GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / dma / ti / omap-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * OMAP DMAengine support
4  */
5 #include <linux/cpu_pm.h>
6 #include <linux/delay.h>
7 #include <linux/dmaengine.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/dmapool.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/omap-dma.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/of_dma.h>
20 #include <linux/of_device.h>
21
22 #include "../virt-dma.h"
23
24 #define OMAP_SDMA_REQUESTS      127
25 #define OMAP_SDMA_CHANNELS      32
26
27 struct omap_dma_config {
28         int lch_end;
29         unsigned int rw_priority:1;
30         unsigned int needs_busy_check:1;
31         unsigned int may_lose_context:1;
32         unsigned int needs_lch_clear:1;
33 };
34
35 struct omap_dma_context {
36         u32 irqenable_l0;
37         u32 irqenable_l1;
38         u32 ocp_sysconfig;
39         u32 gcr;
40 };
41
42 struct omap_dmadev {
43         struct dma_device ddev;
44         spinlock_t lock;
45         void __iomem *base;
46         const struct omap_dma_reg *reg_map;
47         struct omap_system_dma_plat_info *plat;
48         const struct omap_dma_config *cfg;
49         struct notifier_block nb;
50         struct omap_dma_context context;
51         int lch_count;
52         DECLARE_BITMAP(lch_bitmap, OMAP_SDMA_CHANNELS);
53         struct mutex lch_lock;          /* for assigning logical channels */
54         bool legacy;
55         bool ll123_supported;
56         struct dma_pool *desc_pool;
57         unsigned dma_requests;
58         spinlock_t irq_lock;
59         uint32_t irq_enable_mask;
60         struct omap_chan **lch_map;
61 };
62
63 struct omap_chan {
64         struct virt_dma_chan vc;
65         void __iomem *channel_base;
66         const struct omap_dma_reg *reg_map;
67         uint32_t ccr;
68
69         struct dma_slave_config cfg;
70         unsigned dma_sig;
71         bool cyclic;
72         bool paused;
73         bool running;
74
75         int dma_ch;
76         struct omap_desc *desc;
77         unsigned sgidx;
78 };
79
80 #define DESC_NXT_SV_REFRESH     (0x1 << 24)
81 #define DESC_NXT_SV_REUSE       (0x2 << 24)
82 #define DESC_NXT_DV_REFRESH     (0x1 << 26)
83 #define DESC_NXT_DV_REUSE       (0x2 << 26)
84 #define DESC_NTYPE_TYPE2        (0x2 << 29)
85
86 /* Type 2 descriptor with Source or Destination address update */
87 struct omap_type2_desc {
88         uint32_t next_desc;
89         uint32_t en;
90         uint32_t addr; /* src or dst */
91         uint16_t fn;
92         uint16_t cicr;
93         int16_t cdei;
94         int16_t csei;
95         int32_t cdfi;
96         int32_t csfi;
97 } __packed;
98
99 struct omap_sg {
100         dma_addr_t addr;
101         uint32_t en;            /* number of elements (24-bit) */
102         uint32_t fn;            /* number of frames (16-bit) */
103         int32_t fi;             /* for double indexing */
104         int16_t ei;             /* for double indexing */
105
106         /* Linked list */
107         struct omap_type2_desc *t2_desc;
108         dma_addr_t t2_desc_paddr;
109 };
110
111 struct omap_desc {
112         struct virt_dma_desc vd;
113         bool using_ll;
114         enum dma_transfer_direction dir;
115         dma_addr_t dev_addr;
116         bool polled;
117
118         int32_t fi;             /* for OMAP_DMA_SYNC_PACKET / double indexing */
119         int16_t ei;             /* for double indexing */
120         uint8_t es;             /* CSDP_DATA_TYPE_xxx */
121         uint32_t ccr;           /* CCR value */
122         uint16_t clnk_ctrl;     /* CLNK_CTRL value */
123         uint16_t cicr;          /* CICR value */
124         uint32_t csdp;          /* CSDP value */
125
126         unsigned sglen;
127         struct omap_sg sg[];
128 };
129
130 enum {
131         CAPS_0_SUPPORT_LL123    = BIT(20),      /* Linked List type1/2/3 */
132         CAPS_0_SUPPORT_LL4      = BIT(21),      /* Linked List type4 */
133
134         CCR_FS                  = BIT(5),
135         CCR_READ_PRIORITY       = BIT(6),
136         CCR_ENABLE              = BIT(7),
137         CCR_AUTO_INIT           = BIT(8),       /* OMAP1 only */
138         CCR_REPEAT              = BIT(9),       /* OMAP1 only */
139         CCR_OMAP31_DISABLE      = BIT(10),      /* OMAP1 only */
140         CCR_SUSPEND_SENSITIVE   = BIT(8),       /* OMAP2+ only */
141         CCR_RD_ACTIVE           = BIT(9),       /* OMAP2+ only */
142         CCR_WR_ACTIVE           = BIT(10),      /* OMAP2+ only */
143         CCR_SRC_AMODE_CONSTANT  = 0 << 12,
144         CCR_SRC_AMODE_POSTINC   = 1 << 12,
145         CCR_SRC_AMODE_SGLIDX    = 2 << 12,
146         CCR_SRC_AMODE_DBLIDX    = 3 << 12,
147         CCR_DST_AMODE_CONSTANT  = 0 << 14,
148         CCR_DST_AMODE_POSTINC   = 1 << 14,
149         CCR_DST_AMODE_SGLIDX    = 2 << 14,
150         CCR_DST_AMODE_DBLIDX    = 3 << 14,
151         CCR_CONSTANT_FILL       = BIT(16),
152         CCR_TRANSPARENT_COPY    = BIT(17),
153         CCR_BS                  = BIT(18),
154         CCR_SUPERVISOR          = BIT(22),
155         CCR_PREFETCH            = BIT(23),
156         CCR_TRIGGER_SRC         = BIT(24),
157         CCR_BUFFERING_DISABLE   = BIT(25),
158         CCR_WRITE_PRIORITY      = BIT(26),
159         CCR_SYNC_ELEMENT        = 0,
160         CCR_SYNC_FRAME          = CCR_FS,
161         CCR_SYNC_BLOCK          = CCR_BS,
162         CCR_SYNC_PACKET         = CCR_BS | CCR_FS,
163
164         CSDP_DATA_TYPE_8        = 0,
165         CSDP_DATA_TYPE_16       = 1,
166         CSDP_DATA_TYPE_32       = 2,
167         CSDP_SRC_PORT_EMIFF     = 0 << 2, /* OMAP1 only */
168         CSDP_SRC_PORT_EMIFS     = 1 << 2, /* OMAP1 only */
169         CSDP_SRC_PORT_OCP_T1    = 2 << 2, /* OMAP1 only */
170         CSDP_SRC_PORT_TIPB      = 3 << 2, /* OMAP1 only */
171         CSDP_SRC_PORT_OCP_T2    = 4 << 2, /* OMAP1 only */
172         CSDP_SRC_PORT_MPUI      = 5 << 2, /* OMAP1 only */
173         CSDP_SRC_PACKED         = BIT(6),
174         CSDP_SRC_BURST_1        = 0 << 7,
175         CSDP_SRC_BURST_16       = 1 << 7,
176         CSDP_SRC_BURST_32       = 2 << 7,
177         CSDP_SRC_BURST_64       = 3 << 7,
178         CSDP_DST_PORT_EMIFF     = 0 << 9, /* OMAP1 only */
179         CSDP_DST_PORT_EMIFS     = 1 << 9, /* OMAP1 only */
180         CSDP_DST_PORT_OCP_T1    = 2 << 9, /* OMAP1 only */
181         CSDP_DST_PORT_TIPB      = 3 << 9, /* OMAP1 only */
182         CSDP_DST_PORT_OCP_T2    = 4 << 9, /* OMAP1 only */
183         CSDP_DST_PORT_MPUI      = 5 << 9, /* OMAP1 only */
184         CSDP_DST_PACKED         = BIT(13),
185         CSDP_DST_BURST_1        = 0 << 14,
186         CSDP_DST_BURST_16       = 1 << 14,
187         CSDP_DST_BURST_32       = 2 << 14,
188         CSDP_DST_BURST_64       = 3 << 14,
189         CSDP_WRITE_NON_POSTED   = 0 << 16,
190         CSDP_WRITE_POSTED       = 1 << 16,
191         CSDP_WRITE_LAST_NON_POSTED = 2 << 16,
192
193         CICR_TOUT_IE            = BIT(0),       /* OMAP1 only */
194         CICR_DROP_IE            = BIT(1),
195         CICR_HALF_IE            = BIT(2),
196         CICR_FRAME_IE           = BIT(3),
197         CICR_LAST_IE            = BIT(4),
198         CICR_BLOCK_IE           = BIT(5),
199         CICR_PKT_IE             = BIT(7),       /* OMAP2+ only */
200         CICR_TRANS_ERR_IE       = BIT(8),       /* OMAP2+ only */
201         CICR_SUPERVISOR_ERR_IE  = BIT(10),      /* OMAP2+ only */
202         CICR_MISALIGNED_ERR_IE  = BIT(11),      /* OMAP2+ only */
203         CICR_DRAIN_IE           = BIT(12),      /* OMAP2+ only */
204         CICR_SUPER_BLOCK_IE     = BIT(14),      /* OMAP2+ only */
205
206         CLNK_CTRL_ENABLE_LNK    = BIT(15),
207
208         CDP_DST_VALID_INC       = 0 << 0,
209         CDP_DST_VALID_RELOAD    = 1 << 0,
210         CDP_DST_VALID_REUSE     = 2 << 0,
211         CDP_SRC_VALID_INC       = 0 << 2,
212         CDP_SRC_VALID_RELOAD    = 1 << 2,
213         CDP_SRC_VALID_REUSE     = 2 << 2,
214         CDP_NTYPE_TYPE1         = 1 << 4,
215         CDP_NTYPE_TYPE2         = 2 << 4,
216         CDP_NTYPE_TYPE3         = 3 << 4,
217         CDP_TMODE_NORMAL        = 0 << 8,
218         CDP_TMODE_LLIST         = 1 << 8,
219         CDP_FAST                = BIT(10),
220 };
221
222 static const unsigned es_bytes[] = {
223         [CSDP_DATA_TYPE_8] = 1,
224         [CSDP_DATA_TYPE_16] = 2,
225         [CSDP_DATA_TYPE_32] = 4,
226 };
227
228 static bool omap_dma_filter_fn(struct dma_chan *chan, void *param);
229 static struct of_dma_filter_info omap_dma_info = {
230         .filter_fn = omap_dma_filter_fn,
231 };
232
233 static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
234 {
235         return container_of(d, struct omap_dmadev, ddev);
236 }
237
238 static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
239 {
240         return container_of(c, struct omap_chan, vc.chan);
241 }
242
243 static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
244 {
245         return container_of(t, struct omap_desc, vd.tx);
246 }
247
248 static void omap_dma_desc_free(struct virt_dma_desc *vd)
249 {
250         struct omap_desc *d = to_omap_dma_desc(&vd->tx);
251
252         if (d->using_ll) {
253                 struct omap_dmadev *od = to_omap_dma_dev(vd->tx.chan->device);
254                 int i;
255
256                 for (i = 0; i < d->sglen; i++) {
257                         if (d->sg[i].t2_desc)
258                                 dma_pool_free(od->desc_pool, d->sg[i].t2_desc,
259                                               d->sg[i].t2_desc_paddr);
260                 }
261         }
262
263         kfree(d);
264 }
265
266 static void omap_dma_fill_type2_desc(struct omap_desc *d, int idx,
267                                      enum dma_transfer_direction dir, bool last)
268 {
269         struct omap_sg *sg = &d->sg[idx];
270         struct omap_type2_desc *t2_desc = sg->t2_desc;
271
272         if (idx)
273                 d->sg[idx - 1].t2_desc->next_desc = sg->t2_desc_paddr;
274         if (last)
275                 t2_desc->next_desc = 0xfffffffc;
276
277         t2_desc->en = sg->en;
278         t2_desc->addr = sg->addr;
279         t2_desc->fn = sg->fn & 0xffff;
280         t2_desc->cicr = d->cicr;
281         if (!last)
282                 t2_desc->cicr &= ~CICR_BLOCK_IE;
283
284         switch (dir) {
285         case DMA_DEV_TO_MEM:
286                 t2_desc->cdei = sg->ei;
287                 t2_desc->csei = d->ei;
288                 t2_desc->cdfi = sg->fi;
289                 t2_desc->csfi = d->fi;
290
291                 t2_desc->en |= DESC_NXT_DV_REFRESH;
292                 t2_desc->en |= DESC_NXT_SV_REUSE;
293                 break;
294         case DMA_MEM_TO_DEV:
295                 t2_desc->cdei = d->ei;
296                 t2_desc->csei = sg->ei;
297                 t2_desc->cdfi = d->fi;
298                 t2_desc->csfi = sg->fi;
299
300                 t2_desc->en |= DESC_NXT_SV_REFRESH;
301                 t2_desc->en |= DESC_NXT_DV_REUSE;
302                 break;
303         default:
304                 return;
305         }
306
307         t2_desc->en |= DESC_NTYPE_TYPE2;
308 }
309
310 static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
311 {
312         switch (type) {
313         case OMAP_DMA_REG_16BIT:
314                 writew_relaxed(val, addr);
315                 break;
316         case OMAP_DMA_REG_2X16BIT:
317                 writew_relaxed(val, addr);
318                 writew_relaxed(val >> 16, addr + 2);
319                 break;
320         case OMAP_DMA_REG_32BIT:
321                 writel_relaxed(val, addr);
322                 break;
323         default:
324                 WARN_ON(1);
325         }
326 }
327
328 static unsigned omap_dma_read(unsigned type, void __iomem *addr)
329 {
330         unsigned val;
331
332         switch (type) {
333         case OMAP_DMA_REG_16BIT:
334                 val = readw_relaxed(addr);
335                 break;
336         case OMAP_DMA_REG_2X16BIT:
337                 val = readw_relaxed(addr);
338                 val |= readw_relaxed(addr + 2) << 16;
339                 break;
340         case OMAP_DMA_REG_32BIT:
341                 val = readl_relaxed(addr);
342                 break;
343         default:
344                 WARN_ON(1);
345                 val = 0;
346         }
347
348         return val;
349 }
350
351 static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
352 {
353         const struct omap_dma_reg *r = od->reg_map + reg;
354
355         WARN_ON(r->stride);
356
357         omap_dma_write(val, r->type, od->base + r->offset);
358 }
359
360 static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
361 {
362         const struct omap_dma_reg *r = od->reg_map + reg;
363
364         WARN_ON(r->stride);
365
366         return omap_dma_read(r->type, od->base + r->offset);
367 }
368
369 static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
370 {
371         const struct omap_dma_reg *r = c->reg_map + reg;
372
373         omap_dma_write(val, r->type, c->channel_base + r->offset);
374 }
375
376 static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
377 {
378         const struct omap_dma_reg *r = c->reg_map + reg;
379
380         return omap_dma_read(r->type, c->channel_base + r->offset);
381 }
382
383 static void omap_dma_clear_csr(struct omap_chan *c)
384 {
385         if (dma_omap1())
386                 omap_dma_chan_read(c, CSR);
387         else
388                 omap_dma_chan_write(c, CSR, ~0);
389 }
390
391 static unsigned omap_dma_get_csr(struct omap_chan *c)
392 {
393         unsigned val = omap_dma_chan_read(c, CSR);
394
395         if (!dma_omap1())
396                 omap_dma_chan_write(c, CSR, val);
397
398         return val;
399 }
400
401 static void omap_dma_clear_lch(struct omap_dmadev *od, int lch)
402 {
403         struct omap_chan *c;
404         int i;
405
406         c = od->lch_map[lch];
407         if (!c)
408                 return;
409
410         for (i = CSDP; i <= od->cfg->lch_end; i++)
411                 omap_dma_chan_write(c, i, 0);
412 }
413
414 static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
415         unsigned lch)
416 {
417         c->channel_base = od->base + od->plat->channel_stride * lch;
418
419         od->lch_map[lch] = c;
420 }
421
422 static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
423 {
424         struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
425         uint16_t cicr = d->cicr;
426
427         if (__dma_omap15xx(od->plat->dma_attr))
428                 omap_dma_chan_write(c, CPC, 0);
429         else
430                 omap_dma_chan_write(c, CDAC, 0);
431
432         omap_dma_clear_csr(c);
433
434         if (d->using_ll) {
435                 uint32_t cdp = CDP_TMODE_LLIST | CDP_NTYPE_TYPE2 | CDP_FAST;
436
437                 if (d->dir == DMA_DEV_TO_MEM)
438                         cdp |= (CDP_DST_VALID_RELOAD | CDP_SRC_VALID_REUSE);
439                 else
440                         cdp |= (CDP_DST_VALID_REUSE | CDP_SRC_VALID_RELOAD);
441                 omap_dma_chan_write(c, CDP, cdp);
442
443                 omap_dma_chan_write(c, CNDP, d->sg[0].t2_desc_paddr);
444                 omap_dma_chan_write(c, CCDN, 0);
445                 omap_dma_chan_write(c, CCFN, 0xffff);
446                 omap_dma_chan_write(c, CCEN, 0xffffff);
447
448                 cicr &= ~CICR_BLOCK_IE;
449         } else if (od->ll123_supported) {
450                 omap_dma_chan_write(c, CDP, 0);
451         }
452
453         /* Enable interrupts */
454         omap_dma_chan_write(c, CICR, cicr);
455
456         /* Enable channel */
457         omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
458
459         c->running = true;
460 }
461
462 static void omap_dma_drain_chan(struct omap_chan *c)
463 {
464         int i;
465         u32 val;
466
467         /* Wait for sDMA FIFO to drain */
468         for (i = 0; ; i++) {
469                 val = omap_dma_chan_read(c, CCR);
470                 if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
471                         break;
472
473                 if (i > 100)
474                         break;
475
476                 udelay(5);
477         }
478
479         if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
480                 dev_err(c->vc.chan.device->dev,
481                         "DMA drain did not complete on lch %d\n",
482                         c->dma_ch);
483 }
484
485 static int omap_dma_stop(struct omap_chan *c)
486 {
487         struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
488         uint32_t val;
489
490         /* disable irq */
491         omap_dma_chan_write(c, CICR, 0);
492
493         omap_dma_clear_csr(c);
494
495         val = omap_dma_chan_read(c, CCR);
496         if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
497                 uint32_t sysconfig;
498
499                 sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
500                 val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
501                 val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
502                 omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
503
504                 val = omap_dma_chan_read(c, CCR);
505                 val &= ~CCR_ENABLE;
506                 omap_dma_chan_write(c, CCR, val);
507
508                 if (!(c->ccr & CCR_BUFFERING_DISABLE))
509                         omap_dma_drain_chan(c);
510
511                 omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
512         } else {
513                 if (!(val & CCR_ENABLE))
514                         return -EINVAL;
515
516                 val &= ~CCR_ENABLE;
517                 omap_dma_chan_write(c, CCR, val);
518
519                 if (!(c->ccr & CCR_BUFFERING_DISABLE))
520                         omap_dma_drain_chan(c);
521         }
522
523         mb();
524
525         if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
526                 val = omap_dma_chan_read(c, CLNK_CTRL);
527
528                 if (dma_omap1())
529                         val |= 1 << 14; /* set the STOP_LNK bit */
530                 else
531                         val &= ~CLNK_CTRL_ENABLE_LNK;
532
533                 omap_dma_chan_write(c, CLNK_CTRL, val);
534         }
535         c->running = false;
536         return 0;
537 }
538
539 static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d)
540 {
541         struct omap_sg *sg = d->sg + c->sgidx;
542         unsigned cxsa, cxei, cxfi;
543
544         if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
545                 cxsa = CDSA;
546                 cxei = CDEI;
547                 cxfi = CDFI;
548         } else {
549                 cxsa = CSSA;
550                 cxei = CSEI;
551                 cxfi = CSFI;
552         }
553
554         omap_dma_chan_write(c, cxsa, sg->addr);
555         omap_dma_chan_write(c, cxei, sg->ei);
556         omap_dma_chan_write(c, cxfi, sg->fi);
557         omap_dma_chan_write(c, CEN, sg->en);
558         omap_dma_chan_write(c, CFN, sg->fn);
559
560         omap_dma_start(c, d);
561         c->sgidx++;
562 }
563
564 static void omap_dma_start_desc(struct omap_chan *c)
565 {
566         struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
567         struct omap_desc *d;
568         unsigned cxsa, cxei, cxfi;
569
570         if (!vd) {
571                 c->desc = NULL;
572                 return;
573         }
574
575         list_del(&vd->node);
576
577         c->desc = d = to_omap_dma_desc(&vd->tx);
578         c->sgidx = 0;
579
580         /*
581          * This provides the necessary barrier to ensure data held in
582          * DMA coherent memory is visible to the DMA engine prior to
583          * the transfer starting.
584          */
585         mb();
586
587         omap_dma_chan_write(c, CCR, d->ccr);
588         if (dma_omap1())
589                 omap_dma_chan_write(c, CCR2, d->ccr >> 16);
590
591         if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
592                 cxsa = CSSA;
593                 cxei = CSEI;
594                 cxfi = CSFI;
595         } else {
596                 cxsa = CDSA;
597                 cxei = CDEI;
598                 cxfi = CDFI;
599         }
600
601         omap_dma_chan_write(c, cxsa, d->dev_addr);
602         omap_dma_chan_write(c, cxei, d->ei);
603         omap_dma_chan_write(c, cxfi, d->fi);
604         omap_dma_chan_write(c, CSDP, d->csdp);
605         omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
606
607         omap_dma_start_sg(c, d);
608 }
609
610 static void omap_dma_callback(int ch, u16 status, void *data)
611 {
612         struct omap_chan *c = data;
613         struct omap_desc *d;
614         unsigned long flags;
615
616         spin_lock_irqsave(&c->vc.lock, flags);
617         d = c->desc;
618         if (d) {
619                 if (c->cyclic) {
620                         vchan_cyclic_callback(&d->vd);
621                 } else if (d->using_ll || c->sgidx == d->sglen) {
622                         omap_dma_start_desc(c);
623                         vchan_cookie_complete(&d->vd);
624                 } else {
625                         omap_dma_start_sg(c, d);
626                 }
627         }
628         spin_unlock_irqrestore(&c->vc.lock, flags);
629 }
630
631 static irqreturn_t omap_dma_irq(int irq, void *devid)
632 {
633         struct omap_dmadev *od = devid;
634         unsigned status, channel;
635
636         spin_lock(&od->irq_lock);
637
638         status = omap_dma_glbl_read(od, IRQSTATUS_L1);
639         status &= od->irq_enable_mask;
640         if (status == 0) {
641                 spin_unlock(&od->irq_lock);
642                 return IRQ_NONE;
643         }
644
645         while ((channel = ffs(status)) != 0) {
646                 unsigned mask, csr;
647                 struct omap_chan *c;
648
649                 channel -= 1;
650                 mask = BIT(channel);
651                 status &= ~mask;
652
653                 c = od->lch_map[channel];
654                 if (c == NULL) {
655                         /* This should never happen */
656                         dev_err(od->ddev.dev, "invalid channel %u\n", channel);
657                         continue;
658                 }
659
660                 csr = omap_dma_get_csr(c);
661                 omap_dma_glbl_write(od, IRQSTATUS_L1, mask);
662
663                 omap_dma_callback(channel, csr, c);
664         }
665
666         spin_unlock(&od->irq_lock);
667
668         return IRQ_HANDLED;
669 }
670
671 static int omap_dma_get_lch(struct omap_dmadev *od, int *lch)
672 {
673         int channel;
674
675         mutex_lock(&od->lch_lock);
676         channel = find_first_zero_bit(od->lch_bitmap, od->lch_count);
677         if (channel >= od->lch_count)
678                 goto out_busy;
679         set_bit(channel, od->lch_bitmap);
680         mutex_unlock(&od->lch_lock);
681
682         omap_dma_clear_lch(od, channel);
683         *lch = channel;
684
685         return 0;
686
687 out_busy:
688         mutex_unlock(&od->lch_lock);
689         *lch = -EINVAL;
690
691         return -EBUSY;
692 }
693
694 static void omap_dma_put_lch(struct omap_dmadev *od, int lch)
695 {
696         omap_dma_clear_lch(od, lch);
697         mutex_lock(&od->lch_lock);
698         clear_bit(lch, od->lch_bitmap);
699         mutex_unlock(&od->lch_lock);
700 }
701
702 static inline bool omap_dma_legacy(struct omap_dmadev *od)
703 {
704         return IS_ENABLED(CONFIG_ARCH_OMAP1) && od->legacy;
705 }
706
707 static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
708 {
709         struct omap_dmadev *od = to_omap_dma_dev(chan->device);
710         struct omap_chan *c = to_omap_dma_chan(chan);
711         struct device *dev = od->ddev.dev;
712         int ret;
713
714         if (omap_dma_legacy(od)) {
715                 ret = omap_request_dma(c->dma_sig, "DMA engine",
716                                        omap_dma_callback, c, &c->dma_ch);
717         } else {
718                 ret = omap_dma_get_lch(od, &c->dma_ch);
719         }
720
721         dev_dbg(dev, "allocating channel %u for %u\n", c->dma_ch, c->dma_sig);
722
723         if (ret >= 0) {
724                 omap_dma_assign(od, c, c->dma_ch);
725
726                 if (!omap_dma_legacy(od)) {
727                         unsigned val;
728
729                         spin_lock_irq(&od->irq_lock);
730                         val = BIT(c->dma_ch);
731                         omap_dma_glbl_write(od, IRQSTATUS_L1, val);
732                         od->irq_enable_mask |= val;
733                         omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
734
735                         val = omap_dma_glbl_read(od, IRQENABLE_L0);
736                         val &= ~BIT(c->dma_ch);
737                         omap_dma_glbl_write(od, IRQENABLE_L0, val);
738                         spin_unlock_irq(&od->irq_lock);
739                 }
740         }
741
742         if (dma_omap1()) {
743                 if (__dma_omap16xx(od->plat->dma_attr)) {
744                         c->ccr = CCR_OMAP31_DISABLE;
745                         /* Duplicate what plat-omap/dma.c does */
746                         c->ccr |= c->dma_ch + 1;
747                 } else {
748                         c->ccr = c->dma_sig & 0x1f;
749                 }
750         } else {
751                 c->ccr = c->dma_sig & 0x1f;
752                 c->ccr |= (c->dma_sig & ~0x1f) << 14;
753         }
754         if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
755                 c->ccr |= CCR_BUFFERING_DISABLE;
756
757         return ret;
758 }
759
760 static void omap_dma_free_chan_resources(struct dma_chan *chan)
761 {
762         struct omap_dmadev *od = to_omap_dma_dev(chan->device);
763         struct omap_chan *c = to_omap_dma_chan(chan);
764
765         if (!omap_dma_legacy(od)) {
766                 spin_lock_irq(&od->irq_lock);
767                 od->irq_enable_mask &= ~BIT(c->dma_ch);
768                 omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
769                 spin_unlock_irq(&od->irq_lock);
770         }
771
772         c->channel_base = NULL;
773         od->lch_map[c->dma_ch] = NULL;
774         vchan_free_chan_resources(&c->vc);
775
776         if (omap_dma_legacy(od))
777                 omap_free_dma(c->dma_ch);
778         else
779                 omap_dma_put_lch(od, c->dma_ch);
780
781         dev_dbg(od->ddev.dev, "freeing channel %u used for %u\n", c->dma_ch,
782                 c->dma_sig);
783         c->dma_sig = 0;
784 }
785
786 static size_t omap_dma_sg_size(struct omap_sg *sg)
787 {
788         return sg->en * sg->fn;
789 }
790
791 static size_t omap_dma_desc_size(struct omap_desc *d)
792 {
793         unsigned i;
794         size_t size;
795
796         for (size = i = 0; i < d->sglen; i++)
797                 size += omap_dma_sg_size(&d->sg[i]);
798
799         return size * es_bytes[d->es];
800 }
801
802 static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
803 {
804         unsigned i;
805         size_t size, es_size = es_bytes[d->es];
806
807         for (size = i = 0; i < d->sglen; i++) {
808                 size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;
809
810                 if (size)
811                         size += this_size;
812                 else if (addr >= d->sg[i].addr &&
813                          addr < d->sg[i].addr + this_size)
814                         size += d->sg[i].addr + this_size - addr;
815         }
816         return size;
817 }
818
819 /*
820  * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
821  * read before the DMA controller finished disabling the channel.
822  */
823 static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
824 {
825         struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
826         uint32_t val;
827
828         val = omap_dma_chan_read(c, reg);
829         if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
830                 val = omap_dma_chan_read(c, reg);
831
832         return val;
833 }
834
835 static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
836 {
837         struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
838         dma_addr_t addr, cdac;
839
840         if (__dma_omap15xx(od->plat->dma_attr)) {
841                 addr = omap_dma_chan_read(c, CPC);
842         } else {
843                 addr = omap_dma_chan_read_3_3(c, CSAC);
844                 cdac = omap_dma_chan_read_3_3(c, CDAC);
845
846                 /*
847                  * CDAC == 0 indicates that the DMA transfer on the channel has
848                  * not been started (no data has been transferred so far).
849                  * Return the programmed source start address in this case.
850                  */
851                 if (cdac == 0)
852                         addr = omap_dma_chan_read(c, CSSA);
853         }
854
855         if (dma_omap1())
856                 addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
857
858         return addr;
859 }
860
861 static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
862 {
863         struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
864         dma_addr_t addr;
865
866         if (__dma_omap15xx(od->plat->dma_attr)) {
867                 addr = omap_dma_chan_read(c, CPC);
868         } else {
869                 addr = omap_dma_chan_read_3_3(c, CDAC);
870
871                 /*
872                  * CDAC == 0 indicates that the DMA transfer on the channel
873                  * has not been started (no data has been transferred so
874                  * far).  Return the programmed destination start address in
875                  * this case.
876                  */
877                 if (addr == 0)
878                         addr = omap_dma_chan_read(c, CDSA);
879         }
880
881         if (dma_omap1())
882                 addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
883
884         return addr;
885 }
886
887 static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
888         dma_cookie_t cookie, struct dma_tx_state *txstate)
889 {
890         struct omap_chan *c = to_omap_dma_chan(chan);
891         enum dma_status ret;
892         unsigned long flags;
893         struct omap_desc *d = NULL;
894
895         ret = dma_cookie_status(chan, cookie, txstate);
896         if (ret == DMA_COMPLETE)
897                 return ret;
898
899         spin_lock_irqsave(&c->vc.lock, flags);
900         if (c->desc && c->desc->vd.tx.cookie == cookie)
901                 d = c->desc;
902
903         if (!txstate)
904                 goto out;
905
906         if (d) {
907                 dma_addr_t pos;
908
909                 if (d->dir == DMA_MEM_TO_DEV)
910                         pos = omap_dma_get_src_pos(c);
911                 else if (d->dir == DMA_DEV_TO_MEM  || d->dir == DMA_MEM_TO_MEM)
912                         pos = omap_dma_get_dst_pos(c);
913                 else
914                         pos = 0;
915
916                 txstate->residue = omap_dma_desc_size_pos(d, pos);
917         } else {
918                 struct virt_dma_desc *vd = vchan_find_desc(&c->vc, cookie);
919
920                 if (vd)
921                         txstate->residue = omap_dma_desc_size(
922                                                 to_omap_dma_desc(&vd->tx));
923                 else
924                         txstate->residue = 0;
925         }
926
927 out:
928         if (ret == DMA_IN_PROGRESS && c->paused) {
929                 ret = DMA_PAUSED;
930         } else if (d && d->polled && c->running) {
931                 uint32_t ccr = omap_dma_chan_read(c, CCR);
932                 /*
933                  * The channel is no longer active, set the return value
934                  * accordingly and mark it as completed
935                  */
936                 if (!(ccr & CCR_ENABLE)) {
937                         ret = DMA_COMPLETE;
938                         omap_dma_start_desc(c);
939                         vchan_cookie_complete(&d->vd);
940                 }
941         }
942
943         spin_unlock_irqrestore(&c->vc.lock, flags);
944
945         return ret;
946 }
947
948 static void omap_dma_issue_pending(struct dma_chan *chan)
949 {
950         struct omap_chan *c = to_omap_dma_chan(chan);
951         unsigned long flags;
952
953         spin_lock_irqsave(&c->vc.lock, flags);
954         if (vchan_issue_pending(&c->vc) && !c->desc)
955                 omap_dma_start_desc(c);
956         spin_unlock_irqrestore(&c->vc.lock, flags);
957 }
958
959 static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
960         struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
961         enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
962 {
963         struct omap_dmadev *od = to_omap_dma_dev(chan->device);
964         struct omap_chan *c = to_omap_dma_chan(chan);
965         enum dma_slave_buswidth dev_width;
966         struct scatterlist *sgent;
967         struct omap_desc *d;
968         dma_addr_t dev_addr;
969         unsigned i, es, en, frame_bytes;
970         bool ll_failed = false;
971         u32 burst;
972         u32 port_window, port_window_bytes;
973
974         if (dir == DMA_DEV_TO_MEM) {
975                 dev_addr = c->cfg.src_addr;
976                 dev_width = c->cfg.src_addr_width;
977                 burst = c->cfg.src_maxburst;
978                 port_window = c->cfg.src_port_window_size;
979         } else if (dir == DMA_MEM_TO_DEV) {
980                 dev_addr = c->cfg.dst_addr;
981                 dev_width = c->cfg.dst_addr_width;
982                 burst = c->cfg.dst_maxburst;
983                 port_window = c->cfg.dst_port_window_size;
984         } else {
985                 dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
986                 return NULL;
987         }
988
989         /* Bus width translates to the element size (ES) */
990         switch (dev_width) {
991         case DMA_SLAVE_BUSWIDTH_1_BYTE:
992                 es = CSDP_DATA_TYPE_8;
993                 break;
994         case DMA_SLAVE_BUSWIDTH_2_BYTES:
995                 es = CSDP_DATA_TYPE_16;
996                 break;
997         case DMA_SLAVE_BUSWIDTH_4_BYTES:
998                 es = CSDP_DATA_TYPE_32;
999                 break;
1000         default: /* not reached */
1001                 return NULL;
1002         }
1003
1004         /* Now allocate and setup the descriptor. */
1005         d = kzalloc(struct_size(d, sg, sglen), GFP_ATOMIC);
1006         if (!d)
1007                 return NULL;
1008
1009         d->dir = dir;
1010         d->dev_addr = dev_addr;
1011         d->es = es;
1012
1013         /* When the port_window is used, one frame must cover the window */
1014         if (port_window) {
1015                 burst = port_window;
1016                 port_window_bytes = port_window * es_bytes[es];
1017
1018                 d->ei = 1;
1019                 /*
1020                  * One frame covers the port_window and by  configure
1021                  * the source frame index to be -1 * (port_window - 1)
1022                  * we instruct the sDMA that after a frame is processed
1023                  * it should move back to the start of the window.
1024                  */
1025                 d->fi = -(port_window_bytes - 1);
1026         }
1027
1028         d->ccr = c->ccr | CCR_SYNC_FRAME;
1029         if (dir == DMA_DEV_TO_MEM) {
1030                 d->csdp = CSDP_DST_BURST_64 | CSDP_DST_PACKED;
1031
1032                 d->ccr |= CCR_DST_AMODE_POSTINC;
1033                 if (port_window) {
1034                         d->ccr |= CCR_SRC_AMODE_DBLIDX;
1035
1036                         if (port_window_bytes >= 64)
1037                                 d->csdp |= CSDP_SRC_BURST_64;
1038                         else if (port_window_bytes >= 32)
1039                                 d->csdp |= CSDP_SRC_BURST_32;
1040                         else if (port_window_bytes >= 16)
1041                                 d->csdp |= CSDP_SRC_BURST_16;
1042
1043                 } else {
1044                         d->ccr |= CCR_SRC_AMODE_CONSTANT;
1045                 }
1046         } else {
1047                 d->csdp = CSDP_SRC_BURST_64 | CSDP_SRC_PACKED;
1048
1049                 d->ccr |= CCR_SRC_AMODE_POSTINC;
1050                 if (port_window) {
1051                         d->ccr |= CCR_DST_AMODE_DBLIDX;
1052
1053                         if (port_window_bytes >= 64)
1054                                 d->csdp |= CSDP_DST_BURST_64;
1055                         else if (port_window_bytes >= 32)
1056                                 d->csdp |= CSDP_DST_BURST_32;
1057                         else if (port_window_bytes >= 16)
1058                                 d->csdp |= CSDP_DST_BURST_16;
1059                 } else {
1060                         d->ccr |= CCR_DST_AMODE_CONSTANT;
1061                 }
1062         }
1063
1064         d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
1065         d->csdp |= es;
1066
1067         if (dma_omap1()) {
1068                 d->cicr |= CICR_TOUT_IE;
1069
1070                 if (dir == DMA_DEV_TO_MEM)
1071                         d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
1072                 else
1073                         d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
1074         } else {
1075                 if (dir == DMA_DEV_TO_MEM)
1076                         d->ccr |= CCR_TRIGGER_SRC;
1077
1078                 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1079
1080                 if (port_window)
1081                         d->csdp |= CSDP_WRITE_LAST_NON_POSTED;
1082         }
1083         if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
1084                 d->clnk_ctrl = c->dma_ch;
1085
1086         /*
1087          * Build our scatterlist entries: each contains the address,
1088          * the number of elements (EN) in each frame, and the number of
1089          * frames (FN).  Number of bytes for this entry = ES * EN * FN.
1090          *
1091          * Burst size translates to number of elements with frame sync.
1092          * Note: DMA engine defines burst to be the number of dev-width
1093          * transfers.
1094          */
1095         en = burst;
1096         frame_bytes = es_bytes[es] * en;
1097
1098         if (sglen >= 2)
1099                 d->using_ll = od->ll123_supported;
1100
1101         for_each_sg(sgl, sgent, sglen, i) {
1102                 struct omap_sg *osg = &d->sg[i];
1103
1104                 osg->addr = sg_dma_address(sgent);
1105                 osg->en = en;
1106                 osg->fn = sg_dma_len(sgent) / frame_bytes;
1107
1108                 if (d->using_ll) {
1109                         osg->t2_desc = dma_pool_alloc(od->desc_pool, GFP_ATOMIC,
1110                                                       &osg->t2_desc_paddr);
1111                         if (!osg->t2_desc) {
1112                                 dev_err(chan->device->dev,
1113                                         "t2_desc[%d] allocation failed\n", i);
1114                                 ll_failed = true;
1115                                 d->using_ll = false;
1116                                 continue;
1117                         }
1118
1119                         omap_dma_fill_type2_desc(d, i, dir, (i == sglen - 1));
1120                 }
1121         }
1122
1123         d->sglen = sglen;
1124
1125         /* Release the dma_pool entries if one allocation failed */
1126         if (ll_failed) {
1127                 for (i = 0; i < d->sglen; i++) {
1128                         struct omap_sg *osg = &d->sg[i];
1129
1130                         if (osg->t2_desc) {
1131                                 dma_pool_free(od->desc_pool, osg->t2_desc,
1132                                               osg->t2_desc_paddr);
1133                                 osg->t2_desc = NULL;
1134                         }
1135                 }
1136         }
1137
1138         return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
1139 }
1140
1141 static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
1142         struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1143         size_t period_len, enum dma_transfer_direction dir, unsigned long flags)
1144 {
1145         struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1146         struct omap_chan *c = to_omap_dma_chan(chan);
1147         enum dma_slave_buswidth dev_width;
1148         struct omap_desc *d;
1149         dma_addr_t dev_addr;
1150         unsigned es;
1151         u32 burst;
1152
1153         if (dir == DMA_DEV_TO_MEM) {
1154                 dev_addr = c->cfg.src_addr;
1155                 dev_width = c->cfg.src_addr_width;
1156                 burst = c->cfg.src_maxburst;
1157         } else if (dir == DMA_MEM_TO_DEV) {
1158                 dev_addr = c->cfg.dst_addr;
1159                 dev_width = c->cfg.dst_addr_width;
1160                 burst = c->cfg.dst_maxburst;
1161         } else {
1162                 dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
1163                 return NULL;
1164         }
1165
1166         /* Bus width translates to the element size (ES) */
1167         switch (dev_width) {
1168         case DMA_SLAVE_BUSWIDTH_1_BYTE:
1169                 es = CSDP_DATA_TYPE_8;
1170                 break;
1171         case DMA_SLAVE_BUSWIDTH_2_BYTES:
1172                 es = CSDP_DATA_TYPE_16;
1173                 break;
1174         case DMA_SLAVE_BUSWIDTH_4_BYTES:
1175                 es = CSDP_DATA_TYPE_32;
1176                 break;
1177         default: /* not reached */
1178                 return NULL;
1179         }
1180
1181         /* Now allocate and setup the descriptor. */
1182         d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
1183         if (!d)
1184                 return NULL;
1185
1186         d->dir = dir;
1187         d->dev_addr = dev_addr;
1188         d->fi = burst;
1189         d->es = es;
1190         d->sg[0].addr = buf_addr;
1191         d->sg[0].en = period_len / es_bytes[es];
1192         d->sg[0].fn = buf_len / period_len;
1193         d->sglen = 1;
1194
1195         d->ccr = c->ccr;
1196         if (dir == DMA_DEV_TO_MEM)
1197                 d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
1198         else
1199                 d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
1200
1201         d->cicr = CICR_DROP_IE;
1202         if (flags & DMA_PREP_INTERRUPT)
1203                 d->cicr |= CICR_FRAME_IE;
1204
1205         d->csdp = es;
1206
1207         if (dma_omap1()) {
1208                 d->cicr |= CICR_TOUT_IE;
1209
1210                 if (dir == DMA_DEV_TO_MEM)
1211                         d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
1212                 else
1213                         d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
1214         } else {
1215                 if (burst)
1216                         d->ccr |= CCR_SYNC_PACKET;
1217                 else
1218                         d->ccr |= CCR_SYNC_ELEMENT;
1219
1220                 if (dir == DMA_DEV_TO_MEM) {
1221                         d->ccr |= CCR_TRIGGER_SRC;
1222                         d->csdp |= CSDP_DST_PACKED;
1223                 } else {
1224                         d->csdp |= CSDP_SRC_PACKED;
1225                 }
1226
1227                 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1228
1229                 d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1230         }
1231
1232         if (__dma_omap15xx(od->plat->dma_attr))
1233                 d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
1234         else
1235                 d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;
1236
1237         c->cyclic = true;
1238
1239         return vchan_tx_prep(&c->vc, &d->vd, flags);
1240 }
1241
1242 static struct dma_async_tx_descriptor *omap_dma_prep_dma_memcpy(
1243         struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1244         size_t len, unsigned long tx_flags)
1245 {
1246         struct omap_chan *c = to_omap_dma_chan(chan);
1247         struct omap_desc *d;
1248         uint8_t data_type;
1249
1250         d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
1251         if (!d)
1252                 return NULL;
1253
1254         data_type = __ffs((src | dest | len));
1255         if (data_type > CSDP_DATA_TYPE_32)
1256                 data_type = CSDP_DATA_TYPE_32;
1257
1258         d->dir = DMA_MEM_TO_MEM;
1259         d->dev_addr = src;
1260         d->fi = 0;
1261         d->es = data_type;
1262         d->sg[0].en = len / BIT(data_type);
1263         d->sg[0].fn = 1;
1264         d->sg[0].addr = dest;
1265         d->sglen = 1;
1266         d->ccr = c->ccr;
1267         d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_POSTINC;
1268
1269         if (tx_flags & DMA_PREP_INTERRUPT)
1270                 d->cicr |= CICR_FRAME_IE;
1271         else
1272                 d->polled = true;
1273
1274         d->csdp = data_type;
1275
1276         if (dma_omap1()) {
1277                 d->cicr |= CICR_TOUT_IE;
1278                 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
1279         } else {
1280                 d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
1281                 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1282                 d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1283         }
1284
1285         return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
1286 }
1287
1288 static struct dma_async_tx_descriptor *omap_dma_prep_dma_interleaved(
1289         struct dma_chan *chan, struct dma_interleaved_template *xt,
1290         unsigned long flags)
1291 {
1292         struct omap_chan *c = to_omap_dma_chan(chan);
1293         struct omap_desc *d;
1294         struct omap_sg *sg;
1295         uint8_t data_type;
1296         size_t src_icg, dst_icg;
1297
1298         /* Slave mode is not supported */
1299         if (is_slave_direction(xt->dir))
1300                 return NULL;
1301
1302         if (xt->frame_size != 1 || xt->numf == 0)
1303                 return NULL;
1304
1305         d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
1306         if (!d)
1307                 return NULL;
1308
1309         data_type = __ffs((xt->src_start | xt->dst_start | xt->sgl[0].size));
1310         if (data_type > CSDP_DATA_TYPE_32)
1311                 data_type = CSDP_DATA_TYPE_32;
1312
1313         sg = &d->sg[0];
1314         d->dir = DMA_MEM_TO_MEM;
1315         d->dev_addr = xt->src_start;
1316         d->es = data_type;
1317         sg->en = xt->sgl[0].size / BIT(data_type);
1318         sg->fn = xt->numf;
1319         sg->addr = xt->dst_start;
1320         d->sglen = 1;
1321         d->ccr = c->ccr;
1322
1323         src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1324         dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1325         if (src_icg) {
1326                 d->ccr |= CCR_SRC_AMODE_DBLIDX;
1327                 d->ei = 1;
1328                 d->fi = src_icg + 1;
1329         } else if (xt->src_inc) {
1330                 d->ccr |= CCR_SRC_AMODE_POSTINC;
1331                 d->fi = 0;
1332         } else {
1333                 dev_err(chan->device->dev,
1334                         "%s: SRC constant addressing is not supported\n",
1335                         __func__);
1336                 kfree(d);
1337                 return NULL;
1338         }
1339
1340         if (dst_icg) {
1341                 d->ccr |= CCR_DST_AMODE_DBLIDX;
1342                 sg->ei = 1;
1343                 sg->fi = dst_icg + 1;
1344         } else if (xt->dst_inc) {
1345                 d->ccr |= CCR_DST_AMODE_POSTINC;
1346                 sg->fi = 0;
1347         } else {
1348                 dev_err(chan->device->dev,
1349                         "%s: DST constant addressing is not supported\n",
1350                         __func__);
1351                 kfree(d);
1352                 return NULL;
1353         }
1354
1355         d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
1356
1357         d->csdp = data_type;
1358
1359         if (dma_omap1()) {
1360                 d->cicr |= CICR_TOUT_IE;
1361                 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
1362         } else {
1363                 d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
1364                 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1365                 d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1366         }
1367
1368         return vchan_tx_prep(&c->vc, &d->vd, flags);
1369 }
1370
1371 static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
1372 {
1373         struct omap_chan *c = to_omap_dma_chan(chan);
1374
1375         if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1376             cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1377                 return -EINVAL;
1378
1379         if (cfg->src_maxburst > chan->device->max_burst ||
1380             cfg->dst_maxburst > chan->device->max_burst)
1381                 return -EINVAL;
1382
1383         memcpy(&c->cfg, cfg, sizeof(c->cfg));
1384
1385         return 0;
1386 }
1387
1388 static int omap_dma_terminate_all(struct dma_chan *chan)
1389 {
1390         struct omap_chan *c = to_omap_dma_chan(chan);
1391         unsigned long flags;
1392         LIST_HEAD(head);
1393
1394         spin_lock_irqsave(&c->vc.lock, flags);
1395
1396         /*
1397          * Stop DMA activity: we assume the callback will not be called
1398          * after omap_dma_stop() returns (even if it does, it will see
1399          * c->desc is NULL and exit.)
1400          */
1401         if (c->desc) {
1402                 vchan_terminate_vdesc(&c->desc->vd);
1403                 c->desc = NULL;
1404                 /* Avoid stopping the dma twice */
1405                 if (!c->paused)
1406                         omap_dma_stop(c);
1407         }
1408
1409         c->cyclic = false;
1410         c->paused = false;
1411
1412         vchan_get_all_descriptors(&c->vc, &head);
1413         spin_unlock_irqrestore(&c->vc.lock, flags);
1414         vchan_dma_desc_free_list(&c->vc, &head);
1415
1416         return 0;
1417 }
1418
1419 static void omap_dma_synchronize(struct dma_chan *chan)
1420 {
1421         struct omap_chan *c = to_omap_dma_chan(chan);
1422
1423         vchan_synchronize(&c->vc);
1424 }
1425
1426 static int omap_dma_pause(struct dma_chan *chan)
1427 {
1428         struct omap_chan *c = to_omap_dma_chan(chan);
1429         struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1430         unsigned long flags;
1431         int ret = -EINVAL;
1432         bool can_pause = false;
1433
1434         spin_lock_irqsave(&od->irq_lock, flags);
1435
1436         if (!c->desc)
1437                 goto out;
1438
1439         if (c->cyclic)
1440                 can_pause = true;
1441
1442         /*
1443          * We do not allow DMA_MEM_TO_DEV transfers to be paused.
1444          * From the AM572x TRM, 16.1.4.18 Disabling a Channel During Transfer:
1445          * "When a channel is disabled during a transfer, the channel undergoes
1446          * an abort, unless it is hardware-source-synchronized â€¦".
1447          * A source-synchronised channel is one where the fetching of data is
1448          * under control of the device. In other words, a device-to-memory
1449          * transfer. So, a destination-synchronised channel (which would be a
1450          * memory-to-device transfer) undergoes an abort if the CCR_ENABLE
1451          * bit is cleared.
1452          * From 16.1.4.20.4.6.2 Abort: "If an abort trigger occurs, the channel
1453          * aborts immediately after completion of current read/write
1454          * transactions and then the FIFO is cleaned up." The term "cleaned up"
1455          * is not defined. TI recommends to check that RD_ACTIVE and WR_ACTIVE
1456          * are both clear _before_ disabling the channel, otherwise data loss
1457          * will occur.
1458          * The problem is that if the channel is active, then device activity
1459          * can result in DMA activity starting between reading those as both
1460          * clear and the write to DMA_CCR to clear the enable bit hitting the
1461          * hardware. If the DMA hardware can't drain the data in its FIFO to the
1462          * destination, then data loss "might" occur (say if we write to an UART
1463          * and the UART is not accepting any further data).
1464          */
1465         else if (c->desc->dir == DMA_DEV_TO_MEM)
1466                 can_pause = true;
1467
1468         if (can_pause && !c->paused) {
1469                 ret = omap_dma_stop(c);
1470                 if (!ret)
1471                         c->paused = true;
1472         }
1473 out:
1474         spin_unlock_irqrestore(&od->irq_lock, flags);
1475
1476         return ret;
1477 }
1478
1479 static int omap_dma_resume(struct dma_chan *chan)
1480 {
1481         struct omap_chan *c = to_omap_dma_chan(chan);
1482         struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1483         unsigned long flags;
1484         int ret = -EINVAL;
1485
1486         spin_lock_irqsave(&od->irq_lock, flags);
1487
1488         if (c->paused && c->desc) {
1489                 mb();
1490
1491                 /* Restore channel link register */
1492                 omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl);
1493
1494                 omap_dma_start(c, c->desc);
1495                 c->paused = false;
1496                 ret = 0;
1497         }
1498         spin_unlock_irqrestore(&od->irq_lock, flags);
1499
1500         return ret;
1501 }
1502
1503 static int omap_dma_chan_init(struct omap_dmadev *od)
1504 {
1505         struct omap_chan *c;
1506
1507         c = kzalloc(sizeof(*c), GFP_KERNEL);
1508         if (!c)
1509                 return -ENOMEM;
1510
1511         c->reg_map = od->reg_map;
1512         c->vc.desc_free = omap_dma_desc_free;
1513         vchan_init(&c->vc, &od->ddev);
1514
1515         return 0;
1516 }
1517
1518 static void omap_dma_free(struct omap_dmadev *od)
1519 {
1520         while (!list_empty(&od->ddev.channels)) {
1521                 struct omap_chan *c = list_first_entry(&od->ddev.channels,
1522                         struct omap_chan, vc.chan.device_node);
1523
1524                 list_del(&c->vc.chan.device_node);
1525                 tasklet_kill(&c->vc.task);
1526                 kfree(c);
1527         }
1528 }
1529
1530 /* Currently used by omap2 & 3 to block deeper SoC idle states */
1531 static bool omap_dma_busy(struct omap_dmadev *od)
1532 {
1533         struct omap_chan *c;
1534         int lch = -1;
1535
1536         while (1) {
1537                 lch = find_next_bit(od->lch_bitmap, od->lch_count, lch + 1);
1538                 if (lch >= od->lch_count)
1539                         break;
1540                 c = od->lch_map[lch];
1541                 if (!c)
1542                         continue;
1543                 if (omap_dma_chan_read(c, CCR) & CCR_ENABLE)
1544                         return true;
1545         }
1546
1547         return false;
1548 }
1549
1550 /* Currently only used for omap2. For omap1, also a check for lcd_dma is needed */
1551 static int omap_dma_busy_notifier(struct notifier_block *nb,
1552                                   unsigned long cmd, void *v)
1553 {
1554         struct omap_dmadev *od;
1555
1556         od = container_of(nb, struct omap_dmadev, nb);
1557
1558         switch (cmd) {
1559         case CPU_CLUSTER_PM_ENTER:
1560                 if (omap_dma_busy(od))
1561                         return NOTIFY_BAD;
1562                 break;
1563         case CPU_CLUSTER_PM_ENTER_FAILED:
1564         case CPU_CLUSTER_PM_EXIT:
1565                 break;
1566         }
1567
1568         return NOTIFY_OK;
1569 }
1570
1571 /*
1572  * We are using IRQENABLE_L1, and legacy DMA code was using IRQENABLE_L0.
1573  * As the DSP may be using IRQENABLE_L2 and L3, let's not touch those for
1574  * now. Context save seems to be only currently needed on omap3.
1575  */
1576 static void omap_dma_context_save(struct omap_dmadev *od)
1577 {
1578         od->context.irqenable_l0 = omap_dma_glbl_read(od, IRQENABLE_L0);
1579         od->context.irqenable_l1 = omap_dma_glbl_read(od, IRQENABLE_L1);
1580         od->context.ocp_sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
1581         od->context.gcr = omap_dma_glbl_read(od, GCR);
1582 }
1583
1584 static void omap_dma_context_restore(struct omap_dmadev *od)
1585 {
1586         int i;
1587
1588         omap_dma_glbl_write(od, GCR, od->context.gcr);
1589         omap_dma_glbl_write(od, OCP_SYSCONFIG, od->context.ocp_sysconfig);
1590         omap_dma_glbl_write(od, IRQENABLE_L0, od->context.irqenable_l0);
1591         omap_dma_glbl_write(od, IRQENABLE_L1, od->context.irqenable_l1);
1592
1593         /* Clear IRQSTATUS_L0 as legacy DMA code is no longer doing it */
1594         if (od->plat->errata & DMA_ROMCODE_BUG)
1595                 omap_dma_glbl_write(od, IRQSTATUS_L0, 0);
1596
1597         /* Clear dma channels */
1598         for (i = 0; i < od->lch_count; i++)
1599                 omap_dma_clear_lch(od, i);
1600 }
1601
1602 /* Currently only used for omap3 */
1603 static int omap_dma_context_notifier(struct notifier_block *nb,
1604                                      unsigned long cmd, void *v)
1605 {
1606         struct omap_dmadev *od;
1607
1608         od = container_of(nb, struct omap_dmadev, nb);
1609
1610         switch (cmd) {
1611         case CPU_CLUSTER_PM_ENTER:
1612                 if (omap_dma_busy(od))
1613                         return NOTIFY_BAD;
1614                 omap_dma_context_save(od);
1615                 break;
1616         case CPU_CLUSTER_PM_ENTER_FAILED:       /* No need to restore context */
1617                 break;
1618         case CPU_CLUSTER_PM_EXIT:
1619                 omap_dma_context_restore(od);
1620                 break;
1621         }
1622
1623         return NOTIFY_OK;
1624 }
1625
1626 static void omap_dma_init_gcr(struct omap_dmadev *od, int arb_rate,
1627                               int max_fifo_depth, int tparams)
1628 {
1629         u32 val;
1630
1631         /* Set only for omap2430 and later */
1632         if (!od->cfg->rw_priority)
1633                 return;
1634
1635         if (max_fifo_depth == 0)
1636                 max_fifo_depth = 1;
1637         if (arb_rate == 0)
1638                 arb_rate = 1;
1639
1640         val = 0xff & max_fifo_depth;
1641         val |= (0x3 & tparams) << 12;
1642         val |= (arb_rate & 0xff) << 16;
1643
1644         omap_dma_glbl_write(od, GCR, val);
1645 }
1646
1647 #define OMAP_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1648                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1649                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1650
1651 /*
1652  * No flags currently set for default configuration as omap1 is still
1653  * using platform data.
1654  */
1655 static const struct omap_dma_config default_cfg;
1656
1657 static int omap_dma_probe(struct platform_device *pdev)
1658 {
1659         const struct omap_dma_config *conf;
1660         struct omap_dmadev *od;
1661         struct resource *res;
1662         int rc, i, irq;
1663         u32 val;
1664
1665         od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
1666         if (!od)
1667                 return -ENOMEM;
1668
1669         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1670         od->base = devm_ioremap_resource(&pdev->dev, res);
1671         if (IS_ERR(od->base))
1672                 return PTR_ERR(od->base);
1673
1674         conf = of_device_get_match_data(&pdev->dev);
1675         if (conf) {
1676                 od->cfg = conf;
1677                 od->plat = dev_get_platdata(&pdev->dev);
1678                 if (!od->plat) {
1679                         dev_err(&pdev->dev, "omap_system_dma_plat_info is missing");
1680                         return -ENODEV;
1681                 }
1682         } else if (IS_ENABLED(CONFIG_ARCH_OMAP1)) {
1683                 od->cfg = &default_cfg;
1684
1685                 od->plat = omap_get_plat_info();
1686                 if (!od->plat)
1687                         return -EPROBE_DEFER;
1688         } else {
1689                 return -ENODEV;
1690         }
1691
1692         od->reg_map = od->plat->reg_map;
1693
1694         dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
1695         dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
1696         dma_cap_set(DMA_MEMCPY, od->ddev.cap_mask);
1697         dma_cap_set(DMA_INTERLEAVE, od->ddev.cap_mask);
1698         od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
1699         od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
1700         od->ddev.device_tx_status = omap_dma_tx_status;
1701         od->ddev.device_issue_pending = omap_dma_issue_pending;
1702         od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
1703         od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
1704         od->ddev.device_prep_dma_memcpy = omap_dma_prep_dma_memcpy;
1705         od->ddev.device_prep_interleaved_dma = omap_dma_prep_dma_interleaved;
1706         od->ddev.device_config = omap_dma_slave_config;
1707         od->ddev.device_pause = omap_dma_pause;
1708         od->ddev.device_resume = omap_dma_resume;
1709         od->ddev.device_terminate_all = omap_dma_terminate_all;
1710         od->ddev.device_synchronize = omap_dma_synchronize;
1711         od->ddev.src_addr_widths = OMAP_DMA_BUSWIDTHS;
1712         od->ddev.dst_addr_widths = OMAP_DMA_BUSWIDTHS;
1713         od->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1714         if (__dma_omap15xx(od->plat->dma_attr))
1715                 od->ddev.residue_granularity =
1716                                 DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1717         else
1718                 od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1719         od->ddev.max_burst = SZ_16M - 1; /* CCEN: 24bit unsigned */
1720         od->ddev.dev = &pdev->dev;
1721         INIT_LIST_HEAD(&od->ddev.channels);
1722         mutex_init(&od->lch_lock);
1723         spin_lock_init(&od->lock);
1724         spin_lock_init(&od->irq_lock);
1725
1726         /* Number of DMA requests */
1727         od->dma_requests = OMAP_SDMA_REQUESTS;
1728         if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
1729                                                       "dma-requests",
1730                                                       &od->dma_requests)) {
1731                 dev_info(&pdev->dev,
1732                          "Missing dma-requests property, using %u.\n",
1733                          OMAP_SDMA_REQUESTS);
1734         }
1735
1736         /* Number of available logical channels */
1737         if (!pdev->dev.of_node) {
1738                 od->lch_count = od->plat->dma_attr->lch_count;
1739                 if (unlikely(!od->lch_count))
1740                         od->lch_count = OMAP_SDMA_CHANNELS;
1741         } else if (of_property_read_u32(pdev->dev.of_node, "dma-channels",
1742                                         &od->lch_count)) {
1743                 dev_info(&pdev->dev,
1744                          "Missing dma-channels property, using %u.\n",
1745                          OMAP_SDMA_CHANNELS);
1746                 od->lch_count = OMAP_SDMA_CHANNELS;
1747         }
1748
1749         /* Mask of allowed logical channels */
1750         if (pdev->dev.of_node && !of_property_read_u32(pdev->dev.of_node,
1751                                                        "dma-channel-mask",
1752                                                        &val)) {
1753                 /* Tag channels not in mask as reserved */
1754                 val = ~val;
1755                 bitmap_from_arr32(od->lch_bitmap, &val, od->lch_count);
1756         }
1757         if (od->plat->dma_attr->dev_caps & HS_CHANNELS_RESERVED)
1758                 bitmap_set(od->lch_bitmap, 0, 2);
1759
1760         od->lch_map = devm_kcalloc(&pdev->dev, od->lch_count,
1761                                    sizeof(*od->lch_map),
1762                                    GFP_KERNEL);
1763         if (!od->lch_map)
1764                 return -ENOMEM;
1765
1766         for (i = 0; i < od->dma_requests; i++) {
1767                 rc = omap_dma_chan_init(od);
1768                 if (rc) {
1769                         omap_dma_free(od);
1770                         return rc;
1771                 }
1772         }
1773
1774         irq = platform_get_irq(pdev, 1);
1775         if (irq <= 0) {
1776                 dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
1777                 od->legacy = true;
1778         } else {
1779                 /* Disable all interrupts */
1780                 od->irq_enable_mask = 0;
1781                 omap_dma_glbl_write(od, IRQENABLE_L1, 0);
1782
1783                 rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
1784                                       IRQF_SHARED, "omap-dma-engine", od);
1785                 if (rc) {
1786                         omap_dma_free(od);
1787                         return rc;
1788                 }
1789         }
1790
1791         if (omap_dma_glbl_read(od, CAPS_0) & CAPS_0_SUPPORT_LL123)
1792                 od->ll123_supported = true;
1793
1794         od->ddev.filter.map = od->plat->slave_map;
1795         od->ddev.filter.mapcnt = od->plat->slavecnt;
1796         od->ddev.filter.fn = omap_dma_filter_fn;
1797
1798         if (od->ll123_supported) {
1799                 od->desc_pool = dma_pool_create(dev_name(&pdev->dev),
1800                                                 &pdev->dev,
1801                                                 sizeof(struct omap_type2_desc),
1802                                                 4, 0);
1803                 if (!od->desc_pool) {
1804                         dev_err(&pdev->dev,
1805                                 "unable to allocate descriptor pool\n");
1806                         od->ll123_supported = false;
1807                 }
1808         }
1809
1810         rc = dma_async_device_register(&od->ddev);
1811         if (rc) {
1812                 pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
1813                         rc);
1814                 omap_dma_free(od);
1815                 return rc;
1816         }
1817
1818         platform_set_drvdata(pdev, od);
1819
1820         if (pdev->dev.of_node) {
1821                 omap_dma_info.dma_cap = od->ddev.cap_mask;
1822
1823                 /* Device-tree DMA controller registration */
1824                 rc = of_dma_controller_register(pdev->dev.of_node,
1825                                 of_dma_simple_xlate, &omap_dma_info);
1826                 if (rc) {
1827                         pr_warn("OMAP-DMA: failed to register DMA controller\n");
1828                         dma_async_device_unregister(&od->ddev);
1829                         omap_dma_free(od);
1830                 }
1831         }
1832
1833         omap_dma_init_gcr(od, DMA_DEFAULT_ARB_RATE, DMA_DEFAULT_FIFO_DEPTH, 0);
1834
1835         if (od->cfg->needs_busy_check) {
1836                 od->nb.notifier_call = omap_dma_busy_notifier;
1837                 cpu_pm_register_notifier(&od->nb);
1838         } else if (od->cfg->may_lose_context) {
1839                 od->nb.notifier_call = omap_dma_context_notifier;
1840                 cpu_pm_register_notifier(&od->nb);
1841         }
1842
1843         dev_info(&pdev->dev, "OMAP DMA engine driver%s\n",
1844                  od->ll123_supported ? " (LinkedList1/2/3 supported)" : "");
1845
1846         return rc;
1847 }
1848
1849 static int omap_dma_remove(struct platform_device *pdev)
1850 {
1851         struct omap_dmadev *od = platform_get_drvdata(pdev);
1852         int irq;
1853
1854         if (od->cfg->may_lose_context)
1855                 cpu_pm_unregister_notifier(&od->nb);
1856
1857         if (pdev->dev.of_node)
1858                 of_dma_controller_free(pdev->dev.of_node);
1859
1860         irq = platform_get_irq(pdev, 1);
1861         devm_free_irq(&pdev->dev, irq, od);
1862
1863         dma_async_device_unregister(&od->ddev);
1864
1865         if (!omap_dma_legacy(od)) {
1866                 /* Disable all interrupts */
1867                 omap_dma_glbl_write(od, IRQENABLE_L0, 0);
1868         }
1869
1870         if (od->ll123_supported)
1871                 dma_pool_destroy(od->desc_pool);
1872
1873         omap_dma_free(od);
1874
1875         return 0;
1876 }
1877
1878 static const struct omap_dma_config omap2420_data = {
1879         .lch_end = CCFN,
1880         .rw_priority = true,
1881         .needs_lch_clear = true,
1882         .needs_busy_check = true,
1883 };
1884
1885 static const struct omap_dma_config omap2430_data = {
1886         .lch_end = CCFN,
1887         .rw_priority = true,
1888         .needs_lch_clear = true,
1889 };
1890
1891 static const struct omap_dma_config omap3430_data = {
1892         .lch_end = CCFN,
1893         .rw_priority = true,
1894         .needs_lch_clear = true,
1895         .may_lose_context = true,
1896 };
1897
1898 static const struct omap_dma_config omap3630_data = {
1899         .lch_end = CCDN,
1900         .rw_priority = true,
1901         .needs_lch_clear = true,
1902         .may_lose_context = true,
1903 };
1904
1905 static const struct omap_dma_config omap4_data = {
1906         .lch_end = CCDN,
1907         .rw_priority = true,
1908         .needs_lch_clear = true,
1909 };
1910
1911 static const struct of_device_id omap_dma_match[] = {
1912         { .compatible = "ti,omap2420-sdma", .data = &omap2420_data, },
1913         { .compatible = "ti,omap2430-sdma", .data = &omap2430_data, },
1914         { .compatible = "ti,omap3430-sdma", .data = &omap3430_data, },
1915         { .compatible = "ti,omap3630-sdma", .data = &omap3630_data, },
1916         { .compatible = "ti,omap4430-sdma", .data = &omap4_data, },
1917         {},
1918 };
1919 MODULE_DEVICE_TABLE(of, omap_dma_match);
1920
1921 static struct platform_driver omap_dma_driver = {
1922         .probe  = omap_dma_probe,
1923         .remove = omap_dma_remove,
1924         .driver = {
1925                 .name = "omap-dma-engine",
1926                 .of_match_table = omap_dma_match,
1927         },
1928 };
1929
1930 static bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
1931 {
1932         if (chan->device->dev->driver == &omap_dma_driver.driver) {
1933                 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1934                 struct omap_chan *c = to_omap_dma_chan(chan);
1935                 unsigned req = *(unsigned *)param;
1936
1937                 if (req <= od->dma_requests) {
1938                         c->dma_sig = req;
1939                         return true;
1940                 }
1941         }
1942         return false;
1943 }
1944
1945 static int omap_dma_init(void)
1946 {
1947         return platform_driver_register(&omap_dma_driver);
1948 }
1949 subsys_initcall(omap_dma_init);
1950
1951 static void __exit omap_dma_exit(void)
1952 {
1953         platform_driver_unregister(&omap_dma_driver);
1954 }
1955 module_exit(omap_dma_exit);
1956
1957 MODULE_AUTHOR("Russell King");
1958 MODULE_LICENSE("GPL");