATA_AXI] = "AXI error when reading data",
318         [ERR_WRITE_DATA_AXI] = "AXI error when writing data",
319         [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
320         [ERR_ECC] = "ECC double bit error",
321         [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
322         [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
323         [ERR_CRC_ERR] = "CRC error",
324         [ERR_CHKSUM] = "Checksum error",
325         [ERR_DIF] = "DIF error",
326 };
327
328 static const char * const xgene_dma_err[] = {
329         [ERR_DIF_SIZE_INT] = "DIF size error",
330         [ERR_GS_ERR_INT] = "Gather scatter not same size error",
331         [ERR_FPB_TIMEO_INT] = "Free pool time out error",
332         [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
333         [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
334         [ERR_WR_TIMEO_INT] = "Write time out error",
335         [ERR_RD_TIMEO_INT] = "Read time out error",
336         [ERR_WR_ERR_INT] = "HBF bus write error",
337         [ERR_RD_ERR_INT] = "HBF bus read error",
338         [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
339         [ERR_DESC_DST_INT] = "HFB reading dst link address error",
340         [ERR_DESC_SRC_INT] = "HFB reading src link address error",
341 };
342
343 static bool is_pq_enabled(struct xgene_dma *pdma)
344 {
345         u32 val;
346
347         val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
348         return !(val & XGENE_DMA_PQ_DISABLE_MASK);
349 }
350
351 static u64 xgene_dma_encode_len(size_t len)
352 {
353         return (len < XGENE_DMA_MAX_BYTE_CNT) ?
354                 ((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
355                 XGENE_DMA_16K_BUFFER_LEN_CODE;
356 }
357
358 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
359 {
360         static u8 flyby_type[] = {
361                 FLYBY_2SRC_XOR, /* Dummy */
362                 FLYBY_2SRC_XOR, /* Dummy */
363                 FLYBY_2SRC_XOR,
364                 FLYBY_3SRC_XOR,
365                 FLYBY_4SRC_XOR,
366                 FLYBY_5SRC_XOR
367         };
368
369         return flyby_type[src_cnt];
370 }
371
372 static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
373                                      dma_addr_t *paddr)
374 {
375         size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
376                         *len : XGENE_DMA_MAX_BYTE_CNT;
377
378         *ext8 |= cpu_to_le64(*paddr);
379         *ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
380         *len -= nbytes;
381         *paddr += nbytes;
382 }
383
384 static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
385 {
386         switch (idx) {
387         case 0:
388                 return &desc->m1;
389         case 1:
390                 return &desc->m0;
391         case 2:
392                 return &desc->m3;
393         case 3:
394                 return &desc->m2;
395         default:
396                 pr_err("Invalid dma descriptor index\n");
397         }
398
399         return NULL;
400 }
401
402 static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
403                                 u16 dst_ring_num)
404 {
405         desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
406         desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
407                                 XGENE_DMA_DESC_RTYPE_POS);
408         desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
409         desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
410                                 XGENE_DMA_DESC_HOENQ_NUM_POS);
411 }
412
413 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
414                                     struct xgene_dma_desc_sw *desc_sw,
415                                     dma_addr_t *dst, dma_addr_t *src,
416                                     u32 src_cnt, size_t *nbytes,
417                                     const u8 *scf)
418 {
419         struct xgene_dma_desc_hw *desc1, *desc2;
420         size_t len = *nbytes;
421         int i;
422
423         desc1 = &desc_sw->desc1;
424         desc2 = &desc_sw->desc2;
425
426         /* Initialize DMA descriptor */
427         xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
428
429         /* Set destination address */
430         desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
431         desc1->m3 |= cpu_to_le64(*dst);
432
433         /* We have multiple source addresses, so need to set NV bit*/
434         desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
435
436         /* Set flyby opcode */
437         desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
438
439         /* Set 1st to 5th source addresses */
440         for (i = 0; i < src_cnt; i++) {
441                 len = *nbytes;
442                 xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
443                                          xgene_dma_lookup_ext8(desc2, i - 1),
444                                          &len, &src[i]);
445                 desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
446         }
447
448         /* Update meta data */
449         *nbytes = len;
450         *dst += XGENE_DMA_MAX_BYTE_CNT;
451
452         /* We need always 64B descriptor to perform xor or pq operations */
453         desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
454 }
455
456 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
457 {
458         struct xgene_dma_desc_sw *desc;
459         struct xgene_dma_chan *chan;
460         dma_cookie_t cookie;
461
462         if (unlikely(!tx))
463                 return -EINVAL;
464
465         chan = to_dma_chan(tx->chan);
466         desc = to_dma_desc_sw(tx);
467
468         spin_lock_bh(&chan->lock);
469
470         cookie = dma_cookie_assign(tx);
471
472         /* Add this transaction list onto the tail of the pending queue */
473         list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
474
475         spin_unlock_bh(&chan->lock);
476
477         return cookie;
478 }
479
480 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
481                                        struct xgene_dma_desc_sw *desc)
482 {
483         list_del(&desc->node);
484         chan_dbg(chan, "LD %p free\n", desc);
485         dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
486 }
487
488 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
489                                  struct xgene_dma_chan *chan)
490 {
491         struct xgene_dma_desc_sw *desc;
492         dma_addr_t phys;
493
494         desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
495         if (!desc) {
496                 chan_err(chan, "Failed to allocate LDs\n");
497                 return NULL;
498         }
499
500         INIT_LIST_HEAD(&desc->tx_list);
501         desc->tx.phys = phys;
502         desc->tx.tx_submit = xgene_dma_tx_submit;
503         dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
504
505         chan_dbg(chan, "LD %p allocated\n", desc);
506
507         return desc;
508 }
509
510 /**
511  * xgene_dma_clean_completed_descriptor - free all descriptors which
512  * has been completed and acked
513  * @chan: X-Gene DMA channel
514  *
515  * This function is used on all completed and acked descriptors.
516  */
517 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
518 {
519         struct xgene_dma_desc_sw *desc, *_desc;
520
521         /* Run the callback for each descriptor, in order */
522         list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
523                 if (async_tx_test_ack(&desc->tx))
524                         xgene_dma_clean_descriptor(chan, desc);
525         }
526 }
527
528 /**
529  * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
530  * @chan: X-Gene DMA channel
531  * @desc: descriptor to cleanup and free
532  *
533  * This function is used on a descriptor which has been executed by the DMA
534  * controller. It will run any callbacks, submit any dependencies.
535  */
536 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
537                                               struct xgene_dma_desc_sw *desc)
538 {
539         struct dma_async_tx_descriptor *tx = &desc->tx;
540
541         /*
542          * If this is not the last transaction in the group,
543          * then no need to complete cookie and run any callback as
544          * this is not the tx_descriptor which had been sent to caller
545          * of this DMA request
546          */
547
548         if (tx->cookie == 0)
549                 return;
550
551         dma_cookie_complete(tx);
552         dma_descriptor_unmap(tx);
553
554         /* Run the link descriptor callback function */
555         dmaengine_desc_get_callback_invoke(tx, NULL);
556
557         /* Run any dependencies */
558         dma_run_dependencies(tx);
559 }
560
561 /**
562  * xgene_dma_clean_running_descriptor - move the completed descriptor from
563  * ld_running to ld_completed
564  * @chan: X-Gene DMA channel
565  * @desc: the descriptor which is completed
566  *
567  * Free the descriptor directly if acked by async_tx api,
568  * else move it to queue ld_completed.
569  */
570 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
571                                                struct xgene_dma_desc_sw *desc)
572 {
573         /* Remove from the list of running transactions */
574         list_del(&desc->node);
575
576         /*
577          * the client is allowed to attach dependent operations
578          * until 'ack' is set
579          */
580         if (!async_tx_test_ack(&desc->tx)) {
581                 /*
582                  * Move this descriptor to the list of descriptors which is
583                  * completed, but still awaiting the 'ack' bit to be set.
584                  */
585                 list_add_tail(&desc->node, &chan->ld_completed);
586                 return;
587         }
588
589         chan_dbg(chan, "LD %p free\n", desc);
590         dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
591 }
592
593 static void xgene_chan_xfer_request(struct xgene_dma_chan *chan,
594                                     struct xgene_dma_desc_sw *desc_sw)
595 {
596         struct xgene_dma_ring *ring = &chan->tx_ring;
597         struct xgene_dma_desc_hw *desc_hw;
598
599         /* Get hw descriptor from DMA tx ring */
600         desc_hw = &ring->desc_hw[ring->head];
601
602         /*
603          * Increment the head count to point next
604          * descriptor for next time
605          */
606         if (++ring->head == ring->slots)
607                 ring->head = 0;
608
609         /* Copy prepared sw descriptor data to hw descriptor */
610         memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
611
612         /*
613          * Check if we have prepared 64B descriptor,
614          * in this case we need one more hw descriptor
615          */
616         if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
617                 desc_hw = &ring->desc_hw[ring->head];
618
619                 if (++ring->head == ring->slots)
620                         ring->head = 0;
621
622                 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
623         }
624
625         /* Increment the pending transaction count */
626         chan->pending += ((desc_sw->flags &
627                           XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
628
629         /* Notify the hw that we have descriptor ready for execution */
630         iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
631                   2 : 1, ring->cmd);
632 }
633
634 /**
635  * xgene_chan_xfer_ld_pending - push any pending transactions to hw
636  * @chan : X-Gene DMA channel
637  *
638  * LOCKING: must hold chan->lock
639  */
640 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
641 {
642         struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
643
644         /*
645          * If the list of pending descriptors is empty, then we
646          * don't need to do any work at all
647          */
648         if (list_empty(&chan->ld_pending)) {
649                 chan_dbg(chan, "No pending LDs\n");
650                 return;
651         }
652
653         /*
654          * Move elements from the queue of pending transactions onto the list
655          * of running transactions and push it to hw for further executions
656          */
657         list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
658                 /*
659                  * Check if have pushed max number of transactions to hw
660                  * as capable, so let's stop here and will push remaining
661                  * elements from pening ld queue after completing some
662                  * descriptors that we have already pushed
663                  */
664                 if (chan->pending >= chan->max_outstanding)
665                         return;
666
667                 xgene_chan_xfer_request(chan, desc_sw);
668
669                 /*
670                  * Delete this element from ld pending queue and append it to
671                  * ld running queue
672                  */
673                 list_move_tail(&desc_sw->node, &chan->ld_running);
674         }
675 }
676
677 /**
678  * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
679  * and move them to ld_completed to free until flag 'ack' is set
680  * @chan: X-Gene DMA channel
681  *
682  * This function is used on descriptors which have been executed by the DMA
683  * controller. It will run any callbacks, submit any dependencies, then
684  * free these descriptors if flag 'ack' is set.
685  */
686 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
687 {
688         struct xgene_dma_ring *ring = &chan->rx_ring;
689         struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
690         struct xgene_dma_desc_hw *desc_hw;
691         struct list_head ld_completed;
692         u8 status;
693
694         INIT_LIST_HEAD(&ld_completed);
695
696         spin_lock(&chan->lock);
697
698         /* Clean already completed and acked descriptors */
699         xgene_dma_clean_completed_descriptor(chan);
700
701         /* Move all completed descriptors to ld completed queue, in order */
702         list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
703                 /* Get subsequent hw descriptor from DMA rx ring */
704                 desc_hw = &ring->desc_hw[ring->head];
705
706                 /* Check if this descriptor has been completed */
707                 if (unlikely(le64_to_cpu(desc_hw->m0) ==
708                              XGENE_DMA_DESC_EMPTY_SIGNATURE))
709                         break;
710
711                 if (++ring->head == ring->slots)
712                         ring->head = 0;
713
714                 /* Check if we have any error with DMA transactions */
715                 status = XGENE_DMA_DESC_STATUS(
716                                 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
717                                                         desc_hw->m0)),
718                                 XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
719                                                        desc_hw->m0)));
720                 if (status) {
721                         /* Print the DMA error type */
722                         chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
723
724                         /*
725                          * We have DMA transactions error here. Dump DMA Tx
726                          * and Rx descriptors for this request */
727                         XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
728                                             "X-Gene DMA TX DESC1: ");
729
730                         if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
731                                 XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
732                                                     "X-Gene DMA TX DESC2: ");
733
734                         XGENE_DMA_DESC_DUMP(desc_hw,
735                                             "X-Gene DMA RX ERR DESC: ");
736                 }
737
738                 /* Notify the hw about this completed descriptor */
739                 iowrite32(-1, ring->cmd);
740
741                 /* Mark this hw descriptor as processed */
742                 desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
743
744                 /*
745                  * Decrement the pending transaction count
746                  * as we have processed one
747                  */
748                 chan->pending -= ((desc_sw->flags &
749                                   XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
750
751                 /*
752                  * Delete this node from ld running queue and append it to
753                  * ld completed queue for further processing
754                  */
755                 list_move_tail(&desc_sw->node, &ld_completed);
756         }
757
758         /*
759          * Start any pending transactions automatically
760          * In the ideal case, we keep the DMA controller busy while we go
761          * ahead and free the descriptors below.
762          */
763         xgene_chan_xfer_ld_pending(chan);
764
765         spin_unlock(&chan->lock);
766
767         /* Run the callback for each descriptor, in order */
768         list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
769                 xgene_dma_run_tx_complete_actions(chan, desc_sw);
770                 xgene_dma_clean_running_descriptor(chan, desc_sw);
771         }
772 }
773
774 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
775 {
776         struct xgene_dma_chan *chan = to_dma_chan(dchan);
777
778         /* Has this channel already been allocated? */
779         if (chan->desc_pool)
780                 return 1;
781
782         chan->desc_pool = dma_pool_create(chan->name, chan->dev,
783                                           sizeof(struct xgene_dma_desc_sw),
784                                           0, 0);
785         if (!chan->desc_pool) {
786                 chan_err(chan, "Failed to allocate descriptor pool\n");
787                 return -ENOMEM;
788         }
789
790         chan_dbg(chan, "Allocate descriptor pool\n");
791
792         return 1;
793 }
794
795 /**
796  * xgene_dma_free_desc_list - Free all descriptors in a queue
797  * @chan: X-Gene DMA channel
798  * @list: the list to free
799  *
800  * LOCKING: must hold chan->lock
801  */
802 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
803                                      struct list_head *list)
804 {
805         struct xgene_dma_desc_sw *desc, *_desc;
806
807         list_for_each_entry_safe(desc, _desc, list, node)
808                 xgene_dma_clean_descriptor(chan, desc);
809 }
810
811 static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
812 {
813         struct xgene_dma_chan *chan = to_dma_chan(dchan);
814
815         chan_dbg(chan, "Free all resources\n");
816
817         if (!chan->desc_pool)
818                 return;
819
820         /* Process all running descriptor */
821         xgene_dma_cleanup_descriptors(chan);
822
823         spin_lock_bh(&chan->lock);
824
825         /* Clean all link descriptor queues */
826         xgene_dma_free_desc_list(chan, &chan->ld_pending);
827         xgene_dma_free_desc_list(chan, &chan->ld_running);
828         xgene_dma_free_desc_list(chan, &chan->ld_completed);
829
830         spin_unlock_bh(&chan->lock);
831
832         /* Delete this channel DMA pool */
833         dma_pool_destroy(chan->desc_pool);
834         chan->desc_pool = NULL;
835 }
836
837 static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
838         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src,
839         u32 src_cnt, size_t len, unsigned long flags)
840 {
841         struct xgene_dma_desc_sw *first = NULL, *new;
842         struct xgene_dma_chan *chan;
843         static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
844                                 0x01, 0x01, 0x01, 0x01, 0x01};
845
846         if (unlikely(!dchan || !len))
847                 return NULL;
848
849         chan = to_dma_chan(dchan);
850
851         do {
852                 /* Allocate the link descriptor from DMA pool */
853                 new = xgene_dma_alloc_descriptor(chan);
854                 if (!new)
855                         goto fail;
856
857                 /* Prepare xor DMA descriptor */
858                 xgene_dma_prep_xor_desc(chan, new, &dst, src,
859                                         src_cnt, &len, multi);
860
861                 if (!first)
862                         first = new;
863
864                 new->tx.cookie = 0;
865                 async_tx_ack(&new->tx);
866
867                 /* Insert the link descriptor to the LD ring */
868                 list_add_tail(&new->node, &first->tx_list);
869         } while (len);
870
871         new->tx.flags = flags; /* client is in control of this ack */
872         new->tx.cookie = -EBUSY;
873         list_splice(&first->tx_list, &new->tx_list);
874
875         return &new->tx;
876
877 fail:
878         if (!first)
879                 return NULL;
880
881         xgene_dma_free_desc_list(chan, &first->tx_list);
882         return NULL;
883 }
884
885 static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
886         struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
887         u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
888 {
889         struct xgene_dma_desc_sw *first = NULL, *new;
890         struct xgene_dma_chan *chan;
891         size_t _len = len;
892         dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
893         static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
894
895         if (unlikely(!dchan || !len))
896                 return NULL;
897
898         chan = to_dma_chan(dchan);
899
900         /*
901          * Save source addresses on local variable, may be we have to
902          * prepare two descriptor to generate P and Q if both enabled
903          * in the flags by client
904          */
905         memcpy(_src, src, sizeof(*src) * src_cnt);
906
907         if (flags & DMA_PREP_PQ_DISABLE_P)
908                 len = 0;
909
910         if (flags & DMA_PREP_PQ_DISABLE_Q)
911                 _len = 0;
912
913         do {
914                 /* Allocate the link descriptor from DMA pool */
915                 new = xgene_dma_alloc_descriptor(chan);
916                 if (!new)
917                         goto fail;
918
919                 if (!first)
920                         first = new;
921
922                 new->tx.cookie = 0;
923                 async_tx_ack(&new->tx);
924
925                 /* Insert the link descriptor to the LD ring */
926                 list_add_tail(&new->node, &first->tx_list);
927
928                 /*
929                  * Prepare DMA descriptor to generate P,
930                  * if DMA_PREP_PQ_DISABLE_P flag is not set
931                  */
932                 if (len) {
933                         xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
934                                                 src_cnt, &len, multi);
935                         continue;
936                 }
937
938                 /*
939                  * Prepare DMA descriptor to generate Q,
940                  * if DMA_PREP_PQ_DISABLE_Q flag is not set
941                  */
942                 if (_len) {
943                         xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
944                                                 src_cnt, &_len, scf);
945                 }
946         } while (len || _len);
947
948         new->tx.flags = flags; /* client is in control of this ack */
949         new->tx.cookie = -EBUSY;
950         list_splice(&first->tx_list, &new->tx_list);
951
952         return &new->tx;
953
954 fail:
955         if (!first)
956                 return NULL;
957
958         xgene_dma_free_desc_list(chan, &first->tx_list);
959         return NULL;
960 }
961
962 static void xgene_dma_issue_pending(struct dma_chan *dchan)
963 {
964         struct xgene_dma_chan *chan = to_dma_chan(dchan);
965
966         spin_lock_bh(&chan->lock);
967         xgene_chan_xfer_ld_pending(chan);
968         spin_unlock_bh(&chan->lock);
969 }
970
971 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
972                                            dma_cookie_t cookie,
973                                            struct dma_tx_state *txstate)
974 {
975         return dma_cookie_status(dchan, cookie, txstate);
976 }
977
978 static void xgene_dma_tasklet_cb(struct tasklet_struct *t)
979 {
980         struct xgene_dma_chan *chan = from_tasklet(chan, t, tasklet);
981
982         /* Run all cleanup for descriptors which have been completed */
983         xgene_dma_cleanup_descriptors(chan);
984
985         /* Re-enable DMA channel IRQ */
986         enable_irq(chan->rx_irq);
987 }
988
989 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
990 {
991         struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
992
993         BUG_ON(!chan);
994
995         /*
996          * Disable DMA channel IRQ until we process completed
997          * descriptors
998          */
999         disable_irq_nosync(chan->rx_irq);
1000
1001         /*
1002          * Schedule the tasklet to handle all cleanup of the current
1003          * transaction. It will start a new transaction if there is
1004          * one pending.
1005          */
1006         tasklet_schedule(&chan->tasklet);
1007
1008         return IRQ_HANDLED;
1009 }
1010
1011 static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1012 {
1013         struct xgene_dma *pdma = (struct xgene_dma *)id;
1014         unsigned long int_mask;
1015         u32 val, i;
1016
1017         val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1018
1019         /* Clear DMA interrupts */
1020         iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1021
1022         /* Print DMA error info */
1023         int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1024         for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1025                 dev_err(pdma->dev,
1026                         "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1027
1028         return IRQ_HANDLED;
1029 }
1030
1031 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1032 {
1033         int i;
1034
1035         iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1036
1037         for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1038                 iowrite32(ring->state[i], ring->pdma->csr_ring +
1039                           XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1040 }
1041
1042 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1043 {
1044         memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1045         xgene_dma_wr_ring_state(ring);
1046 }
1047
1048 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1049 {
1050         void *ring_cfg = ring->state;
1051         u64 addr = ring->desc_paddr;
1052         u32 i, val;
1053
1054         ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1055
1056         /* Clear DMA ring state */
1057         xgene_dma_clr_ring_state(ring);
1058
1059         /* Set DMA ring type */
1060         XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1061
1062         if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1063                 /* Set recombination buffer and timeout */
1064                 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1065                 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1066                 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1067         }
1068
1069         /* Initialize DMA ring state */
1070         XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1071         XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1072         XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1073         XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1074         XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1075         XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1076
1077         /* Write DMA ring configurations */
1078         xgene_dma_wr_ring_state(ring);
1079
1080         /* Set DMA ring id */
1081         iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1082                   ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1083
1084         /* Set DMA ring buffer */
1085         iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1086                   ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1087
1088         if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1089                 return;
1090
1091         /* Set empty signature to DMA Rx ring descriptors */
1092         for (i = 0; i < ring->slots; i++) {
1093                 struct xgene_dma_desc_hw *desc;
1094
1095                 desc = &ring->desc_hw[i];
1096                 desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1097         }
1098
1099         /* Enable DMA Rx ring interrupt */
1100         val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1101         XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1102         iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1103 }
1104
1105 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1106 {
1107         u32 ring_id, val;
1108
1109         if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1110                 /* Disable DMA Rx ring interrupt */
1111                 val = ioread32(ring->pdma->csr_ring +
1112                                XGENE_DMA_RING_NE_INT_MODE);
1113                 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1114                 iowrite32(val, ring->pdma->csr_ring +
1115                           XGENE_DMA_RING_NE_INT_MODE);
1116         }
1117
1118         /* Clear DMA ring state */
1119         ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1120         iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1121
1122         iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1123         xgene_dma_clr_ring_state(ring);
1124 }
1125
1126 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1127 {
1128         ring->cmd_base = ring->pdma->csr_ring_cmd +
1129                                 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1130                                                           XGENE_DMA_RING_NUM));
1131
1132         ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1133 }
1134
1135 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1136                                    enum xgene_dma_ring_cfgsize cfgsize)
1137 {
1138         int size;
1139
1140         switch (cfgsize) {
1141         case XGENE_DMA_RING_CFG_SIZE_512B:
1142                 size = 0x200;
1143                 break;
1144         case XGENE_DMA_RING_CFG_SIZE_2KB:
1145                 size = 0x800;
1146                 break;
1147         case XGENE_DMA_RING_CFG_SIZE_16KB:
1148                 size = 0x4000;
1149                 break;
1150         case XGENE_DMA_RING_CFG_SIZE_64KB:
1151                 size = 0x10000;
1152                 break;
1153         case XGENE_DMA_RING_CFG_SIZE_512KB:
1154                 size = 0x80000;
1155                 break;
1156         default:
1157                 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1158                 return -EINVAL;
1159         }
1160
1161         return size;
1162 }
1163
1164 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1165 {
1166         /* Clear DMA ring configurations */
1167         xgene_dma_clear_ring(ring);
1168
1169         /* De-allocate DMA ring descriptor */
1170         if (ring->desc_vaddr) {
1171                 dma_free_coherent(ring->pdma->dev, ring->size,
1172                                   ring->desc_vaddr, ring->desc_paddr);
1173                 ring->desc_vaddr = NULL;
1174         }
1175 }
1176
1177 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1178 {
1179         xgene_dma_delete_ring_one(&chan->rx_ring);
1180         xgene_dma_delete_ring_one(&chan->tx_ring);
1181 }
1182
1183 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1184                                      struct xgene_dma_ring *ring,
1185                                      enum xgene_dma_ring_cfgsize cfgsize)
1186 {
1187         int ret;
1188
1189         /* Setup DMA ring descriptor variables */
1190         ring->pdma = chan->pdma;
1191         ring->cfgsize = cfgsize;
1192         ring->num = chan->pdma->ring_num++;
1193         ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1194
1195         ret = xgene_dma_get_ring_size(chan, cfgsize);
1196         if (ret <= 0)
1197                 return ret;
1198         ring->size = ret;
1199
1200         /* Allocate memory for DMA ring descriptor */
1201         ring->desc_vaddr = dma_alloc_coherent(chan->dev, ring->size,
1202                                               &ring->desc_paddr, GFP_KERNEL);
1203         if (!ring->desc_vaddr) {
1204                 chan_err(chan, "Failed to allocate ring desc\n");
1205                 return -ENOMEM;
1206         }
1207
1208         /* Configure and enable DMA ring */
1209         xgene_dma_set_ring_cmd(ring);
1210         xgene_dma_setup_ring(ring);
1211
1212         return 0;
1213 }
1214
1215 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1216 {
1217         struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1218         struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1219         int ret;
1220
1221         /* Create DMA Rx ring descriptor */
1222         rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1223         rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1224
1225         ret = xgene_dma_create_ring_one(chan, rx_ring,
1226                                         XGENE_DMA_RING_CFG_SIZE_64KB);
1227         if (ret)
1228                 return ret;
1229
1230         chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1231                  rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1232
1233         /* Create DMA Tx ring descriptor */
1234         tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1235         tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1236
1237         ret = xgene_dma_create_ring_one(chan, tx_ring,
1238                                         XGENE_DMA_RING_CFG_SIZE_64KB);
1239         if (ret) {
1240                 xgene_dma_delete_ring_one(rx_ring);
1241                 return ret;
1242         }
1243
1244         tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1245
1246         chan_dbg(chan,
1247                  "Tx ring id 0x%X num %d desc 0x%p\n",
1248                  tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1249
1250         /* Set the max outstanding request possible to this channel */
1251         chan->max_outstanding = tx_ring->slots;
1252
1253         return ret;
1254 }
1255
1256 static int xgene_dma_init_rings(struct xgene_dma *pdma)
1257 {
1258         int ret, i, j;
1259
1260         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1261                 ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1262                 if (ret) {
1263                         for (j = 0; j < i; j++)
1264                                 xgene_dma_delete_chan_rings(&pdma->chan[j]);
1265                         return ret;
1266                 }
1267         }
1268
1269         return ret;
1270 }
1271
1272 static void xgene_dma_enable(struct xgene_dma *pdma)
1273 {
1274         u32 val;
1275
1276         /* Configure and enable DMA engine */
1277         val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1278         XGENE_DMA_CH_SETUP(val);
1279         XGENE_DMA_ENABLE(val);
1280         iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1281 }
1282
1283 static void xgene_dma_disable(struct xgene_dma *pdma)
1284 {
1285         u32 val;
1286
1287         val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1288         XGENE_DMA_DISABLE(val);
1289         iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1290 }
1291
1292 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1293 {
1294         /*
1295          * Mask DMA ring overflow, underflow and
1296          * AXI write/read error interrupts
1297          */
1298         iowrite32(XGENE_DMA_INT_ALL_MASK,
1299                   pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1300         iowrite32(XGENE_DMA_INT_ALL_MASK,
1301                   pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1302         iowrite32(XGENE_DMA_INT_ALL_MASK,
1303                   pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1304         iowrite32(XGENE_DMA_INT_ALL_MASK,
1305                   pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1306         iowrite32(XGENE_DMA_INT_ALL_MASK,
1307                   pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1308
1309         /* Mask DMA error interrupts */
1310         iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1311 }
1312
1313 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1314 {
1315         /*
1316          * Unmask DMA ring overflow, underflow and
1317          * AXI write/read error interrupts
1318          */
1319         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1320                   pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1321         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1322                   pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1323         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1324                   pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1325         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1326                   pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1327         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1328                   pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1329
1330         /* Unmask DMA error interrupts */
1331         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1332                   pdma->csr_dma + XGENE_DMA_INT_MASK);
1333 }
1334
1335 static void xgene_dma_init_hw(struct xgene_dma *pdma)
1336 {
1337         u32 val;
1338
1339         /* Associate DMA ring to corresponding ring HW */
1340         iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1341                   pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1342
1343         /* Configure RAID6 polynomial control setting */
1344         if (is_pq_enabled(pdma))
1345                 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1346                           pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1347         else
1348                 dev_info(pdma->dev, "PQ is disabled in HW\n");
1349
1350         xgene_dma_enable(pdma);
1351         xgene_dma_unmask_interrupts(pdma);
1352
1353         /* Get DMA id and version info */
1354         val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1355
1356         /* DMA device info */
1357         dev_info(pdma->dev,
1358                  "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1359                  XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1360                  XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1361 }
1362
1363 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1364 {
1365         if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1366             (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1367                 return 0;
1368
1369         iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1370         iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1371
1372         /* Bring up memory */
1373         iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1374
1375         /* Force a barrier */
1376         ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1377
1378         /* reset may take up to 1ms */
1379         usleep_range(1000, 1100);
1380
1381         if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1382                 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1383                 dev_err(pdma->dev,
1384                         "Failed to release ring mngr memory from shutdown\n");
1385                 return -ENODEV;
1386         }
1387
1388         /* program threshold set 1 and all hysteresis */
1389         iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1390                   pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1391         iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1392                   pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1393         iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1394                   pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1395
1396         /* Enable QPcore and assign error queue */
1397         iowrite32(XGENE_DMA_RING_ENABLE,
1398                   pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1399
1400         return 0;
1401 }
1402
1403 static int xgene_dma_init_mem(struct xgene_dma *pdma)
1404 {
1405         int ret;
1406
1407         ret = xgene_dma_init_ring_mngr(pdma);
1408         if (ret)
1409                 return ret;
1410
1411         /* Bring up memory */
1412         iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1413
1414         /* Force a barrier */
1415         ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1416
1417         /* reset may take up to 1ms */
1418         usleep_range(1000, 1100);
1419
1420         if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1421                 != XGENE_DMA_BLK_MEM_RDY_VAL) {
1422                 dev_err(pdma->dev,
1423                         "Failed to release DMA memory from shutdown\n");
1424                 return -ENODEV;
1425         }
1426
1427         return 0;
1428 }
1429
1430 static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1431 {
1432         struct xgene_dma_chan *chan;
1433         int ret, i, j;
1434
1435         /* Register DMA error irq */
1436         ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1437                                0, "dma_error", pdma);
1438         if (ret) {
1439                 dev_err(pdma->dev,
1440                         "Failed to register error IRQ %d\n", pdma->err_irq);
1441                 return ret;
1442         }
1443
1444         /* Register DMA channel rx irq */
1445         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1446                 chan = &pdma->chan[i];
1447                 irq_set_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1448                 ret = devm_request_irq(chan->dev, chan->rx_irq,
1449                                        xgene_dma_chan_ring_isr,
1450                                        0, chan->name, chan);
1451                 if (ret) {
1452                         chan_err(chan, "Failed to register Rx IRQ %d\n",
1453                                  chan->rx_irq);
1454                         devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1455
1456                         for (j = 0; j < i; j++) {
1457                                 chan = &pdma->chan[i];
1458                                 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1459                                 devm_free_irq(chan->dev, chan->rx_irq, chan);
1460                         }
1461
1462                         return ret;
1463                 }
1464         }
1465
1466         return 0;
1467 }
1468
1469 static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1470 {
1471         struct xgene_dma_chan *chan;
1472         int i;
1473
1474         /* Free DMA device error irq */
1475         devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1476
1477         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1478                 chan = &pdma->chan[i];
1479                 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1480                 devm_free_irq(chan->dev, chan->rx_irq, chan);
1481         }
1482 }
1483
1484 static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1485                                struct dma_device *dma_dev)
1486 {
1487         /* Initialize DMA device capability mask */
1488         dma_cap_zero(dma_dev->cap_mask);
1489
1490         /* Set DMA device capability */
1491
1492         /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1493          * and channel 1 supports XOR, PQ both. First thing here is we have
1494          * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1495          * we can make sure this by reading SoC Efuse register.
1496          * Second thing, we have hw errata that if we run channel 0 and
1497          * channel 1 simultaneously with executing XOR and PQ request,
1498          * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1499          * if XOR and PQ supports on channel 1 is disabled.
1500          */
1501         if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1502             is_pq_enabled(chan->pdma)) {
1503                 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1504                 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1505         } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1506                    !is_pq_enabled(chan->pdma)) {
1507                 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1508         }
1509
1510         /* Set base and prep routines */
1511         dma_dev->dev = chan->dev;
1512         dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1513         dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1514         dma_dev->device_issue_pending = xgene_dma_issue_pending;
1515         dma_dev->device_tx_status = xgene_dma_tx_status;
1516
1517         if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1518                 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1519                 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1520                 dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
1521         }
1522
1523         if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1524                 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1525                 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1526                 dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
1527         }
1528 }
1529
1530 static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1531 {
1532         struct xgene_dma_chan *chan = &pdma->chan[id];
1533         struct dma_device *dma_dev = &pdma->dma_dev[id];
1534         int ret;
1535
1536         chan->dma_chan.device = dma_dev;
1537
1538         spin_lock_init(&chan->lock);
1539         INIT_LIST_HEAD(&chan->ld_pending);
1540         INIT_LIST_HEAD(&chan->ld_running);
1541         INIT_LIST_HEAD(&chan->ld_completed);
1542         tasklet_setup(&chan->tasklet, xgene_dma_tasklet_cb);
1543
1544         chan->pending = 0;
1545         chan->desc_pool = NULL;
1546         dma_cookie_init(&chan->dma_chan);
1547
1548         /* Setup dma device capabilities and prep routines */
1549         xgene_dma_set_caps(chan, dma_dev);
1550
1551         /* Initialize DMA device list head */
1552         INIT_LIST_HEAD(&dma_dev->channels);
1553         list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1554
1555         /* Register with Linux async DMA framework*/
1556         ret = dma_async_device_register(dma_dev);
1557         if (ret) {
1558                 chan_err(chan, "Failed to register async device %d", ret);
1559                 tasklet_kill(&chan->tasklet);
1560
1561                 return ret;
1562         }
1563
1564         /* DMA capability info */
1565         dev_info(pdma->dev,
1566                  "%s: CAPABILITY ( %s%s)\n", dma_chan_name(&chan->dma_chan),
1567                  dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1568                  dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1569
1570         return 0;
1571 }
1572
1573 static int xgene_dma_init_async(struct xgene_dma *pdma)
1574 {
1575         int ret, i, j;
1576
1577         for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1578                 ret = xgene_dma_async_register(pdma, i);
1579                 if (ret) {
1580                         for (j = 0; j < i; j++) {
1581                                 dma_async_device_unregister(&pdma->dma_dev[j]);
1582                                 tasklet_kill(&pdma->chan[j].tasklet);
1583                         }
1584
1585                         return ret;
1586                 }
1587         }
1588
1589         return ret;
1590 }
1591
1592 static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1593 {
1594         int i;
1595
1596         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1597                 dma_async_device_unregister(&pdma->dma_dev[i]);
1598 }
1599
1600 static void xgene_dma_init_channels(struct xgene_dma *pdma)
1601 {
1602         struct xgene_dma_chan *chan;
1603         int i;
1604
1605         pdma->ring_num = XGENE_DMA_RING_NUM;
1606
1607         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1608                 chan = &pdma->chan[i];
1609                 chan->dev = pdma->dev;
1610                 chan->pdma = pdma;
1611                 chan->id = i;
1612                 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1613         }
1614 }
1615
1616 static int xgene_dma_get_resources(struct platform_device *pdev,
1617                                    struct xgene_dma *pdma)
1618 {
1619         struct resource *res;
1620         int irq, i;
1621
1622         /* Get DMA csr region */
1623         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1624         if (!res) {
1625                 dev_err(&pdev->dev, "Failed to get csr region\n");
1626                 return -ENXIO;
1627         }
1628
1629         pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1630                                      resource_size(res));
1631         if (!pdma->csr_dma) {
1632                 dev_err(&pdev->dev, "Failed to ioremap csr region");
1633                 return -ENOMEM;
1634         }
1635
1636         /* Get DMA ring csr region */
1637         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1638         if (!res) {
1639                 dev_err(&pdev->dev, "Failed to get ring csr region\n");
1640                 return -ENXIO;
1641         }
1642
1643         pdma->csr_ring =  devm_ioremap(&pdev->dev, res->start,
1644                                        resource_size(res));
1645         if (!pdma->csr_ring) {
1646                 dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1647                 return -ENOMEM;
1648         }
1649
1650         /* Get DMA ring cmd csr region */
1651         res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1652         if (!res) {
1653                 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1654                 return -ENXIO;
1655         }
1656
1657         pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1658                                           resource_size(res));
1659         if (!pdma->csr_ring_cmd) {
1660                 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1661                 return -ENOMEM;
1662         }
1663
1664         pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1665
1666         /* Get efuse csr region */
1667         res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1668         if (!res) {
1669                 dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1670                 return -ENXIO;
1671         }
1672
1673         pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1674                                        resource_size(res));
1675         if (!pdma->csr_efuse) {
1676                 dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1677                 return -ENOMEM;
1678         }
1679
1680         /* Get DMA error interrupt */
1681         irq = platform_get_irq(pdev, 0);
1682         if (irq <= 0)
1683                 return -ENXIO;
1684
1685         pdma->err_irq = irq;
1686
1687         /* Get DMA Rx ring descriptor interrupts for all DMA channels */
1688         for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1689                 irq = platform_get_irq(pdev, i);
1690                 if (irq <= 0)
1691                         return -ENXIO;
1692
1693                 pdma->chan[i - 1].rx_irq = irq;
1694         }
1695
1696         return 0;
1697 }
1698
1699 static int xgene_dma_probe(struct platform_device *pdev)
1700 {
1701         struct xgene_dma *pdma;
1702         int ret, i;
1703
1704         pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1705         if (!pdma)
1706                 return -ENOMEM;
1707
1708         pdma->dev = &pdev->dev;
1709         platform_set_drvdata(pdev, pdma);
1710
1711         ret = xgene_dma_get_resources(pdev, pdma);
1712         if (ret)
1713                 return ret;
1714
1715         pdma->clk = devm_clk_get(&pdev->dev, NULL);
1716         if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
1717                 dev_err(&pdev->dev, "Failed to get clk\n");
1718                 return PTR_ERR(pdma->clk);
1719         }
1720
1721         /* Enable clk before accessing registers */
1722         if (!IS_ERR(pdma->clk)) {
1723                 ret = clk_prepare_enable(pdma->clk);
1724                 if (ret) {
1725                         dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1726                         return ret;
1727                 }
1728         }
1729
1730         /* Remove DMA RAM out of shutdown */
1731         ret = xgene_dma_init_mem(pdma);
1732         if (ret)
1733                 goto err_clk_enable;
1734
1735         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1736         if (ret) {
1737                 dev_err(&pdev->dev, "No usable DMA configuration\n");
1738                 goto err_dma_mask;
1739         }
1740
1741         /* Initialize DMA channels software state */
1742         xgene_dma_init_channels(pdma);
1743
1744         /* Configue DMA rings */
1745         ret = xgene_dma_init_rings(pdma);
1746         if (ret)
1747                 goto err_clk_enable;
1748
1749         ret = xgene_dma_request_irqs(pdma);
1750         if (ret)
1751                 goto err_request_irq;
1752
1753         /* Configure and enable DMA engine */
1754         xgene_dma_init_hw(pdma);
1755
1756         /* Register DMA device with linux async framework */
1757         ret = xgene_dma_init_async(pdma);
1758         if (ret)
1759                 goto err_async_init;
1760
1761         return 0;
1762
1763 err_async_init:
1764         xgene_dma_free_irqs(pdma);
1765
1766 err_request_irq:
1767         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1768                 xgene_dma_delete_chan_rings(&pdma->chan[i]);
1769
1770 err_dma_mask:
1771 err_clk_enable:
1772         if (!IS_ERR(pdma->clk))
1773                 clk_disable_unprepare(pdma->clk);
1774
1775         return ret;
1776 }
1777
1778 static int xgene_dma_remove(struct platform_device *pdev)
1779 {
1780         struct xgene_dma *pdma = platform_get_drvdata(pdev);
1781         struct xgene_dma_chan *chan;
1782         int i;
1783
1784         xgene_dma_async_unregister(pdma);
1785
1786         /* Mask interrupts and disable DMA engine */
1787         xgene_dma_mask_interrupts(pdma);
1788         xgene_dma_disable(pdma);
1789         xgene_dma_free_irqs(pdma);
1790
1791         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1792                 chan = &pdma->chan[i];
1793                 tasklet_kill(&chan->tasklet);
1794                 xgene_dma_delete_chan_rings(chan);
1795         }
1796
1797         if (!IS_ERR(pdma->clk))
1798                 clk_disable_unprepare(pdma->clk);
1799
1800         return 0;
1801 }
1802
1803 #ifdef CONFIG_ACPI
1804 static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
1805         {"APMC0D43", 0},
1806         {},
1807 };
1808 MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
1809 #endif
1810
1811 static const struct of_device_id xgene_dma_of_match_ptr[] = {
1812         {.compatible = "apm,xgene-storm-dma",},
1813         {},
1814 };
1815 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
1816
1817 static struct platform_driver xgene_dma_driver = {
1818         .probe = xgene_dma_probe,
1819         .remove = xgene_dma_remove,
1820         .driver = {
1821                 .name = "X-Gene-DMA",
1822                 .of_match_table = xgene_dma_of_match_ptr,
1823                 .acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
1824         },
1825 };
1826
1827 module_platform_driver(xgene_dma_driver);
1828
1829 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
1830 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
1831 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1832 MODULE_LICENSE("GPL");
1833 MODULE_VERSION("1.0");