GNU Linux-libre 5.15.54-gnu
[releases.git] / drivers / dma / stm32-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30
31 #include "virt-dma.h"
32
33 #define STM32_DMA_LISR                  0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR                  0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR                 0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR                 0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI                   BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI                   BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI                   BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI                  BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI                   BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI                 (STM32_DMA_TCI \
43                                          | STM32_DMA_TEI \
44                                          | STM32_DMA_DMEI \
45                                          | STM32_DMA_FEI)
46
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x)                (0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n)            ((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK       GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n)         ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK       GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n)         ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK           GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n)             ((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK        GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n)          ((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK        GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n)          ((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n)      ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK          GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n)            ((n & 0x3) << 6)
63 #define STM32_DMA_SCR_TRBUFF            BIT(20) /* Bufferable transfer for USART/UART */
64 #define STM32_DMA_SCR_CT                BIT(19) /* Target in double buffer */
65 #define STM32_DMA_SCR_DBM               BIT(18) /* Double Buffer Mode */
66 #define STM32_DMA_SCR_PINCOS            BIT(15) /* Peripheral inc offset size */
67 #define STM32_DMA_SCR_MINC              BIT(10) /* Memory increment mode */
68 #define STM32_DMA_SCR_PINC              BIT(9) /* Peripheral increment mode */
69 #define STM32_DMA_SCR_CIRC              BIT(8) /* Circular mode */
70 #define STM32_DMA_SCR_PFCTRL            BIT(5) /* Peripheral Flow Controller */
71 #define STM32_DMA_SCR_TCIE              BIT(4) /* Transfer Complete Int Enable
72                                                 */
73 #define STM32_DMA_SCR_TEIE              BIT(2) /* Transfer Error Int Enable */
74 #define STM32_DMA_SCR_DMEIE             BIT(1) /* Direct Mode Err Int Enable */
75 #define STM32_DMA_SCR_EN                BIT(0) /* Stream Enable */
76 #define STM32_DMA_SCR_CFG_MASK          (STM32_DMA_SCR_PINC \
77                                         | STM32_DMA_SCR_MINC \
78                                         | STM32_DMA_SCR_PINCOS \
79                                         | STM32_DMA_SCR_PL_MASK)
80 #define STM32_DMA_SCR_IRQ_MASK          (STM32_DMA_SCR_TCIE \
81                                         | STM32_DMA_SCR_TEIE \
82                                         | STM32_DMA_SCR_DMEIE)
83
84 /* DMA Stream x number of data register */
85 #define STM32_DMA_SNDTR(x)              (0x0014 + 0x18 * (x))
86
87 /* DMA stream peripheral address register */
88 #define STM32_DMA_SPAR(x)               (0x0018 + 0x18 * (x))
89
90 /* DMA stream x memory 0 address register */
91 #define STM32_DMA_SM0AR(x)              (0x001c + 0x18 * (x))
92
93 /* DMA stream x memory 1 address register */
94 #define STM32_DMA_SM1AR(x)              (0x0020 + 0x18 * (x))
95
96 /* DMA stream x FIFO control register */
97 #define STM32_DMA_SFCR(x)               (0x0024 + 0x18 * (x))
98 #define STM32_DMA_SFCR_FTH_MASK         GENMASK(1, 0)
99 #define STM32_DMA_SFCR_FTH(n)           (n & STM32_DMA_SFCR_FTH_MASK)
100 #define STM32_DMA_SFCR_FEIE             BIT(7) /* FIFO error interrupt enable */
101 #define STM32_DMA_SFCR_DMDIS            BIT(2) /* Direct mode disable */
102 #define STM32_DMA_SFCR_MASK             (STM32_DMA_SFCR_FEIE \
103                                         | STM32_DMA_SFCR_DMDIS)
104
105 /* DMA direction */
106 #define STM32_DMA_DEV_TO_MEM            0x00
107 #define STM32_DMA_MEM_TO_DEV            0x01
108 #define STM32_DMA_MEM_TO_MEM            0x02
109
110 /* DMA priority level */
111 #define STM32_DMA_PRIORITY_LOW          0x00
112 #define STM32_DMA_PRIORITY_MEDIUM       0x01
113 #define STM32_DMA_PRIORITY_HIGH         0x02
114 #define STM32_DMA_PRIORITY_VERY_HIGH    0x03
115
116 /* DMA FIFO threshold selection */
117 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL           0x00
118 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL               0x01
119 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL          0x02
120 #define STM32_DMA_FIFO_THRESHOLD_FULL                   0x03
121 #define STM32_DMA_FIFO_THRESHOLD_NONE                   0x04
122
123 #define STM32_DMA_MAX_DATA_ITEMS        0xffff
124 /*
125  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
126  * gather at boundary. Thus it's safer to round down this value on FIFO
127  * size (16 Bytes)
128  */
129 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS        \
130         ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
131 #define STM32_DMA_MAX_CHANNELS          0x08
132 #define STM32_DMA_MAX_REQUEST_ID        0x08
133 #define STM32_DMA_MAX_DATA_PARAM        0x03
134 #define STM32_DMA_FIFO_SIZE             16      /* FIFO is 16 bytes */
135 #define STM32_DMA_MIN_BURST             4
136 #define STM32_DMA_MAX_BURST             16
137
138 /* DMA Features */
139 #define STM32_DMA_THRESHOLD_FTR_MASK    GENMASK(1, 0)
140 #define STM32_DMA_THRESHOLD_FTR_GET(n)  ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
141 #define STM32_DMA_DIRECT_MODE_MASK      BIT(2)
142 #define STM32_DMA_DIRECT_MODE_GET(n)    (((n) & STM32_DMA_DIRECT_MODE_MASK) >> 2)
143 #define STM32_DMA_ALT_ACK_MODE_MASK     BIT(4)
144 #define STM32_DMA_ALT_ACK_MODE_GET(n)   (((n) & STM32_DMA_ALT_ACK_MODE_MASK) >> 4)
145
146 enum stm32_dma_width {
147         STM32_DMA_BYTE,
148         STM32_DMA_HALF_WORD,
149         STM32_DMA_WORD,
150 };
151
152 enum stm32_dma_burst_size {
153         STM32_DMA_BURST_SINGLE,
154         STM32_DMA_BURST_INCR4,
155         STM32_DMA_BURST_INCR8,
156         STM32_DMA_BURST_INCR16,
157 };
158
159 /**
160  * struct stm32_dma_cfg - STM32 DMA custom configuration
161  * @channel_id: channel ID
162  * @request_line: DMA request
163  * @stream_config: 32bit mask specifying the DMA channel configuration
164  * @features: 32bit mask specifying the DMA Feature list
165  */
166 struct stm32_dma_cfg {
167         u32 channel_id;
168         u32 request_line;
169         u32 stream_config;
170         u32 features;
171 };
172
173 struct stm32_dma_chan_reg {
174         u32 dma_lisr;
175         u32 dma_hisr;
176         u32 dma_lifcr;
177         u32 dma_hifcr;
178         u32 dma_scr;
179         u32 dma_sndtr;
180         u32 dma_spar;
181         u32 dma_sm0ar;
182         u32 dma_sm1ar;
183         u32 dma_sfcr;
184 };
185
186 struct stm32_dma_sg_req {
187         u32 len;
188         struct stm32_dma_chan_reg chan_reg;
189 };
190
191 struct stm32_dma_desc {
192         struct virt_dma_desc vdesc;
193         bool cyclic;
194         u32 num_sgs;
195         struct stm32_dma_sg_req sg_req[];
196 };
197
198 struct stm32_dma_chan {
199         struct virt_dma_chan vchan;
200         bool config_init;
201         bool busy;
202         u32 id;
203         u32 irq;
204         struct stm32_dma_desc *desc;
205         u32 next_sg;
206         struct dma_slave_config dma_sconfig;
207         struct stm32_dma_chan_reg chan_reg;
208         u32 threshold;
209         u32 mem_burst;
210         u32 mem_width;
211 };
212
213 struct stm32_dma_device {
214         struct dma_device ddev;
215         void __iomem *base;
216         struct clk *clk;
217         bool mem2mem;
218         struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
219 };
220
221 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
222 {
223         return container_of(chan->vchan.chan.device, struct stm32_dma_device,
224                             ddev);
225 }
226
227 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
228 {
229         return container_of(c, struct stm32_dma_chan, vchan.chan);
230 }
231
232 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
233 {
234         return container_of(vdesc, struct stm32_dma_desc, vdesc);
235 }
236
237 static struct device *chan2dev(struct stm32_dma_chan *chan)
238 {
239         return &chan->vchan.chan.dev->device;
240 }
241
242 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
243 {
244         return readl_relaxed(dmadev->base + reg);
245 }
246
247 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
248 {
249         writel_relaxed(val, dmadev->base + reg);
250 }
251
252 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
253                                enum dma_slave_buswidth width)
254 {
255         switch (width) {
256         case DMA_SLAVE_BUSWIDTH_1_BYTE:
257                 return STM32_DMA_BYTE;
258         case DMA_SLAVE_BUSWIDTH_2_BYTES:
259                 return STM32_DMA_HALF_WORD;
260         case DMA_SLAVE_BUSWIDTH_4_BYTES:
261                 return STM32_DMA_WORD;
262         default:
263                 dev_err(chan2dev(chan), "Dma bus width not supported\n");
264                 return -EINVAL;
265         }
266 }
267
268 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
269                                                        dma_addr_t buf_addr,
270                                                        u32 threshold)
271 {
272         enum dma_slave_buswidth max_width;
273
274         if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
275                 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
276         else
277                 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
278
279         while ((buf_len < max_width  || buf_len % max_width) &&
280                max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
281                 max_width = max_width >> 1;
282
283         if (buf_addr & (max_width - 1))
284                 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
285
286         return max_width;
287 }
288
289 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
290                                                 enum dma_slave_buswidth width)
291 {
292         u32 remaining;
293
294         if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
295                 return false;
296
297         if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
298                 if (burst != 0) {
299                         /*
300                          * If number of beats fit in several whole bursts
301                          * this configuration is allowed.
302                          */
303                         remaining = ((STM32_DMA_FIFO_SIZE / width) *
304                                      (threshold + 1) / 4) % burst;
305
306                         if (remaining == 0)
307                                 return true;
308                 } else {
309                         return true;
310                 }
311         }
312
313         return false;
314 }
315
316 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
317 {
318         /* If FIFO direct mode, burst is not possible */
319         if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
320                 return false;
321
322         /*
323          * Buffer or period length has to be aligned on FIFO depth.
324          * Otherwise bytes may be stuck within FIFO at buffer or period
325          * length.
326          */
327         return ((buf_len % ((threshold + 1) * 4)) == 0);
328 }
329
330 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
331                                     enum dma_slave_buswidth width)
332 {
333         u32 best_burst = max_burst;
334
335         if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
336                 return 0;
337
338         while ((buf_len < best_burst * width && best_burst > 1) ||
339                !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
340                                                     width)) {
341                 if (best_burst > STM32_DMA_MIN_BURST)
342                         best_burst = best_burst >> 1;
343                 else
344                         best_burst = 0;
345         }
346
347         return best_burst;
348 }
349
350 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
351 {
352         switch (maxburst) {
353         case 0:
354         case 1:
355                 return STM32_DMA_BURST_SINGLE;
356         case 4:
357                 return STM32_DMA_BURST_INCR4;
358         case 8:
359                 return STM32_DMA_BURST_INCR8;
360         case 16:
361                 return STM32_DMA_BURST_INCR16;
362         default:
363                 dev_err(chan2dev(chan), "Dma burst size not supported\n");
364                 return -EINVAL;
365         }
366 }
367
368 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
369                                       u32 src_burst, u32 dst_burst)
370 {
371         chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
372         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
373
374         if (!src_burst && !dst_burst) {
375                 /* Using direct mode */
376                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
377         } else {
378                 /* Using FIFO mode */
379                 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
380         }
381 }
382
383 static int stm32_dma_slave_config(struct dma_chan *c,
384                                   struct dma_slave_config *config)
385 {
386         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
387
388         memcpy(&chan->dma_sconfig, config, sizeof(*config));
389
390         chan->config_init = true;
391
392         return 0;
393 }
394
395 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
396 {
397         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
398         u32 flags, dma_isr;
399
400         /*
401          * Read "flags" from DMA_xISR register corresponding to the selected
402          * DMA channel at the correct bit offset inside that register.
403          *
404          * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
405          * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
406          */
407
408         if (chan->id & 4)
409                 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
410         else
411                 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
412
413         flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
414
415         return flags & STM32_DMA_MASKI;
416 }
417
418 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
419 {
420         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
421         u32 dma_ifcr;
422
423         /*
424          * Write "flags" to the DMA_xIFCR register corresponding to the selected
425          * DMA channel at the correct bit offset inside that register.
426          *
427          * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
428          * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
429          */
430         flags &= STM32_DMA_MASKI;
431         dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
432
433         if (chan->id & 4)
434                 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
435         else
436                 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
437 }
438
439 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
440 {
441         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
442         u32 dma_scr, id, reg;
443
444         id = chan->id;
445         reg = STM32_DMA_SCR(id);
446         dma_scr = stm32_dma_read(dmadev, reg);
447
448         if (dma_scr & STM32_DMA_SCR_EN) {
449                 dma_scr &= ~STM32_DMA_SCR_EN;
450                 stm32_dma_write(dmadev, reg, dma_scr);
451
452                 return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
453                                         dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
454                                         10, 1000000);
455         }
456
457         return 0;
458 }
459
460 static void stm32_dma_stop(struct stm32_dma_chan *chan)
461 {
462         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
463         u32 dma_scr, dma_sfcr, status;
464         int ret;
465
466         /* Disable interrupts */
467         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
468         dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
469         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
470         dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
471         dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
472         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
473
474         /* Disable DMA */
475         ret = stm32_dma_disable_chan(chan);
476         if (ret < 0)
477                 return;
478
479         /* Clear interrupt status if it is there */
480         status = stm32_dma_irq_status(chan);
481         if (status) {
482                 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
483                         __func__, status);
484                 stm32_dma_irq_clear(chan, status);
485         }
486
487         chan->busy = false;
488 }
489
490 static int stm32_dma_terminate_all(struct dma_chan *c)
491 {
492         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
493         unsigned long flags;
494         LIST_HEAD(head);
495
496         spin_lock_irqsave(&chan->vchan.lock, flags);
497
498         if (chan->desc) {
499                 vchan_terminate_vdesc(&chan->desc->vdesc);
500                 if (chan->busy)
501                         stm32_dma_stop(chan);
502                 chan->desc = NULL;
503         }
504
505         vchan_get_all_descriptors(&chan->vchan, &head);
506         spin_unlock_irqrestore(&chan->vchan.lock, flags);
507         vchan_dma_desc_free_list(&chan->vchan, &head);
508
509         return 0;
510 }
511
512 static void stm32_dma_synchronize(struct dma_chan *c)
513 {
514         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
515
516         vchan_synchronize(&chan->vchan);
517 }
518
519 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
520 {
521         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
522         u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
523         u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
524         u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
525         u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
526         u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
527         u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
528
529         dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
530         dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
531         dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
532         dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
533         dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
534         dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
535 }
536
537 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
538
539 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
540 {
541         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
542         struct virt_dma_desc *vdesc;
543         struct stm32_dma_sg_req *sg_req;
544         struct stm32_dma_chan_reg *reg;
545         u32 status;
546         int ret;
547
548         ret = stm32_dma_disable_chan(chan);
549         if (ret < 0)
550                 return;
551
552         if (!chan->desc) {
553                 vdesc = vchan_next_desc(&chan->vchan);
554                 if (!vdesc)
555                         return;
556
557                 list_del(&vdesc->node);
558
559                 chan->desc = to_stm32_dma_desc(vdesc);
560                 chan->next_sg = 0;
561         }
562
563         if (chan->next_sg == chan->desc->num_sgs)
564                 chan->next_sg = 0;
565
566         sg_req = &chan->desc->sg_req[chan->next_sg];
567         reg = &sg_req->chan_reg;
568
569         reg->dma_scr &= ~STM32_DMA_SCR_EN;
570         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
571         stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
572         stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
573         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
574         stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
575         stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
576
577         chan->next_sg++;
578
579         /* Clear interrupt status if it is there */
580         status = stm32_dma_irq_status(chan);
581         if (status)
582                 stm32_dma_irq_clear(chan, status);
583
584         if (chan->desc->cyclic)
585                 stm32_dma_configure_next_sg(chan);
586
587         stm32_dma_dump_reg(chan);
588
589         /* Start DMA */
590         reg->dma_scr |= STM32_DMA_SCR_EN;
591         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
592
593         chan->busy = true;
594
595         dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
596 }
597
598 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
599 {
600         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
601         struct stm32_dma_sg_req *sg_req;
602         u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
603
604         id = chan->id;
605         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
606
607         if (dma_scr & STM32_DMA_SCR_DBM) {
608                 if (chan->next_sg == chan->desc->num_sgs)
609                         chan->next_sg = 0;
610
611                 sg_req = &chan->desc->sg_req[chan->next_sg];
612
613                 if (dma_scr & STM32_DMA_SCR_CT) {
614                         dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
615                         stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
616                         dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
617                                 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
618                 } else {
619                         dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
620                         stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
621                         dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
622                                 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
623                 }
624         }
625 }
626
627 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
628 {
629         if (chan->desc) {
630                 if (chan->desc->cyclic) {
631                         vchan_cyclic_callback(&chan->desc->vdesc);
632                         chan->next_sg++;
633                         stm32_dma_configure_next_sg(chan);
634                 } else {
635                         chan->busy = false;
636                         if (chan->next_sg == chan->desc->num_sgs) {
637                                 vchan_cookie_complete(&chan->desc->vdesc);
638                                 chan->desc = NULL;
639                         }
640                         stm32_dma_start_transfer(chan);
641                 }
642         }
643 }
644
645 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
646 {
647         struct stm32_dma_chan *chan = devid;
648         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
649         u32 status, scr, sfcr;
650
651         spin_lock(&chan->vchan.lock);
652
653         status = stm32_dma_irq_status(chan);
654         scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
655         sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
656
657         if (status & STM32_DMA_FEI) {
658                 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
659                 status &= ~STM32_DMA_FEI;
660                 if (sfcr & STM32_DMA_SFCR_FEIE) {
661                         if (!(scr & STM32_DMA_SCR_EN) &&
662                             !(status & STM32_DMA_TCI))
663                                 dev_err(chan2dev(chan), "FIFO Error\n");
664                         else
665                                 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
666                 }
667         }
668         if (status & STM32_DMA_DMEI) {
669                 stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
670                 status &= ~STM32_DMA_DMEI;
671                 if (sfcr & STM32_DMA_SCR_DMEIE)
672                         dev_dbg(chan2dev(chan), "Direct mode overrun\n");
673         }
674
675         if (status & STM32_DMA_TCI) {
676                 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
677                 if (scr & STM32_DMA_SCR_TCIE)
678                         stm32_dma_handle_chan_done(chan);
679                 status &= ~STM32_DMA_TCI;
680         }
681
682         if (status & STM32_DMA_HTI) {
683                 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
684                 status &= ~STM32_DMA_HTI;
685         }
686
687         if (status) {
688                 stm32_dma_irq_clear(chan, status);
689                 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
690                 if (!(scr & STM32_DMA_SCR_EN))
691                         dev_err(chan2dev(chan), "chan disabled by HW\n");
692         }
693
694         spin_unlock(&chan->vchan.lock);
695
696         return IRQ_HANDLED;
697 }
698
699 static void stm32_dma_issue_pending(struct dma_chan *c)
700 {
701         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
702         unsigned long flags;
703
704         spin_lock_irqsave(&chan->vchan.lock, flags);
705         if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
706                 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
707                 stm32_dma_start_transfer(chan);
708
709         }
710         spin_unlock_irqrestore(&chan->vchan.lock, flags);
711 }
712
713 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
714                                     enum dma_transfer_direction direction,
715                                     enum dma_slave_buswidth *buswidth,
716                                     u32 buf_len, dma_addr_t buf_addr)
717 {
718         enum dma_slave_buswidth src_addr_width, dst_addr_width;
719         int src_bus_width, dst_bus_width;
720         int src_burst_size, dst_burst_size;
721         u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
722         u32 dma_scr, fifoth;
723
724         src_addr_width = chan->dma_sconfig.src_addr_width;
725         dst_addr_width = chan->dma_sconfig.dst_addr_width;
726         src_maxburst = chan->dma_sconfig.src_maxburst;
727         dst_maxburst = chan->dma_sconfig.dst_maxburst;
728         fifoth = chan->threshold;
729
730         switch (direction) {
731         case DMA_MEM_TO_DEV:
732                 /* Set device data size */
733                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
734                 if (dst_bus_width < 0)
735                         return dst_bus_width;
736
737                 /* Set device burst size */
738                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
739                                                           dst_maxburst,
740                                                           fifoth,
741                                                           dst_addr_width);
742
743                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
744                 if (dst_burst_size < 0)
745                         return dst_burst_size;
746
747                 /* Set memory data size */
748                 src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
749                                                          fifoth);
750                 chan->mem_width = src_addr_width;
751                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
752                 if (src_bus_width < 0)
753                         return src_bus_width;
754
755                 /*
756                  * Set memory burst size - burst not possible if address is not aligned on
757                  * the address boundary equal to the size of the transfer
758                  */
759                 if (buf_addr & (buf_len - 1))
760                         src_maxburst = 1;
761                 else
762                         src_maxburst = STM32_DMA_MAX_BURST;
763                 src_best_burst = stm32_dma_get_best_burst(buf_len,
764                                                           src_maxburst,
765                                                           fifoth,
766                                                           src_addr_width);
767                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
768                 if (src_burst_size < 0)
769                         return src_burst_size;
770
771                 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
772                         STM32_DMA_SCR_PSIZE(dst_bus_width) |
773                         STM32_DMA_SCR_MSIZE(src_bus_width) |
774                         STM32_DMA_SCR_PBURST(dst_burst_size) |
775                         STM32_DMA_SCR_MBURST(src_burst_size);
776
777                 /* Set FIFO threshold */
778                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
779                 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
780                         chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
781
782                 /* Set peripheral address */
783                 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
784                 *buswidth = dst_addr_width;
785                 break;
786
787         case DMA_DEV_TO_MEM:
788                 /* Set device data size */
789                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
790                 if (src_bus_width < 0)
791                         return src_bus_width;
792
793                 /* Set device burst size */
794                 src_best_burst = stm32_dma_get_best_burst(buf_len,
795                                                           src_maxburst,
796                                                           fifoth,
797                                                           src_addr_width);
798                 chan->mem_burst = src_best_burst;
799                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
800                 if (src_burst_size < 0)
801                         return src_burst_size;
802
803                 /* Set memory data size */
804                 dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
805                                                          fifoth);
806                 chan->mem_width = dst_addr_width;
807                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
808                 if (dst_bus_width < 0)
809                         return dst_bus_width;
810
811                 /*
812                  * Set memory burst size - burst not possible if address is not aligned on
813                  * the address boundary equal to the size of the transfer
814                  */
815                 if (buf_addr & (buf_len - 1))
816                         dst_maxburst = 1;
817                 else
818                         dst_maxburst = STM32_DMA_MAX_BURST;
819                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
820                                                           dst_maxburst,
821                                                           fifoth,
822                                                           dst_addr_width);
823                 chan->mem_burst = dst_best_burst;
824                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
825                 if (dst_burst_size < 0)
826                         return dst_burst_size;
827
828                 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
829                         STM32_DMA_SCR_PSIZE(src_bus_width) |
830                         STM32_DMA_SCR_MSIZE(dst_bus_width) |
831                         STM32_DMA_SCR_PBURST(src_burst_size) |
832                         STM32_DMA_SCR_MBURST(dst_burst_size);
833
834                 /* Set FIFO threshold */
835                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
836                 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
837                         chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
838
839                 /* Set peripheral address */
840                 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
841                 *buswidth = chan->dma_sconfig.src_addr_width;
842                 break;
843
844         default:
845                 dev_err(chan2dev(chan), "Dma direction is not supported\n");
846                 return -EINVAL;
847         }
848
849         stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
850
851         /* Set DMA control register */
852         chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
853                         STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
854                         STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
855         chan->chan_reg.dma_scr |= dma_scr;
856
857         return 0;
858 }
859
860 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
861 {
862         memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
863 }
864
865 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
866         struct dma_chan *c, struct scatterlist *sgl,
867         u32 sg_len, enum dma_transfer_direction direction,
868         unsigned long flags, void *context)
869 {
870         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
871         struct stm32_dma_desc *desc;
872         struct scatterlist *sg;
873         enum dma_slave_buswidth buswidth;
874         u32 nb_data_items;
875         int i, ret;
876
877         if (!chan->config_init) {
878                 dev_err(chan2dev(chan), "dma channel is not configured\n");
879                 return NULL;
880         }
881
882         if (sg_len < 1) {
883                 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
884                 return NULL;
885         }
886
887         desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
888         if (!desc)
889                 return NULL;
890
891         /* Set peripheral flow controller */
892         if (chan->dma_sconfig.device_fc)
893                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
894         else
895                 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
896
897         for_each_sg(sgl, sg, sg_len, i) {
898                 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
899                                                sg_dma_len(sg),
900                                                sg_dma_address(sg));
901                 if (ret < 0)
902                         goto err;
903
904                 desc->sg_req[i].len = sg_dma_len(sg);
905
906                 nb_data_items = desc->sg_req[i].len / buswidth;
907                 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
908                         dev_err(chan2dev(chan), "nb items not supported\n");
909                         goto err;
910                 }
911
912                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
913                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
914                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
915                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
916                 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
917                 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
918                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
919         }
920
921         desc->num_sgs = sg_len;
922         desc->cyclic = false;
923
924         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
925
926 err:
927         kfree(desc);
928         return NULL;
929 }
930
931 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
932         struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
933         size_t period_len, enum dma_transfer_direction direction,
934         unsigned long flags)
935 {
936         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
937         struct stm32_dma_desc *desc;
938         enum dma_slave_buswidth buswidth;
939         u32 num_periods, nb_data_items;
940         int i, ret;
941
942         if (!buf_len || !period_len) {
943                 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
944                 return NULL;
945         }
946
947         if (!chan->config_init) {
948                 dev_err(chan2dev(chan), "dma channel is not configured\n");
949                 return NULL;
950         }
951
952         if (buf_len % period_len) {
953                 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
954                 return NULL;
955         }
956
957         /*
958          * We allow to take more number of requests till DMA is
959          * not started. The driver will loop over all requests.
960          * Once DMA is started then new requests can be queued only after
961          * terminating the DMA.
962          */
963         if (chan->busy) {
964                 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
965                 return NULL;
966         }
967
968         ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
969                                        buf_addr);
970         if (ret < 0)
971                 return NULL;
972
973         nb_data_items = period_len / buswidth;
974         if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
975                 dev_err(chan2dev(chan), "number of items not supported\n");
976                 return NULL;
977         }
978
979         /*  Enable Circular mode or double buffer mode */
980         if (buf_len == period_len)
981                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
982         else
983                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
984
985         /* Clear periph ctrl if client set it */
986         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
987
988         num_periods = buf_len / period_len;
989
990         desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
991         if (!desc)
992                 return NULL;
993
994         for (i = 0; i < num_periods; i++) {
995                 desc->sg_req[i].len = period_len;
996
997                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
998                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
999                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1000                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1001                 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
1002                 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
1003                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1004                 buf_addr += period_len;
1005         }
1006
1007         desc->num_sgs = num_periods;
1008         desc->cyclic = true;
1009
1010         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1011 }
1012
1013 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1014         struct dma_chan *c, dma_addr_t dest,
1015         dma_addr_t src, size_t len, unsigned long flags)
1016 {
1017         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1018         enum dma_slave_buswidth max_width;
1019         struct stm32_dma_desc *desc;
1020         size_t xfer_count, offset;
1021         u32 num_sgs, best_burst, dma_burst, threshold;
1022         int i;
1023
1024         num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1025         desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1026         if (!desc)
1027                 return NULL;
1028
1029         threshold = chan->threshold;
1030
1031         for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1032                 xfer_count = min_t(size_t, len - offset,
1033                                    STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1034
1035                 /* Compute best burst size */
1036                 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1037                 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1038                                                       threshold, max_width);
1039                 dma_burst = stm32_dma_get_burst(chan, best_burst);
1040
1041                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1042                 desc->sg_req[i].chan_reg.dma_scr =
1043                         STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1044                         STM32_DMA_SCR_PBURST(dma_burst) |
1045                         STM32_DMA_SCR_MBURST(dma_burst) |
1046                         STM32_DMA_SCR_MINC |
1047                         STM32_DMA_SCR_PINC |
1048                         STM32_DMA_SCR_TCIE |
1049                         STM32_DMA_SCR_TEIE;
1050                 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1051                 desc->sg_req[i].chan_reg.dma_sfcr |=
1052                         STM32_DMA_SFCR_FTH(threshold);
1053                 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1054                 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1055                 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1056                 desc->sg_req[i].len = xfer_count;
1057         }
1058
1059         desc->num_sgs = num_sgs;
1060         desc->cyclic = false;
1061
1062         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1063 }
1064
1065 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1066 {
1067         u32 dma_scr, width, ndtr;
1068         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1069
1070         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1071         width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1072         ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1073
1074         return ndtr << width;
1075 }
1076
1077 /**
1078  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1079  * @chan: dma channel
1080  *
1081  * This function called when IRQ are disable, checks that the hardware has not
1082  * switched on the next transfer in double buffer mode. The test is done by
1083  * comparing the next_sg memory address with the hardware related register
1084  * (based on CT bit value).
1085  *
1086  * Returns true if expected current transfer is still running or double
1087  * buffer mode is not activated.
1088  */
1089 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1090 {
1091         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1092         struct stm32_dma_sg_req *sg_req;
1093         u32 dma_scr, dma_smar, id;
1094
1095         id = chan->id;
1096         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1097
1098         if (!(dma_scr & STM32_DMA_SCR_DBM))
1099                 return true;
1100
1101         sg_req = &chan->desc->sg_req[chan->next_sg];
1102
1103         if (dma_scr & STM32_DMA_SCR_CT) {
1104                 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1105                 return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1106         }
1107
1108         dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1109
1110         return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1111 }
1112
1113 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1114                                      struct stm32_dma_desc *desc,
1115                                      u32 next_sg)
1116 {
1117         u32 modulo, burst_size;
1118         u32 residue;
1119         u32 n_sg = next_sg;
1120         struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1121         int i;
1122
1123         /*
1124          * Calculate the residue means compute the descriptors
1125          * information:
1126          * - the sg_req currently transferred
1127          * - the Hardware remaining position in this sg (NDTR bits field).
1128          *
1129          * A race condition may occur if DMA is running in cyclic or double
1130          * buffer mode, since the DMA register are automatically reloaded at end
1131          * of period transfer. The hardware may have switched to the next
1132          * transfer (CT bit updated) just before the position (SxNDTR reg) is
1133          * read.
1134          * In this case the SxNDTR reg could (or not) correspond to the new
1135          * transfer position, and not the expected one.
1136          * The strategy implemented in the stm32 driver is to:
1137          *  - read the SxNDTR register
1138          *  - crosscheck that hardware is still in current transfer.
1139          * In case of switch, we can assume that the DMA is at the beginning of
1140          * the next transfer. So we approximate the residue in consequence, by
1141          * pointing on the beginning of next transfer.
1142          *
1143          * This race condition doesn't apply for none cyclic mode, as double
1144          * buffer is not used. In such situation registers are updated by the
1145          * software.
1146          */
1147
1148         residue = stm32_dma_get_remaining_bytes(chan);
1149
1150         if (!stm32_dma_is_current_sg(chan)) {
1151                 n_sg++;
1152                 if (n_sg == chan->desc->num_sgs)
1153                         n_sg = 0;
1154                 residue = sg_req->len;
1155         }
1156
1157         /*
1158          * In cyclic mode, for the last period, residue = remaining bytes
1159          * from NDTR,
1160          * else for all other periods in cyclic mode, and in sg mode,
1161          * residue = remaining bytes from NDTR + remaining
1162          * periods/sg to be transferred
1163          */
1164         if (!chan->desc->cyclic || n_sg != 0)
1165                 for (i = n_sg; i < desc->num_sgs; i++)
1166                         residue += desc->sg_req[i].len;
1167
1168         if (!chan->mem_burst)
1169                 return residue;
1170
1171         burst_size = chan->mem_burst * chan->mem_width;
1172         modulo = residue % burst_size;
1173         if (modulo)
1174                 residue = residue - modulo + burst_size;
1175
1176         return residue;
1177 }
1178
1179 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1180                                            dma_cookie_t cookie,
1181                                            struct dma_tx_state *state)
1182 {
1183         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1184         struct virt_dma_desc *vdesc;
1185         enum dma_status status;
1186         unsigned long flags;
1187         u32 residue = 0;
1188
1189         status = dma_cookie_status(c, cookie, state);
1190         if (status == DMA_COMPLETE || !state)
1191                 return status;
1192
1193         spin_lock_irqsave(&chan->vchan.lock, flags);
1194         vdesc = vchan_find_desc(&chan->vchan, cookie);
1195         if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1196                 residue = stm32_dma_desc_residue(chan, chan->desc,
1197                                                  chan->next_sg);
1198         else if (vdesc)
1199                 residue = stm32_dma_desc_residue(chan,
1200                                                  to_stm32_dma_desc(vdesc), 0);
1201         dma_set_residue(state, residue);
1202
1203         spin_unlock_irqrestore(&chan->vchan.lock, flags);
1204
1205         return status;
1206 }
1207
1208 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1209 {
1210         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1211         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1212         int ret;
1213
1214         chan->config_init = false;
1215
1216         ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1217         if (ret < 0)
1218                 return ret;
1219
1220         ret = stm32_dma_disable_chan(chan);
1221         if (ret < 0)
1222                 pm_runtime_put(dmadev->ddev.dev);
1223
1224         return ret;
1225 }
1226
1227 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1228 {
1229         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1230         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1231         unsigned long flags;
1232
1233         dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1234
1235         if (chan->busy) {
1236                 spin_lock_irqsave(&chan->vchan.lock, flags);
1237                 stm32_dma_stop(chan);
1238                 chan->desc = NULL;
1239                 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1240         }
1241
1242         pm_runtime_put(dmadev->ddev.dev);
1243
1244         vchan_free_chan_resources(to_virt_chan(c));
1245         stm32_dma_clear_reg(&chan->chan_reg);
1246         chan->threshold = 0;
1247 }
1248
1249 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1250 {
1251         kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1252 }
1253
1254 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1255                                  struct stm32_dma_cfg *cfg)
1256 {
1257         stm32_dma_clear_reg(&chan->chan_reg);
1258
1259         chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1260         chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1261
1262         /* Enable Interrupts  */
1263         chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1264
1265         chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1266         if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1267                 chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1268         if (STM32_DMA_ALT_ACK_MODE_GET(cfg->features))
1269                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1270 }
1271
1272 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1273                                            struct of_dma *ofdma)
1274 {
1275         struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1276         struct device *dev = dmadev->ddev.dev;
1277         struct stm32_dma_cfg cfg;
1278         struct stm32_dma_chan *chan;
1279         struct dma_chan *c;
1280
1281         if (dma_spec->args_count < 4) {
1282                 dev_err(dev, "Bad number of cells\n");
1283                 return NULL;
1284         }
1285
1286         cfg.channel_id = dma_spec->args[0];
1287         cfg.request_line = dma_spec->args[1];
1288         cfg.stream_config = dma_spec->args[2];
1289         cfg.features = dma_spec->args[3];
1290
1291         if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1292             cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1293                 dev_err(dev, "Bad channel and/or request id\n");
1294                 return NULL;
1295         }
1296
1297         chan = &dmadev->chan[cfg.channel_id];
1298
1299         c = dma_get_slave_channel(&chan->vchan.chan);
1300         if (!c) {
1301                 dev_err(dev, "No more channels available\n");
1302                 return NULL;
1303         }
1304
1305         stm32_dma_set_config(chan, &cfg);
1306
1307         return c;
1308 }
1309
1310 static const struct of_device_id stm32_dma_of_match[] = {
1311         { .compatible = "st,stm32-dma", },
1312         { /* sentinel */ },
1313 };
1314 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1315
1316 static int stm32_dma_probe(struct platform_device *pdev)
1317 {
1318         struct stm32_dma_chan *chan;
1319         struct stm32_dma_device *dmadev;
1320         struct dma_device *dd;
1321         const struct of_device_id *match;
1322         struct resource *res;
1323         struct reset_control *rst;
1324         int i, ret;
1325
1326         match = of_match_device(stm32_dma_of_match, &pdev->dev);
1327         if (!match) {
1328                 dev_err(&pdev->dev, "Error: No device match found\n");
1329                 return -ENODEV;
1330         }
1331
1332         dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1333         if (!dmadev)
1334                 return -ENOMEM;
1335
1336         dd = &dmadev->ddev;
1337
1338         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1339         dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1340         if (IS_ERR(dmadev->base))
1341                 return PTR_ERR(dmadev->base);
1342
1343         dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1344         if (IS_ERR(dmadev->clk))
1345                 return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1346
1347         ret = clk_prepare_enable(dmadev->clk);
1348         if (ret < 0) {
1349                 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1350                 return ret;
1351         }
1352
1353         dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1354                                                 "st,mem2mem");
1355
1356         rst = devm_reset_control_get(&pdev->dev, NULL);
1357         if (IS_ERR(rst)) {
1358                 ret = PTR_ERR(rst);
1359                 if (ret == -EPROBE_DEFER)
1360                         goto clk_free;
1361         } else {
1362                 reset_control_assert(rst);
1363                 udelay(2);
1364                 reset_control_deassert(rst);
1365         }
1366
1367         dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1368
1369         dma_cap_set(DMA_SLAVE, dd->cap_mask);
1370         dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1371         dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1372         dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1373         dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1374         dd->device_tx_status = stm32_dma_tx_status;
1375         dd->device_issue_pending = stm32_dma_issue_pending;
1376         dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1377         dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1378         dd->device_config = stm32_dma_slave_config;
1379         dd->device_terminate_all = stm32_dma_terminate_all;
1380         dd->device_synchronize = stm32_dma_synchronize;
1381         dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1382                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1383                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1384         dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1385                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1386                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1387         dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1388         dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1389         dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1390         dd->max_burst = STM32_DMA_MAX_BURST;
1391         dd->descriptor_reuse = true;
1392         dd->dev = &pdev->dev;
1393         INIT_LIST_HEAD(&dd->channels);
1394
1395         if (dmadev->mem2mem) {
1396                 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1397                 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1398                 dd->directions |= BIT(DMA_MEM_TO_MEM);
1399         }
1400
1401         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1402                 chan = &dmadev->chan[i];
1403                 chan->id = i;
1404                 chan->vchan.desc_free = stm32_dma_desc_free;
1405                 vchan_init(&chan->vchan, dd);
1406         }
1407
1408         ret = dma_async_device_register(dd);
1409         if (ret)
1410                 goto clk_free;
1411
1412         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1413                 chan = &dmadev->chan[i];
1414                 ret = platform_get_irq(pdev, i);
1415                 if (ret < 0)
1416                         goto err_unregister;
1417                 chan->irq = ret;
1418
1419                 ret = devm_request_irq(&pdev->dev, chan->irq,
1420                                        stm32_dma_chan_irq, 0,
1421                                        dev_name(chan2dev(chan)), chan);
1422                 if (ret) {
1423                         dev_err(&pdev->dev,
1424                                 "request_irq failed with err %d channel %d\n",
1425                                 ret, i);
1426                         goto err_unregister;
1427                 }
1428         }
1429
1430         ret = of_dma_controller_register(pdev->dev.of_node,
1431                                          stm32_dma_of_xlate, dmadev);
1432         if (ret < 0) {
1433                 dev_err(&pdev->dev,
1434                         "STM32 DMA DMA OF registration failed %d\n", ret);
1435                 goto err_unregister;
1436         }
1437
1438         platform_set_drvdata(pdev, dmadev);
1439
1440         pm_runtime_set_active(&pdev->dev);
1441         pm_runtime_enable(&pdev->dev);
1442         pm_runtime_get_noresume(&pdev->dev);
1443         pm_runtime_put(&pdev->dev);
1444
1445         dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1446
1447         return 0;
1448
1449 err_unregister:
1450         dma_async_device_unregister(dd);
1451 clk_free:
1452         clk_disable_unprepare(dmadev->clk);
1453
1454         return ret;
1455 }
1456
1457 #ifdef CONFIG_PM
1458 static int stm32_dma_runtime_suspend(struct device *dev)
1459 {
1460         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1461
1462         clk_disable_unprepare(dmadev->clk);
1463
1464         return 0;
1465 }
1466
1467 static int stm32_dma_runtime_resume(struct device *dev)
1468 {
1469         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1470         int ret;
1471
1472         ret = clk_prepare_enable(dmadev->clk);
1473         if (ret) {
1474                 dev_err(dev, "failed to prepare_enable clock\n");
1475                 return ret;
1476         }
1477
1478         return 0;
1479 }
1480 #endif
1481
1482 #ifdef CONFIG_PM_SLEEP
1483 static int stm32_dma_suspend(struct device *dev)
1484 {
1485         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1486         int id, ret, scr;
1487
1488         ret = pm_runtime_resume_and_get(dev);
1489         if (ret < 0)
1490                 return ret;
1491
1492         for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1493                 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1494                 if (scr & STM32_DMA_SCR_EN) {
1495                         dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1496                         return -EBUSY;
1497                 }
1498         }
1499
1500         pm_runtime_put_sync(dev);
1501
1502         pm_runtime_force_suspend(dev);
1503
1504         return 0;
1505 }
1506
1507 static int stm32_dma_resume(struct device *dev)
1508 {
1509         return pm_runtime_force_resume(dev);
1510 }
1511 #endif
1512
1513 static const struct dev_pm_ops stm32_dma_pm_ops = {
1514         SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1515         SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1516                            stm32_dma_runtime_resume, NULL)
1517 };
1518
1519 static struct platform_driver stm32_dma_driver = {
1520         .driver = {
1521                 .name = "stm32-dma",
1522                 .of_match_table = stm32_dma_of_match,
1523                 .pm = &stm32_dma_pm_ops,
1524         },
1525         .probe = stm32_dma_probe,
1526 };
1527
1528 static int __init stm32_dma_init(void)
1529 {
1530         return platform_driver_register(&stm32_dma_driver);
1531 }
1532 subsys_initcall(stm32_dma_init);