GNU Linux-libre 5.4.200-gnu1
[releases.git] / drivers / dma / stm32-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/jiffies.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_dma.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/reset.h>
27 #include <linux/sched.h>
28 #include <linux/slab.h>
29
30 #include "virt-dma.h"
31
32 #define STM32_DMA_LISR                  0x0000 /* DMA Low Int Status Reg */
33 #define STM32_DMA_HISR                  0x0004 /* DMA High Int Status Reg */
34 #define STM32_DMA_LIFCR                 0x0008 /* DMA Low Int Flag Clear Reg */
35 #define STM32_DMA_HIFCR                 0x000c /* DMA High Int Flag Clear Reg */
36 #define STM32_DMA_TCI                   BIT(5) /* Transfer Complete Interrupt */
37 #define STM32_DMA_HTI                   BIT(4) /* Half Transfer Interrupt */
38 #define STM32_DMA_TEI                   BIT(3) /* Transfer Error Interrupt */
39 #define STM32_DMA_DMEI                  BIT(2) /* Direct Mode Error Interrupt */
40 #define STM32_DMA_FEI                   BIT(0) /* FIFO Error Interrupt */
41 #define STM32_DMA_MASKI                 (STM32_DMA_TCI \
42                                          | STM32_DMA_TEI \
43                                          | STM32_DMA_DMEI \
44                                          | STM32_DMA_FEI)
45
46 /* DMA Stream x Configuration Register */
47 #define STM32_DMA_SCR(x)                (0x0010 + 0x18 * (x)) /* x = 0..7 */
48 #define STM32_DMA_SCR_REQ(n)            ((n & 0x7) << 25)
49 #define STM32_DMA_SCR_MBURST_MASK       GENMASK(24, 23)
50 #define STM32_DMA_SCR_MBURST(n)         ((n & 0x3) << 23)
51 #define STM32_DMA_SCR_PBURST_MASK       GENMASK(22, 21)
52 #define STM32_DMA_SCR_PBURST(n)         ((n & 0x3) << 21)
53 #define STM32_DMA_SCR_PL_MASK           GENMASK(17, 16)
54 #define STM32_DMA_SCR_PL(n)             ((n & 0x3) << 16)
55 #define STM32_DMA_SCR_MSIZE_MASK        GENMASK(14, 13)
56 #define STM32_DMA_SCR_MSIZE(n)          ((n & 0x3) << 13)
57 #define STM32_DMA_SCR_PSIZE_MASK        GENMASK(12, 11)
58 #define STM32_DMA_SCR_PSIZE(n)          ((n & 0x3) << 11)
59 #define STM32_DMA_SCR_PSIZE_GET(n)      ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
60 #define STM32_DMA_SCR_DIR_MASK          GENMASK(7, 6)
61 #define STM32_DMA_SCR_DIR(n)            ((n & 0x3) << 6)
62 #define STM32_DMA_SCR_CT                BIT(19) /* Target in double buffer */
63 #define STM32_DMA_SCR_DBM               BIT(18) /* Double Buffer Mode */
64 #define STM32_DMA_SCR_PINCOS            BIT(15) /* Peripheral inc offset size */
65 #define STM32_DMA_SCR_MINC              BIT(10) /* Memory increment mode */
66 #define STM32_DMA_SCR_PINC              BIT(9) /* Peripheral increment mode */
67 #define STM32_DMA_SCR_CIRC              BIT(8) /* Circular mode */
68 #define STM32_DMA_SCR_PFCTRL            BIT(5) /* Peripheral Flow Controller */
69 #define STM32_DMA_SCR_TCIE              BIT(4) /* Transfer Complete Int Enable
70                                                 */
71 #define STM32_DMA_SCR_TEIE              BIT(2) /* Transfer Error Int Enable */
72 #define STM32_DMA_SCR_DMEIE             BIT(1) /* Direct Mode Err Int Enable */
73 #define STM32_DMA_SCR_EN                BIT(0) /* Stream Enable */
74 #define STM32_DMA_SCR_CFG_MASK          (STM32_DMA_SCR_PINC \
75                                         | STM32_DMA_SCR_MINC \
76                                         | STM32_DMA_SCR_PINCOS \
77                                         | STM32_DMA_SCR_PL_MASK)
78 #define STM32_DMA_SCR_IRQ_MASK          (STM32_DMA_SCR_TCIE \
79                                         | STM32_DMA_SCR_TEIE \
80                                         | STM32_DMA_SCR_DMEIE)
81
82 /* DMA Stream x number of data register */
83 #define STM32_DMA_SNDTR(x)              (0x0014 + 0x18 * (x))
84
85 /* DMA stream peripheral address register */
86 #define STM32_DMA_SPAR(x)               (0x0018 + 0x18 * (x))
87
88 /* DMA stream x memory 0 address register */
89 #define STM32_DMA_SM0AR(x)              (0x001c + 0x18 * (x))
90
91 /* DMA stream x memory 1 address register */
92 #define STM32_DMA_SM1AR(x)              (0x0020 + 0x18 * (x))
93
94 /* DMA stream x FIFO control register */
95 #define STM32_DMA_SFCR(x)               (0x0024 + 0x18 * (x))
96 #define STM32_DMA_SFCR_FTH_MASK         GENMASK(1, 0)
97 #define STM32_DMA_SFCR_FTH(n)           (n & STM32_DMA_SFCR_FTH_MASK)
98 #define STM32_DMA_SFCR_FEIE             BIT(7) /* FIFO error interrupt enable */
99 #define STM32_DMA_SFCR_DMDIS            BIT(2) /* Direct mode disable */
100 #define STM32_DMA_SFCR_MASK             (STM32_DMA_SFCR_FEIE \
101                                         | STM32_DMA_SFCR_DMDIS)
102
103 /* DMA direction */
104 #define STM32_DMA_DEV_TO_MEM            0x00
105 #define STM32_DMA_MEM_TO_DEV            0x01
106 #define STM32_DMA_MEM_TO_MEM            0x02
107
108 /* DMA priority level */
109 #define STM32_DMA_PRIORITY_LOW          0x00
110 #define STM32_DMA_PRIORITY_MEDIUM       0x01
111 #define STM32_DMA_PRIORITY_HIGH         0x02
112 #define STM32_DMA_PRIORITY_VERY_HIGH    0x03
113
114 /* DMA FIFO threshold selection */
115 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL           0x00
116 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL               0x01
117 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL          0x02
118 #define STM32_DMA_FIFO_THRESHOLD_FULL                   0x03
119
120 #define STM32_DMA_MAX_DATA_ITEMS        0xffff
121 /*
122  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
123  * gather at boundary. Thus it's safer to round down this value on FIFO
124  * size (16 Bytes)
125  */
126 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS        \
127         ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
128 #define STM32_DMA_MAX_CHANNELS          0x08
129 #define STM32_DMA_MAX_REQUEST_ID        0x08
130 #define STM32_DMA_MAX_DATA_PARAM        0x03
131 #define STM32_DMA_FIFO_SIZE             16      /* FIFO is 16 bytes */
132 #define STM32_DMA_MIN_BURST             4
133 #define STM32_DMA_MAX_BURST             16
134
135 /* DMA Features */
136 #define STM32_DMA_THRESHOLD_FTR_MASK    GENMASK(1, 0)
137 #define STM32_DMA_THRESHOLD_FTR_GET(n)  ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
138
139 enum stm32_dma_width {
140         STM32_DMA_BYTE,
141         STM32_DMA_HALF_WORD,
142         STM32_DMA_WORD,
143 };
144
145 enum stm32_dma_burst_size {
146         STM32_DMA_BURST_SINGLE,
147         STM32_DMA_BURST_INCR4,
148         STM32_DMA_BURST_INCR8,
149         STM32_DMA_BURST_INCR16,
150 };
151
152 /**
153  * struct stm32_dma_cfg - STM32 DMA custom configuration
154  * @channel_id: channel ID
155  * @request_line: DMA request
156  * @stream_config: 32bit mask specifying the DMA channel configuration
157  * @features: 32bit mask specifying the DMA Feature list
158  */
159 struct stm32_dma_cfg {
160         u32 channel_id;
161         u32 request_line;
162         u32 stream_config;
163         u32 features;
164 };
165
166 struct stm32_dma_chan_reg {
167         u32 dma_lisr;
168         u32 dma_hisr;
169         u32 dma_lifcr;
170         u32 dma_hifcr;
171         u32 dma_scr;
172         u32 dma_sndtr;
173         u32 dma_spar;
174         u32 dma_sm0ar;
175         u32 dma_sm1ar;
176         u32 dma_sfcr;
177 };
178
179 struct stm32_dma_sg_req {
180         u32 len;
181         struct stm32_dma_chan_reg chan_reg;
182 };
183
184 struct stm32_dma_desc {
185         struct virt_dma_desc vdesc;
186         bool cyclic;
187         u32 num_sgs;
188         struct stm32_dma_sg_req sg_req[];
189 };
190
191 struct stm32_dma_chan {
192         struct virt_dma_chan vchan;
193         bool config_init;
194         bool busy;
195         u32 id;
196         u32 irq;
197         struct stm32_dma_desc *desc;
198         u32 next_sg;
199         struct dma_slave_config dma_sconfig;
200         struct stm32_dma_chan_reg chan_reg;
201         u32 threshold;
202         u32 mem_burst;
203         u32 mem_width;
204 };
205
206 struct stm32_dma_device {
207         struct dma_device ddev;
208         void __iomem *base;
209         struct clk *clk;
210         struct reset_control *rst;
211         bool mem2mem;
212         struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
213 };
214
215 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
216 {
217         return container_of(chan->vchan.chan.device, struct stm32_dma_device,
218                             ddev);
219 }
220
221 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
222 {
223         return container_of(c, struct stm32_dma_chan, vchan.chan);
224 }
225
226 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
227 {
228         return container_of(vdesc, struct stm32_dma_desc, vdesc);
229 }
230
231 static struct device *chan2dev(struct stm32_dma_chan *chan)
232 {
233         return &chan->vchan.chan.dev->device;
234 }
235
236 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
237 {
238         return readl_relaxed(dmadev->base + reg);
239 }
240
241 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
242 {
243         writel_relaxed(val, dmadev->base + reg);
244 }
245
246 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
247                                enum dma_slave_buswidth width)
248 {
249         switch (width) {
250         case DMA_SLAVE_BUSWIDTH_1_BYTE:
251                 return STM32_DMA_BYTE;
252         case DMA_SLAVE_BUSWIDTH_2_BYTES:
253                 return STM32_DMA_HALF_WORD;
254         case DMA_SLAVE_BUSWIDTH_4_BYTES:
255                 return STM32_DMA_WORD;
256         default:
257                 dev_err(chan2dev(chan), "Dma bus width not supported\n");
258                 return -EINVAL;
259         }
260 }
261
262 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
263                                                        u32 threshold)
264 {
265         enum dma_slave_buswidth max_width;
266
267         if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
268                 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
269         else
270                 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
271
272         while ((buf_len < max_width  || buf_len % max_width) &&
273                max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
274                 max_width = max_width >> 1;
275
276         return max_width;
277 }
278
279 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
280                                                 enum dma_slave_buswidth width)
281 {
282         u32 remaining;
283
284         if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
285                 if (burst != 0) {
286                         /*
287                          * If number of beats fit in several whole bursts
288                          * this configuration is allowed.
289                          */
290                         remaining = ((STM32_DMA_FIFO_SIZE / width) *
291                                      (threshold + 1) / 4) % burst;
292
293                         if (remaining == 0)
294                                 return true;
295                 } else {
296                         return true;
297                 }
298         }
299
300         return false;
301 }
302
303 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
304 {
305         /*
306          * Buffer or period length has to be aligned on FIFO depth.
307          * Otherwise bytes may be stuck within FIFO at buffer or period
308          * length.
309          */
310         return ((buf_len % ((threshold + 1) * 4)) == 0);
311 }
312
313 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
314                                     enum dma_slave_buswidth width)
315 {
316         u32 best_burst = max_burst;
317
318         if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
319                 return 0;
320
321         while ((buf_len < best_burst * width && best_burst > 1) ||
322                !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
323                                                     width)) {
324                 if (best_burst > STM32_DMA_MIN_BURST)
325                         best_burst = best_burst >> 1;
326                 else
327                         best_burst = 0;
328         }
329
330         return best_burst;
331 }
332
333 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
334 {
335         switch (maxburst) {
336         case 0:
337         case 1:
338                 return STM32_DMA_BURST_SINGLE;
339         case 4:
340                 return STM32_DMA_BURST_INCR4;
341         case 8:
342                 return STM32_DMA_BURST_INCR8;
343         case 16:
344                 return STM32_DMA_BURST_INCR16;
345         default:
346                 dev_err(chan2dev(chan), "Dma burst size not supported\n");
347                 return -EINVAL;
348         }
349 }
350
351 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
352                                       u32 src_burst, u32 dst_burst)
353 {
354         chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
355         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
356
357         if (!src_burst && !dst_burst) {
358                 /* Using direct mode */
359                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
360         } else {
361                 /* Using FIFO mode */
362                 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
363         }
364 }
365
366 static int stm32_dma_slave_config(struct dma_chan *c,
367                                   struct dma_slave_config *config)
368 {
369         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
370
371         memcpy(&chan->dma_sconfig, config, sizeof(*config));
372
373         chan->config_init = true;
374
375         return 0;
376 }
377
378 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
379 {
380         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
381         u32 flags, dma_isr;
382
383         /*
384          * Read "flags" from DMA_xISR register corresponding to the selected
385          * DMA channel at the correct bit offset inside that register.
386          *
387          * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
388          * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
389          */
390
391         if (chan->id & 4)
392                 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
393         else
394                 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
395
396         flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
397
398         return flags & STM32_DMA_MASKI;
399 }
400
401 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
402 {
403         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
404         u32 dma_ifcr;
405
406         /*
407          * Write "flags" to the DMA_xIFCR register corresponding to the selected
408          * DMA channel at the correct bit offset inside that register.
409          *
410          * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
411          * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
412          */
413         flags &= STM32_DMA_MASKI;
414         dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
415
416         if (chan->id & 4)
417                 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
418         else
419                 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
420 }
421
422 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
423 {
424         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
425         unsigned long timeout = jiffies + msecs_to_jiffies(5000);
426         u32 dma_scr, id;
427
428         id = chan->id;
429         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
430
431         if (dma_scr & STM32_DMA_SCR_EN) {
432                 dma_scr &= ~STM32_DMA_SCR_EN;
433                 stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr);
434
435                 do {
436                         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
437                         dma_scr &= STM32_DMA_SCR_EN;
438                         if (!dma_scr)
439                                 break;
440
441                         if (time_after_eq(jiffies, timeout)) {
442                                 dev_err(chan2dev(chan), "%s: timeout!\n",
443                                         __func__);
444                                 return -EBUSY;
445                         }
446                         cond_resched();
447                 } while (1);
448         }
449
450         return 0;
451 }
452
453 static void stm32_dma_stop(struct stm32_dma_chan *chan)
454 {
455         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
456         u32 dma_scr, dma_sfcr, status;
457         int ret;
458
459         /* Disable interrupts */
460         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
461         dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
462         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
463         dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
464         dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
465         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
466
467         /* Disable DMA */
468         ret = stm32_dma_disable_chan(chan);
469         if (ret < 0)
470                 return;
471
472         /* Clear interrupt status if it is there */
473         status = stm32_dma_irq_status(chan);
474         if (status) {
475                 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
476                         __func__, status);
477                 stm32_dma_irq_clear(chan, status);
478         }
479
480         chan->busy = false;
481 }
482
483 static int stm32_dma_terminate_all(struct dma_chan *c)
484 {
485         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
486         unsigned long flags;
487         LIST_HEAD(head);
488
489         spin_lock_irqsave(&chan->vchan.lock, flags);
490
491         if (chan->desc) {
492                 vchan_terminate_vdesc(&chan->desc->vdesc);
493                 if (chan->busy)
494                         stm32_dma_stop(chan);
495                 chan->desc = NULL;
496         }
497
498         vchan_get_all_descriptors(&chan->vchan, &head);
499         spin_unlock_irqrestore(&chan->vchan.lock, flags);
500         vchan_dma_desc_free_list(&chan->vchan, &head);
501
502         return 0;
503 }
504
505 static void stm32_dma_synchronize(struct dma_chan *c)
506 {
507         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
508
509         vchan_synchronize(&chan->vchan);
510 }
511
512 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
513 {
514         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
515         u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
516         u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
517         u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
518         u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
519         u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
520         u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
521
522         dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
523         dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
524         dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
525         dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
526         dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
527         dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
528 }
529
530 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
531
532 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
533 {
534         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
535         struct virt_dma_desc *vdesc;
536         struct stm32_dma_sg_req *sg_req;
537         struct stm32_dma_chan_reg *reg;
538         u32 status;
539         int ret;
540
541         ret = stm32_dma_disable_chan(chan);
542         if (ret < 0)
543                 return;
544
545         if (!chan->desc) {
546                 vdesc = vchan_next_desc(&chan->vchan);
547                 if (!vdesc)
548                         return;
549
550                 list_del(&vdesc->node);
551
552                 chan->desc = to_stm32_dma_desc(vdesc);
553                 chan->next_sg = 0;
554         }
555
556         if (chan->next_sg == chan->desc->num_sgs)
557                 chan->next_sg = 0;
558
559         sg_req = &chan->desc->sg_req[chan->next_sg];
560         reg = &sg_req->chan_reg;
561
562         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
563         stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
564         stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
565         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
566         stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
567         stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
568
569         chan->next_sg++;
570
571         /* Clear interrupt status if it is there */
572         status = stm32_dma_irq_status(chan);
573         if (status)
574                 stm32_dma_irq_clear(chan, status);
575
576         if (chan->desc->cyclic)
577                 stm32_dma_configure_next_sg(chan);
578
579         stm32_dma_dump_reg(chan);
580
581         /* Start DMA */
582         reg->dma_scr |= STM32_DMA_SCR_EN;
583         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
584
585         chan->busy = true;
586
587         dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
588 }
589
590 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
591 {
592         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
593         struct stm32_dma_sg_req *sg_req;
594         u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
595
596         id = chan->id;
597         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
598
599         if (dma_scr & STM32_DMA_SCR_DBM) {
600                 if (chan->next_sg == chan->desc->num_sgs)
601                         chan->next_sg = 0;
602
603                 sg_req = &chan->desc->sg_req[chan->next_sg];
604
605                 if (dma_scr & STM32_DMA_SCR_CT) {
606                         dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
607                         stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
608                         dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
609                                 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
610                 } else {
611                         dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
612                         stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
613                         dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
614                                 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
615                 }
616         }
617 }
618
619 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
620 {
621         if (chan->desc) {
622                 if (chan->desc->cyclic) {
623                         vchan_cyclic_callback(&chan->desc->vdesc);
624                         chan->next_sg++;
625                         stm32_dma_configure_next_sg(chan);
626                 } else {
627                         chan->busy = false;
628                         if (chan->next_sg == chan->desc->num_sgs) {
629                                 vchan_cookie_complete(&chan->desc->vdesc);
630                                 chan->desc = NULL;
631                         }
632                         stm32_dma_start_transfer(chan);
633                 }
634         }
635 }
636
637 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
638 {
639         struct stm32_dma_chan *chan = devid;
640         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
641         u32 status, scr, sfcr;
642
643         spin_lock(&chan->vchan.lock);
644
645         status = stm32_dma_irq_status(chan);
646         scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
647         sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
648
649         if (status & STM32_DMA_TCI) {
650                 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
651                 if (scr & STM32_DMA_SCR_TCIE)
652                         stm32_dma_handle_chan_done(chan);
653                 status &= ~STM32_DMA_TCI;
654         }
655         if (status & STM32_DMA_HTI) {
656                 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
657                 status &= ~STM32_DMA_HTI;
658         }
659         if (status & STM32_DMA_FEI) {
660                 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
661                 status &= ~STM32_DMA_FEI;
662                 if (sfcr & STM32_DMA_SFCR_FEIE) {
663                         if (!(scr & STM32_DMA_SCR_EN))
664                                 dev_err(chan2dev(chan), "FIFO Error\n");
665                         else
666                                 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
667                 }
668         }
669         if (status) {
670                 stm32_dma_irq_clear(chan, status);
671                 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
672                 if (!(scr & STM32_DMA_SCR_EN))
673                         dev_err(chan2dev(chan), "chan disabled by HW\n");
674         }
675
676         spin_unlock(&chan->vchan.lock);
677
678         return IRQ_HANDLED;
679 }
680
681 static void stm32_dma_issue_pending(struct dma_chan *c)
682 {
683         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
684         unsigned long flags;
685
686         spin_lock_irqsave(&chan->vchan.lock, flags);
687         if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
688                 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
689                 stm32_dma_start_transfer(chan);
690
691         }
692         spin_unlock_irqrestore(&chan->vchan.lock, flags);
693 }
694
695 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
696                                     enum dma_transfer_direction direction,
697                                     enum dma_slave_buswidth *buswidth,
698                                     u32 buf_len)
699 {
700         enum dma_slave_buswidth src_addr_width, dst_addr_width;
701         int src_bus_width, dst_bus_width;
702         int src_burst_size, dst_burst_size;
703         u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
704         u32 dma_scr, threshold;
705
706         src_addr_width = chan->dma_sconfig.src_addr_width;
707         dst_addr_width = chan->dma_sconfig.dst_addr_width;
708         src_maxburst = chan->dma_sconfig.src_maxburst;
709         dst_maxburst = chan->dma_sconfig.dst_maxburst;
710         threshold = chan->threshold;
711
712         switch (direction) {
713         case DMA_MEM_TO_DEV:
714                 /* Set device data size */
715                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
716                 if (dst_bus_width < 0)
717                         return dst_bus_width;
718
719                 /* Set device burst size */
720                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
721                                                           dst_maxburst,
722                                                           threshold,
723                                                           dst_addr_width);
724
725                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
726                 if (dst_burst_size < 0)
727                         return dst_burst_size;
728
729                 /* Set memory data size */
730                 src_addr_width = stm32_dma_get_max_width(buf_len, threshold);
731                 chan->mem_width = src_addr_width;
732                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
733                 if (src_bus_width < 0)
734                         return src_bus_width;
735
736                 /* Set memory burst size */
737                 src_maxburst = STM32_DMA_MAX_BURST;
738                 src_best_burst = stm32_dma_get_best_burst(buf_len,
739                                                           src_maxburst,
740                                                           threshold,
741                                                           src_addr_width);
742                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
743                 if (src_burst_size < 0)
744                         return src_burst_size;
745
746                 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
747                         STM32_DMA_SCR_PSIZE(dst_bus_width) |
748                         STM32_DMA_SCR_MSIZE(src_bus_width) |
749                         STM32_DMA_SCR_PBURST(dst_burst_size) |
750                         STM32_DMA_SCR_MBURST(src_burst_size);
751
752                 /* Set FIFO threshold */
753                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
754                 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
755
756                 /* Set peripheral address */
757                 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
758                 *buswidth = dst_addr_width;
759                 break;
760
761         case DMA_DEV_TO_MEM:
762                 /* Set device data size */
763                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
764                 if (src_bus_width < 0)
765                         return src_bus_width;
766
767                 /* Set device burst size */
768                 src_best_burst = stm32_dma_get_best_burst(buf_len,
769                                                           src_maxburst,
770                                                           threshold,
771                                                           src_addr_width);
772                 chan->mem_burst = src_best_burst;
773                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
774                 if (src_burst_size < 0)
775                         return src_burst_size;
776
777                 /* Set memory data size */
778                 dst_addr_width = stm32_dma_get_max_width(buf_len, threshold);
779                 chan->mem_width = dst_addr_width;
780                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
781                 if (dst_bus_width < 0)
782                         return dst_bus_width;
783
784                 /* Set memory burst size */
785                 dst_maxburst = STM32_DMA_MAX_BURST;
786                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
787                                                           dst_maxburst,
788                                                           threshold,
789                                                           dst_addr_width);
790                 chan->mem_burst = dst_best_burst;
791                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
792                 if (dst_burst_size < 0)
793                         return dst_burst_size;
794
795                 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
796                         STM32_DMA_SCR_PSIZE(src_bus_width) |
797                         STM32_DMA_SCR_MSIZE(dst_bus_width) |
798                         STM32_DMA_SCR_PBURST(src_burst_size) |
799                         STM32_DMA_SCR_MBURST(dst_burst_size);
800
801                 /* Set FIFO threshold */
802                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
803                 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
804
805                 /* Set peripheral address */
806                 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
807                 *buswidth = chan->dma_sconfig.src_addr_width;
808                 break;
809
810         default:
811                 dev_err(chan2dev(chan), "Dma direction is not supported\n");
812                 return -EINVAL;
813         }
814
815         stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
816
817         /* Set DMA control register */
818         chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
819                         STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
820                         STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
821         chan->chan_reg.dma_scr |= dma_scr;
822
823         return 0;
824 }
825
826 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
827 {
828         memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
829 }
830
831 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
832         struct dma_chan *c, struct scatterlist *sgl,
833         u32 sg_len, enum dma_transfer_direction direction,
834         unsigned long flags, void *context)
835 {
836         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
837         struct stm32_dma_desc *desc;
838         struct scatterlist *sg;
839         enum dma_slave_buswidth buswidth;
840         u32 nb_data_items;
841         int i, ret;
842
843         if (!chan->config_init) {
844                 dev_err(chan2dev(chan), "dma channel is not configured\n");
845                 return NULL;
846         }
847
848         if (sg_len < 1) {
849                 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
850                 return NULL;
851         }
852
853         desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
854         if (!desc)
855                 return NULL;
856
857         /* Set peripheral flow controller */
858         if (chan->dma_sconfig.device_fc)
859                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
860         else
861                 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
862
863         for_each_sg(sgl, sg, sg_len, i) {
864                 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
865                                                sg_dma_len(sg));
866                 if (ret < 0)
867                         goto err;
868
869                 desc->sg_req[i].len = sg_dma_len(sg);
870
871                 nb_data_items = desc->sg_req[i].len / buswidth;
872                 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
873                         dev_err(chan2dev(chan), "nb items not supported\n");
874                         goto err;
875                 }
876
877                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
878                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
879                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
880                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
881                 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
882                 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
883                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
884         }
885
886         desc->num_sgs = sg_len;
887         desc->cyclic = false;
888
889         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
890
891 err:
892         kfree(desc);
893         return NULL;
894 }
895
896 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
897         struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
898         size_t period_len, enum dma_transfer_direction direction,
899         unsigned long flags)
900 {
901         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
902         struct stm32_dma_desc *desc;
903         enum dma_slave_buswidth buswidth;
904         u32 num_periods, nb_data_items;
905         int i, ret;
906
907         if (!buf_len || !period_len) {
908                 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
909                 return NULL;
910         }
911
912         if (!chan->config_init) {
913                 dev_err(chan2dev(chan), "dma channel is not configured\n");
914                 return NULL;
915         }
916
917         if (buf_len % period_len) {
918                 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
919                 return NULL;
920         }
921
922         /*
923          * We allow to take more number of requests till DMA is
924          * not started. The driver will loop over all requests.
925          * Once DMA is started then new requests can be queued only after
926          * terminating the DMA.
927          */
928         if (chan->busy) {
929                 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
930                 return NULL;
931         }
932
933         ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
934         if (ret < 0)
935                 return NULL;
936
937         nb_data_items = period_len / buswidth;
938         if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
939                 dev_err(chan2dev(chan), "number of items not supported\n");
940                 return NULL;
941         }
942
943         /*  Enable Circular mode or double buffer mode */
944         if (buf_len == period_len)
945                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
946         else
947                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
948
949         /* Clear periph ctrl if client set it */
950         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
951
952         num_periods = buf_len / period_len;
953
954         desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
955         if (!desc)
956                 return NULL;
957
958         for (i = 0; i < num_periods; i++) {
959                 desc->sg_req[i].len = period_len;
960
961                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
962                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
963                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
964                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
965                 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
966                 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
967                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
968                 buf_addr += period_len;
969         }
970
971         desc->num_sgs = num_periods;
972         desc->cyclic = true;
973
974         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
975 }
976
977 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
978         struct dma_chan *c, dma_addr_t dest,
979         dma_addr_t src, size_t len, unsigned long flags)
980 {
981         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
982         enum dma_slave_buswidth max_width;
983         struct stm32_dma_desc *desc;
984         size_t xfer_count, offset;
985         u32 num_sgs, best_burst, dma_burst, threshold;
986         int i;
987
988         num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
989         desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
990         if (!desc)
991                 return NULL;
992
993         threshold = chan->threshold;
994
995         for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
996                 xfer_count = min_t(size_t, len - offset,
997                                    STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
998
999                 /* Compute best burst size */
1000                 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1001                 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1002                                                       threshold, max_width);
1003                 dma_burst = stm32_dma_get_burst(chan, best_burst);
1004
1005                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1006                 desc->sg_req[i].chan_reg.dma_scr =
1007                         STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1008                         STM32_DMA_SCR_PBURST(dma_burst) |
1009                         STM32_DMA_SCR_MBURST(dma_burst) |
1010                         STM32_DMA_SCR_MINC |
1011                         STM32_DMA_SCR_PINC |
1012                         STM32_DMA_SCR_TCIE |
1013                         STM32_DMA_SCR_TEIE;
1014                 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1015                 desc->sg_req[i].chan_reg.dma_sfcr |=
1016                         STM32_DMA_SFCR_FTH(threshold);
1017                 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1018                 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1019                 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1020                 desc->sg_req[i].len = xfer_count;
1021         }
1022
1023         desc->num_sgs = num_sgs;
1024         desc->cyclic = false;
1025
1026         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1027 }
1028
1029 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1030 {
1031         u32 dma_scr, width, ndtr;
1032         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1033
1034         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1035         width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1036         ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1037
1038         return ndtr << width;
1039 }
1040
1041 /**
1042  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1043  * @chan: dma channel
1044  *
1045  * This function called when IRQ are disable, checks that the hardware has not
1046  * switched on the next transfer in double buffer mode. The test is done by
1047  * comparing the next_sg memory address with the hardware related register
1048  * (based on CT bit value).
1049  *
1050  * Returns true if expected current transfer is still running or double
1051  * buffer mode is not activated.
1052  */
1053 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1054 {
1055         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1056         struct stm32_dma_sg_req *sg_req;
1057         u32 dma_scr, dma_smar, id;
1058
1059         id = chan->id;
1060         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1061
1062         if (!(dma_scr & STM32_DMA_SCR_DBM))
1063                 return true;
1064
1065         sg_req = &chan->desc->sg_req[chan->next_sg];
1066
1067         if (dma_scr & STM32_DMA_SCR_CT) {
1068                 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1069                 return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1070         }
1071
1072         dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1073
1074         return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1075 }
1076
1077 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1078                                      struct stm32_dma_desc *desc,
1079                                      u32 next_sg)
1080 {
1081         u32 modulo, burst_size;
1082         u32 residue;
1083         u32 n_sg = next_sg;
1084         struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1085         int i;
1086
1087         /*
1088          * Calculate the residue means compute the descriptors
1089          * information:
1090          * - the sg_req currently transferred
1091          * - the Hardware remaining position in this sg (NDTR bits field).
1092          *
1093          * A race condition may occur if DMA is running in cyclic or double
1094          * buffer mode, since the DMA register are automatically reloaded at end
1095          * of period transfer. The hardware may have switched to the next
1096          * transfer (CT bit updated) just before the position (SxNDTR reg) is
1097          * read.
1098          * In this case the SxNDTR reg could (or not) correspond to the new
1099          * transfer position, and not the expected one.
1100          * The strategy implemented in the stm32 driver is to:
1101          *  - read the SxNDTR register
1102          *  - crosscheck that hardware is still in current transfer.
1103          * In case of switch, we can assume that the DMA is at the beginning of
1104          * the next transfer. So we approximate the residue in consequence, by
1105          * pointing on the beginning of next transfer.
1106          *
1107          * This race condition doesn't apply for none cyclic mode, as double
1108          * buffer is not used. In such situation registers are updated by the
1109          * software.
1110          */
1111
1112         residue = stm32_dma_get_remaining_bytes(chan);
1113
1114         if (!stm32_dma_is_current_sg(chan)) {
1115                 n_sg++;
1116                 if (n_sg == chan->desc->num_sgs)
1117                         n_sg = 0;
1118                 residue = sg_req->len;
1119         }
1120
1121         /*
1122          * In cyclic mode, for the last period, residue = remaining bytes
1123          * from NDTR,
1124          * else for all other periods in cyclic mode, and in sg mode,
1125          * residue = remaining bytes from NDTR + remaining
1126          * periods/sg to be transferred
1127          */
1128         if (!chan->desc->cyclic || n_sg != 0)
1129                 for (i = n_sg; i < desc->num_sgs; i++)
1130                         residue += desc->sg_req[i].len;
1131
1132         if (!chan->mem_burst)
1133                 return residue;
1134
1135         burst_size = chan->mem_burst * chan->mem_width;
1136         modulo = residue % burst_size;
1137         if (modulo)
1138                 residue = residue - modulo + burst_size;
1139
1140         return residue;
1141 }
1142
1143 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1144                                            dma_cookie_t cookie,
1145                                            struct dma_tx_state *state)
1146 {
1147         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1148         struct virt_dma_desc *vdesc;
1149         enum dma_status status;
1150         unsigned long flags;
1151         u32 residue = 0;
1152
1153         status = dma_cookie_status(c, cookie, state);
1154         if (status == DMA_COMPLETE || !state)
1155                 return status;
1156
1157         spin_lock_irqsave(&chan->vchan.lock, flags);
1158         vdesc = vchan_find_desc(&chan->vchan, cookie);
1159         if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1160                 residue = stm32_dma_desc_residue(chan, chan->desc,
1161                                                  chan->next_sg);
1162         else if (vdesc)
1163                 residue = stm32_dma_desc_residue(chan,
1164                                                  to_stm32_dma_desc(vdesc), 0);
1165         dma_set_residue(state, residue);
1166
1167         spin_unlock_irqrestore(&chan->vchan.lock, flags);
1168
1169         return status;
1170 }
1171
1172 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1173 {
1174         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1175         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1176         int ret;
1177
1178         chan->config_init = false;
1179
1180         ret = pm_runtime_get_sync(dmadev->ddev.dev);
1181         if (ret < 0)
1182                 return ret;
1183
1184         ret = stm32_dma_disable_chan(chan);
1185         if (ret < 0)
1186                 pm_runtime_put(dmadev->ddev.dev);
1187
1188         return ret;
1189 }
1190
1191 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1192 {
1193         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1194         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1195         unsigned long flags;
1196
1197         dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1198
1199         if (chan->busy) {
1200                 spin_lock_irqsave(&chan->vchan.lock, flags);
1201                 stm32_dma_stop(chan);
1202                 chan->desc = NULL;
1203                 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1204         }
1205
1206         pm_runtime_put(dmadev->ddev.dev);
1207
1208         vchan_free_chan_resources(to_virt_chan(c));
1209 }
1210
1211 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1212 {
1213         kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1214 }
1215
1216 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1217                                  struct stm32_dma_cfg *cfg)
1218 {
1219         stm32_dma_clear_reg(&chan->chan_reg);
1220
1221         chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1222         chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1223
1224         /* Enable Interrupts  */
1225         chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1226
1227         chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1228 }
1229
1230 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1231                                            struct of_dma *ofdma)
1232 {
1233         struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1234         struct device *dev = dmadev->ddev.dev;
1235         struct stm32_dma_cfg cfg;
1236         struct stm32_dma_chan *chan;
1237         struct dma_chan *c;
1238
1239         if (dma_spec->args_count < 4) {
1240                 dev_err(dev, "Bad number of cells\n");
1241                 return NULL;
1242         }
1243
1244         cfg.channel_id = dma_spec->args[0];
1245         cfg.request_line = dma_spec->args[1];
1246         cfg.stream_config = dma_spec->args[2];
1247         cfg.features = dma_spec->args[3];
1248
1249         if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1250             cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1251                 dev_err(dev, "Bad channel and/or request id\n");
1252                 return NULL;
1253         }
1254
1255         chan = &dmadev->chan[cfg.channel_id];
1256
1257         c = dma_get_slave_channel(&chan->vchan.chan);
1258         if (!c) {
1259                 dev_err(dev, "No more channels available\n");
1260                 return NULL;
1261         }
1262
1263         stm32_dma_set_config(chan, &cfg);
1264
1265         return c;
1266 }
1267
1268 static const struct of_device_id stm32_dma_of_match[] = {
1269         { .compatible = "st,stm32-dma", },
1270         { /* sentinel */ },
1271 };
1272 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1273
1274 static int stm32_dma_probe(struct platform_device *pdev)
1275 {
1276         struct stm32_dma_chan *chan;
1277         struct stm32_dma_device *dmadev;
1278         struct dma_device *dd;
1279         const struct of_device_id *match;
1280         struct resource *res;
1281         int i, ret;
1282
1283         match = of_match_device(stm32_dma_of_match, &pdev->dev);
1284         if (!match) {
1285                 dev_err(&pdev->dev, "Error: No device match found\n");
1286                 return -ENODEV;
1287         }
1288
1289         dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1290         if (!dmadev)
1291                 return -ENOMEM;
1292
1293         dd = &dmadev->ddev;
1294
1295         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1296         dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1297         if (IS_ERR(dmadev->base))
1298                 return PTR_ERR(dmadev->base);
1299
1300         dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1301         if (IS_ERR(dmadev->clk)) {
1302                 dev_err(&pdev->dev, "Error: Missing controller clock\n");
1303                 return PTR_ERR(dmadev->clk);
1304         }
1305
1306         ret = clk_prepare_enable(dmadev->clk);
1307         if (ret < 0) {
1308                 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1309                 return ret;
1310         }
1311
1312         dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1313                                                 "st,mem2mem");
1314
1315         dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
1316         if (!IS_ERR(dmadev->rst)) {
1317                 reset_control_assert(dmadev->rst);
1318                 udelay(2);
1319                 reset_control_deassert(dmadev->rst);
1320         }
1321
1322         dma_cap_set(DMA_SLAVE, dd->cap_mask);
1323         dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1324         dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1325         dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1326         dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1327         dd->device_tx_status = stm32_dma_tx_status;
1328         dd->device_issue_pending = stm32_dma_issue_pending;
1329         dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1330         dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1331         dd->device_config = stm32_dma_slave_config;
1332         dd->device_terminate_all = stm32_dma_terminate_all;
1333         dd->device_synchronize = stm32_dma_synchronize;
1334         dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1335                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1336                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1337         dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1338                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1339                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1340         dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1341         dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1342         dd->max_burst = STM32_DMA_MAX_BURST;
1343         dd->dev = &pdev->dev;
1344         INIT_LIST_HEAD(&dd->channels);
1345
1346         if (dmadev->mem2mem) {
1347                 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1348                 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1349                 dd->directions |= BIT(DMA_MEM_TO_MEM);
1350         }
1351
1352         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1353                 chan = &dmadev->chan[i];
1354                 chan->id = i;
1355                 chan->vchan.desc_free = stm32_dma_desc_free;
1356                 vchan_init(&chan->vchan, dd);
1357         }
1358
1359         ret = dma_async_device_register(dd);
1360         if (ret)
1361                 goto clk_free;
1362
1363         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1364                 chan = &dmadev->chan[i];
1365                 ret = platform_get_irq(pdev, i);
1366                 if (ret < 0)
1367                         goto err_unregister;
1368                 chan->irq = ret;
1369
1370                 ret = devm_request_irq(&pdev->dev, chan->irq,
1371                                        stm32_dma_chan_irq, 0,
1372                                        dev_name(chan2dev(chan)), chan);
1373                 if (ret) {
1374                         dev_err(&pdev->dev,
1375                                 "request_irq failed with err %d channel %d\n",
1376                                 ret, i);
1377                         goto err_unregister;
1378                 }
1379         }
1380
1381         ret = of_dma_controller_register(pdev->dev.of_node,
1382                                          stm32_dma_of_xlate, dmadev);
1383         if (ret < 0) {
1384                 dev_err(&pdev->dev,
1385                         "STM32 DMA DMA OF registration failed %d\n", ret);
1386                 goto err_unregister;
1387         }
1388
1389         platform_set_drvdata(pdev, dmadev);
1390
1391         pm_runtime_set_active(&pdev->dev);
1392         pm_runtime_enable(&pdev->dev);
1393         pm_runtime_get_noresume(&pdev->dev);
1394         pm_runtime_put(&pdev->dev);
1395
1396         dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1397
1398         return 0;
1399
1400 err_unregister:
1401         dma_async_device_unregister(dd);
1402 clk_free:
1403         clk_disable_unprepare(dmadev->clk);
1404
1405         return ret;
1406 }
1407
1408 #ifdef CONFIG_PM
1409 static int stm32_dma_runtime_suspend(struct device *dev)
1410 {
1411         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1412
1413         clk_disable_unprepare(dmadev->clk);
1414
1415         return 0;
1416 }
1417
1418 static int stm32_dma_runtime_resume(struct device *dev)
1419 {
1420         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1421         int ret;
1422
1423         ret = clk_prepare_enable(dmadev->clk);
1424         if (ret) {
1425                 dev_err(dev, "failed to prepare_enable clock\n");
1426                 return ret;
1427         }
1428
1429         return 0;
1430 }
1431 #endif
1432
1433 static const struct dev_pm_ops stm32_dma_pm_ops = {
1434         SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1435                            stm32_dma_runtime_resume, NULL)
1436 };
1437
1438 static struct platform_driver stm32_dma_driver = {
1439         .driver = {
1440                 .name = "stm32-dma",
1441                 .of_match_table = stm32_dma_of_match,
1442                 .pm = &stm32_dma_pm_ops,
1443         },
1444 };
1445
1446 static int __init stm32_dma_init(void)
1447 {
1448         return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe);
1449 }
1450 subsys_initcall(stm32_dma_init);