GNU Linux-libre 6.7.9-gnu
[releases.git] / drivers / dma / ti / edma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI EDMA DMA engine driver
4  *
5  * Copyright 2012 Texas Instruments
6  */
7
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/bitmap.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/pm_runtime.h>
24
25 #include <linux/platform_data/edma.h>
26
27 #include "../dmaengine.h"
28 #include "../virt-dma.h"
29
30 /* Offsets matching "struct edmacc_param" */
31 #define PARM_OPT                0x00
32 #define PARM_SRC                0x04
33 #define PARM_A_B_CNT            0x08
34 #define PARM_DST                0x0c
35 #define PARM_SRC_DST_BIDX       0x10
36 #define PARM_LINK_BCNTRLD       0x14
37 #define PARM_SRC_DST_CIDX       0x18
38 #define PARM_CCNT               0x1c
39
40 #define PARM_SIZE               0x20
41
42 /* Offsets for EDMA CC global channel registers and their shadows */
43 #define SH_ER                   0x00    /* 64 bits */
44 #define SH_ECR                  0x08    /* 64 bits */
45 #define SH_ESR                  0x10    /* 64 bits */
46 #define SH_CER                  0x18    /* 64 bits */
47 #define SH_EER                  0x20    /* 64 bits */
48 #define SH_EECR                 0x28    /* 64 bits */
49 #define SH_EESR                 0x30    /* 64 bits */
50 #define SH_SER                  0x38    /* 64 bits */
51 #define SH_SECR                 0x40    /* 64 bits */
52 #define SH_IER                  0x50    /* 64 bits */
53 #define SH_IECR                 0x58    /* 64 bits */
54 #define SH_IESR                 0x60    /* 64 bits */
55 #define SH_IPR                  0x68    /* 64 bits */
56 #define SH_ICR                  0x70    /* 64 bits */
57 #define SH_IEVAL                0x78
58 #define SH_QER                  0x80
59 #define SH_QEER                 0x84
60 #define SH_QEECR                0x88
61 #define SH_QEESR                0x8c
62 #define SH_QSER                 0x90
63 #define SH_QSECR                0x94
64 #define SH_SIZE                 0x200
65
66 /* Offsets for EDMA CC global registers */
67 #define EDMA_REV                0x0000
68 #define EDMA_CCCFG              0x0004
69 #define EDMA_QCHMAP             0x0200  /* 8 registers */
70 #define EDMA_DMAQNUM            0x0240  /* 8 registers (4 on OMAP-L1xx) */
71 #define EDMA_QDMAQNUM           0x0260
72 #define EDMA_QUETCMAP           0x0280
73 #define EDMA_QUEPRI             0x0284
74 #define EDMA_EMR                0x0300  /* 64 bits */
75 #define EDMA_EMCR               0x0308  /* 64 bits */
76 #define EDMA_QEMR               0x0310
77 #define EDMA_QEMCR              0x0314
78 #define EDMA_CCERR              0x0318
79 #define EDMA_CCERRCLR           0x031c
80 #define EDMA_EEVAL              0x0320
81 #define EDMA_DRAE               0x0340  /* 4 x 64 bits*/
82 #define EDMA_QRAE               0x0380  /* 4 registers */
83 #define EDMA_QUEEVTENTRY        0x0400  /* 2 x 16 registers */
84 #define EDMA_QSTAT              0x0600  /* 2 registers */
85 #define EDMA_QWMTHRA            0x0620
86 #define EDMA_QWMTHRB            0x0624
87 #define EDMA_CCSTAT             0x0640
88
89 #define EDMA_M                  0x1000  /* global channel registers */
90 #define EDMA_ECR                0x1008
91 #define EDMA_ECRH               0x100C
92 #define EDMA_SHADOW0            0x2000  /* 4 shadow regions */
93 #define EDMA_PARM               0x4000  /* PaRAM entries */
94
95 #define PARM_OFFSET(param_no)   (EDMA_PARM + ((param_no) << 5))
96
97 #define EDMA_DCHMAP             0x0100  /* 64 registers */
98
99 /* CCCFG register */
100 #define GET_NUM_DMACH(x)        (x & 0x7) /* bits 0-2 */
101 #define GET_NUM_QDMACH(x)       ((x & 0x70) >> 4) /* bits 4-6 */
102 #define GET_NUM_PAENTRY(x)      ((x & 0x7000) >> 12) /* bits 12-14 */
103 #define GET_NUM_EVQUE(x)        ((x & 0x70000) >> 16) /* bits 16-18 */
104 #define GET_NUM_REGN(x)         ((x & 0x300000) >> 20) /* bits 20-21 */
105 #define CHMAP_EXIST             BIT(24)
106
107 /* CCSTAT register */
108 #define EDMA_CCSTAT_ACTV        BIT(4)
109
110 /*
111  * Max of 20 segments per channel to conserve PaRAM slots
112  * Also note that MAX_NR_SG should be at least the no.of periods
113  * that are required for ASoC, otherwise DMA prep calls will
114  * fail. Today davinci-pcm is the only user of this driver and
115  * requires at least 17 slots, so we setup the default to 20.
116  */
117 #define MAX_NR_SG               20
118 #define EDMA_MAX_SLOTS          MAX_NR_SG
119 #define EDMA_DESCRIPTORS        16
120
121 #define EDMA_CHANNEL_ANY                -1      /* for edma_alloc_channel() */
122 #define EDMA_SLOT_ANY                   -1      /* for edma_alloc_slot() */
123 #define EDMA_CONT_PARAMS_ANY             1001
124 #define EDMA_CONT_PARAMS_FIXED_EXACT     1002
125 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
126
127 /*
128  * 64bit array registers are split into two 32bit registers:
129  * reg0: channel/event 0-31
130  * reg1: channel/event 32-63
131  *
132  * bit 5 in the channel number tells the array index (0/1)
133  * bit 0-4 (0x1f) is the bit offset within the register
134  */
135 #define EDMA_REG_ARRAY_INDEX(channel)   ((channel) >> 5)
136 #define EDMA_CHANNEL_BIT(channel)       (BIT((channel) & 0x1f))
137
138 /* PaRAM slots are laid out like this */
139 struct edmacc_param {
140         u32 opt;
141         u32 src;
142         u32 a_b_cnt;
143         u32 dst;
144         u32 src_dst_bidx;
145         u32 link_bcntrld;
146         u32 src_dst_cidx;
147         u32 ccnt;
148 } __packed;
149
150 /* fields in edmacc_param.opt */
151 #define SAM             BIT(0)
152 #define DAM             BIT(1)
153 #define SYNCDIM         BIT(2)
154 #define STATIC          BIT(3)
155 #define EDMA_FWID       (0x07 << 8)
156 #define TCCMODE         BIT(11)
157 #define EDMA_TCC(t)     ((t) << 12)
158 #define TCINTEN         BIT(20)
159 #define ITCINTEN        BIT(21)
160 #define TCCHEN          BIT(22)
161 #define ITCCHEN         BIT(23)
162
163 struct edma_pset {
164         u32                             len;
165         dma_addr_t                      addr;
166         struct edmacc_param             param;
167 };
168
169 struct edma_desc {
170         struct virt_dma_desc            vdesc;
171         struct list_head                node;
172         enum dma_transfer_direction     direction;
173         int                             cyclic;
174         bool                            polled;
175         int                             absync;
176         int                             pset_nr;
177         struct edma_chan                *echan;
178         int                             processed;
179
180         /*
181          * The following 4 elements are used for residue accounting.
182          *
183          * - processed_stat: the number of SG elements we have traversed
184          * so far to cover accounting. This is updated directly to processed
185          * during edma_callback and is always <= processed, because processed
186          * refers to the number of pending transfer (programmed to EDMA
187          * controller), where as processed_stat tracks number of transfers
188          * accounted for so far.
189          *
190          * - residue: The amount of bytes we have left to transfer for this desc
191          *
192          * - residue_stat: The residue in bytes of data we have covered
193          * so far for accounting. This is updated directly to residue
194          * during callbacks to keep it current.
195          *
196          * - sg_len: Tracks the length of the current intermediate transfer,
197          * this is required to update the residue during intermediate transfer
198          * completion callback.
199          */
200         int                             processed_stat;
201         u32                             sg_len;
202         u32                             residue;
203         u32                             residue_stat;
204
205         struct edma_pset                pset[] __counted_by(pset_nr);
206 };
207
208 struct edma_cc;
209
210 struct edma_tc {
211         struct device_node              *node;
212         u16                             id;
213 };
214
215 struct edma_chan {
216         struct virt_dma_chan            vchan;
217         struct list_head                node;
218         struct edma_desc                *edesc;
219         struct edma_cc                  *ecc;
220         struct edma_tc                  *tc;
221         int                             ch_num;
222         bool                            alloced;
223         bool                            hw_triggered;
224         int                             slot[EDMA_MAX_SLOTS];
225         int                             missed;
226         struct dma_slave_config         cfg;
227 };
228
229 struct edma_cc {
230         struct device                   *dev;
231         struct edma_soc_info            *info;
232         void __iomem                    *base;
233         int                             id;
234         bool                            legacy_mode;
235
236         /* eDMA3 resource information */
237         unsigned                        num_channels;
238         unsigned                        num_qchannels;
239         unsigned                        num_region;
240         unsigned                        num_slots;
241         unsigned                        num_tc;
242         bool                            chmap_exist;
243         enum dma_event_q                default_queue;
244
245         unsigned int                    ccint;
246         unsigned int                    ccerrint;
247
248         /*
249          * The slot_inuse bit for each PaRAM slot is clear unless the slot is
250          * in use by Linux or if it is allocated to be used by DSP.
251          */
252         unsigned long *slot_inuse;
253
254         /*
255          * For tracking reserved channels used by DSP.
256          * If the bit is cleared, the channel is allocated to be used by DSP
257          * and Linux must not touch it.
258          */
259         unsigned long *channels_mask;
260
261         struct dma_device               dma_slave;
262         struct dma_device               *dma_memcpy;
263         struct edma_chan                *slave_chans;
264         struct edma_tc                  *tc_list;
265         int                             dummy_slot;
266 };
267
268 /* dummy param set used to (re)initialize parameter RAM slots */
269 static const struct edmacc_param dummy_paramset = {
270         .link_bcntrld = 0xffff,
271         .ccnt = 1,
272 };
273
274 #define EDMA_BINDING_LEGACY     0
275 #define EDMA_BINDING_TPCC       1
276 static const u32 edma_binding_type[] = {
277         [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
278         [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
279 };
280
281 static const struct of_device_id edma_of_ids[] = {
282         {
283                 .compatible = "ti,edma3",
284                 .data = &edma_binding_type[EDMA_BINDING_LEGACY],
285         },
286         {
287                 .compatible = "ti,edma3-tpcc",
288                 .data = &edma_binding_type[EDMA_BINDING_TPCC],
289         },
290         {}
291 };
292 MODULE_DEVICE_TABLE(of, edma_of_ids);
293
294 static const struct of_device_id edma_tptc_of_ids[] = {
295         { .compatible = "ti,edma3-tptc", },
296         {}
297 };
298 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
299
300 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
301 {
302         return (unsigned int)__raw_readl(ecc->base + offset);
303 }
304
305 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
306 {
307         __raw_writel(val, ecc->base + offset);
308 }
309
310 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
311                                unsigned or)
312 {
313         unsigned val = edma_read(ecc, offset);
314
315         val &= and;
316         val |= or;
317         edma_write(ecc, offset, val);
318 }
319
320 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
321 {
322         unsigned val = edma_read(ecc, offset);
323
324         val |= or;
325         edma_write(ecc, offset, val);
326 }
327
328 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
329                                            int i)
330 {
331         return edma_read(ecc, offset + (i << 2));
332 }
333
334 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
335                                     unsigned val)
336 {
337         edma_write(ecc, offset + (i << 2), val);
338 }
339
340 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
341                                      unsigned and, unsigned or)
342 {
343         edma_modify(ecc, offset + (i << 2), and, or);
344 }
345
346 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
347                                   unsigned or)
348 {
349         edma_or(ecc, offset + ((i * 2 + j) << 2), or);
350 }
351
352 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
353                                      int j, unsigned val)
354 {
355         edma_write(ecc, offset + ((i * 2 + j) << 2), val);
356 }
357
358 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
359                                                    int offset, int i)
360 {
361         return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
362 }
363
364 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
365                                       unsigned val)
366 {
367         edma_write(ecc, EDMA_SHADOW0 + offset, val);
368 }
369
370 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
371                                             int i, unsigned val)
372 {
373         edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
374 }
375
376 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
377                                      int param_no, unsigned and, unsigned or)
378 {
379         edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
380 }
381
382 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
383                                           int priority)
384 {
385         int bit = queue_no * 4;
386
387         edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
388 }
389
390 static void edma_set_chmap(struct edma_chan *echan, int slot)
391 {
392         struct edma_cc *ecc = echan->ecc;
393         int channel = EDMA_CHAN_SLOT(echan->ch_num);
394
395         if (ecc->chmap_exist) {
396                 slot = EDMA_CHAN_SLOT(slot);
397                 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
398         }
399 }
400
401 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
402 {
403         struct edma_cc *ecc = echan->ecc;
404         int channel = EDMA_CHAN_SLOT(echan->ch_num);
405         int idx = EDMA_REG_ARRAY_INDEX(channel);
406         int ch_bit = EDMA_CHANNEL_BIT(channel);
407
408         if (enable) {
409                 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
410                 edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
411         } else {
412                 edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
413         }
414 }
415
416 /*
417  * paRAM slot management functions
418  */
419 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
420                             const struct edmacc_param *param)
421 {
422         slot = EDMA_CHAN_SLOT(slot);
423         if (slot >= ecc->num_slots)
424                 return;
425         memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
426 }
427
428 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
429                            struct edmacc_param *param)
430 {
431         slot = EDMA_CHAN_SLOT(slot);
432         if (slot >= ecc->num_slots)
433                 return -EINVAL;
434         memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
435
436         return 0;
437 }
438
439 /**
440  * edma_alloc_slot - allocate DMA parameter RAM
441  * @ecc: pointer to edma_cc struct
442  * @slot: specific slot to allocate; negative for "any unused slot"
443  *
444  * This allocates a parameter RAM slot, initializing it to hold a
445  * dummy transfer.  Slots allocated using this routine have not been
446  * mapped to a hardware DMA channel, and will normally be used by
447  * linking to them from a slot associated with a DMA channel.
448  *
449  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
450  * slots may be allocated on behalf of DSP firmware.
451  *
452  * Returns the number of the slot, else negative errno.
453  */
454 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
455 {
456         if (slot >= 0) {
457                 slot = EDMA_CHAN_SLOT(slot);
458                 /* Requesting entry paRAM slot for a HW triggered channel. */
459                 if (ecc->chmap_exist && slot < ecc->num_channels)
460                         slot = EDMA_SLOT_ANY;
461         }
462
463         if (slot < 0) {
464                 if (ecc->chmap_exist)
465                         slot = 0;
466                 else
467                         slot = ecc->num_channels;
468                 for (;;) {
469                         slot = find_next_zero_bit(ecc->slot_inuse,
470                                                   ecc->num_slots,
471                                                   slot);
472                         if (slot == ecc->num_slots)
473                                 return -ENOMEM;
474                         if (!test_and_set_bit(slot, ecc->slot_inuse))
475                                 break;
476                 }
477         } else if (slot >= ecc->num_slots) {
478                 return -EINVAL;
479         } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
480                 return -EBUSY;
481         }
482
483         edma_write_slot(ecc, slot, &dummy_paramset);
484
485         return EDMA_CTLR_CHAN(ecc->id, slot);
486 }
487
488 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
489 {
490         slot = EDMA_CHAN_SLOT(slot);
491         if (slot >= ecc->num_slots)
492                 return;
493
494         edma_write_slot(ecc, slot, &dummy_paramset);
495         clear_bit(slot, ecc->slot_inuse);
496 }
497
498 /**
499  * edma_link - link one parameter RAM slot to another
500  * @ecc: pointer to edma_cc struct
501  * @from: parameter RAM slot originating the link
502  * @to: parameter RAM slot which is the link target
503  *
504  * The originating slot should not be part of any active DMA transfer.
505  */
506 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
507 {
508         if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
509                 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
510
511         from = EDMA_CHAN_SLOT(from);
512         to = EDMA_CHAN_SLOT(to);
513         if (from >= ecc->num_slots || to >= ecc->num_slots)
514                 return;
515
516         edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
517                           PARM_OFFSET(to));
518 }
519
520 /**
521  * edma_get_position - returns the current transfer point
522  * @ecc: pointer to edma_cc struct
523  * @slot: parameter RAM slot being examined
524  * @dst:  true selects the dest position, false the source
525  *
526  * Returns the position of the current active slot
527  */
528 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
529                                     bool dst)
530 {
531         u32 offs;
532
533         slot = EDMA_CHAN_SLOT(slot);
534         offs = PARM_OFFSET(slot);
535         offs += dst ? PARM_DST : PARM_SRC;
536
537         return edma_read(ecc, offs);
538 }
539
540 /*
541  * Channels with event associations will be triggered by their hardware
542  * events, and channels without such associations will be triggered by
543  * software.  (At this writing there is no interface for using software
544  * triggers except with channels that don't support hardware triggers.)
545  */
546 static void edma_start(struct edma_chan *echan)
547 {
548         struct edma_cc *ecc = echan->ecc;
549         int channel = EDMA_CHAN_SLOT(echan->ch_num);
550         int idx = EDMA_REG_ARRAY_INDEX(channel);
551         int ch_bit = EDMA_CHANNEL_BIT(channel);
552
553         if (!echan->hw_triggered) {
554                 /* EDMA channels without event association */
555                 dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
556                         edma_shadow0_read_array(ecc, SH_ESR, idx));
557                 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
558         } else {
559                 /* EDMA channel with event association */
560                 dev_dbg(ecc->dev, "ER%d %08x\n", idx,
561                         edma_shadow0_read_array(ecc, SH_ER, idx));
562                 /* Clear any pending event or error */
563                 edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
564                 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
565                 /* Clear any SER */
566                 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
567                 edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
568                 dev_dbg(ecc->dev, "EER%d %08x\n", idx,
569                         edma_shadow0_read_array(ecc, SH_EER, idx));
570         }
571 }
572
573 static void edma_stop(struct edma_chan *echan)
574 {
575         struct edma_cc *ecc = echan->ecc;
576         int channel = EDMA_CHAN_SLOT(echan->ch_num);
577         int idx = EDMA_REG_ARRAY_INDEX(channel);
578         int ch_bit = EDMA_CHANNEL_BIT(channel);
579
580         edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
581         edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
582         edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
583         edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
584
585         /* clear possibly pending completion interrupt */
586         edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
587
588         dev_dbg(ecc->dev, "EER%d %08x\n", idx,
589                 edma_shadow0_read_array(ecc, SH_EER, idx));
590
591         /* REVISIT:  consider guarding against inappropriate event
592          * chaining by overwriting with dummy_paramset.
593          */
594 }
595
596 /*
597  * Temporarily disable EDMA hardware events on the specified channel,
598  * preventing them from triggering new transfers
599  */
600 static void edma_pause(struct edma_chan *echan)
601 {
602         int channel = EDMA_CHAN_SLOT(echan->ch_num);
603
604         edma_shadow0_write_array(echan->ecc, SH_EECR,
605                                  EDMA_REG_ARRAY_INDEX(channel),
606                                  EDMA_CHANNEL_BIT(channel));
607 }
608
609 /* Re-enable EDMA hardware events on the specified channel.  */
610 static void edma_resume(struct edma_chan *echan)
611 {
612         int channel = EDMA_CHAN_SLOT(echan->ch_num);
613
614         edma_shadow0_write_array(echan->ecc, SH_EESR,
615                                  EDMA_REG_ARRAY_INDEX(channel),
616                                  EDMA_CHANNEL_BIT(channel));
617 }
618
619 static void edma_trigger_channel(struct edma_chan *echan)
620 {
621         struct edma_cc *ecc = echan->ecc;
622         int channel = EDMA_CHAN_SLOT(echan->ch_num);
623         int idx = EDMA_REG_ARRAY_INDEX(channel);
624         int ch_bit = EDMA_CHANNEL_BIT(channel);
625
626         edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
627
628         dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
629                 edma_shadow0_read_array(ecc, SH_ESR, idx));
630 }
631
632 static void edma_clean_channel(struct edma_chan *echan)
633 {
634         struct edma_cc *ecc = echan->ecc;
635         int channel = EDMA_CHAN_SLOT(echan->ch_num);
636         int idx = EDMA_REG_ARRAY_INDEX(channel);
637         int ch_bit = EDMA_CHANNEL_BIT(channel);
638
639         dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
640                 edma_read_array(ecc, EDMA_EMR, idx));
641         edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
642         /* Clear the corresponding EMR bits */
643         edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
644         /* Clear any SER */
645         edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
646         edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
647 }
648
649 /* Move channel to a specific event queue */
650 static void edma_assign_channel_eventq(struct edma_chan *echan,
651                                        enum dma_event_q eventq_no)
652 {
653         struct edma_cc *ecc = echan->ecc;
654         int channel = EDMA_CHAN_SLOT(echan->ch_num);
655         int bit = (channel & 0x7) * 4;
656
657         /* default to low priority queue */
658         if (eventq_no == EVENTQ_DEFAULT)
659                 eventq_no = ecc->default_queue;
660         if (eventq_no >= ecc->num_tc)
661                 return;
662
663         eventq_no &= 7;
664         edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
665                           eventq_no << bit);
666 }
667
668 static int edma_alloc_channel(struct edma_chan *echan,
669                               enum dma_event_q eventq_no)
670 {
671         struct edma_cc *ecc = echan->ecc;
672         int channel = EDMA_CHAN_SLOT(echan->ch_num);
673
674         if (!test_bit(echan->ch_num, ecc->channels_mask)) {
675                 dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
676                         echan->ch_num);
677                 return -EINVAL;
678         }
679
680         /* ensure access through shadow region 0 */
681         edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
682                        EDMA_CHANNEL_BIT(channel));
683
684         /* ensure no events are pending */
685         edma_stop(echan);
686
687         edma_setup_interrupt(echan, true);
688
689         edma_assign_channel_eventq(echan, eventq_no);
690
691         return 0;
692 }
693
694 static void edma_free_channel(struct edma_chan *echan)
695 {
696         /* ensure no events are pending */
697         edma_stop(echan);
698         /* REVISIT should probably take out of shadow region 0 */
699         edma_setup_interrupt(echan, false);
700 }
701
702 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
703 {
704         return container_of(c, struct edma_chan, vchan.chan);
705 }
706
707 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
708 {
709         return container_of(tx, struct edma_desc, vdesc.tx);
710 }
711
712 static void edma_desc_free(struct virt_dma_desc *vdesc)
713 {
714         kfree(container_of(vdesc, struct edma_desc, vdesc));
715 }
716
717 /* Dispatch a queued descriptor to the controller (caller holds lock) */
718 static void edma_execute(struct edma_chan *echan)
719 {
720         struct edma_cc *ecc = echan->ecc;
721         struct virt_dma_desc *vdesc;
722         struct edma_desc *edesc;
723         struct device *dev = echan->vchan.chan.device->dev;
724         int i, j, left, nslots;
725
726         if (!echan->edesc) {
727                 /* Setup is needed for the first transfer */
728                 vdesc = vchan_next_desc(&echan->vchan);
729                 if (!vdesc)
730                         return;
731                 list_del(&vdesc->node);
732                 echan->edesc = to_edma_desc(&vdesc->tx);
733         }
734
735         edesc = echan->edesc;
736
737         /* Find out how many left */
738         left = edesc->pset_nr - edesc->processed;
739         nslots = min(MAX_NR_SG, left);
740         edesc->sg_len = 0;
741
742         /* Write descriptor PaRAM set(s) */
743         for (i = 0; i < nslots; i++) {
744                 j = i + edesc->processed;
745                 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
746                 edesc->sg_len += edesc->pset[j].len;
747                 dev_vdbg(dev,
748                          "\n pset[%d]:\n"
749                          "  chnum\t%d\n"
750                          "  slot\t%d\n"
751                          "  opt\t%08x\n"
752                          "  src\t%08x\n"
753                          "  dst\t%08x\n"
754                          "  abcnt\t%08x\n"
755                          "  ccnt\t%08x\n"
756                          "  bidx\t%08x\n"
757                          "  cidx\t%08x\n"
758                          "  lkrld\t%08x\n",
759                          j, echan->ch_num, echan->slot[i],
760                          edesc->pset[j].param.opt,
761                          edesc->pset[j].param.src,
762                          edesc->pset[j].param.dst,
763                          edesc->pset[j].param.a_b_cnt,
764                          edesc->pset[j].param.ccnt,
765                          edesc->pset[j].param.src_dst_bidx,
766                          edesc->pset[j].param.src_dst_cidx,
767                          edesc->pset[j].param.link_bcntrld);
768                 /* Link to the previous slot if not the last set */
769                 if (i != (nslots - 1))
770                         edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
771         }
772
773         edesc->processed += nslots;
774
775         /*
776          * If this is either the last set in a set of SG-list transactions
777          * then setup a link to the dummy slot, this results in all future
778          * events being absorbed and that's OK because we're done
779          */
780         if (edesc->processed == edesc->pset_nr) {
781                 if (edesc->cyclic)
782                         edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
783                 else
784                         edma_link(ecc, echan->slot[nslots - 1],
785                                   echan->ecc->dummy_slot);
786         }
787
788         if (echan->missed) {
789                 /*
790                  * This happens due to setup times between intermediate
791                  * transfers in long SG lists which have to be broken up into
792                  * transfers of MAX_NR_SG
793                  */
794                 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
795                 edma_clean_channel(echan);
796                 edma_stop(echan);
797                 edma_start(echan);
798                 edma_trigger_channel(echan);
799                 echan->missed = 0;
800         } else if (edesc->processed <= MAX_NR_SG) {
801                 dev_dbg(dev, "first transfer starting on channel %d\n",
802                         echan->ch_num);
803                 edma_start(echan);
804         } else {
805                 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
806                         echan->ch_num, edesc->processed);
807                 edma_resume(echan);
808         }
809 }
810
811 static int edma_terminate_all(struct dma_chan *chan)
812 {
813         struct edma_chan *echan = to_edma_chan(chan);
814         unsigned long flags;
815         LIST_HEAD(head);
816
817         spin_lock_irqsave(&echan->vchan.lock, flags);
818
819         /*
820          * Stop DMA activity: we assume the callback will not be called
821          * after edma_dma() returns (even if it does, it will see
822          * echan->edesc is NULL and exit.)
823          */
824         if (echan->edesc) {
825                 edma_stop(echan);
826                 /* Move the cyclic channel back to default queue */
827                 if (!echan->tc && echan->edesc->cyclic)
828                         edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
829
830                 vchan_terminate_vdesc(&echan->edesc->vdesc);
831                 echan->edesc = NULL;
832         }
833
834         vchan_get_all_descriptors(&echan->vchan, &head);
835         spin_unlock_irqrestore(&echan->vchan.lock, flags);
836         vchan_dma_desc_free_list(&echan->vchan, &head);
837
838         return 0;
839 }
840
841 static void edma_synchronize(struct dma_chan *chan)
842 {
843         struct edma_chan *echan = to_edma_chan(chan);
844
845         vchan_synchronize(&echan->vchan);
846 }
847
848 static int edma_slave_config(struct dma_chan *chan,
849         struct dma_slave_config *cfg)
850 {
851         struct edma_chan *echan = to_edma_chan(chan);
852
853         if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
854             cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
855                 return -EINVAL;
856
857         if (cfg->src_maxburst > chan->device->max_burst ||
858             cfg->dst_maxburst > chan->device->max_burst)
859                 return -EINVAL;
860
861         memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
862
863         return 0;
864 }
865
866 static int edma_dma_pause(struct dma_chan *chan)
867 {
868         struct edma_chan *echan = to_edma_chan(chan);
869
870         if (!echan->edesc)
871                 return -EINVAL;
872
873         edma_pause(echan);
874         return 0;
875 }
876
877 static int edma_dma_resume(struct dma_chan *chan)
878 {
879         struct edma_chan *echan = to_edma_chan(chan);
880
881         edma_resume(echan);
882         return 0;
883 }
884
885 /*
886  * A PaRAM set configuration abstraction used by other modes
887  * @chan: Channel who's PaRAM set we're configuring
888  * @pset: PaRAM set to initialize and setup.
889  * @src_addr: Source address of the DMA
890  * @dst_addr: Destination address of the DMA
891  * @burst: In units of dev_width, how much to send
892  * @dev_width: How much is the dev_width
893  * @dma_length: Total length of the DMA transfer
894  * @direction: Direction of the transfer
895  */
896 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
897                             dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
898                             unsigned int acnt, unsigned int dma_length,
899                             enum dma_transfer_direction direction)
900 {
901         struct edma_chan *echan = to_edma_chan(chan);
902         struct device *dev = chan->device->dev;
903         struct edmacc_param *param = &epset->param;
904         int bcnt, ccnt, cidx;
905         int src_bidx, dst_bidx, src_cidx, dst_cidx;
906         int absync;
907
908         /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
909         if (!burst)
910                 burst = 1;
911         /*
912          * If the maxburst is equal to the fifo width, use
913          * A-synced transfers. This allows for large contiguous
914          * buffer transfers using only one PaRAM set.
915          */
916         if (burst == 1) {
917                 /*
918                  * For the A-sync case, bcnt and ccnt are the remainder
919                  * and quotient respectively of the division of:
920                  * (dma_length / acnt) by (SZ_64K -1). This is so
921                  * that in case bcnt over flows, we have ccnt to use.
922                  * Note: In A-sync transfer only, bcntrld is used, but it
923                  * only applies for sg_dma_len(sg) >= SZ_64K.
924                  * In this case, the best way adopted is- bccnt for the
925                  * first frame will be the remainder below. Then for
926                  * every successive frame, bcnt will be SZ_64K-1. This
927                  * is assured as bcntrld = 0xffff in end of function.
928                  */
929                 absync = false;
930                 ccnt = dma_length / acnt / (SZ_64K - 1);
931                 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
932                 /*
933                  * If bcnt is non-zero, we have a remainder and hence an
934                  * extra frame to transfer, so increment ccnt.
935                  */
936                 if (bcnt)
937                         ccnt++;
938                 else
939                         bcnt = SZ_64K - 1;
940                 cidx = acnt;
941         } else {
942                 /*
943                  * If maxburst is greater than the fifo address_width,
944                  * use AB-synced transfers where A count is the fifo
945                  * address_width and B count is the maxburst. In this
946                  * case, we are limited to transfers of C count frames
947                  * of (address_width * maxburst) where C count is limited
948                  * to SZ_64K-1. This places an upper bound on the length
949                  * of an SG segment that can be handled.
950                  */
951                 absync = true;
952                 bcnt = burst;
953                 ccnt = dma_length / (acnt * bcnt);
954                 if (ccnt > (SZ_64K - 1)) {
955                         dev_err(dev, "Exceeded max SG segment size\n");
956                         return -EINVAL;
957                 }
958                 cidx = acnt * bcnt;
959         }
960
961         epset->len = dma_length;
962
963         if (direction == DMA_MEM_TO_DEV) {
964                 src_bidx = acnt;
965                 src_cidx = cidx;
966                 dst_bidx = 0;
967                 dst_cidx = 0;
968                 epset->addr = src_addr;
969         } else if (direction == DMA_DEV_TO_MEM)  {
970                 src_bidx = 0;
971                 src_cidx = 0;
972                 dst_bidx = acnt;
973                 dst_cidx = cidx;
974                 epset->addr = dst_addr;
975         } else if (direction == DMA_MEM_TO_MEM)  {
976                 src_bidx = acnt;
977                 src_cidx = cidx;
978                 dst_bidx = acnt;
979                 dst_cidx = cidx;
980                 epset->addr = src_addr;
981         } else {
982                 dev_err(dev, "%s: direction not implemented yet\n", __func__);
983                 return -EINVAL;
984         }
985
986         param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
987         /* Configure A or AB synchronized transfers */
988         if (absync)
989                 param->opt |= SYNCDIM;
990
991         param->src = src_addr;
992         param->dst = dst_addr;
993
994         param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
995         param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
996
997         param->a_b_cnt = bcnt << 16 | acnt;
998         param->ccnt = ccnt;
999         /*
1000          * Only time when (bcntrld) auto reload is required is for
1001          * A-sync case, and in this case, a requirement of reload value
1002          * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1003          * and then later will be populated by edma_execute.
1004          */
1005         param->link_bcntrld = 0xffffffff;
1006         return absync;
1007 }
1008
1009 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1010         struct dma_chan *chan, struct scatterlist *sgl,
1011         unsigned int sg_len, enum dma_transfer_direction direction,
1012         unsigned long tx_flags, void *context)
1013 {
1014         struct edma_chan *echan = to_edma_chan(chan);
1015         struct device *dev = chan->device->dev;
1016         struct edma_desc *edesc;
1017         dma_addr_t src_addr = 0, dst_addr = 0;
1018         enum dma_slave_buswidth dev_width;
1019         u32 burst;
1020         struct scatterlist *sg;
1021         int i, nslots, ret;
1022
1023         if (unlikely(!echan || !sgl || !sg_len))
1024                 return NULL;
1025
1026         if (direction == DMA_DEV_TO_MEM) {
1027                 src_addr = echan->cfg.src_addr;
1028                 dev_width = echan->cfg.src_addr_width;
1029                 burst = echan->cfg.src_maxburst;
1030         } else if (direction == DMA_MEM_TO_DEV) {
1031                 dst_addr = echan->cfg.dst_addr;
1032                 dev_width = echan->cfg.dst_addr_width;
1033                 burst = echan->cfg.dst_maxburst;
1034         } else {
1035                 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1036                 return NULL;
1037         }
1038
1039         if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1040                 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1041                 return NULL;
1042         }
1043
1044         edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1045         if (!edesc)
1046                 return NULL;
1047
1048         edesc->pset_nr = sg_len;
1049         edesc->residue = 0;
1050         edesc->direction = direction;
1051         edesc->echan = echan;
1052
1053         /* Allocate a PaRAM slot, if needed */
1054         nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1055
1056         for (i = 0; i < nslots; i++) {
1057                 if (echan->slot[i] < 0) {
1058                         echan->slot[i] =
1059                                 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1060                         if (echan->slot[i] < 0) {
1061                                 kfree(edesc);
1062                                 dev_err(dev, "%s: Failed to allocate slot\n",
1063                                         __func__);
1064                                 return NULL;
1065                         }
1066                 }
1067         }
1068
1069         /* Configure PaRAM sets for each SG */
1070         for_each_sg(sgl, sg, sg_len, i) {
1071                 /* Get address for each SG */
1072                 if (direction == DMA_DEV_TO_MEM)
1073                         dst_addr = sg_dma_address(sg);
1074                 else
1075                         src_addr = sg_dma_address(sg);
1076
1077                 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1078                                        dst_addr, burst, dev_width,
1079                                        sg_dma_len(sg), direction);
1080                 if (ret < 0) {
1081                         kfree(edesc);
1082                         return NULL;
1083                 }
1084
1085                 edesc->absync = ret;
1086                 edesc->residue += sg_dma_len(sg);
1087
1088                 if (i == sg_len - 1)
1089                         /* Enable completion interrupt */
1090                         edesc->pset[i].param.opt |= TCINTEN;
1091                 else if (!((i+1) % MAX_NR_SG))
1092                         /*
1093                          * Enable early completion interrupt for the
1094                          * intermediateset. In this case the driver will be
1095                          * notified when the paRAM set is submitted to TC. This
1096                          * will allow more time to set up the next set of slots.
1097                          */
1098                         edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1099         }
1100         edesc->residue_stat = edesc->residue;
1101
1102         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1103 }
1104
1105 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1106         struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1107         size_t len, unsigned long tx_flags)
1108 {
1109         int ret, nslots;
1110         struct edma_desc *edesc;
1111         struct device *dev = chan->device->dev;
1112         struct edma_chan *echan = to_edma_chan(chan);
1113         unsigned int width, pset_len, array_size;
1114
1115         if (unlikely(!echan || !len))
1116                 return NULL;
1117
1118         /* Align the array size (acnt block) with the transfer properties */
1119         switch (__ffs((src | dest | len))) {
1120         case 0:
1121                 array_size = SZ_32K - 1;
1122                 break;
1123         case 1:
1124                 array_size = SZ_32K - 2;
1125                 break;
1126         default:
1127                 array_size = SZ_32K - 4;
1128                 break;
1129         }
1130
1131         if (len < SZ_64K) {
1132                 /*
1133                  * Transfer size less than 64K can be handled with one paRAM
1134                  * slot and with one burst.
1135                  * ACNT = length
1136                  */
1137                 width = len;
1138                 pset_len = len;
1139                 nslots = 1;
1140         } else {
1141                 /*
1142                  * Transfer size bigger than 64K will be handled with maximum of
1143                  * two paRAM slots.
1144                  * slot1: (full_length / 32767) times 32767 bytes bursts.
1145                  *        ACNT = 32767, length1: (full_length / 32767) * 32767
1146                  * slot2: the remaining amount of data after slot1.
1147                  *        ACNT = full_length - length1, length2 = ACNT
1148                  *
1149                  * When the full_length is a multiple of 32767 one slot can be
1150                  * used to complete the transfer.
1151                  */
1152                 width = array_size;
1153                 pset_len = rounddown(len, width);
1154                 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1155                 if (unlikely(pset_len == len))
1156                         nslots = 1;
1157                 else
1158                         nslots = 2;
1159         }
1160
1161         edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1162         if (!edesc)
1163                 return NULL;
1164
1165         edesc->pset_nr = nslots;
1166         edesc->residue = edesc->residue_stat = len;
1167         edesc->direction = DMA_MEM_TO_MEM;
1168         edesc->echan = echan;
1169
1170         ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1171                                width, pset_len, DMA_MEM_TO_MEM);
1172         if (ret < 0) {
1173                 kfree(edesc);
1174                 return NULL;
1175         }
1176
1177         edesc->absync = ret;
1178
1179         edesc->pset[0].param.opt |= ITCCHEN;
1180         if (nslots == 1) {
1181                 /* Enable transfer complete interrupt if requested */
1182                 if (tx_flags & DMA_PREP_INTERRUPT)
1183                         edesc->pset[0].param.opt |= TCINTEN;
1184         } else {
1185                 /* Enable transfer complete chaining for the first slot */
1186                 edesc->pset[0].param.opt |= TCCHEN;
1187
1188                 if (echan->slot[1] < 0) {
1189                         echan->slot[1] = edma_alloc_slot(echan->ecc,
1190                                                          EDMA_SLOT_ANY);
1191                         if (echan->slot[1] < 0) {
1192                                 kfree(edesc);
1193                                 dev_err(dev, "%s: Failed to allocate slot\n",
1194                                         __func__);
1195                                 return NULL;
1196                         }
1197                 }
1198                 dest += pset_len;
1199                 src += pset_len;
1200                 pset_len = width = len % array_size;
1201
1202                 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1203                                        width, pset_len, DMA_MEM_TO_MEM);
1204                 if (ret < 0) {
1205                         kfree(edesc);
1206                         return NULL;
1207                 }
1208
1209                 edesc->pset[1].param.opt |= ITCCHEN;
1210                 /* Enable transfer complete interrupt if requested */
1211                 if (tx_flags & DMA_PREP_INTERRUPT)
1212                         edesc->pset[1].param.opt |= TCINTEN;
1213         }
1214
1215         if (!(tx_flags & DMA_PREP_INTERRUPT))
1216                 edesc->polled = true;
1217
1218         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1219 }
1220
1221 static struct dma_async_tx_descriptor *
1222 edma_prep_dma_interleaved(struct dma_chan *chan,
1223                           struct dma_interleaved_template *xt,
1224                           unsigned long tx_flags)
1225 {
1226         struct device *dev = chan->device->dev;
1227         struct edma_chan *echan = to_edma_chan(chan);
1228         struct edmacc_param *param;
1229         struct edma_desc *edesc;
1230         size_t src_icg, dst_icg;
1231         int src_bidx, dst_bidx;
1232
1233         /* Slave mode is not supported */
1234         if (is_slave_direction(xt->dir))
1235                 return NULL;
1236
1237         if (xt->frame_size != 1 || xt->numf == 0)
1238                 return NULL;
1239
1240         if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K)
1241                 return NULL;
1242
1243         src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1244         if (src_icg) {
1245                 src_bidx = src_icg + xt->sgl[0].size;
1246         } else if (xt->src_inc) {
1247                 src_bidx = xt->sgl[0].size;
1248         } else {
1249                 dev_err(dev, "%s: SRC constant addressing is not supported\n",
1250                         __func__);
1251                 return NULL;
1252         }
1253
1254         dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1255         if (dst_icg) {
1256                 dst_bidx = dst_icg + xt->sgl[0].size;
1257         } else if (xt->dst_inc) {
1258                 dst_bidx = xt->sgl[0].size;
1259         } else {
1260                 dev_err(dev, "%s: DST constant addressing is not supported\n",
1261                         __func__);
1262                 return NULL;
1263         }
1264
1265         if (src_bidx > SZ_64K || dst_bidx > SZ_64K)
1266                 return NULL;
1267
1268         edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC);
1269         if (!edesc)
1270                 return NULL;
1271
1272         edesc->direction = DMA_MEM_TO_MEM;
1273         edesc->echan = echan;
1274         edesc->pset_nr = 1;
1275
1276         param = &edesc->pset[0].param;
1277
1278         param->src = xt->src_start;
1279         param->dst = xt->dst_start;
1280         param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size;
1281         param->ccnt = 1;
1282         param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1283         param->src_dst_cidx = 0;
1284
1285         param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1286         param->opt |= ITCCHEN;
1287         /* Enable transfer complete interrupt if requested */
1288         if (tx_flags & DMA_PREP_INTERRUPT)
1289                 param->opt |= TCINTEN;
1290         else
1291                 edesc->polled = true;
1292
1293         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1294 }
1295
1296 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1297         struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1298         size_t period_len, enum dma_transfer_direction direction,
1299         unsigned long tx_flags)
1300 {
1301         struct edma_chan *echan = to_edma_chan(chan);
1302         struct device *dev = chan->device->dev;
1303         struct edma_desc *edesc;
1304         dma_addr_t src_addr, dst_addr;
1305         enum dma_slave_buswidth dev_width;
1306         bool use_intermediate = false;
1307         u32 burst;
1308         int i, ret, nslots;
1309
1310         if (unlikely(!echan || !buf_len || !period_len))
1311                 return NULL;
1312
1313         if (direction == DMA_DEV_TO_MEM) {
1314                 src_addr = echan->cfg.src_addr;
1315                 dst_addr = buf_addr;
1316                 dev_width = echan->cfg.src_addr_width;
1317                 burst = echan->cfg.src_maxburst;
1318         } else if (direction == DMA_MEM_TO_DEV) {
1319                 src_addr = buf_addr;
1320                 dst_addr = echan->cfg.dst_addr;
1321                 dev_width = echan->cfg.dst_addr_width;
1322                 burst = echan->cfg.dst_maxburst;
1323         } else {
1324                 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1325                 return NULL;
1326         }
1327
1328         if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1329                 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1330                 return NULL;
1331         }
1332
1333         if (unlikely(buf_len % period_len)) {
1334                 dev_err(dev, "Period should be multiple of Buffer length\n");
1335                 return NULL;
1336         }
1337
1338         nslots = (buf_len / period_len) + 1;
1339
1340         /*
1341          * Cyclic DMA users such as audio cannot tolerate delays introduced
1342          * by cases where the number of periods is more than the maximum
1343          * number of SGs the EDMA driver can handle at a time. For DMA types
1344          * such as Slave SGs, such delays are tolerable and synchronized,
1345          * but the synchronization is difficult to achieve with Cyclic and
1346          * cannot be guaranteed, so we error out early.
1347          */
1348         if (nslots > MAX_NR_SG) {
1349                 /*
1350                  * If the burst and period sizes are the same, we can put
1351                  * the full buffer into a single period and activate
1352                  * intermediate interrupts. This will produce interrupts
1353                  * after each burst, which is also after each desired period.
1354                  */
1355                 if (burst == period_len) {
1356                         period_len = buf_len;
1357                         nslots = 2;
1358                         use_intermediate = true;
1359                 } else {
1360                         return NULL;
1361                 }
1362         }
1363
1364         edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1365         if (!edesc)
1366                 return NULL;
1367
1368         edesc->cyclic = 1;
1369         edesc->pset_nr = nslots;
1370         edesc->residue = edesc->residue_stat = buf_len;
1371         edesc->direction = direction;
1372         edesc->echan = echan;
1373
1374         dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1375                 __func__, echan->ch_num, nslots, period_len, buf_len);
1376
1377         for (i = 0; i < nslots; i++) {
1378                 /* Allocate a PaRAM slot, if needed */
1379                 if (echan->slot[i] < 0) {
1380                         echan->slot[i] =
1381                                 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1382                         if (echan->slot[i] < 0) {
1383                                 kfree(edesc);
1384                                 dev_err(dev, "%s: Failed to allocate slot\n",
1385                                         __func__);
1386                                 return NULL;
1387                         }
1388                 }
1389
1390                 if (i == nslots - 1) {
1391                         memcpy(&edesc->pset[i], &edesc->pset[0],
1392                                sizeof(edesc->pset[0]));
1393                         break;
1394                 }
1395
1396                 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1397                                        dst_addr, burst, dev_width, period_len,
1398                                        direction);
1399                 if (ret < 0) {
1400                         kfree(edesc);
1401                         return NULL;
1402                 }
1403
1404                 if (direction == DMA_DEV_TO_MEM)
1405                         dst_addr += period_len;
1406                 else
1407                         src_addr += period_len;
1408
1409                 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1410                 dev_vdbg(dev,
1411                         "\n pset[%d]:\n"
1412                         "  chnum\t%d\n"
1413                         "  slot\t%d\n"
1414                         "  opt\t%08x\n"
1415                         "  src\t%08x\n"
1416                         "  dst\t%08x\n"
1417                         "  abcnt\t%08x\n"
1418                         "  ccnt\t%08x\n"
1419                         "  bidx\t%08x\n"
1420                         "  cidx\t%08x\n"
1421                         "  lkrld\t%08x\n",
1422                         i, echan->ch_num, echan->slot[i],
1423                         edesc->pset[i].param.opt,
1424                         edesc->pset[i].param.src,
1425                         edesc->pset[i].param.dst,
1426                         edesc->pset[i].param.a_b_cnt,
1427                         edesc->pset[i].param.ccnt,
1428                         edesc->pset[i].param.src_dst_bidx,
1429                         edesc->pset[i].param.src_dst_cidx,
1430                         edesc->pset[i].param.link_bcntrld);
1431
1432                 edesc->absync = ret;
1433
1434                 /*
1435                  * Enable period interrupt only if it is requested
1436                  */
1437                 if (tx_flags & DMA_PREP_INTERRUPT) {
1438                         edesc->pset[i].param.opt |= TCINTEN;
1439
1440                         /* Also enable intermediate interrupts if necessary */
1441                         if (use_intermediate)
1442                                 edesc->pset[i].param.opt |= ITCINTEN;
1443                 }
1444         }
1445
1446         /* Place the cyclic channel to highest priority queue */
1447         if (!echan->tc)
1448                 edma_assign_channel_eventq(echan, EVENTQ_0);
1449
1450         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1451 }
1452
1453 static void edma_completion_handler(struct edma_chan *echan)
1454 {
1455         struct device *dev = echan->vchan.chan.device->dev;
1456         struct edma_desc *edesc;
1457
1458         spin_lock(&echan->vchan.lock);
1459         edesc = echan->edesc;
1460         if (edesc) {
1461                 if (edesc->cyclic) {
1462                         vchan_cyclic_callback(&edesc->vdesc);
1463                         spin_unlock(&echan->vchan.lock);
1464                         return;
1465                 } else if (edesc->processed == edesc->pset_nr) {
1466                         edesc->residue = 0;
1467                         edma_stop(echan);
1468                         vchan_cookie_complete(&edesc->vdesc);
1469                         echan->edesc = NULL;
1470
1471                         dev_dbg(dev, "Transfer completed on channel %d\n",
1472                                 echan->ch_num);
1473                 } else {
1474                         dev_dbg(dev, "Sub transfer completed on channel %d\n",
1475                                 echan->ch_num);
1476
1477                         edma_pause(echan);
1478
1479                         /* Update statistics for tx_status */
1480                         edesc->residue -= edesc->sg_len;
1481                         edesc->residue_stat = edesc->residue;
1482                         edesc->processed_stat = edesc->processed;
1483                 }
1484                 edma_execute(echan);
1485         }
1486
1487         spin_unlock(&echan->vchan.lock);
1488 }
1489
1490 /* eDMA interrupt handler */
1491 static irqreturn_t dma_irq_handler(int irq, void *data)
1492 {
1493         struct edma_cc *ecc = data;
1494         int ctlr;
1495         u32 sh_ier;
1496         u32 sh_ipr;
1497         u32 bank;
1498
1499         ctlr = ecc->id;
1500         if (ctlr < 0)
1501                 return IRQ_NONE;
1502
1503         dev_vdbg(ecc->dev, "dma_irq_handler\n");
1504
1505         sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1506         if (!sh_ipr) {
1507                 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1508                 if (!sh_ipr)
1509                         return IRQ_NONE;
1510                 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1511                 bank = 1;
1512         } else {
1513                 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1514                 bank = 0;
1515         }
1516
1517         do {
1518                 u32 slot;
1519                 u32 channel;
1520
1521                 slot = __ffs(sh_ipr);
1522                 sh_ipr &= ~(BIT(slot));
1523
1524                 if (sh_ier & BIT(slot)) {
1525                         channel = (bank << 5) | slot;
1526                         /* Clear the corresponding IPR bits */
1527                         edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1528                         edma_completion_handler(&ecc->slave_chans[channel]);
1529                 }
1530         } while (sh_ipr);
1531
1532         edma_shadow0_write(ecc, SH_IEVAL, 1);
1533         return IRQ_HANDLED;
1534 }
1535
1536 static void edma_error_handler(struct edma_chan *echan)
1537 {
1538         struct edma_cc *ecc = echan->ecc;
1539         struct device *dev = echan->vchan.chan.device->dev;
1540         struct edmacc_param p;
1541         int err;
1542
1543         if (!echan->edesc)
1544                 return;
1545
1546         spin_lock(&echan->vchan.lock);
1547
1548         err = edma_read_slot(ecc, echan->slot[0], &p);
1549
1550         /*
1551          * Issue later based on missed flag which will be sure
1552          * to happen as:
1553          * (1) we finished transmitting an intermediate slot and
1554          *     edma_execute is coming up.
1555          * (2) or we finished current transfer and issue will
1556          *     call edma_execute.
1557          *
1558          * Important note: issuing can be dangerous here and
1559          * lead to some nasty recursion when we are in a NULL
1560          * slot. So we avoid doing so and set the missed flag.
1561          */
1562         if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1563                 dev_dbg(dev, "Error on null slot, setting miss\n");
1564                 echan->missed = 1;
1565         } else {
1566                 /*
1567                  * The slot is already programmed but the event got
1568                  * missed, so its safe to issue it here.
1569                  */
1570                 dev_dbg(dev, "Missed event, TRIGGERING\n");
1571                 edma_clean_channel(echan);
1572                 edma_stop(echan);
1573                 edma_start(echan);
1574                 edma_trigger_channel(echan);
1575         }
1576         spin_unlock(&echan->vchan.lock);
1577 }
1578
1579 static inline bool edma_error_pending(struct edma_cc *ecc)
1580 {
1581         if (edma_read_array(ecc, EDMA_EMR, 0) ||
1582             edma_read_array(ecc, EDMA_EMR, 1) ||
1583             edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1584                 return true;
1585
1586         return false;
1587 }
1588
1589 /* eDMA error interrupt handler */
1590 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1591 {
1592         struct edma_cc *ecc = data;
1593         int i, j;
1594         int ctlr;
1595         unsigned int cnt = 0;
1596         unsigned int val;
1597
1598         ctlr = ecc->id;
1599         if (ctlr < 0)
1600                 return IRQ_NONE;
1601
1602         dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1603
1604         if (!edma_error_pending(ecc)) {
1605                 /*
1606                  * The registers indicate no pending error event but the irq
1607                  * handler has been called.
1608                  * Ask eDMA to re-evaluate the error registers.
1609                  */
1610                 dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1611                         __func__);
1612                 edma_write(ecc, EDMA_EEVAL, 1);
1613                 return IRQ_NONE;
1614         }
1615
1616         while (1) {
1617                 /* Event missed register(s) */
1618                 for (j = 0; j < 2; j++) {
1619                         unsigned long emr;
1620
1621                         val = edma_read_array(ecc, EDMA_EMR, j);
1622                         if (!val)
1623                                 continue;
1624
1625                         dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1626                         emr = val;
1627                         for_each_set_bit(i, &emr, 32) {
1628                                 int k = (j << 5) + i;
1629
1630                                 /* Clear the corresponding EMR bits */
1631                                 edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1632                                 /* Clear any SER */
1633                                 edma_shadow0_write_array(ecc, SH_SECR, j,
1634                                                          BIT(i));
1635                                 edma_error_handler(&ecc->slave_chans[k]);
1636                         }
1637                 }
1638
1639                 val = edma_read(ecc, EDMA_QEMR);
1640                 if (val) {
1641                         dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1642                         /* Not reported, just clear the interrupt reason. */
1643                         edma_write(ecc, EDMA_QEMCR, val);
1644                         edma_shadow0_write(ecc, SH_QSECR, val);
1645                 }
1646
1647                 val = edma_read(ecc, EDMA_CCERR);
1648                 if (val) {
1649                         dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1650                         /* Not reported, just clear the interrupt reason. */
1651                         edma_write(ecc, EDMA_CCERRCLR, val);
1652                 }
1653
1654                 if (!edma_error_pending(ecc))
1655                         break;
1656                 cnt++;
1657                 if (cnt > 10)
1658                         break;
1659         }
1660         edma_write(ecc, EDMA_EEVAL, 1);
1661         return IRQ_HANDLED;
1662 }
1663
1664 /* Alloc channel resources */
1665 static int edma_alloc_chan_resources(struct dma_chan *chan)
1666 {
1667         struct edma_chan *echan = to_edma_chan(chan);
1668         struct edma_cc *ecc = echan->ecc;
1669         struct device *dev = ecc->dev;
1670         enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1671         int ret;
1672
1673         if (echan->tc) {
1674                 eventq_no = echan->tc->id;
1675         } else if (ecc->tc_list) {
1676                 /* memcpy channel */
1677                 echan->tc = &ecc->tc_list[ecc->info->default_queue];
1678                 eventq_no = echan->tc->id;
1679         }
1680
1681         ret = edma_alloc_channel(echan, eventq_no);
1682         if (ret)
1683                 return ret;
1684
1685         echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1686         if (echan->slot[0] < 0) {
1687                 dev_err(dev, "Entry slot allocation failed for channel %u\n",
1688                         EDMA_CHAN_SLOT(echan->ch_num));
1689                 ret = echan->slot[0];
1690                 goto err_slot;
1691         }
1692
1693         /* Set up channel -> slot mapping for the entry slot */
1694         edma_set_chmap(echan, echan->slot[0]);
1695         echan->alloced = true;
1696
1697         dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1698                 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1699                 echan->hw_triggered ? "HW" : "SW");
1700
1701         return 0;
1702
1703 err_slot:
1704         edma_free_channel(echan);
1705         return ret;
1706 }
1707
1708 /* Free channel resources */
1709 static void edma_free_chan_resources(struct dma_chan *chan)
1710 {
1711         struct edma_chan *echan = to_edma_chan(chan);
1712         struct device *dev = echan->ecc->dev;
1713         int i;
1714
1715         /* Terminate transfers */
1716         edma_stop(echan);
1717
1718         vchan_free_chan_resources(&echan->vchan);
1719
1720         /* Free EDMA PaRAM slots */
1721         for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1722                 if (echan->slot[i] >= 0) {
1723                         edma_free_slot(echan->ecc, echan->slot[i]);
1724                         echan->slot[i] = -1;
1725                 }
1726         }
1727
1728         /* Set entry slot to the dummy slot */
1729         edma_set_chmap(echan, echan->ecc->dummy_slot);
1730
1731         /* Free EDMA channel */
1732         if (echan->alloced) {
1733                 edma_free_channel(echan);
1734                 echan->alloced = false;
1735         }
1736
1737         echan->tc = NULL;
1738         echan->hw_triggered = false;
1739
1740         dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1741                 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1742 }
1743
1744 /* Send pending descriptor to hardware */
1745 static void edma_issue_pending(struct dma_chan *chan)
1746 {
1747         struct edma_chan *echan = to_edma_chan(chan);
1748         unsigned long flags;
1749
1750         spin_lock_irqsave(&echan->vchan.lock, flags);
1751         if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1752                 edma_execute(echan);
1753         spin_unlock_irqrestore(&echan->vchan.lock, flags);
1754 }
1755
1756 /*
1757  * This limit exists to avoid a possible infinite loop when waiting for proof
1758  * that a particular transfer is completed. This limit can be hit if there
1759  * are large bursts to/from slow devices or the CPU is never able to catch
1760  * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART
1761  * RX-FIFO, as many as 55 loops have been seen.
1762  */
1763 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1764
1765 static u32 edma_residue(struct edma_desc *edesc)
1766 {
1767         bool dst = edesc->direction == DMA_DEV_TO_MEM;
1768         int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1769         struct edma_chan *echan = edesc->echan;
1770         struct edma_pset *pset = edesc->pset;
1771         dma_addr_t done, pos, pos_old;
1772         int channel = EDMA_CHAN_SLOT(echan->ch_num);
1773         int idx = EDMA_REG_ARRAY_INDEX(channel);
1774         int ch_bit = EDMA_CHANNEL_BIT(channel);
1775         int event_reg;
1776         int i;
1777
1778         /*
1779          * We always read the dst/src position from the first RamPar
1780          * pset. That's the one which is active now.
1781          */
1782         pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1783
1784         /*
1785          * "pos" may represent a transfer request that is still being
1786          * processed by the EDMACC or EDMATC. We will busy wait until
1787          * any one of the situations occurs:
1788          *   1. while and event is pending for the channel
1789          *   2. a position updated
1790          *   3. we hit the loop limit
1791          */
1792         if (is_slave_direction(edesc->direction))
1793                 event_reg = SH_ER;
1794         else
1795                 event_reg = SH_ESR;
1796
1797         pos_old = pos;
1798         while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1799                 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1800                 if (pos != pos_old)
1801                         break;
1802
1803                 if (!--loop_count) {
1804                         dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1805                                 "%s: timeout waiting for PaRAM update\n",
1806                                 __func__);
1807                         break;
1808                 }
1809
1810                 cpu_relax();
1811         }
1812
1813         /*
1814          * Cyclic is simple. Just subtract pset[0].addr from pos.
1815          *
1816          * We never update edesc->residue in the cyclic case, so we
1817          * can tell the remaining room to the end of the circular
1818          * buffer.
1819          */
1820         if (edesc->cyclic) {
1821                 done = pos - pset->addr;
1822                 edesc->residue_stat = edesc->residue - done;
1823                 return edesc->residue_stat;
1824         }
1825
1826         /*
1827          * If the position is 0, then EDMA loaded the closing dummy slot, the
1828          * transfer is completed
1829          */
1830         if (!pos)
1831                 return 0;
1832         /*
1833          * For SG operation we catch up with the last processed
1834          * status.
1835          */
1836         pset += edesc->processed_stat;
1837
1838         for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1839                 /*
1840                  * If we are inside this pset address range, we know
1841                  * this is the active one. Get the current delta and
1842                  * stop walking the psets.
1843                  */
1844                 if (pos >= pset->addr && pos < pset->addr + pset->len)
1845                         return edesc->residue_stat - (pos - pset->addr);
1846
1847                 /* Otherwise mark it done and update residue_stat. */
1848                 edesc->processed_stat++;
1849                 edesc->residue_stat -= pset->len;
1850         }
1851         return edesc->residue_stat;
1852 }
1853
1854 /* Check request completion status */
1855 static enum dma_status edma_tx_status(struct dma_chan *chan,
1856                                       dma_cookie_t cookie,
1857                                       struct dma_tx_state *txstate)
1858 {
1859         struct edma_chan *echan = to_edma_chan(chan);
1860         struct dma_tx_state txstate_tmp;
1861         enum dma_status ret;
1862         unsigned long flags;
1863
1864         ret = dma_cookie_status(chan, cookie, txstate);
1865
1866         if (ret == DMA_COMPLETE)
1867                 return ret;
1868
1869         /* Provide a dummy dma_tx_state for completion checking */
1870         if (!txstate)
1871                 txstate = &txstate_tmp;
1872
1873         spin_lock_irqsave(&echan->vchan.lock, flags);
1874         if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1875                 txstate->residue = edma_residue(echan->edesc);
1876         } else {
1877                 struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1878                                                               cookie);
1879
1880                 if (vdesc)
1881                         txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1882                 else
1883                         txstate->residue = 0;
1884         }
1885
1886         /*
1887          * Mark the cookie completed if the residue is 0 for non cyclic
1888          * transfers
1889          */
1890         if (ret != DMA_COMPLETE && !txstate->residue &&
1891             echan->edesc && echan->edesc->polled &&
1892             echan->edesc->vdesc.tx.cookie == cookie) {
1893                 edma_stop(echan);
1894                 vchan_cookie_complete(&echan->edesc->vdesc);
1895                 echan->edesc = NULL;
1896                 edma_execute(echan);
1897                 ret = DMA_COMPLETE;
1898         }
1899
1900         spin_unlock_irqrestore(&echan->vchan.lock, flags);
1901
1902         return ret;
1903 }
1904
1905 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1906 {
1907         if (!memcpy_channels)
1908                 return false;
1909         while (*memcpy_channels != -1) {
1910                 if (*memcpy_channels == ch_num)
1911                         return true;
1912                 memcpy_channels++;
1913         }
1914         return false;
1915 }
1916
1917 #define EDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1918                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1919                                  BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1920                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1921
1922 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1923 {
1924         struct dma_device *s_ddev = &ecc->dma_slave;
1925         struct dma_device *m_ddev = NULL;
1926         s32 *memcpy_channels = ecc->info->memcpy_channels;
1927         int i, j;
1928
1929         dma_cap_zero(s_ddev->cap_mask);
1930         dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1931         dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1932         if (ecc->legacy_mode && !memcpy_channels) {
1933                 dev_warn(ecc->dev,
1934                          "Legacy memcpy is enabled, things might not work\n");
1935
1936                 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1937                 dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask);
1938                 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1939                 s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1940                 s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1941         }
1942
1943         s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1944         s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1945         s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1946         s_ddev->device_free_chan_resources = edma_free_chan_resources;
1947         s_ddev->device_issue_pending = edma_issue_pending;
1948         s_ddev->device_tx_status = edma_tx_status;
1949         s_ddev->device_config = edma_slave_config;
1950         s_ddev->device_pause = edma_dma_pause;
1951         s_ddev->device_resume = edma_dma_resume;
1952         s_ddev->device_terminate_all = edma_terminate_all;
1953         s_ddev->device_synchronize = edma_synchronize;
1954
1955         s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1956         s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1957         s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1958         s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1959         s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1960
1961         s_ddev->dev = ecc->dev;
1962         INIT_LIST_HEAD(&s_ddev->channels);
1963
1964         if (memcpy_channels) {
1965                 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1966                 if (!m_ddev) {
1967                         dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1968                         memcpy_channels = NULL;
1969                         goto ch_setup;
1970                 }
1971                 ecc->dma_memcpy = m_ddev;
1972
1973                 dma_cap_zero(m_ddev->cap_mask);
1974                 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1975                 dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask);
1976
1977                 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1978                 m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1979                 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1980                 m_ddev->device_free_chan_resources = edma_free_chan_resources;
1981                 m_ddev->device_issue_pending = edma_issue_pending;
1982                 m_ddev->device_tx_status = edma_tx_status;
1983                 m_ddev->device_config = edma_slave_config;
1984                 m_ddev->device_pause = edma_dma_pause;
1985                 m_ddev->device_resume = edma_dma_resume;
1986                 m_ddev->device_terminate_all = edma_terminate_all;
1987                 m_ddev->device_synchronize = edma_synchronize;
1988
1989                 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1990                 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1991                 m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1992                 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1993
1994                 m_ddev->dev = ecc->dev;
1995                 INIT_LIST_HEAD(&m_ddev->channels);
1996         } else if (!ecc->legacy_mode) {
1997                 dev_info(ecc->dev, "memcpy is disabled\n");
1998         }
1999
2000 ch_setup:
2001         for (i = 0; i < ecc->num_channels; i++) {
2002                 struct edma_chan *echan = &ecc->slave_chans[i];
2003                 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
2004                 echan->ecc = ecc;
2005                 echan->vchan.desc_free = edma_desc_free;
2006
2007                 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
2008                         vchan_init(&echan->vchan, m_ddev);
2009                 else
2010                         vchan_init(&echan->vchan, s_ddev);
2011
2012                 INIT_LIST_HEAD(&echan->node);
2013                 for (j = 0; j < EDMA_MAX_SLOTS; j++)
2014                         echan->slot[j] = -1;
2015         }
2016 }
2017
2018 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
2019                               struct edma_cc *ecc)
2020 {
2021         int i;
2022         u32 value, cccfg;
2023         s8 (*queue_priority_map)[2];
2024
2025         /* Decode the eDMA3 configuration from CCCFG register */
2026         cccfg = edma_read(ecc, EDMA_CCCFG);
2027
2028         value = GET_NUM_REGN(cccfg);
2029         ecc->num_region = BIT(value);
2030
2031         value = GET_NUM_DMACH(cccfg);
2032         ecc->num_channels = BIT(value + 1);
2033
2034         value = GET_NUM_QDMACH(cccfg);
2035         ecc->num_qchannels = value * 2;
2036
2037         value = GET_NUM_PAENTRY(cccfg);
2038         ecc->num_slots = BIT(value + 4);
2039
2040         value = GET_NUM_EVQUE(cccfg);
2041         ecc->num_tc = value + 1;
2042
2043         ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2044
2045         dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2046         dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2047         dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2048         dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2049         dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2050         dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2051         dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2052
2053         /* Nothing need to be done if queue priority is provided */
2054         if (pdata->queue_priority_mapping)
2055                 return 0;
2056
2057         /*
2058          * Configure TC/queue priority as follows:
2059          * Q0 - priority 0
2060          * Q1 - priority 1
2061          * Q2 - priority 2
2062          * ...
2063          * The meaning of priority numbers: 0 highest priority, 7 lowest
2064          * priority. So Q0 is the highest priority queue and the last queue has
2065          * the lowest priority.
2066          */
2067         queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2068                                           GFP_KERNEL);
2069         if (!queue_priority_map)
2070                 return -ENOMEM;
2071
2072         for (i = 0; i < ecc->num_tc; i++) {
2073                 queue_priority_map[i][0] = i;
2074                 queue_priority_map[i][1] = i;
2075         }
2076         queue_priority_map[i][0] = -1;
2077         queue_priority_map[i][1] = -1;
2078
2079         pdata->queue_priority_mapping = queue_priority_map;
2080         /* Default queue has the lowest priority */
2081         pdata->default_queue = i - 1;
2082
2083         return 0;
2084 }
2085
2086 #if IS_ENABLED(CONFIG_OF)
2087 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2088                                size_t sz)
2089 {
2090         const char pname[] = "ti,edma-xbar-event-map";
2091         struct resource res;
2092         void __iomem *xbar;
2093         s16 (*xbar_chans)[2];
2094         size_t nelm = sz / sizeof(s16);
2095         u32 shift, offset, mux;
2096         int ret, i;
2097
2098         xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2099         if (!xbar_chans)
2100                 return -ENOMEM;
2101
2102         ret = of_address_to_resource(dev->of_node, 1, &res);
2103         if (ret)
2104                 return -ENOMEM;
2105
2106         xbar = devm_ioremap(dev, res.start, resource_size(&res));
2107         if (!xbar)
2108                 return -ENOMEM;
2109
2110         ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2111                                          nelm);
2112         if (ret)
2113                 return -EIO;
2114
2115         /* Invalidate last entry for the other user of this mess */
2116         nelm >>= 1;
2117         xbar_chans[nelm][0] = -1;
2118         xbar_chans[nelm][1] = -1;
2119
2120         for (i = 0; i < nelm; i++) {
2121                 shift = (xbar_chans[i][1] & 0x03) << 3;
2122                 offset = xbar_chans[i][1] & 0xfffffffc;
2123                 mux = readl(xbar + offset);
2124                 mux &= ~(0xff << shift);
2125                 mux |= xbar_chans[i][0] << shift;
2126                 writel(mux, (xbar + offset));
2127         }
2128
2129         pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2130         return 0;
2131 }
2132
2133 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2134                                                      bool legacy_mode)
2135 {
2136         struct edma_soc_info *info;
2137         struct property *prop;
2138         int sz, ret;
2139
2140         info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2141         if (!info)
2142                 return ERR_PTR(-ENOMEM);
2143
2144         if (legacy_mode) {
2145                 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2146                                         &sz);
2147                 if (prop) {
2148                         ret = edma_xbar_event_map(dev, info, sz);
2149                         if (ret)
2150                                 return ERR_PTR(ret);
2151                 }
2152                 return info;
2153         }
2154
2155         /* Get the list of channels allocated to be used for memcpy */
2156         prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2157         if (prop) {
2158                 const char pname[] = "ti,edma-memcpy-channels";
2159                 size_t nelm = sz / sizeof(s32);
2160                 s32 *memcpy_ch;
2161
2162                 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2163                                          GFP_KERNEL);
2164                 if (!memcpy_ch)
2165                         return ERR_PTR(-ENOMEM);
2166
2167                 ret = of_property_read_u32_array(dev->of_node, pname,
2168                                                  (u32 *)memcpy_ch, nelm);
2169                 if (ret)
2170                         return ERR_PTR(ret);
2171
2172                 memcpy_ch[nelm] = -1;
2173                 info->memcpy_channels = memcpy_ch;
2174         }
2175
2176         prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2177                                 &sz);
2178         if (prop) {
2179                 const char pname[] = "ti,edma-reserved-slot-ranges";
2180                 u32 (*tmp)[2];
2181                 s16 (*rsv_slots)[2];
2182                 size_t nelm = sz / sizeof(*tmp);
2183                 struct edma_rsv_info *rsv_info;
2184                 int i;
2185
2186                 if (!nelm)
2187                         return info;
2188
2189                 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2190                 if (!tmp)
2191                         return ERR_PTR(-ENOMEM);
2192
2193                 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2194                 if (!rsv_info) {
2195                         kfree(tmp);
2196                         return ERR_PTR(-ENOMEM);
2197                 }
2198
2199                 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2200                                          GFP_KERNEL);
2201                 if (!rsv_slots) {
2202                         kfree(tmp);
2203                         return ERR_PTR(-ENOMEM);
2204                 }
2205
2206                 ret = of_property_read_u32_array(dev->of_node, pname,
2207                                                  (u32 *)tmp, nelm * 2);
2208                 if (ret) {
2209                         kfree(tmp);
2210                         return ERR_PTR(ret);
2211                 }
2212
2213                 for (i = 0; i < nelm; i++) {
2214                         rsv_slots[i][0] = tmp[i][0];
2215                         rsv_slots[i][1] = tmp[i][1];
2216                 }
2217                 rsv_slots[nelm][0] = -1;
2218                 rsv_slots[nelm][1] = -1;
2219
2220                 info->rsv = rsv_info;
2221                 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2222
2223                 kfree(tmp);
2224         }
2225
2226         return info;
2227 }
2228
2229 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2230                                       struct of_dma *ofdma)
2231 {
2232         struct edma_cc *ecc = ofdma->of_dma_data;
2233         struct dma_chan *chan = NULL;
2234         struct edma_chan *echan;
2235         int i;
2236
2237         if (!ecc || dma_spec->args_count < 1)
2238                 return NULL;
2239
2240         for (i = 0; i < ecc->num_channels; i++) {
2241                 echan = &ecc->slave_chans[i];
2242                 if (echan->ch_num == dma_spec->args[0]) {
2243                         chan = &echan->vchan.chan;
2244                         break;
2245                 }
2246         }
2247
2248         if (!chan)
2249                 return NULL;
2250
2251         if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2252                 goto out;
2253
2254         if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2255             dma_spec->args[1] < echan->ecc->num_tc) {
2256                 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2257                 goto out;
2258         }
2259
2260         return NULL;
2261 out:
2262         /* The channel is going to be used as HW synchronized */
2263         echan->hw_triggered = true;
2264         return dma_get_slave_channel(chan);
2265 }
2266 #else
2267 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2268                                                      bool legacy_mode)
2269 {
2270         return ERR_PTR(-EINVAL);
2271 }
2272
2273 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2274                                       struct of_dma *ofdma)
2275 {
2276         return NULL;
2277 }
2278 #endif
2279
2280 static bool edma_filter_fn(struct dma_chan *chan, void *param);
2281
2282 static int edma_probe(struct platform_device *pdev)
2283 {
2284         struct edma_soc_info    *info = pdev->dev.platform_data;
2285         s8                      (*queue_priority_mapping)[2];
2286         const s16               (*reserved)[2];
2287         int                     i, irq;
2288         char                    *irq_name;
2289         struct resource         *mem;
2290         struct device_node      *node = pdev->dev.of_node;
2291         struct device           *dev = &pdev->dev;
2292         struct edma_cc          *ecc;
2293         bool                    legacy_mode = true;
2294         int ret;
2295
2296         if (node) {
2297                 const struct of_device_id *match;
2298
2299                 match = of_match_node(edma_of_ids, node);
2300                 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2301                         legacy_mode = false;
2302
2303                 info = edma_setup_info_from_dt(dev, legacy_mode);
2304                 if (IS_ERR(info)) {
2305                         dev_err(dev, "failed to get DT data\n");
2306                         return PTR_ERR(info);
2307                 }
2308         }
2309
2310         if (!info)
2311                 return -ENODEV;
2312
2313         ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2314         if (ret)
2315                 return ret;
2316
2317         ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2318         if (!ecc)
2319                 return -ENOMEM;
2320
2321         ecc->dev = dev;
2322         ecc->id = pdev->id;
2323         ecc->legacy_mode = legacy_mode;
2324         /* When booting with DT the pdev->id is -1 */
2325         if (ecc->id < 0)
2326                 ecc->id = 0;
2327
2328         mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2329         if (!mem) {
2330                 dev_dbg(dev, "mem resource not found, using index 0\n");
2331                 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2332                 if (!mem) {
2333                         dev_err(dev, "no mem resource?\n");
2334                         return -ENODEV;
2335                 }
2336         }
2337         ecc->base = devm_ioremap_resource(dev, mem);
2338         if (IS_ERR(ecc->base))
2339                 return PTR_ERR(ecc->base);
2340
2341         platform_set_drvdata(pdev, ecc);
2342
2343         pm_runtime_enable(dev);
2344         ret = pm_runtime_get_sync(dev);
2345         if (ret < 0) {
2346                 dev_err(dev, "pm_runtime_get_sync() failed\n");
2347                 pm_runtime_disable(dev);
2348                 return ret;
2349         }
2350
2351         /* Get eDMA3 configuration from IP */
2352         ret = edma_setup_from_hw(dev, info, ecc);
2353         if (ret)
2354                 goto err_disable_pm;
2355
2356         /* Allocate memory based on the information we got from the IP */
2357         ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2358                                         sizeof(*ecc->slave_chans), GFP_KERNEL);
2359
2360         ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2361                                        sizeof(unsigned long), GFP_KERNEL);
2362
2363         ecc->channels_mask = devm_kcalloc(dev,
2364                                            BITS_TO_LONGS(ecc->num_channels),
2365                                            sizeof(unsigned long), GFP_KERNEL);
2366         if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
2367                 ret = -ENOMEM;
2368                 goto err_disable_pm;
2369         }
2370
2371         /* Mark all channels available initially */
2372         bitmap_fill(ecc->channels_mask, ecc->num_channels);
2373
2374         ecc->default_queue = info->default_queue;
2375
2376         if (info->rsv) {
2377                 /* Set the reserved slots in inuse list */
2378                 reserved = info->rsv->rsv_slots;
2379                 if (reserved) {
2380                         for (i = 0; reserved[i][0] != -1; i++)
2381                                 bitmap_set(ecc->slot_inuse, reserved[i][0],
2382                                            reserved[i][1]);
2383                 }
2384
2385                 /* Clear channels not usable for Linux */
2386                 reserved = info->rsv->rsv_chans;
2387                 if (reserved) {
2388                         for (i = 0; reserved[i][0] != -1; i++)
2389                                 bitmap_clear(ecc->channels_mask, reserved[i][0],
2390                                              reserved[i][1]);
2391                 }
2392         }
2393
2394         for (i = 0; i < ecc->num_slots; i++) {
2395                 /* Reset only unused - not reserved - paRAM slots */
2396                 if (!test_bit(i, ecc->slot_inuse))
2397                         edma_write_slot(ecc, i, &dummy_paramset);
2398         }
2399
2400         irq = platform_get_irq_byname(pdev, "edma3_ccint");
2401         if (irq < 0 && node)
2402                 irq = irq_of_parse_and_map(node, 0);
2403
2404         if (irq > 0) {
2405                 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2406                                           dev_name(dev));
2407                 if (!irq_name) {
2408                         ret = -ENOMEM;
2409                         goto err_disable_pm;
2410                 }
2411
2412                 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2413                                        ecc);
2414                 if (ret) {
2415                         dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2416                         goto err_disable_pm;
2417                 }
2418                 ecc->ccint = irq;
2419         }
2420
2421         irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2422         if (irq < 0 && node)
2423                 irq = irq_of_parse_and_map(node, 2);
2424
2425         if (irq > 0) {
2426                 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2427                                           dev_name(dev));
2428                 if (!irq_name) {
2429                         ret = -ENOMEM;
2430                         goto err_disable_pm;
2431                 }
2432
2433                 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2434                                        ecc);
2435                 if (ret) {
2436                         dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2437                         goto err_disable_pm;
2438                 }
2439                 ecc->ccerrint = irq;
2440         }
2441
2442         ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2443         if (ecc->dummy_slot < 0) {
2444                 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2445                 ret = ecc->dummy_slot;
2446                 goto err_disable_pm;
2447         }
2448
2449         queue_priority_mapping = info->queue_priority_mapping;
2450
2451         if (!ecc->legacy_mode) {
2452                 int lowest_priority = 0;
2453                 unsigned int array_max;
2454                 struct of_phandle_args tc_args;
2455
2456                 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2457                                             sizeof(*ecc->tc_list), GFP_KERNEL);
2458                 if (!ecc->tc_list) {
2459                         ret = -ENOMEM;
2460                         goto err_reg1;
2461                 }
2462
2463                 for (i = 0;; i++) {
2464                         ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2465                                                                1, i, &tc_args);
2466                         if (ret || i == ecc->num_tc)
2467                                 break;
2468
2469                         ecc->tc_list[i].node = tc_args.np;
2470                         ecc->tc_list[i].id = i;
2471                         queue_priority_mapping[i][1] = tc_args.args[0];
2472                         if (queue_priority_mapping[i][1] > lowest_priority) {
2473                                 lowest_priority = queue_priority_mapping[i][1];
2474                                 info->default_queue = i;
2475                         }
2476                 }
2477
2478                 /* See if we have optional dma-channel-mask array */
2479                 array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
2480                 ret = of_property_read_variable_u32_array(node,
2481                                                 "dma-channel-mask",
2482                                                 (u32 *)ecc->channels_mask,
2483                                                 1, array_max);
2484                 if (ret > 0 && ret != array_max)
2485                         dev_warn(dev, "dma-channel-mask is not complete.\n");
2486                 else if (ret == -EOVERFLOW || ret == -ENODATA)
2487                         dev_warn(dev,
2488                                  "dma-channel-mask is out of range or empty\n");
2489         }
2490
2491         /* Event queue priority mapping */
2492         for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2493                 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2494                                               queue_priority_mapping[i][1]);
2495
2496         edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2497         edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2498         edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2499
2500         ecc->info = info;
2501
2502         /* Init the dma device and channels */
2503         edma_dma_init(ecc, legacy_mode);
2504
2505         for (i = 0; i < ecc->num_channels; i++) {
2506                 /* Do not touch reserved channels */
2507                 if (!test_bit(i, ecc->channels_mask))
2508                         continue;
2509
2510                 /* Assign all channels to the default queue */
2511                 edma_assign_channel_eventq(&ecc->slave_chans[i],
2512                                            info->default_queue);
2513                 /* Set entry slot to the dummy slot */
2514                 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2515         }
2516
2517         ecc->dma_slave.filter.map = info->slave_map;
2518         ecc->dma_slave.filter.mapcnt = info->slavecnt;
2519         ecc->dma_slave.filter.fn = edma_filter_fn;
2520
2521         ret = dma_async_device_register(&ecc->dma_slave);
2522         if (ret) {
2523                 dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2524                 goto err_reg1;
2525         }
2526
2527         if (ecc->dma_memcpy) {
2528                 ret = dma_async_device_register(ecc->dma_memcpy);
2529                 if (ret) {
2530                         dev_err(dev, "memcpy ddev registration failed (%d)\n",
2531                                 ret);
2532                         dma_async_device_unregister(&ecc->dma_slave);
2533                         goto err_reg1;
2534                 }
2535         }
2536
2537         if (node)
2538                 of_dma_controller_register(node, of_edma_xlate, ecc);
2539
2540         dev_info(dev, "TI EDMA DMA engine driver\n");
2541
2542         return 0;
2543
2544 err_reg1:
2545         edma_free_slot(ecc, ecc->dummy_slot);
2546 err_disable_pm:
2547         pm_runtime_put_sync(dev);
2548         pm_runtime_disable(dev);
2549         return ret;
2550 }
2551
2552 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2553 {
2554         struct edma_chan *echan, *_echan;
2555
2556         list_for_each_entry_safe(echan, _echan,
2557                         &dmadev->channels, vchan.chan.device_node) {
2558                 list_del(&echan->vchan.chan.device_node);
2559                 tasklet_kill(&echan->vchan.task);
2560         }
2561 }
2562
2563 static void edma_remove(struct platform_device *pdev)
2564 {
2565         struct device *dev = &pdev->dev;
2566         struct edma_cc *ecc = dev_get_drvdata(dev);
2567
2568         devm_free_irq(dev, ecc->ccint, ecc);
2569         devm_free_irq(dev, ecc->ccerrint, ecc);
2570
2571         edma_cleanupp_vchan(&ecc->dma_slave);
2572
2573         if (dev->of_node)
2574                 of_dma_controller_free(dev->of_node);
2575         dma_async_device_unregister(&ecc->dma_slave);
2576         if (ecc->dma_memcpy)
2577                 dma_async_device_unregister(ecc->dma_memcpy);
2578         edma_free_slot(ecc, ecc->dummy_slot);
2579         pm_runtime_put_sync(dev);
2580         pm_runtime_disable(dev);
2581 }
2582
2583 #ifdef CONFIG_PM_SLEEP
2584 static int edma_pm_suspend(struct device *dev)
2585 {
2586         struct edma_cc *ecc = dev_get_drvdata(dev);
2587         struct edma_chan *echan = ecc->slave_chans;
2588         int i;
2589
2590         for (i = 0; i < ecc->num_channels; i++) {
2591                 if (echan[i].alloced)
2592                         edma_setup_interrupt(&echan[i], false);
2593         }
2594
2595         return 0;
2596 }
2597
2598 static int edma_pm_resume(struct device *dev)
2599 {
2600         struct edma_cc *ecc = dev_get_drvdata(dev);
2601         struct edma_chan *echan = ecc->slave_chans;
2602         int i;
2603         s8 (*queue_priority_mapping)[2];
2604
2605         /* re initialize dummy slot to dummy param set */
2606         edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2607
2608         queue_priority_mapping = ecc->info->queue_priority_mapping;
2609
2610         /* Event queue priority mapping */
2611         for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2612                 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2613                                               queue_priority_mapping[i][1]);
2614
2615         for (i = 0; i < ecc->num_channels; i++) {
2616                 if (echan[i].alloced) {
2617                         /* ensure access through shadow region 0 */
2618                         edma_or_array2(ecc, EDMA_DRAE, 0,
2619                                        EDMA_REG_ARRAY_INDEX(i),
2620                                        EDMA_CHANNEL_BIT(i));
2621
2622                         edma_setup_interrupt(&echan[i], true);
2623
2624                         /* Set up channel -> slot mapping for the entry slot */
2625                         edma_set_chmap(&echan[i], echan[i].slot[0]);
2626                 }
2627         }
2628
2629         return 0;
2630 }
2631 #endif
2632
2633 static const struct dev_pm_ops edma_pm_ops = {
2634         SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2635 };
2636
2637 static struct platform_driver edma_driver = {
2638         .probe          = edma_probe,
2639         .remove_new     = edma_remove,
2640         .driver = {
2641                 .name   = "edma",
2642                 .pm     = &edma_pm_ops,
2643                 .of_match_table = edma_of_ids,
2644         },
2645 };
2646
2647 static int edma_tptc_probe(struct platform_device *pdev)
2648 {
2649         pm_runtime_enable(&pdev->dev);
2650         return pm_runtime_get_sync(&pdev->dev);
2651 }
2652
2653 static struct platform_driver edma_tptc_driver = {
2654         .probe          = edma_tptc_probe,
2655         .driver = {
2656                 .name   = "edma3-tptc",
2657                 .of_match_table = edma_tptc_of_ids,
2658         },
2659 };
2660
2661 static bool edma_filter_fn(struct dma_chan *chan, void *param)
2662 {
2663         bool match = false;
2664
2665         if (chan->device->dev->driver == &edma_driver.driver) {
2666                 struct edma_chan *echan = to_edma_chan(chan);
2667                 unsigned ch_req = *(unsigned *)param;
2668                 if (ch_req == echan->ch_num) {
2669                         /* The channel is going to be used as HW synchronized */
2670                         echan->hw_triggered = true;
2671                         match = true;
2672                 }
2673         }
2674         return match;
2675 }
2676
2677 static int edma_init(void)
2678 {
2679         int ret;
2680
2681         ret = platform_driver_register(&edma_tptc_driver);
2682         if (ret)
2683                 return ret;
2684
2685         return platform_driver_register(&edma_driver);
2686 }
2687 subsys_initcall(edma_init);
2688
2689 static void __exit edma_exit(void)
2690 {
2691         platform_driver_unregister(&edma_driver);
2692         platform_driver_unregister(&edma_tptc_driver);
2693 }
2694 module_exit(edma_exit);
2695
2696 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2697 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2698 MODULE_LICENSE("GPL v2");