GNU Linux-libre 5.4.200-gnu1
[releases.git] / drivers / dma / tegra20-apb-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DMA driver for Nvidia's Tegra20 APB DMA controller.
4  *
5  * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/of_dma.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/reset.h>
26 #include <linux/slab.h>
27
28 #include "dmaengine.h"
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/tegra_apb_dma.h>
32
33 #define TEGRA_APBDMA_GENERAL                    0x0
34 #define TEGRA_APBDMA_GENERAL_ENABLE             BIT(31)
35
36 #define TEGRA_APBDMA_CONTROL                    0x010
37 #define TEGRA_APBDMA_IRQ_MASK                   0x01c
38 #define TEGRA_APBDMA_IRQ_MASK_SET               0x020
39
40 /* CSR register */
41 #define TEGRA_APBDMA_CHAN_CSR                   0x00
42 #define TEGRA_APBDMA_CSR_ENB                    BIT(31)
43 #define TEGRA_APBDMA_CSR_IE_EOC                 BIT(30)
44 #define TEGRA_APBDMA_CSR_HOLD                   BIT(29)
45 #define TEGRA_APBDMA_CSR_DIR                    BIT(28)
46 #define TEGRA_APBDMA_CSR_ONCE                   BIT(27)
47 #define TEGRA_APBDMA_CSR_FLOW                   BIT(21)
48 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT          16
49 #define TEGRA_APBDMA_CSR_REQ_SEL_MASK           0x1F
50 #define TEGRA_APBDMA_CSR_WCOUNT_MASK            0xFFFC
51
52 /* STATUS register */
53 #define TEGRA_APBDMA_CHAN_STATUS                0x004
54 #define TEGRA_APBDMA_STATUS_BUSY                BIT(31)
55 #define TEGRA_APBDMA_STATUS_ISE_EOC             BIT(30)
56 #define TEGRA_APBDMA_STATUS_HALT                BIT(29)
57 #define TEGRA_APBDMA_STATUS_PING_PONG           BIT(28)
58 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT         2
59 #define TEGRA_APBDMA_STATUS_COUNT_MASK          0xFFFC
60
61 #define TEGRA_APBDMA_CHAN_CSRE                  0x00C
62 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE            (1 << 31)
63
64 /* AHB memory address */
65 #define TEGRA_APBDMA_CHAN_AHBPTR                0x010
66
67 /* AHB sequence register */
68 #define TEGRA_APBDMA_CHAN_AHBSEQ                0x14
69 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB            BIT(31)
70 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8         (0 << 28)
71 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16        (1 << 28)
72 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32        (2 << 28)
73 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64        (3 << 28)
74 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128       (4 << 28)
75 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP           BIT(27)
76 #define TEGRA_APBDMA_AHBSEQ_BURST_1             (4 << 24)
77 #define TEGRA_APBDMA_AHBSEQ_BURST_4             (5 << 24)
78 #define TEGRA_APBDMA_AHBSEQ_BURST_8             (6 << 24)
79 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF             BIT(19)
80 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT          16
81 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE           0
82
83 /* APB address */
84 #define TEGRA_APBDMA_CHAN_APBPTR                0x018
85
86 /* APB sequence register */
87 #define TEGRA_APBDMA_CHAN_APBSEQ                0x01c
88 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8         (0 << 28)
89 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16        (1 << 28)
90 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32        (2 << 28)
91 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64        (3 << 28)
92 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128       (4 << 28)
93 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP           BIT(27)
94 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1         (1 << 16)
95
96 /* Tegra148 specific registers */
97 #define TEGRA_APBDMA_CHAN_WCOUNT                0x20
98
99 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER         0x24
100
101 /*
102  * If any burst is in flight and DMA paused then this is the time to complete
103  * on-flight burst and update DMA status register.
104  */
105 #define TEGRA_APBDMA_BURST_COMPLETE_TIME        20
106
107 /* Channel base address offset from APBDMA base address */
108 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET    0x1000
109
110 #define TEGRA_APBDMA_SLAVE_ID_INVALID   (TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
111
112 struct tegra_dma;
113
114 /*
115  * tegra_dma_chip_data Tegra chip specific DMA data
116  * @nr_channels: Number of channels available in the controller.
117  * @channel_reg_size: Channel register size/stride.
118  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
119  * @support_channel_pause: Support channel wise pause of dma.
120  * @support_separate_wcount_reg: Support separate word count register.
121  */
122 struct tegra_dma_chip_data {
123         int nr_channels;
124         int channel_reg_size;
125         int max_dma_count;
126         bool support_channel_pause;
127         bool support_separate_wcount_reg;
128 };
129
130 /* DMA channel registers */
131 struct tegra_dma_channel_regs {
132         unsigned long   csr;
133         unsigned long   ahb_ptr;
134         unsigned long   apb_ptr;
135         unsigned long   ahb_seq;
136         unsigned long   apb_seq;
137         unsigned long   wcount;
138 };
139
140 /*
141  * tegra_dma_sg_req: DMA request details to configure hardware. This
142  * contains the details for one transfer to configure DMA hw.
143  * The client's request for data transfer can be broken into multiple
144  * sub-transfer as per requester details and hw support.
145  * This sub transfer get added in the list of transfer and point to Tegra
146  * DMA descriptor which manages the transfer details.
147  */
148 struct tegra_dma_sg_req {
149         struct tegra_dma_channel_regs   ch_regs;
150         unsigned int                    req_len;
151         bool                            configured;
152         bool                            last_sg;
153         struct list_head                node;
154         struct tegra_dma_desc           *dma_desc;
155         unsigned int                    words_xferred;
156 };
157
158 /*
159  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
160  * This descriptor keep track of transfer status, callbacks and request
161  * counts etc.
162  */
163 struct tegra_dma_desc {
164         struct dma_async_tx_descriptor  txd;
165         unsigned int                    bytes_requested;
166         unsigned int                    bytes_transferred;
167         enum dma_status                 dma_status;
168         struct list_head                node;
169         struct list_head                tx_list;
170         struct list_head                cb_node;
171         int                             cb_count;
172 };
173
174 struct tegra_dma_channel;
175
176 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
177                                 bool to_terminate);
178
179 /* tegra_dma_channel: Channel specific information */
180 struct tegra_dma_channel {
181         struct dma_chan         dma_chan;
182         char                    name[12];
183         bool                    config_init;
184         int                     id;
185         int                     irq;
186         void __iomem            *chan_addr;
187         spinlock_t              lock;
188         bool                    busy;
189         struct tegra_dma        *tdma;
190         bool                    cyclic;
191
192         /* Different lists for managing the requests */
193         struct list_head        free_sg_req;
194         struct list_head        pending_sg_req;
195         struct list_head        free_dma_desc;
196         struct list_head        cb_desc;
197
198         /* ISR handler and tasklet for bottom half of isr handling */
199         dma_isr_handler         isr_handler;
200         struct tasklet_struct   tasklet;
201
202         /* Channel-slave specific configuration */
203         unsigned int slave_id;
204         struct dma_slave_config dma_sconfig;
205         struct tegra_dma_channel_regs   channel_reg;
206 };
207
208 /* tegra_dma: Tegra DMA specific information */
209 struct tegra_dma {
210         struct dma_device               dma_dev;
211         struct device                   *dev;
212         struct clk                      *dma_clk;
213         struct reset_control            *rst;
214         spinlock_t                      global_lock;
215         void __iomem                    *base_addr;
216         const struct tegra_dma_chip_data *chip_data;
217
218         /*
219          * Counter for managing global pausing of the DMA controller.
220          * Only applicable for devices that don't support individual
221          * channel pausing.
222          */
223         u32                             global_pause_count;
224
225         /* Some register need to be cache before suspend */
226         u32                             reg_gen;
227
228         /* Last member of the structure */
229         struct tegra_dma_channel channels[0];
230 };
231
232 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
233 {
234         writel(val, tdma->base_addr + reg);
235 }
236
237 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
238 {
239         return readl(tdma->base_addr + reg);
240 }
241
242 static inline void tdc_write(struct tegra_dma_channel *tdc,
243                 u32 reg, u32 val)
244 {
245         writel(val, tdc->chan_addr + reg);
246 }
247
248 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
249 {
250         return readl(tdc->chan_addr + reg);
251 }
252
253 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
254 {
255         return container_of(dc, struct tegra_dma_channel, dma_chan);
256 }
257
258 static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
259                 struct dma_async_tx_descriptor *td)
260 {
261         return container_of(td, struct tegra_dma_desc, txd);
262 }
263
264 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
265 {
266         return &tdc->dma_chan.dev->device;
267 }
268
269 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
270 static int tegra_dma_runtime_suspend(struct device *dev);
271 static int tegra_dma_runtime_resume(struct device *dev);
272
273 /* Get DMA desc from free list, if not there then allocate it.  */
274 static struct tegra_dma_desc *tegra_dma_desc_get(
275                 struct tegra_dma_channel *tdc)
276 {
277         struct tegra_dma_desc *dma_desc;
278         unsigned long flags;
279
280         spin_lock_irqsave(&tdc->lock, flags);
281
282         /* Do not allocate if desc are waiting for ack */
283         list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
284                 if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) {
285                         list_del(&dma_desc->node);
286                         spin_unlock_irqrestore(&tdc->lock, flags);
287                         dma_desc->txd.flags = 0;
288                         return dma_desc;
289                 }
290         }
291
292         spin_unlock_irqrestore(&tdc->lock, flags);
293
294         /* Allocate DMA desc */
295         dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
296         if (!dma_desc)
297                 return NULL;
298
299         dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
300         dma_desc->txd.tx_submit = tegra_dma_tx_submit;
301         dma_desc->txd.flags = 0;
302         return dma_desc;
303 }
304
305 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
306                 struct tegra_dma_desc *dma_desc)
307 {
308         unsigned long flags;
309
310         spin_lock_irqsave(&tdc->lock, flags);
311         if (!list_empty(&dma_desc->tx_list))
312                 list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
313         list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
314         spin_unlock_irqrestore(&tdc->lock, flags);
315 }
316
317 static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
318                 struct tegra_dma_channel *tdc)
319 {
320         struct tegra_dma_sg_req *sg_req = NULL;
321         unsigned long flags;
322
323         spin_lock_irqsave(&tdc->lock, flags);
324         if (!list_empty(&tdc->free_sg_req)) {
325                 sg_req = list_first_entry(&tdc->free_sg_req,
326                                         typeof(*sg_req), node);
327                 list_del(&sg_req->node);
328                 spin_unlock_irqrestore(&tdc->lock, flags);
329                 return sg_req;
330         }
331         spin_unlock_irqrestore(&tdc->lock, flags);
332
333         sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_NOWAIT);
334
335         return sg_req;
336 }
337
338 static int tegra_dma_slave_config(struct dma_chan *dc,
339                 struct dma_slave_config *sconfig)
340 {
341         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
342
343         if (!list_empty(&tdc->pending_sg_req)) {
344                 dev_err(tdc2dev(tdc), "Configuration not allowed\n");
345                 return -EBUSY;
346         }
347
348         memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
349         if (tdc->slave_id == TEGRA_APBDMA_SLAVE_ID_INVALID &&
350             sconfig->device_fc) {
351                 if (sconfig->slave_id > TEGRA_APBDMA_CSR_REQ_SEL_MASK)
352                         return -EINVAL;
353                 tdc->slave_id = sconfig->slave_id;
354         }
355         tdc->config_init = true;
356         return 0;
357 }
358
359 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
360         bool wait_for_burst_complete)
361 {
362         struct tegra_dma *tdma = tdc->tdma;
363
364         spin_lock(&tdma->global_lock);
365
366         if (tdc->tdma->global_pause_count == 0) {
367                 tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
368                 if (wait_for_burst_complete)
369                         udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
370         }
371
372         tdc->tdma->global_pause_count++;
373
374         spin_unlock(&tdma->global_lock);
375 }
376
377 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
378 {
379         struct tegra_dma *tdma = tdc->tdma;
380
381         spin_lock(&tdma->global_lock);
382
383         if (WARN_ON(tdc->tdma->global_pause_count == 0))
384                 goto out;
385
386         if (--tdc->tdma->global_pause_count == 0)
387                 tdma_write(tdma, TEGRA_APBDMA_GENERAL,
388                            TEGRA_APBDMA_GENERAL_ENABLE);
389
390 out:
391         spin_unlock(&tdma->global_lock);
392 }
393
394 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
395         bool wait_for_burst_complete)
396 {
397         struct tegra_dma *tdma = tdc->tdma;
398
399         if (tdma->chip_data->support_channel_pause) {
400                 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
401                                 TEGRA_APBDMA_CHAN_CSRE_PAUSE);
402                 if (wait_for_burst_complete)
403                         udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
404         } else {
405                 tegra_dma_global_pause(tdc, wait_for_burst_complete);
406         }
407 }
408
409 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
410 {
411         struct tegra_dma *tdma = tdc->tdma;
412
413         if (tdma->chip_data->support_channel_pause) {
414                 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
415         } else {
416                 tegra_dma_global_resume(tdc);
417         }
418 }
419
420 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
421 {
422         u32 csr;
423         u32 status;
424
425         /* Disable interrupts */
426         csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
427         csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
428         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
429
430         /* Disable DMA */
431         csr &= ~TEGRA_APBDMA_CSR_ENB;
432         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
433
434         /* Clear interrupt status if it is there */
435         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
436         if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
437                 dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
438                 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
439         }
440         tdc->busy = false;
441 }
442
443 static void tegra_dma_start(struct tegra_dma_channel *tdc,
444                 struct tegra_dma_sg_req *sg_req)
445 {
446         struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
447
448         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
449         tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
450         tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
451         tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
452         tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
453         if (tdc->tdma->chip_data->support_separate_wcount_reg)
454                 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
455
456         /* Start DMA */
457         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
458                                 ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
459 }
460
461 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
462                 struct tegra_dma_sg_req *nsg_req)
463 {
464         unsigned long status;
465
466         /*
467          * The DMA controller reloads the new configuration for next transfer
468          * after last burst of current transfer completes.
469          * If there is no IEC status then this makes sure that last burst
470          * has not be completed. There may be case that last burst is on
471          * flight and so it can complete but because DMA is paused, it
472          * will not generates interrupt as well as not reload the new
473          * configuration.
474          * If there is already IEC status then interrupt handler need to
475          * load new configuration.
476          */
477         tegra_dma_pause(tdc, false);
478         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
479
480         /*
481          * If interrupt is pending then do nothing as the ISR will handle
482          * the programing for new request.
483          */
484         if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
485                 dev_err(tdc2dev(tdc),
486                         "Skipping new configuration as interrupt is pending\n");
487                 tegra_dma_resume(tdc);
488                 return;
489         }
490
491         /* Safe to program new configuration */
492         tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
493         tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
494         if (tdc->tdma->chip_data->support_separate_wcount_reg)
495                 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
496                                                 nsg_req->ch_regs.wcount);
497         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
498                                 nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
499         nsg_req->configured = true;
500         nsg_req->words_xferred = 0;
501
502         tegra_dma_resume(tdc);
503 }
504
505 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
506 {
507         struct tegra_dma_sg_req *sg_req;
508
509         if (list_empty(&tdc->pending_sg_req))
510                 return;
511
512         sg_req = list_first_entry(&tdc->pending_sg_req,
513                                         typeof(*sg_req), node);
514         tegra_dma_start(tdc, sg_req);
515         sg_req->configured = true;
516         sg_req->words_xferred = 0;
517         tdc->busy = true;
518 }
519
520 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
521 {
522         struct tegra_dma_sg_req *hsgreq;
523         struct tegra_dma_sg_req *hnsgreq;
524
525         if (list_empty(&tdc->pending_sg_req))
526                 return;
527
528         hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
529         if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
530                 hnsgreq = list_first_entry(&hsgreq->node,
531                                         typeof(*hnsgreq), node);
532                 tegra_dma_configure_for_next(tdc, hnsgreq);
533         }
534 }
535
536 static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
537         struct tegra_dma_sg_req *sg_req, unsigned long status)
538 {
539         return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
540 }
541
542 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
543 {
544         struct tegra_dma_sg_req *sgreq;
545         struct tegra_dma_desc *dma_desc;
546
547         while (!list_empty(&tdc->pending_sg_req)) {
548                 sgreq = list_first_entry(&tdc->pending_sg_req,
549                                                 typeof(*sgreq), node);
550                 list_move_tail(&sgreq->node, &tdc->free_sg_req);
551                 if (sgreq->last_sg) {
552                         dma_desc = sgreq->dma_desc;
553                         dma_desc->dma_status = DMA_ERROR;
554                         list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
555
556                         /* Add in cb list if it is not there. */
557                         if (!dma_desc->cb_count)
558                                 list_add_tail(&dma_desc->cb_node,
559                                                         &tdc->cb_desc);
560                         dma_desc->cb_count++;
561                 }
562         }
563         tdc->isr_handler = NULL;
564 }
565
566 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
567                 struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
568 {
569         struct tegra_dma_sg_req *hsgreq = NULL;
570
571         if (list_empty(&tdc->pending_sg_req)) {
572                 dev_err(tdc2dev(tdc), "DMA is running without req\n");
573                 tegra_dma_stop(tdc);
574                 return false;
575         }
576
577         /*
578          * Check that head req on list should be in flight.
579          * If it is not in flight then abort transfer as
580          * looping of transfer can not continue.
581          */
582         hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
583         if (!hsgreq->configured) {
584                 tegra_dma_stop(tdc);
585                 dev_err(tdc2dev(tdc), "Error in DMA transfer, aborting DMA\n");
586                 tegra_dma_abort_all(tdc);
587                 return false;
588         }
589
590         /* Configure next request */
591         if (!to_terminate)
592                 tdc_configure_next_head_desc(tdc);
593         return true;
594 }
595
596 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
597         bool to_terminate)
598 {
599         struct tegra_dma_sg_req *sgreq;
600         struct tegra_dma_desc *dma_desc;
601
602         tdc->busy = false;
603         sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
604         dma_desc = sgreq->dma_desc;
605         dma_desc->bytes_transferred += sgreq->req_len;
606
607         list_del(&sgreq->node);
608         if (sgreq->last_sg) {
609                 dma_desc->dma_status = DMA_COMPLETE;
610                 dma_cookie_complete(&dma_desc->txd);
611                 if (!dma_desc->cb_count)
612                         list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
613                 dma_desc->cb_count++;
614                 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
615         }
616         list_add_tail(&sgreq->node, &tdc->free_sg_req);
617
618         /* Do not start DMA if it is going to be terminate */
619         if (to_terminate || list_empty(&tdc->pending_sg_req))
620                 return;
621
622         tdc_start_head_req(tdc);
623 }
624
625 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
626                 bool to_terminate)
627 {
628         struct tegra_dma_sg_req *sgreq;
629         struct tegra_dma_desc *dma_desc;
630         bool st;
631
632         sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
633         dma_desc = sgreq->dma_desc;
634         /* if we dma for long enough the transfer count will wrap */
635         dma_desc->bytes_transferred =
636                 (dma_desc->bytes_transferred + sgreq->req_len) %
637                 dma_desc->bytes_requested;
638
639         /* Callback need to be call */
640         if (!dma_desc->cb_count)
641                 list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
642         dma_desc->cb_count++;
643
644         sgreq->words_xferred = 0;
645
646         /* If not last req then put at end of pending list */
647         if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
648                 list_move_tail(&sgreq->node, &tdc->pending_sg_req);
649                 sgreq->configured = false;
650                 st = handle_continuous_head_request(tdc, sgreq, to_terminate);
651                 if (!st)
652                         dma_desc->dma_status = DMA_ERROR;
653         }
654 }
655
656 static void tegra_dma_tasklet(unsigned long data)
657 {
658         struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
659         struct dmaengine_desc_callback cb;
660         struct tegra_dma_desc *dma_desc;
661         unsigned long flags;
662         int cb_count;
663
664         spin_lock_irqsave(&tdc->lock, flags);
665         while (!list_empty(&tdc->cb_desc)) {
666                 dma_desc  = list_first_entry(&tdc->cb_desc,
667                                         typeof(*dma_desc), cb_node);
668                 list_del(&dma_desc->cb_node);
669                 dmaengine_desc_get_callback(&dma_desc->txd, &cb);
670                 cb_count = dma_desc->cb_count;
671                 dma_desc->cb_count = 0;
672                 trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
673                                             cb.callback);
674                 spin_unlock_irqrestore(&tdc->lock, flags);
675                 while (cb_count--)
676                         dmaengine_desc_callback_invoke(&cb, NULL);
677                 spin_lock_irqsave(&tdc->lock, flags);
678         }
679         spin_unlock_irqrestore(&tdc->lock, flags);
680 }
681
682 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
683 {
684         struct tegra_dma_channel *tdc = dev_id;
685         unsigned long status;
686         unsigned long flags;
687
688         spin_lock_irqsave(&tdc->lock, flags);
689
690         trace_tegra_dma_isr(&tdc->dma_chan, irq);
691         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
692         if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
693                 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
694                 tdc->isr_handler(tdc, false);
695                 tasklet_schedule(&tdc->tasklet);
696                 spin_unlock_irqrestore(&tdc->lock, flags);
697                 return IRQ_HANDLED;
698         }
699
700         spin_unlock_irqrestore(&tdc->lock, flags);
701         dev_info(tdc2dev(tdc),
702                 "Interrupt already served status 0x%08lx\n", status);
703         return IRQ_NONE;
704 }
705
706 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
707 {
708         struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
709         struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
710         unsigned long flags;
711         dma_cookie_t cookie;
712
713         spin_lock_irqsave(&tdc->lock, flags);
714         dma_desc->dma_status = DMA_IN_PROGRESS;
715         cookie = dma_cookie_assign(&dma_desc->txd);
716         list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
717         spin_unlock_irqrestore(&tdc->lock, flags);
718         return cookie;
719 }
720
721 static void tegra_dma_issue_pending(struct dma_chan *dc)
722 {
723         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
724         unsigned long flags;
725
726         spin_lock_irqsave(&tdc->lock, flags);
727         if (list_empty(&tdc->pending_sg_req)) {
728                 dev_err(tdc2dev(tdc), "No DMA request\n");
729                 goto end;
730         }
731         if (!tdc->busy) {
732                 tdc_start_head_req(tdc);
733
734                 /* Continuous single mode: Configure next req */
735                 if (tdc->cyclic) {
736                         /*
737                          * Wait for 1 burst time for configure DMA for
738                          * next transfer.
739                          */
740                         udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
741                         tdc_configure_next_head_desc(tdc);
742                 }
743         }
744 end:
745         spin_unlock_irqrestore(&tdc->lock, flags);
746 }
747
748 static int tegra_dma_terminate_all(struct dma_chan *dc)
749 {
750         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
751         struct tegra_dma_sg_req *sgreq;
752         struct tegra_dma_desc *dma_desc;
753         unsigned long flags;
754         unsigned long status;
755         unsigned long wcount;
756         bool was_busy;
757
758         spin_lock_irqsave(&tdc->lock, flags);
759
760         if (!tdc->busy)
761                 goto skip_dma_stop;
762
763         /* Pause DMA before checking the queue status */
764         tegra_dma_pause(tdc, true);
765
766         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
767         if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
768                 dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
769                 tdc->isr_handler(tdc, true);
770                 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
771         }
772         if (tdc->tdma->chip_data->support_separate_wcount_reg)
773                 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
774         else
775                 wcount = status;
776
777         was_busy = tdc->busy;
778         tegra_dma_stop(tdc);
779
780         if (!list_empty(&tdc->pending_sg_req) && was_busy) {
781                 sgreq = list_first_entry(&tdc->pending_sg_req,
782                                         typeof(*sgreq), node);
783                 sgreq->dma_desc->bytes_transferred +=
784                                 get_current_xferred_count(tdc, sgreq, wcount);
785         }
786         tegra_dma_resume(tdc);
787
788 skip_dma_stop:
789         tegra_dma_abort_all(tdc);
790
791         while (!list_empty(&tdc->cb_desc)) {
792                 dma_desc  = list_first_entry(&tdc->cb_desc,
793                                         typeof(*dma_desc), cb_node);
794                 list_del(&dma_desc->cb_node);
795                 dma_desc->cb_count = 0;
796         }
797         spin_unlock_irqrestore(&tdc->lock, flags);
798         return 0;
799 }
800
801 static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc,
802                                                struct tegra_dma_sg_req *sg_req)
803 {
804         unsigned long status, wcount = 0;
805
806         if (!list_is_first(&sg_req->node, &tdc->pending_sg_req))
807                 return 0;
808
809         if (tdc->tdma->chip_data->support_separate_wcount_reg)
810                 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
811
812         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
813
814         if (!tdc->tdma->chip_data->support_separate_wcount_reg)
815                 wcount = status;
816
817         if (status & TEGRA_APBDMA_STATUS_ISE_EOC)
818                 return sg_req->req_len;
819
820         wcount = get_current_xferred_count(tdc, sg_req, wcount);
821
822         if (!wcount) {
823                 /*
824                  * If wcount wasn't ever polled for this SG before, then
825                  * simply assume that transfer hasn't started yet.
826                  *
827                  * Otherwise it's the end of the transfer.
828                  *
829                  * The alternative would be to poll the status register
830                  * until EOC bit is set or wcount goes UP. That's so
831                  * because EOC bit is getting set only after the last
832                  * burst's completion and counter is less than the actual
833                  * transfer size by 4 bytes. The counter value wraps around
834                  * in a cyclic mode before EOC is set(!), so we can't easily
835                  * distinguish start of transfer from its end.
836                  */
837                 if (sg_req->words_xferred)
838                         wcount = sg_req->req_len - 4;
839
840         } else if (wcount < sg_req->words_xferred) {
841                 /*
842                  * This case will never happen for a non-cyclic transfer.
843                  *
844                  * For a cyclic transfer, although it is possible for the
845                  * next transfer to have already started (resetting the word
846                  * count), this case should still not happen because we should
847                  * have detected that the EOC bit is set and hence the transfer
848                  * was completed.
849                  */
850                 WARN_ON_ONCE(1);
851
852                 wcount = sg_req->req_len - 4;
853         } else {
854                 sg_req->words_xferred = wcount;
855         }
856
857         return wcount;
858 }
859
860 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
861         dma_cookie_t cookie, struct dma_tx_state *txstate)
862 {
863         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
864         struct tegra_dma_desc *dma_desc;
865         struct tegra_dma_sg_req *sg_req;
866         enum dma_status ret;
867         unsigned long flags;
868         unsigned int residual;
869         unsigned int bytes = 0;
870
871         ret = dma_cookie_status(dc, cookie, txstate);
872         if (ret == DMA_COMPLETE)
873                 return ret;
874
875         spin_lock_irqsave(&tdc->lock, flags);
876
877         /* Check on wait_ack desc status */
878         list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
879                 if (dma_desc->txd.cookie == cookie) {
880                         ret = dma_desc->dma_status;
881                         goto found;
882                 }
883         }
884
885         /* Check in pending list */
886         list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
887                 dma_desc = sg_req->dma_desc;
888                 if (dma_desc->txd.cookie == cookie) {
889                         bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req);
890                         ret = dma_desc->dma_status;
891                         goto found;
892                 }
893         }
894
895         dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
896         dma_desc = NULL;
897
898 found:
899         if (dma_desc && txstate) {
900                 residual = dma_desc->bytes_requested -
901                            ((dma_desc->bytes_transferred + bytes) %
902                             dma_desc->bytes_requested);
903                 dma_set_residue(txstate, residual);
904         }
905
906         trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
907         spin_unlock_irqrestore(&tdc->lock, flags);
908         return ret;
909 }
910
911 static inline int get_bus_width(struct tegra_dma_channel *tdc,
912                 enum dma_slave_buswidth slave_bw)
913 {
914         switch (slave_bw) {
915         case DMA_SLAVE_BUSWIDTH_1_BYTE:
916                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
917         case DMA_SLAVE_BUSWIDTH_2_BYTES:
918                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
919         case DMA_SLAVE_BUSWIDTH_4_BYTES:
920                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
921         case DMA_SLAVE_BUSWIDTH_8_BYTES:
922                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
923         default:
924                 dev_warn(tdc2dev(tdc),
925                         "slave bw is not supported, using 32bits\n");
926                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
927         }
928 }
929
930 static inline int get_burst_size(struct tegra_dma_channel *tdc,
931         u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
932 {
933         int burst_byte;
934         int burst_ahb_width;
935
936         /*
937          * burst_size from client is in terms of the bus_width.
938          * convert them into AHB memory width which is 4 byte.
939          */
940         burst_byte = burst_size * slave_bw;
941         burst_ahb_width = burst_byte / 4;
942
943         /* If burst size is 0 then calculate the burst size based on length */
944         if (!burst_ahb_width) {
945                 if (len & 0xF)
946                         return TEGRA_APBDMA_AHBSEQ_BURST_1;
947                 else if ((len >> 4) & 0x1)
948                         return TEGRA_APBDMA_AHBSEQ_BURST_4;
949                 else
950                         return TEGRA_APBDMA_AHBSEQ_BURST_8;
951         }
952         if (burst_ahb_width < 4)
953                 return TEGRA_APBDMA_AHBSEQ_BURST_1;
954         else if (burst_ahb_width < 8)
955                 return TEGRA_APBDMA_AHBSEQ_BURST_4;
956         else
957                 return TEGRA_APBDMA_AHBSEQ_BURST_8;
958 }
959
960 static int get_transfer_param(struct tegra_dma_channel *tdc,
961         enum dma_transfer_direction direction, unsigned long *apb_addr,
962         unsigned long *apb_seq, unsigned long *csr, unsigned int *burst_size,
963         enum dma_slave_buswidth *slave_bw)
964 {
965         switch (direction) {
966         case DMA_MEM_TO_DEV:
967                 *apb_addr = tdc->dma_sconfig.dst_addr;
968                 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
969                 *burst_size = tdc->dma_sconfig.dst_maxburst;
970                 *slave_bw = tdc->dma_sconfig.dst_addr_width;
971                 *csr = TEGRA_APBDMA_CSR_DIR;
972                 return 0;
973
974         case DMA_DEV_TO_MEM:
975                 *apb_addr = tdc->dma_sconfig.src_addr;
976                 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
977                 *burst_size = tdc->dma_sconfig.src_maxburst;
978                 *slave_bw = tdc->dma_sconfig.src_addr_width;
979                 *csr = 0;
980                 return 0;
981
982         default:
983                 dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
984                 return -EINVAL;
985         }
986         return -EINVAL;
987 }
988
989 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
990         struct tegra_dma_channel_regs *ch_regs, u32 len)
991 {
992         u32 len_field = (len - 4) & 0xFFFC;
993
994         if (tdc->tdma->chip_data->support_separate_wcount_reg)
995                 ch_regs->wcount = len_field;
996         else
997                 ch_regs->csr |= len_field;
998 }
999
1000 static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
1001         struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
1002         enum dma_transfer_direction direction, unsigned long flags,
1003         void *context)
1004 {
1005         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1006         struct tegra_dma_desc *dma_desc;
1007         unsigned int i;
1008         struct scatterlist *sg;
1009         unsigned long csr, ahb_seq, apb_ptr, apb_seq;
1010         struct list_head req_list;
1011         struct tegra_dma_sg_req  *sg_req = NULL;
1012         u32 burst_size;
1013         enum dma_slave_buswidth slave_bw;
1014
1015         if (!tdc->config_init) {
1016                 dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1017                 return NULL;
1018         }
1019         if (sg_len < 1) {
1020                 dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1021                 return NULL;
1022         }
1023
1024         if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1025                                 &burst_size, &slave_bw) < 0)
1026                 return NULL;
1027
1028         INIT_LIST_HEAD(&req_list);
1029
1030         ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1031         ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1032                                         TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1033         ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1034
1035         csr |= TEGRA_APBDMA_CSR_ONCE;
1036
1037         if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1038                 csr |= TEGRA_APBDMA_CSR_FLOW;
1039                 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1040         }
1041
1042         if (flags & DMA_PREP_INTERRUPT) {
1043                 csr |= TEGRA_APBDMA_CSR_IE_EOC;
1044         } else {
1045                 WARN_ON_ONCE(1);
1046                 return NULL;
1047         }
1048
1049         apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1050
1051         dma_desc = tegra_dma_desc_get(tdc);
1052         if (!dma_desc) {
1053                 dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
1054                 return NULL;
1055         }
1056         INIT_LIST_HEAD(&dma_desc->tx_list);
1057         INIT_LIST_HEAD(&dma_desc->cb_node);
1058         dma_desc->cb_count = 0;
1059         dma_desc->bytes_requested = 0;
1060         dma_desc->bytes_transferred = 0;
1061         dma_desc->dma_status = DMA_IN_PROGRESS;
1062
1063         /* Make transfer requests */
1064         for_each_sg(sgl, sg, sg_len, i) {
1065                 u32 len, mem;
1066
1067                 mem = sg_dma_address(sg);
1068                 len = sg_dma_len(sg);
1069
1070                 if ((len & 3) || (mem & 3) ||
1071                                 (len > tdc->tdma->chip_data->max_dma_count)) {
1072                         dev_err(tdc2dev(tdc),
1073                                 "DMA length/memory address is not supported\n");
1074                         tegra_dma_desc_put(tdc, dma_desc);
1075                         return NULL;
1076                 }
1077
1078                 sg_req = tegra_dma_sg_req_get(tdc);
1079                 if (!sg_req) {
1080                         dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1081                         tegra_dma_desc_put(tdc, dma_desc);
1082                         return NULL;
1083                 }
1084
1085                 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1086                 dma_desc->bytes_requested += len;
1087
1088                 sg_req->ch_regs.apb_ptr = apb_ptr;
1089                 sg_req->ch_regs.ahb_ptr = mem;
1090                 sg_req->ch_regs.csr = csr;
1091                 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1092                 sg_req->ch_regs.apb_seq = apb_seq;
1093                 sg_req->ch_regs.ahb_seq = ahb_seq;
1094                 sg_req->configured = false;
1095                 sg_req->last_sg = false;
1096                 sg_req->dma_desc = dma_desc;
1097                 sg_req->req_len = len;
1098
1099                 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1100         }
1101         sg_req->last_sg = true;
1102         if (flags & DMA_CTRL_ACK)
1103                 dma_desc->txd.flags = DMA_CTRL_ACK;
1104
1105         /*
1106          * Make sure that mode should not be conflicting with currently
1107          * configured mode.
1108          */
1109         if (!tdc->isr_handler) {
1110                 tdc->isr_handler = handle_once_dma_done;
1111                 tdc->cyclic = false;
1112         } else {
1113                 if (tdc->cyclic) {
1114                         dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1115                         tegra_dma_desc_put(tdc, dma_desc);
1116                         return NULL;
1117                 }
1118         }
1119
1120         return &dma_desc->txd;
1121 }
1122
1123 static struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
1124         struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1125         size_t period_len, enum dma_transfer_direction direction,
1126         unsigned long flags)
1127 {
1128         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1129         struct tegra_dma_desc *dma_desc = NULL;
1130         struct tegra_dma_sg_req *sg_req = NULL;
1131         unsigned long csr, ahb_seq, apb_ptr, apb_seq;
1132         int len;
1133         size_t remain_len;
1134         dma_addr_t mem = buf_addr;
1135         u32 burst_size;
1136         enum dma_slave_buswidth slave_bw;
1137
1138         if (!buf_len || !period_len) {
1139                 dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1140                 return NULL;
1141         }
1142
1143         if (!tdc->config_init) {
1144                 dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1145                 return NULL;
1146         }
1147
1148         /*
1149          * We allow to take more number of requests till DMA is
1150          * not started. The driver will loop over all requests.
1151          * Once DMA is started then new requests can be queued only after
1152          * terminating the DMA.
1153          */
1154         if (tdc->busy) {
1155                 dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1156                 return NULL;
1157         }
1158
1159         /*
1160          * We only support cycle transfer when buf_len is multiple of
1161          * period_len.
1162          */
1163         if (buf_len % period_len) {
1164                 dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1165                 return NULL;
1166         }
1167
1168         len = period_len;
1169         if ((len & 3) || (buf_addr & 3) ||
1170                         (len > tdc->tdma->chip_data->max_dma_count)) {
1171                 dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1172                 return NULL;
1173         }
1174
1175         if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1176                                 &burst_size, &slave_bw) < 0)
1177                 return NULL;
1178
1179         ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1180         ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1181                                         TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1182         ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1183
1184         if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1185                 csr |= TEGRA_APBDMA_CSR_FLOW;
1186                 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1187         }
1188
1189         if (flags & DMA_PREP_INTERRUPT) {
1190                 csr |= TEGRA_APBDMA_CSR_IE_EOC;
1191         } else {
1192                 WARN_ON_ONCE(1);
1193                 return NULL;
1194         }
1195
1196         apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1197
1198         dma_desc = tegra_dma_desc_get(tdc);
1199         if (!dma_desc) {
1200                 dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1201                 return NULL;
1202         }
1203
1204         INIT_LIST_HEAD(&dma_desc->tx_list);
1205         INIT_LIST_HEAD(&dma_desc->cb_node);
1206         dma_desc->cb_count = 0;
1207
1208         dma_desc->bytes_transferred = 0;
1209         dma_desc->bytes_requested = buf_len;
1210         remain_len = buf_len;
1211
1212         /* Split transfer equal to period size */
1213         while (remain_len) {
1214                 sg_req = tegra_dma_sg_req_get(tdc);
1215                 if (!sg_req) {
1216                         dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1217                         tegra_dma_desc_put(tdc, dma_desc);
1218                         return NULL;
1219                 }
1220
1221                 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1222                 sg_req->ch_regs.apb_ptr = apb_ptr;
1223                 sg_req->ch_regs.ahb_ptr = mem;
1224                 sg_req->ch_regs.csr = csr;
1225                 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1226                 sg_req->ch_regs.apb_seq = apb_seq;
1227                 sg_req->ch_regs.ahb_seq = ahb_seq;
1228                 sg_req->configured = false;
1229                 sg_req->last_sg = false;
1230                 sg_req->dma_desc = dma_desc;
1231                 sg_req->req_len = len;
1232
1233                 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1234                 remain_len -= len;
1235                 mem += len;
1236         }
1237         sg_req->last_sg = true;
1238         if (flags & DMA_CTRL_ACK)
1239                 dma_desc->txd.flags = DMA_CTRL_ACK;
1240
1241         /*
1242          * Make sure that mode should not be conflicting with currently
1243          * configured mode.
1244          */
1245         if (!tdc->isr_handler) {
1246                 tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1247                 tdc->cyclic = true;
1248         } else {
1249                 if (!tdc->cyclic) {
1250                         dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1251                         tegra_dma_desc_put(tdc, dma_desc);
1252                         return NULL;
1253                 }
1254         }
1255
1256         return &dma_desc->txd;
1257 }
1258
1259 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1260 {
1261         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1262         struct tegra_dma *tdma = tdc->tdma;
1263         int ret;
1264
1265         dma_cookie_init(&tdc->dma_chan);
1266         tdc->config_init = false;
1267
1268         ret = pm_runtime_get_sync(tdma->dev);
1269         if (ret < 0)
1270                 return ret;
1271
1272         return 0;
1273 }
1274
1275 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1276 {
1277         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1278         struct tegra_dma *tdma = tdc->tdma;
1279         struct tegra_dma_desc *dma_desc;
1280         struct tegra_dma_sg_req *sg_req;
1281         struct list_head dma_desc_list;
1282         struct list_head sg_req_list;
1283         unsigned long flags;
1284
1285         INIT_LIST_HEAD(&dma_desc_list);
1286         INIT_LIST_HEAD(&sg_req_list);
1287
1288         dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1289
1290         tegra_dma_terminate_all(dc);
1291
1292         spin_lock_irqsave(&tdc->lock, flags);
1293         list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1294         list_splice_init(&tdc->free_sg_req, &sg_req_list);
1295         list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1296         INIT_LIST_HEAD(&tdc->cb_desc);
1297         tdc->config_init = false;
1298         tdc->isr_handler = NULL;
1299         spin_unlock_irqrestore(&tdc->lock, flags);
1300
1301         while (!list_empty(&dma_desc_list)) {
1302                 dma_desc = list_first_entry(&dma_desc_list,
1303                                         typeof(*dma_desc), node);
1304                 list_del(&dma_desc->node);
1305                 kfree(dma_desc);
1306         }
1307
1308         while (!list_empty(&sg_req_list)) {
1309                 sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1310                 list_del(&sg_req->node);
1311                 kfree(sg_req);
1312         }
1313         pm_runtime_put(tdma->dev);
1314
1315         tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1316 }
1317
1318 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1319                                            struct of_dma *ofdma)
1320 {
1321         struct tegra_dma *tdma = ofdma->of_dma_data;
1322         struct dma_chan *chan;
1323         struct tegra_dma_channel *tdc;
1324
1325         if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1326                 dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1327                 return NULL;
1328         }
1329
1330         chan = dma_get_any_slave_channel(&tdma->dma_dev);
1331         if (!chan)
1332                 return NULL;
1333
1334         tdc = to_tegra_dma_chan(chan);
1335         tdc->slave_id = dma_spec->args[0];
1336
1337         return chan;
1338 }
1339
1340 /* Tegra20 specific DMA controller information */
1341 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1342         .nr_channels            = 16,
1343         .channel_reg_size       = 0x20,
1344         .max_dma_count          = 1024UL * 64,
1345         .support_channel_pause  = false,
1346         .support_separate_wcount_reg = false,
1347 };
1348
1349 /* Tegra30 specific DMA controller information */
1350 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1351         .nr_channels            = 32,
1352         .channel_reg_size       = 0x20,
1353         .max_dma_count          = 1024UL * 64,
1354         .support_channel_pause  = false,
1355         .support_separate_wcount_reg = false,
1356 };
1357
1358 /* Tegra114 specific DMA controller information */
1359 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1360         .nr_channels            = 32,
1361         .channel_reg_size       = 0x20,
1362         .max_dma_count          = 1024UL * 64,
1363         .support_channel_pause  = true,
1364         .support_separate_wcount_reg = false,
1365 };
1366
1367 /* Tegra148 specific DMA controller information */
1368 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1369         .nr_channels            = 32,
1370         .channel_reg_size       = 0x40,
1371         .max_dma_count          = 1024UL * 64,
1372         .support_channel_pause  = true,
1373         .support_separate_wcount_reg = true,
1374 };
1375
1376 static int tegra_dma_probe(struct platform_device *pdev)
1377 {
1378         struct resource *res;
1379         struct tegra_dma *tdma;
1380         int ret;
1381         int i;
1382         const struct tegra_dma_chip_data *cdata;
1383
1384         cdata = of_device_get_match_data(&pdev->dev);
1385         if (!cdata) {
1386                 dev_err(&pdev->dev, "Error: No device match data found\n");
1387                 return -ENODEV;
1388         }
1389
1390         tdma = devm_kzalloc(&pdev->dev,
1391                             struct_size(tdma, channels, cdata->nr_channels),
1392                             GFP_KERNEL);
1393         if (!tdma)
1394                 return -ENOMEM;
1395
1396         tdma->dev = &pdev->dev;
1397         tdma->chip_data = cdata;
1398         platform_set_drvdata(pdev, tdma);
1399
1400         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1401         tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
1402         if (IS_ERR(tdma->base_addr))
1403                 return PTR_ERR(tdma->base_addr);
1404
1405         tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1406         if (IS_ERR(tdma->dma_clk)) {
1407                 dev_err(&pdev->dev, "Error: Missing controller clock\n");
1408                 return PTR_ERR(tdma->dma_clk);
1409         }
1410
1411         tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1412         if (IS_ERR(tdma->rst)) {
1413                 dev_err(&pdev->dev, "Error: Missing reset\n");
1414                 return PTR_ERR(tdma->rst);
1415         }
1416
1417         spin_lock_init(&tdma->global_lock);
1418
1419         pm_runtime_enable(&pdev->dev);
1420         if (!pm_runtime_enabled(&pdev->dev))
1421                 ret = tegra_dma_runtime_resume(&pdev->dev);
1422         else
1423                 ret = pm_runtime_get_sync(&pdev->dev);
1424
1425         if (ret < 0) {
1426                 pm_runtime_disable(&pdev->dev);
1427                 return ret;
1428         }
1429
1430         /* Reset DMA controller */
1431         reset_control_assert(tdma->rst);
1432         udelay(2);
1433         reset_control_deassert(tdma->rst);
1434
1435         /* Enable global DMA registers */
1436         tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1437         tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1438         tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1439
1440         pm_runtime_put(&pdev->dev);
1441
1442         INIT_LIST_HEAD(&tdma->dma_dev.channels);
1443         for (i = 0; i < cdata->nr_channels; i++) {
1444                 struct tegra_dma_channel *tdc = &tdma->channels[i];
1445
1446                 tdc->chan_addr = tdma->base_addr +
1447                                  TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1448                                  (i * cdata->channel_reg_size);
1449
1450                 res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1451                 if (!res) {
1452                         ret = -EINVAL;
1453                         dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1454                         goto err_irq;
1455                 }
1456                 tdc->irq = res->start;
1457                 snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1458                 ret = request_irq(tdc->irq, tegra_dma_isr, 0, tdc->name, tdc);
1459                 if (ret) {
1460                         dev_err(&pdev->dev,
1461                                 "request_irq failed with err %d channel %d\n",
1462                                 ret, i);
1463                         goto err_irq;
1464                 }
1465
1466                 tdc->dma_chan.device = &tdma->dma_dev;
1467                 dma_cookie_init(&tdc->dma_chan);
1468                 list_add_tail(&tdc->dma_chan.device_node,
1469                                 &tdma->dma_dev.channels);
1470                 tdc->tdma = tdma;
1471                 tdc->id = i;
1472                 tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1473
1474                 tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1475                                 (unsigned long)tdc);
1476                 spin_lock_init(&tdc->lock);
1477
1478                 INIT_LIST_HEAD(&tdc->pending_sg_req);
1479                 INIT_LIST_HEAD(&tdc->free_sg_req);
1480                 INIT_LIST_HEAD(&tdc->free_dma_desc);
1481                 INIT_LIST_HEAD(&tdc->cb_desc);
1482         }
1483
1484         dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1485         dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1486         dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1487
1488         tdma->global_pause_count = 0;
1489         tdma->dma_dev.dev = &pdev->dev;
1490         tdma->dma_dev.device_alloc_chan_resources =
1491                                         tegra_dma_alloc_chan_resources;
1492         tdma->dma_dev.device_free_chan_resources =
1493                                         tegra_dma_free_chan_resources;
1494         tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1495         tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1496         tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1497                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1498                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1499                 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1500         tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1501                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1502                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1503                 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1504         tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1505         tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1506         tdma->dma_dev.device_config = tegra_dma_slave_config;
1507         tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1508         tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1509         tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1510
1511         ret = dma_async_device_register(&tdma->dma_dev);
1512         if (ret < 0) {
1513                 dev_err(&pdev->dev,
1514                         "Tegra20 APB DMA driver registration failed %d\n", ret);
1515                 goto err_irq;
1516         }
1517
1518         ret = of_dma_controller_register(pdev->dev.of_node,
1519                                          tegra_dma_of_xlate, tdma);
1520         if (ret < 0) {
1521                 dev_err(&pdev->dev,
1522                         "Tegra20 APB DMA OF registration failed %d\n", ret);
1523                 goto err_unregister_dma_dev;
1524         }
1525
1526         dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
1527                         cdata->nr_channels);
1528         return 0;
1529
1530 err_unregister_dma_dev:
1531         dma_async_device_unregister(&tdma->dma_dev);
1532 err_irq:
1533         while (--i >= 0) {
1534                 struct tegra_dma_channel *tdc = &tdma->channels[i];
1535
1536                 free_irq(tdc->irq, tdc);
1537                 tasklet_kill(&tdc->tasklet);
1538         }
1539
1540         pm_runtime_disable(&pdev->dev);
1541         if (!pm_runtime_status_suspended(&pdev->dev))
1542                 tegra_dma_runtime_suspend(&pdev->dev);
1543         return ret;
1544 }
1545
1546 static int tegra_dma_remove(struct platform_device *pdev)
1547 {
1548         struct tegra_dma *tdma = platform_get_drvdata(pdev);
1549         int i;
1550         struct tegra_dma_channel *tdc;
1551
1552         dma_async_device_unregister(&tdma->dma_dev);
1553
1554         for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
1555                 tdc = &tdma->channels[i];
1556                 free_irq(tdc->irq, tdc);
1557                 tasklet_kill(&tdc->tasklet);
1558         }
1559
1560         pm_runtime_disable(&pdev->dev);
1561         if (!pm_runtime_status_suspended(&pdev->dev))
1562                 tegra_dma_runtime_suspend(&pdev->dev);
1563
1564         return 0;
1565 }
1566
1567 static int tegra_dma_runtime_suspend(struct device *dev)
1568 {
1569         struct tegra_dma *tdma = dev_get_drvdata(dev);
1570         int i;
1571
1572         tdma->reg_gen = tdma_read(tdma, TEGRA_APBDMA_GENERAL);
1573         for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1574                 struct tegra_dma_channel *tdc = &tdma->channels[i];
1575                 struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1576
1577                 /* Only save the state of DMA channels that are in use */
1578                 if (!tdc->config_init)
1579                         continue;
1580
1581                 ch_reg->csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
1582                 ch_reg->ahb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBPTR);
1583                 ch_reg->apb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBPTR);
1584                 ch_reg->ahb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBSEQ);
1585                 ch_reg->apb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBSEQ);
1586                 if (tdma->chip_data->support_separate_wcount_reg)
1587                         ch_reg->wcount = tdc_read(tdc,
1588                                                   TEGRA_APBDMA_CHAN_WCOUNT);
1589         }
1590
1591         clk_disable_unprepare(tdma->dma_clk);
1592
1593         return 0;
1594 }
1595
1596 static int tegra_dma_runtime_resume(struct device *dev)
1597 {
1598         struct tegra_dma *tdma = dev_get_drvdata(dev);
1599         int i, ret;
1600
1601         ret = clk_prepare_enable(tdma->dma_clk);
1602         if (ret < 0) {
1603                 dev_err(dev, "clk_enable failed: %d\n", ret);
1604                 return ret;
1605         }
1606
1607         tdma_write(tdma, TEGRA_APBDMA_GENERAL, tdma->reg_gen);
1608         tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1609         tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1610
1611         for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1612                 struct tegra_dma_channel *tdc = &tdma->channels[i];
1613                 struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1614
1615                 /* Only restore the state of DMA channels that are in use */
1616                 if (!tdc->config_init)
1617                         continue;
1618
1619                 if (tdma->chip_data->support_separate_wcount_reg)
1620                         tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
1621                                   ch_reg->wcount);
1622                 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_reg->apb_seq);
1623                 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_reg->apb_ptr);
1624                 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_reg->ahb_seq);
1625                 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_reg->ahb_ptr);
1626                 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
1627                         (ch_reg->csr & ~TEGRA_APBDMA_CSR_ENB));
1628         }
1629
1630         return 0;
1631 }
1632
1633 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1634         SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1635                            NULL)
1636         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1637                                 pm_runtime_force_resume)
1638 };
1639
1640 static const struct of_device_id tegra_dma_of_match[] = {
1641         {
1642                 .compatible = "nvidia,tegra148-apbdma",
1643                 .data = &tegra148_dma_chip_data,
1644         }, {
1645                 .compatible = "nvidia,tegra114-apbdma",
1646                 .data = &tegra114_dma_chip_data,
1647         }, {
1648                 .compatible = "nvidia,tegra30-apbdma",
1649                 .data = &tegra30_dma_chip_data,
1650         }, {
1651                 .compatible = "nvidia,tegra20-apbdma",
1652                 .data = &tegra20_dma_chip_data,
1653         }, {
1654         },
1655 };
1656 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1657
1658 static struct platform_driver tegra_dmac_driver = {
1659         .driver = {
1660                 .name   = "tegra-apbdma",
1661                 .pm     = &tegra_dma_dev_pm_ops,
1662                 .of_match_table = tegra_dma_of_match,
1663         },
1664         .probe          = tegra_dma_probe,
1665         .remove         = tegra_dma_remove,
1666 };
1667
1668 module_platform_driver(tegra_dmac_driver);
1669
1670 MODULE_ALIAS("platform:tegra20-apbdma");
1671 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1672 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1673 MODULE_LICENSE("GPL v2");