GNU Linux-libre 6.9.1-gnu
[releases.git] / drivers / dma / nbpfaxi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
4  * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
5  */
6
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/err.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_dma.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21
22 #include <dt-bindings/dma/nbpfaxi.h>
23
24 #include "dmaengine.h"
25
26 #define NBPF_REG_CHAN_OFFSET    0
27 #define NBPF_REG_CHAN_SIZE      0x40
28
29 /* Channel Current Transaction Byte register */
30 #define NBPF_CHAN_CUR_TR_BYTE   0x20
31
32 /* Channel Status register */
33 #define NBPF_CHAN_STAT  0x24
34 #define NBPF_CHAN_STAT_EN       1
35 #define NBPF_CHAN_STAT_TACT     4
36 #define NBPF_CHAN_STAT_ERR      0x10
37 #define NBPF_CHAN_STAT_END      0x20
38 #define NBPF_CHAN_STAT_TC       0x40
39 #define NBPF_CHAN_STAT_DER      0x400
40
41 /* Channel Control register */
42 #define NBPF_CHAN_CTRL  0x28
43 #define NBPF_CHAN_CTRL_SETEN    1
44 #define NBPF_CHAN_CTRL_CLREN    2
45 #define NBPF_CHAN_CTRL_STG      4
46 #define NBPF_CHAN_CTRL_SWRST    8
47 #define NBPF_CHAN_CTRL_CLRRQ    0x10
48 #define NBPF_CHAN_CTRL_CLREND   0x20
49 #define NBPF_CHAN_CTRL_CLRTC    0x40
50 #define NBPF_CHAN_CTRL_SETSUS   0x100
51 #define NBPF_CHAN_CTRL_CLRSUS   0x200
52
53 /* Channel Configuration register */
54 #define NBPF_CHAN_CFG   0x2c
55 #define NBPF_CHAN_CFG_SEL       7               /* terminal SELect: 0..7 */
56 #define NBPF_CHAN_CFG_REQD      8               /* REQuest Direction: DMAREQ is 0: input, 1: output */
57 #define NBPF_CHAN_CFG_LOEN      0x10            /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
58 #define NBPF_CHAN_CFG_HIEN      0x20            /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
59 #define NBPF_CHAN_CFG_LVL       0x40            /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
60 #define NBPF_CHAN_CFG_AM        0x700           /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
61 #define NBPF_CHAN_CFG_SDS       0xf000          /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
62 #define NBPF_CHAN_CFG_DDS       0xf0000         /* Destination Data Size: as above */
63 #define NBPF_CHAN_CFG_SAD       0x100000        /* Source ADdress counting: 0: increment, 1: fixed */
64 #define NBPF_CHAN_CFG_DAD       0x200000        /* Destination ADdress counting: 0: increment, 1: fixed */
65 #define NBPF_CHAN_CFG_TM        0x400000        /* Transfer Mode: 0: single, 1: block TM */
66 #define NBPF_CHAN_CFG_DEM       0x1000000       /* DMAEND interrupt Mask */
67 #define NBPF_CHAN_CFG_TCM       0x2000000       /* DMATCO interrupt Mask */
68 #define NBPF_CHAN_CFG_SBE       0x8000000       /* Sweep Buffer Enable */
69 #define NBPF_CHAN_CFG_RSEL      0x10000000      /* RM: Register Set sELect */
70 #define NBPF_CHAN_CFG_RSW       0x20000000      /* RM: Register Select sWitch */
71 #define NBPF_CHAN_CFG_REN       0x40000000      /* RM: Register Set Enable */
72 #define NBPF_CHAN_CFG_DMS       0x80000000      /* 0: register mode (RM), 1: link mode (LM) */
73
74 #define NBPF_CHAN_NXLA  0x38
75 #define NBPF_CHAN_CRLA  0x3c
76
77 /* Link Header field */
78 #define NBPF_HEADER_LV  1
79 #define NBPF_HEADER_LE  2
80 #define NBPF_HEADER_WBD 4
81 #define NBPF_HEADER_DIM 8
82
83 #define NBPF_CTRL       0x300
84 #define NBPF_CTRL_PR    1               /* 0: fixed priority, 1: round robin */
85 #define NBPF_CTRL_LVINT 2               /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
86
87 #define NBPF_DSTAT_ER   0x314
88 #define NBPF_DSTAT_END  0x318
89
90 #define NBPF_DMA_BUSWIDTHS \
91         (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
92          BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
93          BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
94          BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
95          BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
96
97 struct nbpf_config {
98         int num_channels;
99         int buffer_size;
100 };
101
102 /*
103  * We've got 3 types of objects, used to describe DMA transfers:
104  * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
105  *      in it, used to communicate with the user
106  * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
107  *      queuing, these must be DMAable, using either the streaming DMA API or
108  *      allocated from coherent memory - one per SG segment
109  * 3. one per SG segment descriptors, used to manage HW link descriptors from
110  *      (2). They do not have to be DMAable. They can either be (a) allocated
111  *      together with link descriptors as mixed (DMA / CPU) objects, or (b)
112  *      separately. Even if allocated separately it would be best to link them
113  *      to link descriptors once during channel resource allocation and always
114  *      use them as a single object.
115  * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
116  * treated as a single SG segment descriptor.
117  */
118
119 struct nbpf_link_reg {
120         u32     header;
121         u32     src_addr;
122         u32     dst_addr;
123         u32     transaction_size;
124         u32     config;
125         u32     interval;
126         u32     extension;
127         u32     next;
128 } __packed;
129
130 struct nbpf_device;
131 struct nbpf_channel;
132 struct nbpf_desc;
133
134 struct nbpf_link_desc {
135         struct nbpf_link_reg *hwdesc;
136         dma_addr_t hwdesc_dma_addr;
137         struct nbpf_desc *desc;
138         struct list_head node;
139 };
140
141 /**
142  * struct nbpf_desc - DMA transfer descriptor
143  * @async_tx:   dmaengine object
144  * @user_wait:  waiting for a user ack
145  * @length:     total transfer length
146  * @chan:       associated DMAC channel
147  * @sg:         list of hardware descriptors, represented by struct nbpf_link_desc
148  * @node:       member in channel descriptor lists
149  */
150 struct nbpf_desc {
151         struct dma_async_tx_descriptor async_tx;
152         bool user_wait;
153         size_t length;
154         struct nbpf_channel *chan;
155         struct list_head sg;
156         struct list_head node;
157 };
158
159 /* Take a wild guess: allocate 4 segments per descriptor */
160 #define NBPF_SEGMENTS_PER_DESC 4
161 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) /   \
162         (sizeof(struct nbpf_desc) +                                     \
163          NBPF_SEGMENTS_PER_DESC *                                       \
164          (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
165 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
166
167 struct nbpf_desc_page {
168         struct list_head node;
169         struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
170         struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
171         struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
172 };
173
174 /**
175  * struct nbpf_channel - one DMAC channel
176  * @dma_chan:   standard dmaengine channel object
177  * @tasklet:    channel specific tasklet used for callbacks
178  * @base:       register address base
179  * @nbpf:       DMAC
180  * @name:       IRQ name
181  * @irq:        IRQ number
182  * @slave_src_addr:     source address for slave DMA
183  * @slave_src_width:    source slave data size in bytes
184  * @slave_src_burst:    maximum source slave burst size in bytes
185  * @slave_dst_addr:     destination address for slave DMA
186  * @slave_dst_width:    destination slave data size in bytes
187  * @slave_dst_burst:    maximum destination slave burst size in bytes
188  * @terminal:   DMA terminal, assigned to this channel
189  * @dmarq_cfg:  DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
190  * @flags:      configuration flags from DT
191  * @lock:       protect descriptor lists
192  * @free_links: list of free link descriptors
193  * @free:       list of free descriptors
194  * @queued:     list of queued descriptors
195  * @active:     list of descriptors, scheduled for processing
196  * @done:       list of completed descriptors, waiting post-processing
197  * @desc_page:  list of additionally allocated descriptor pages - if any
198  * @running:    linked descriptor of running transaction
199  * @paused:     are translations on this channel paused?
200  */
201 struct nbpf_channel {
202         struct dma_chan dma_chan;
203         struct tasklet_struct tasklet;
204         void __iomem *base;
205         struct nbpf_device *nbpf;
206         char name[16];
207         int irq;
208         dma_addr_t slave_src_addr;
209         size_t slave_src_width;
210         size_t slave_src_burst;
211         dma_addr_t slave_dst_addr;
212         size_t slave_dst_width;
213         size_t slave_dst_burst;
214         unsigned int terminal;
215         u32 dmarq_cfg;
216         unsigned long flags;
217         spinlock_t lock;
218         struct list_head free_links;
219         struct list_head free;
220         struct list_head queued;
221         struct list_head active;
222         struct list_head done;
223         struct list_head desc_page;
224         struct nbpf_desc *running;
225         bool paused;
226 };
227
228 struct nbpf_device {
229         struct dma_device dma_dev;
230         void __iomem *base;
231         u32 max_burst_mem_read;
232         u32 max_burst_mem_write;
233         struct clk *clk;
234         const struct nbpf_config *config;
235         unsigned int eirq;
236         struct nbpf_channel chan[];
237 };
238
239 enum nbpf_model {
240         NBPF1B4,
241         NBPF1B8,
242         NBPF1B16,
243         NBPF4B4,
244         NBPF4B8,
245         NBPF4B16,
246         NBPF8B4,
247         NBPF8B8,
248         NBPF8B16,
249 };
250
251 static struct nbpf_config nbpf_cfg[] = {
252         [NBPF1B4] = {
253                 .num_channels = 1,
254                 .buffer_size = 4,
255         },
256         [NBPF1B8] = {
257                 .num_channels = 1,
258                 .buffer_size = 8,
259         },
260         [NBPF1B16] = {
261                 .num_channels = 1,
262                 .buffer_size = 16,
263         },
264         [NBPF4B4] = {
265                 .num_channels = 4,
266                 .buffer_size = 4,
267         },
268         [NBPF4B8] = {
269                 .num_channels = 4,
270                 .buffer_size = 8,
271         },
272         [NBPF4B16] = {
273                 .num_channels = 4,
274                 .buffer_size = 16,
275         },
276         [NBPF8B4] = {
277                 .num_channels = 8,
278                 .buffer_size = 4,
279         },
280         [NBPF8B8] = {
281                 .num_channels = 8,
282                 .buffer_size = 8,
283         },
284         [NBPF8B16] = {
285                 .num_channels = 8,
286                 .buffer_size = 16,
287         },
288 };
289
290 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
291
292 /*
293  * dmaengine drivers seem to have a lot in common and instead of sharing more
294  * code, they reimplement those common algorithms independently. In this driver
295  * we try to separate the hardware-specific part from the (largely) generic
296  * part. This improves code readability and makes it possible in the future to
297  * reuse the generic code in form of a helper library. That generic code should
298  * be suitable for various DMA controllers, using transfer descriptors in RAM
299  * and pushing one SG list at a time to the DMA controller.
300  */
301
302 /*              Hardware-specific part          */
303
304 static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
305                                  unsigned int offset)
306 {
307         u32 data = ioread32(chan->base + offset);
308         dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
309                 __func__, chan->base, offset, data);
310         return data;
311 }
312
313 static inline void nbpf_chan_write(struct nbpf_channel *chan,
314                                    unsigned int offset, u32 data)
315 {
316         iowrite32(data, chan->base + offset);
317         dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
318                 __func__, chan->base, offset, data);
319 }
320
321 static inline u32 nbpf_read(struct nbpf_device *nbpf,
322                             unsigned int offset)
323 {
324         u32 data = ioread32(nbpf->base + offset);
325         dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
326                 __func__, nbpf->base, offset, data);
327         return data;
328 }
329
330 static inline void nbpf_write(struct nbpf_device *nbpf,
331                               unsigned int offset, u32 data)
332 {
333         iowrite32(data, nbpf->base + offset);
334         dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
335                 __func__, nbpf->base, offset, data);
336 }
337
338 static void nbpf_chan_halt(struct nbpf_channel *chan)
339 {
340         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
341 }
342
343 static bool nbpf_status_get(struct nbpf_channel *chan)
344 {
345         u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
346
347         return status & BIT(chan - chan->nbpf->chan);
348 }
349
350 static void nbpf_status_ack(struct nbpf_channel *chan)
351 {
352         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
353 }
354
355 static u32 nbpf_error_get(struct nbpf_device *nbpf)
356 {
357         return nbpf_read(nbpf, NBPF_DSTAT_ER);
358 }
359
360 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
361 {
362         return nbpf->chan + __ffs(error);
363 }
364
365 static void nbpf_error_clear(struct nbpf_channel *chan)
366 {
367         u32 status;
368         int i;
369
370         /* Stop the channel, make sure DMA has been aborted */
371         nbpf_chan_halt(chan);
372
373         for (i = 1000; i; i--) {
374                 status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
375                 if (!(status & NBPF_CHAN_STAT_TACT))
376                         break;
377                 cpu_relax();
378         }
379
380         if (!i)
381                 dev_err(chan->dma_chan.device->dev,
382                         "%s(): abort timeout, channel status 0x%x\n", __func__, status);
383
384         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
385 }
386
387 static int nbpf_start(struct nbpf_desc *desc)
388 {
389         struct nbpf_channel *chan = desc->chan;
390         struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
391
392         nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
393         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
394         chan->paused = false;
395
396         /* Software trigger MEMCPY - only MEMCPY uses the block mode */
397         if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
398                 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
399
400         dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
401                 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
402
403         return 0;
404 }
405
406 static void nbpf_chan_prepare(struct nbpf_channel *chan)
407 {
408         chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
409                 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
410                 (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
411                  NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
412                 chan->terminal;
413 }
414
415 static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
416 {
417         /* Don't output DMAACK */
418         chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
419         chan->terminal = 0;
420         chan->flags = 0;
421 }
422
423 static void nbpf_chan_configure(struct nbpf_channel *chan)
424 {
425         /*
426          * We assume, that only the link mode and DMA request line configuration
427          * have to be set in the configuration register manually. Dynamic
428          * per-transfer configuration will be loaded from transfer descriptors.
429          */
430         nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
431 }
432
433 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size,
434                         enum dma_transfer_direction direction)
435 {
436         int max_burst = nbpf->config->buffer_size * 8;
437
438         if (nbpf->max_burst_mem_read || nbpf->max_burst_mem_write) {
439                 switch (direction) {
440                 case DMA_MEM_TO_MEM:
441                         max_burst = min_not_zero(nbpf->max_burst_mem_read,
442                                                  nbpf->max_burst_mem_write);
443                         break;
444                 case DMA_MEM_TO_DEV:
445                         if (nbpf->max_burst_mem_read)
446                                 max_burst = nbpf->max_burst_mem_read;
447                         break;
448                 case DMA_DEV_TO_MEM:
449                         if (nbpf->max_burst_mem_write)
450                                 max_burst = nbpf->max_burst_mem_write;
451                         break;
452                 case DMA_DEV_TO_DEV:
453                 default:
454                         break;
455                 }
456         }
457
458         /* Maximum supported bursts depend on the buffer size */
459         return min_t(int, __ffs(size), ilog2(max_burst));
460 }
461
462 static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
463                              enum dma_slave_buswidth width, u32 burst)
464 {
465         size_t size;
466
467         if (!burst)
468                 burst = 1;
469
470         switch (width) {
471         case DMA_SLAVE_BUSWIDTH_8_BYTES:
472                 size = 8 * burst;
473                 break;
474
475         case DMA_SLAVE_BUSWIDTH_4_BYTES:
476                 size = 4 * burst;
477                 break;
478
479         case DMA_SLAVE_BUSWIDTH_2_BYTES:
480                 size = 2 * burst;
481                 break;
482
483         default:
484                 pr_warn("%s(): invalid bus width %u\n", __func__, width);
485                 fallthrough;
486         case DMA_SLAVE_BUSWIDTH_1_BYTE:
487                 size = burst;
488         }
489
490         return nbpf_xfer_ds(nbpf, size, DMA_TRANS_NONE);
491 }
492
493 /*
494  * We need a way to recognise slaves, whose data is sent "raw" over the bus,
495  * i.e. it isn't known in advance how many bytes will be received. Therefore
496  * the slave driver has to provide a "large enough" buffer and either read the
497  * buffer, when it is full, or detect, that some data has arrived, then wait for
498  * a timeout, if no more data arrives - receive what's already there. We want to
499  * handle such slaves in a special way to allow an optimised mode for other
500  * users, for whom the amount of data is known in advance. So far there's no way
501  * to recognise such slaves. We use a data-width check to distinguish between
502  * the SD host and the PL011 UART.
503  */
504
505 static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
506                          enum dma_transfer_direction direction,
507                          dma_addr_t src, dma_addr_t dst, size_t size, bool last)
508 {
509         struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
510         struct nbpf_desc *desc = ldesc->desc;
511         struct nbpf_channel *chan = desc->chan;
512         struct device *dev = chan->dma_chan.device->dev;
513         size_t mem_xfer, slave_xfer;
514         bool can_burst;
515
516         hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
517                 (last ? NBPF_HEADER_LE : 0);
518
519         hwdesc->src_addr = src;
520         hwdesc->dst_addr = dst;
521         hwdesc->transaction_size = size;
522
523         /*
524          * set config: SAD, DAD, DDS, SDS, etc.
525          * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
526          * but it is important to have transaction size a multiple of both
527          * receiver and transmitter transfer sizes. It is also possible to use
528          * different RAM and device transfer sizes, and it does work well with
529          * some devices, e.g. with V08R07S01E SD host controllers, which can use
530          * 128 byte transfers. But this doesn't work with other devices,
531          * especially when the transaction size is unknown. This is the case,
532          * e.g. with serial drivers like amba-pl011.c. For reception it sets up
533          * the transaction size of 4K and if fewer bytes are received, it
534          * pauses DMA and reads out data received via DMA as well as those left
535          * in the Rx FIFO. For this to work with the RAM side using burst
536          * transfers we enable the SBE bit and terminate the transfer in our
537          * .device_pause handler.
538          */
539         mem_xfer = nbpf_xfer_ds(chan->nbpf, size, direction);
540
541         switch (direction) {
542         case DMA_DEV_TO_MEM:
543                 can_burst = chan->slave_src_width >= 3;
544                 slave_xfer = min(mem_xfer, can_burst ?
545                                  chan->slave_src_burst : chan->slave_src_width);
546                 /*
547                  * Is the slave narrower than 64 bits, i.e. isn't using the full
548                  * bus width and cannot use bursts?
549                  */
550                 if (mem_xfer > chan->slave_src_burst && !can_burst)
551                         mem_xfer = chan->slave_src_burst;
552                 /* Device-to-RAM DMA is unreliable without REQD set */
553                 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
554                         (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
555                         NBPF_CHAN_CFG_SBE;
556                 break;
557
558         case DMA_MEM_TO_DEV:
559                 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
560                                  chan->slave_dst_burst : chan->slave_dst_width);
561                 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
562                         (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
563                 break;
564
565         case DMA_MEM_TO_MEM:
566                 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
567                         (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
568                         (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
569                 break;
570
571         default:
572                 return -EINVAL;
573         }
574
575         hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
576                 NBPF_CHAN_CFG_DMS;
577
578         dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
579                 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
580                 hwdesc->config, size, &src, &dst);
581
582         dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
583                                    DMA_TO_DEVICE);
584
585         return 0;
586 }
587
588 static size_t nbpf_bytes_left(struct nbpf_channel *chan)
589 {
590         return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
591 }
592
593 static void nbpf_configure(struct nbpf_device *nbpf)
594 {
595         nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
596 }
597
598 /*              Generic part                    */
599
600 /* DMA ENGINE functions */
601 static void nbpf_issue_pending(struct dma_chan *dchan)
602 {
603         struct nbpf_channel *chan = nbpf_to_chan(dchan);
604         unsigned long flags;
605
606         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
607
608         spin_lock_irqsave(&chan->lock, flags);
609         if (list_empty(&chan->queued))
610                 goto unlock;
611
612         list_splice_tail_init(&chan->queued, &chan->active);
613
614         if (!chan->running) {
615                 struct nbpf_desc *desc = list_first_entry(&chan->active,
616                                                 struct nbpf_desc, node);
617                 if (!nbpf_start(desc))
618                         chan->running = desc;
619         }
620
621 unlock:
622         spin_unlock_irqrestore(&chan->lock, flags);
623 }
624
625 static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
626                 dma_cookie_t cookie, struct dma_tx_state *state)
627 {
628         struct nbpf_channel *chan = nbpf_to_chan(dchan);
629         enum dma_status status = dma_cookie_status(dchan, cookie, state);
630
631         if (state) {
632                 dma_cookie_t running;
633                 unsigned long flags;
634
635                 spin_lock_irqsave(&chan->lock, flags);
636                 running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
637
638                 if (cookie == running) {
639                         state->residue = nbpf_bytes_left(chan);
640                         dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
641                                 state->residue);
642                 } else if (status == DMA_IN_PROGRESS) {
643                         struct nbpf_desc *desc;
644                         bool found = false;
645
646                         list_for_each_entry(desc, &chan->active, node)
647                                 if (desc->async_tx.cookie == cookie) {
648                                         found = true;
649                                         break;
650                                 }
651
652                         if (!found)
653                                 list_for_each_entry(desc, &chan->queued, node)
654                                         if (desc->async_tx.cookie == cookie) {
655                                                 found = true;
656                                                 break;
657
658                                         }
659
660                         state->residue = found ? desc->length : 0;
661                 }
662
663                 spin_unlock_irqrestore(&chan->lock, flags);
664         }
665
666         if (chan->paused)
667                 status = DMA_PAUSED;
668
669         return status;
670 }
671
672 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
673 {
674         struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
675         struct nbpf_channel *chan = desc->chan;
676         unsigned long flags;
677         dma_cookie_t cookie;
678
679         spin_lock_irqsave(&chan->lock, flags);
680         cookie = dma_cookie_assign(tx);
681         list_add_tail(&desc->node, &chan->queued);
682         spin_unlock_irqrestore(&chan->lock, flags);
683
684         dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
685
686         return cookie;
687 }
688
689 static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
690 {
691         struct dma_chan *dchan = &chan->dma_chan;
692         struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
693         struct nbpf_link_desc *ldesc;
694         struct nbpf_link_reg *hwdesc;
695         struct nbpf_desc *desc;
696         LIST_HEAD(head);
697         LIST_HEAD(lhead);
698         int i;
699         struct device *dev = dchan->device->dev;
700
701         if (!dpage)
702                 return -ENOMEM;
703
704         dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
705                 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
706
707         for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
708              i < ARRAY_SIZE(dpage->ldesc);
709              i++, ldesc++, hwdesc++) {
710                 ldesc->hwdesc = hwdesc;
711                 list_add_tail(&ldesc->node, &lhead);
712                 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
713                                         hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
714
715                 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
716                         hwdesc, &ldesc->hwdesc_dma_addr);
717         }
718
719         for (i = 0, desc = dpage->desc;
720              i < ARRAY_SIZE(dpage->desc);
721              i++, desc++) {
722                 dma_async_tx_descriptor_init(&desc->async_tx, dchan);
723                 desc->async_tx.tx_submit = nbpf_tx_submit;
724                 desc->chan = chan;
725                 INIT_LIST_HEAD(&desc->sg);
726                 list_add_tail(&desc->node, &head);
727         }
728
729         /*
730          * This function cannot be called from interrupt context, so, no need to
731          * save flags
732          */
733         spin_lock_irq(&chan->lock);
734         list_splice_tail(&lhead, &chan->free_links);
735         list_splice_tail(&head, &chan->free);
736         list_add(&dpage->node, &chan->desc_page);
737         spin_unlock_irq(&chan->lock);
738
739         return ARRAY_SIZE(dpage->desc);
740 }
741
742 static void nbpf_desc_put(struct nbpf_desc *desc)
743 {
744         struct nbpf_channel *chan = desc->chan;
745         struct nbpf_link_desc *ldesc, *tmp;
746         unsigned long flags;
747
748         spin_lock_irqsave(&chan->lock, flags);
749         list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
750                 list_move(&ldesc->node, &chan->free_links);
751
752         list_add(&desc->node, &chan->free);
753         spin_unlock_irqrestore(&chan->lock, flags);
754 }
755
756 static void nbpf_scan_acked(struct nbpf_channel *chan)
757 {
758         struct nbpf_desc *desc, *tmp;
759         unsigned long flags;
760         LIST_HEAD(head);
761
762         spin_lock_irqsave(&chan->lock, flags);
763         list_for_each_entry_safe(desc, tmp, &chan->done, node)
764                 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
765                         list_move(&desc->node, &head);
766                         desc->user_wait = false;
767                 }
768         spin_unlock_irqrestore(&chan->lock, flags);
769
770         list_for_each_entry_safe(desc, tmp, &head, node) {
771                 list_del(&desc->node);
772                 nbpf_desc_put(desc);
773         }
774 }
775
776 /*
777  * We have to allocate descriptors with the channel lock dropped. This means,
778  * before we re-acquire the lock buffers can be taken already, so we have to
779  * re-check after re-acquiring the lock and possibly retry, if buffers are gone
780  * again.
781  */
782 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
783 {
784         struct nbpf_desc *desc = NULL;
785         struct nbpf_link_desc *ldesc, *prev = NULL;
786
787         nbpf_scan_acked(chan);
788
789         spin_lock_irq(&chan->lock);
790
791         do {
792                 int i = 0, ret;
793
794                 if (list_empty(&chan->free)) {
795                         /* No more free descriptors */
796                         spin_unlock_irq(&chan->lock);
797                         ret = nbpf_desc_page_alloc(chan);
798                         if (ret < 0)
799                                 return NULL;
800                         spin_lock_irq(&chan->lock);
801                         continue;
802                 }
803                 desc = list_first_entry(&chan->free, struct nbpf_desc, node);
804                 list_del(&desc->node);
805
806                 do {
807                         if (list_empty(&chan->free_links)) {
808                                 /* No more free link descriptors */
809                                 spin_unlock_irq(&chan->lock);
810                                 ret = nbpf_desc_page_alloc(chan);
811                                 if (ret < 0) {
812                                         nbpf_desc_put(desc);
813                                         return NULL;
814                                 }
815                                 spin_lock_irq(&chan->lock);
816                                 continue;
817                         }
818
819                         ldesc = list_first_entry(&chan->free_links,
820                                                  struct nbpf_link_desc, node);
821                         ldesc->desc = desc;
822                         if (prev)
823                                 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
824
825                         prev = ldesc;
826                         list_move_tail(&ldesc->node, &desc->sg);
827
828                         i++;
829                 } while (i < len);
830         } while (!desc);
831
832         prev->hwdesc->next = 0;
833
834         spin_unlock_irq(&chan->lock);
835
836         return desc;
837 }
838
839 static void nbpf_chan_idle(struct nbpf_channel *chan)
840 {
841         struct nbpf_desc *desc, *tmp;
842         unsigned long flags;
843         LIST_HEAD(head);
844
845         spin_lock_irqsave(&chan->lock, flags);
846
847         list_splice_init(&chan->done, &head);
848         list_splice_init(&chan->active, &head);
849         list_splice_init(&chan->queued, &head);
850
851         chan->running = NULL;
852
853         spin_unlock_irqrestore(&chan->lock, flags);
854
855         list_for_each_entry_safe(desc, tmp, &head, node) {
856                 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
857                         __func__, desc, desc->async_tx.cookie);
858                 list_del(&desc->node);
859                 nbpf_desc_put(desc);
860         }
861 }
862
863 static int nbpf_pause(struct dma_chan *dchan)
864 {
865         struct nbpf_channel *chan = nbpf_to_chan(dchan);
866
867         dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
868
869         chan->paused = true;
870         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
871         /* See comment in nbpf_prep_one() */
872         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
873
874         return 0;
875 }
876
877 static int nbpf_terminate_all(struct dma_chan *dchan)
878 {
879         struct nbpf_channel *chan = nbpf_to_chan(dchan);
880
881         dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
882         dev_dbg(dchan->device->dev, "Terminating\n");
883
884         nbpf_chan_halt(chan);
885         nbpf_chan_idle(chan);
886
887         return 0;
888 }
889
890 static int nbpf_config(struct dma_chan *dchan,
891                        struct dma_slave_config *config)
892 {
893         struct nbpf_channel *chan = nbpf_to_chan(dchan);
894
895         dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
896
897         /*
898          * We could check config->slave_id to match chan->terminal here,
899          * but with DT they would be coming from the same source, so
900          * such a check would be superflous
901          */
902
903         chan->slave_dst_addr = config->dst_addr;
904         chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
905                                                config->dst_addr_width, 1);
906         chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
907                                                config->dst_addr_width,
908                                                config->dst_maxburst);
909         chan->slave_src_addr = config->src_addr;
910         chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
911                                                config->src_addr_width, 1);
912         chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
913                                                config->src_addr_width,
914                                                config->src_maxburst);
915
916         return 0;
917 }
918
919 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
920                 struct scatterlist *src_sg, struct scatterlist *dst_sg,
921                 size_t len, enum dma_transfer_direction direction,
922                 unsigned long flags)
923 {
924         struct nbpf_link_desc *ldesc;
925         struct scatterlist *mem_sg;
926         struct nbpf_desc *desc;
927         bool inc_src, inc_dst;
928         size_t data_len = 0;
929         int i = 0;
930
931         switch (direction) {
932         case DMA_DEV_TO_MEM:
933                 mem_sg = dst_sg;
934                 inc_src = false;
935                 inc_dst = true;
936                 break;
937
938         case DMA_MEM_TO_DEV:
939                 mem_sg = src_sg;
940                 inc_src = true;
941                 inc_dst = false;
942                 break;
943
944         default:
945         case DMA_MEM_TO_MEM:
946                 mem_sg = src_sg;
947                 inc_src = true;
948                 inc_dst = true;
949         }
950
951         desc = nbpf_desc_get(chan, len);
952         if (!desc)
953                 return NULL;
954
955         desc->async_tx.flags = flags;
956         desc->async_tx.cookie = -EBUSY;
957         desc->user_wait = false;
958
959         /*
960          * This is a private descriptor list, and we own the descriptor. No need
961          * to lock.
962          */
963         list_for_each_entry(ldesc, &desc->sg, node) {
964                 int ret = nbpf_prep_one(ldesc, direction,
965                                         sg_dma_address(src_sg),
966                                         sg_dma_address(dst_sg),
967                                         sg_dma_len(mem_sg),
968                                         i == len - 1);
969                 if (ret < 0) {
970                         nbpf_desc_put(desc);
971                         return NULL;
972                 }
973                 data_len += sg_dma_len(mem_sg);
974                 if (inc_src)
975                         src_sg = sg_next(src_sg);
976                 if (inc_dst)
977                         dst_sg = sg_next(dst_sg);
978                 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
979                 i++;
980         }
981
982         desc->length = data_len;
983
984         /* The user has to return the descriptor to us ASAP via .tx_submit() */
985         return &desc->async_tx;
986 }
987
988 static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
989         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
990         size_t len, unsigned long flags)
991 {
992         struct nbpf_channel *chan = nbpf_to_chan(dchan);
993         struct scatterlist dst_sg;
994         struct scatterlist src_sg;
995
996         sg_init_table(&dst_sg, 1);
997         sg_init_table(&src_sg, 1);
998
999         sg_dma_address(&dst_sg) = dst;
1000         sg_dma_address(&src_sg) = src;
1001
1002         sg_dma_len(&dst_sg) = len;
1003         sg_dma_len(&src_sg) = len;
1004
1005         dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
1006                 __func__, len, &src, &dst);
1007
1008         return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
1009                             DMA_MEM_TO_MEM, flags);
1010 }
1011
1012 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1013         struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1014         enum dma_transfer_direction direction, unsigned long flags, void *context)
1015 {
1016         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1017         struct scatterlist slave_sg;
1018
1019         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1020
1021         sg_init_table(&slave_sg, 1);
1022
1023         switch (direction) {
1024         case DMA_MEM_TO_DEV:
1025                 sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1026                 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1027                                     direction, flags);
1028
1029         case DMA_DEV_TO_MEM:
1030                 sg_dma_address(&slave_sg) = chan->slave_src_addr;
1031                 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1032                                     direction, flags);
1033
1034         default:
1035                 return NULL;
1036         }
1037 }
1038
1039 static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1040 {
1041         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1042         int ret;
1043
1044         INIT_LIST_HEAD(&chan->free);
1045         INIT_LIST_HEAD(&chan->free_links);
1046         INIT_LIST_HEAD(&chan->queued);
1047         INIT_LIST_HEAD(&chan->active);
1048         INIT_LIST_HEAD(&chan->done);
1049
1050         ret = nbpf_desc_page_alloc(chan);
1051         if (ret < 0)
1052                 return ret;
1053
1054         dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1055                 chan->terminal);
1056
1057         nbpf_chan_configure(chan);
1058
1059         return ret;
1060 }
1061
1062 static void nbpf_free_chan_resources(struct dma_chan *dchan)
1063 {
1064         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1065         struct nbpf_desc_page *dpage, *tmp;
1066
1067         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1068
1069         nbpf_chan_halt(chan);
1070         nbpf_chan_idle(chan);
1071         /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1072         nbpf_chan_prepare_default(chan);
1073
1074         list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1075                 struct nbpf_link_desc *ldesc;
1076                 int i;
1077                 list_del(&dpage->node);
1078                 for (i = 0, ldesc = dpage->ldesc;
1079                      i < ARRAY_SIZE(dpage->ldesc);
1080                      i++, ldesc++)
1081                         dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1082                                          sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1083                 free_page((unsigned long)dpage);
1084         }
1085 }
1086
1087 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1088                                       struct of_dma *ofdma)
1089 {
1090         struct nbpf_device *nbpf = ofdma->of_dma_data;
1091         struct dma_chan *dchan;
1092         struct nbpf_channel *chan;
1093
1094         if (dma_spec->args_count != 2)
1095                 return NULL;
1096
1097         dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1098         if (!dchan)
1099                 return NULL;
1100
1101         dev_dbg(dchan->device->dev, "Entry %s(%pOFn)\n", __func__,
1102                 dma_spec->np);
1103
1104         chan = nbpf_to_chan(dchan);
1105
1106         chan->terminal = dma_spec->args[0];
1107         chan->flags = dma_spec->args[1];
1108
1109         nbpf_chan_prepare(chan);
1110         nbpf_chan_configure(chan);
1111
1112         return dchan;
1113 }
1114
1115 static void nbpf_chan_tasklet(struct tasklet_struct *t)
1116 {
1117         struct nbpf_channel *chan = from_tasklet(chan, t, tasklet);
1118         struct nbpf_desc *desc, *tmp;
1119         struct dmaengine_desc_callback cb;
1120
1121         while (!list_empty(&chan->done)) {
1122                 bool found = false, must_put, recycling = false;
1123
1124                 spin_lock_irq(&chan->lock);
1125
1126                 list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1127                         if (!desc->user_wait) {
1128                                 /* Newly completed descriptor, have to process */
1129                                 found = true;
1130                                 break;
1131                         } else if (async_tx_test_ack(&desc->async_tx)) {
1132                                 /*
1133                                  * This descriptor was waiting for a user ACK,
1134                                  * it can be recycled now.
1135                                  */
1136                                 list_del(&desc->node);
1137                                 spin_unlock_irq(&chan->lock);
1138                                 nbpf_desc_put(desc);
1139                                 recycling = true;
1140                                 break;
1141                         }
1142                 }
1143
1144                 if (recycling)
1145                         continue;
1146
1147                 if (!found) {
1148                         /* This can happen if TERMINATE_ALL has been called */
1149                         spin_unlock_irq(&chan->lock);
1150                         break;
1151                 }
1152
1153                 dma_cookie_complete(&desc->async_tx);
1154
1155                 /*
1156                  * With released lock we cannot dereference desc, maybe it's
1157                  * still on the "done" list
1158                  */
1159                 if (async_tx_test_ack(&desc->async_tx)) {
1160                         list_del(&desc->node);
1161                         must_put = true;
1162                 } else {
1163                         desc->user_wait = true;
1164                         must_put = false;
1165                 }
1166
1167                 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1168
1169                 /* ack and callback completed descriptor */
1170                 spin_unlock_irq(&chan->lock);
1171
1172                 dmaengine_desc_callback_invoke(&cb, NULL);
1173
1174                 if (must_put)
1175                         nbpf_desc_put(desc);
1176         }
1177 }
1178
1179 static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1180 {
1181         struct nbpf_channel *chan = dev;
1182         bool done = nbpf_status_get(chan);
1183         struct nbpf_desc *desc;
1184         irqreturn_t ret;
1185         bool bh = false;
1186
1187         if (!done)
1188                 return IRQ_NONE;
1189
1190         nbpf_status_ack(chan);
1191
1192         dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1193
1194         spin_lock(&chan->lock);
1195         desc = chan->running;
1196         if (WARN_ON(!desc)) {
1197                 ret = IRQ_NONE;
1198                 goto unlock;
1199         } else {
1200                 ret = IRQ_HANDLED;
1201                 bh = true;
1202         }
1203
1204         list_move_tail(&desc->node, &chan->done);
1205         chan->running = NULL;
1206
1207         if (!list_empty(&chan->active)) {
1208                 desc = list_first_entry(&chan->active,
1209                                         struct nbpf_desc, node);
1210                 if (!nbpf_start(desc))
1211                         chan->running = desc;
1212         }
1213
1214 unlock:
1215         spin_unlock(&chan->lock);
1216
1217         if (bh)
1218                 tasklet_schedule(&chan->tasklet);
1219
1220         return ret;
1221 }
1222
1223 static irqreturn_t nbpf_err_irq(int irq, void *dev)
1224 {
1225         struct nbpf_device *nbpf = dev;
1226         u32 error = nbpf_error_get(nbpf);
1227
1228         dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1229
1230         if (!error)
1231                 return IRQ_NONE;
1232
1233         do {
1234                 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1235                 /* On error: abort all queued transfers, no callback */
1236                 nbpf_error_clear(chan);
1237                 nbpf_chan_idle(chan);
1238                 error = nbpf_error_get(nbpf);
1239         } while (error);
1240
1241         return IRQ_HANDLED;
1242 }
1243
1244 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1245 {
1246         struct dma_device *dma_dev = &nbpf->dma_dev;
1247         struct nbpf_channel *chan = nbpf->chan + n;
1248         int ret;
1249
1250         chan->nbpf = nbpf;
1251         chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1252         INIT_LIST_HEAD(&chan->desc_page);
1253         spin_lock_init(&chan->lock);
1254         chan->dma_chan.device = dma_dev;
1255         dma_cookie_init(&chan->dma_chan);
1256         nbpf_chan_prepare_default(chan);
1257
1258         dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1259
1260         snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1261
1262         tasklet_setup(&chan->tasklet, nbpf_chan_tasklet);
1263         ret = devm_request_irq(dma_dev->dev, chan->irq,
1264                         nbpf_chan_irq, IRQF_SHARED,
1265                         chan->name, chan);
1266         if (ret < 0)
1267                 return ret;
1268
1269         /* Add the channel to DMA device channel list */
1270         list_add_tail(&chan->dma_chan.device_node,
1271                       &dma_dev->channels);
1272
1273         return 0;
1274 }
1275
1276 static const struct of_device_id nbpf_match[] = {
1277         {.compatible = "renesas,nbpfaxi64dmac1b4",      .data = &nbpf_cfg[NBPF1B4]},
1278         {.compatible = "renesas,nbpfaxi64dmac1b8",      .data = &nbpf_cfg[NBPF1B8]},
1279         {.compatible = "renesas,nbpfaxi64dmac1b16",     .data = &nbpf_cfg[NBPF1B16]},
1280         {.compatible = "renesas,nbpfaxi64dmac4b4",      .data = &nbpf_cfg[NBPF4B4]},
1281         {.compatible = "renesas,nbpfaxi64dmac4b8",      .data = &nbpf_cfg[NBPF4B8]},
1282         {.compatible = "renesas,nbpfaxi64dmac4b16",     .data = &nbpf_cfg[NBPF4B16]},
1283         {.compatible = "renesas,nbpfaxi64dmac8b4",      .data = &nbpf_cfg[NBPF8B4]},
1284         {.compatible = "renesas,nbpfaxi64dmac8b8",      .data = &nbpf_cfg[NBPF8B8]},
1285         {.compatible = "renesas,nbpfaxi64dmac8b16",     .data = &nbpf_cfg[NBPF8B16]},
1286         {}
1287 };
1288 MODULE_DEVICE_TABLE(of, nbpf_match);
1289
1290 static int nbpf_probe(struct platform_device *pdev)
1291 {
1292         struct device *dev = &pdev->dev;
1293         struct device_node *np = dev->of_node;
1294         struct nbpf_device *nbpf;
1295         struct dma_device *dma_dev;
1296         const struct nbpf_config *cfg;
1297         int num_channels;
1298         int ret, irq, eirq, i;
1299         int irqbuf[9] /* maximum 8 channels + error IRQ */;
1300         unsigned int irqs = 0;
1301
1302         BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1303
1304         /* DT only */
1305         if (!np)
1306                 return -ENODEV;
1307
1308         cfg = of_device_get_match_data(dev);
1309         num_channels = cfg->num_channels;
1310
1311         nbpf = devm_kzalloc(dev, struct_size(nbpf, chan, num_channels),
1312                             GFP_KERNEL);
1313         if (!nbpf)
1314                 return -ENOMEM;
1315
1316         dma_dev = &nbpf->dma_dev;
1317         dma_dev->dev = dev;
1318
1319         nbpf->base = devm_platform_ioremap_resource(pdev, 0);
1320         if (IS_ERR(nbpf->base))
1321                 return PTR_ERR(nbpf->base);
1322
1323         nbpf->clk = devm_clk_get(dev, NULL);
1324         if (IS_ERR(nbpf->clk))
1325                 return PTR_ERR(nbpf->clk);
1326
1327         of_property_read_u32(np, "max-burst-mem-read",
1328                              &nbpf->max_burst_mem_read);
1329         of_property_read_u32(np, "max-burst-mem-write",
1330                              &nbpf->max_burst_mem_write);
1331
1332         nbpf->config = cfg;
1333
1334         for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1335                 irq = platform_get_irq_optional(pdev, i);
1336                 if (irq < 0 && irq != -ENXIO)
1337                         return irq;
1338                 if (irq > 0)
1339                         irqbuf[irqs++] = irq;
1340         }
1341
1342         /*
1343          * 3 IRQ resource schemes are supported:
1344          * 1. 1 shared IRQ for error and all channels
1345          * 2. 2 IRQs: one for error and one shared for all channels
1346          * 3. 1 IRQ for error and an own IRQ for each channel
1347          */
1348         if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1349                 return -ENXIO;
1350
1351         if (irqs == 1) {
1352                 eirq = irqbuf[0];
1353
1354                 for (i = 0; i <= num_channels; i++)
1355                         nbpf->chan[i].irq = irqbuf[0];
1356         } else {
1357                 eirq = platform_get_irq_byname(pdev, "error");
1358                 if (eirq < 0)
1359                         return eirq;
1360
1361                 if (irqs == num_channels + 1) {
1362                         struct nbpf_channel *chan;
1363
1364                         for (i = 0, chan = nbpf->chan; i <= num_channels;
1365                              i++, chan++) {
1366                                 /* Skip the error IRQ */
1367                                 if (irqbuf[i] == eirq)
1368                                         i++;
1369                                 chan->irq = irqbuf[i];
1370                         }
1371
1372                         if (chan != nbpf->chan + num_channels)
1373                                 return -EINVAL;
1374                 } else {
1375                         /* 2 IRQs and more than one channel */
1376                         if (irqbuf[0] == eirq)
1377                                 irq = irqbuf[1];
1378                         else
1379                                 irq = irqbuf[0];
1380
1381                         for (i = 0; i <= num_channels; i++)
1382                                 nbpf->chan[i].irq = irq;
1383                 }
1384         }
1385
1386         ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1387                                IRQF_SHARED, "dma error", nbpf);
1388         if (ret < 0)
1389                 return ret;
1390         nbpf->eirq = eirq;
1391
1392         INIT_LIST_HEAD(&dma_dev->channels);
1393
1394         /* Create DMA Channel */
1395         for (i = 0; i < num_channels; i++) {
1396                 ret = nbpf_chan_probe(nbpf, i);
1397                 if (ret < 0)
1398                         return ret;
1399         }
1400
1401         dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1402         dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1403         dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1404
1405         /* Common and MEMCPY operations */
1406         dma_dev->device_alloc_chan_resources
1407                 = nbpf_alloc_chan_resources;
1408         dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1409         dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1410         dma_dev->device_tx_status = nbpf_tx_status;
1411         dma_dev->device_issue_pending = nbpf_issue_pending;
1412
1413         /*
1414          * If we drop support for unaligned MEMCPY buffer addresses and / or
1415          * lengths by setting
1416          * dma_dev->copy_align = 4;
1417          * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1418          * DMA_MEM_TO_MEM
1419          */
1420
1421         /* Compulsory for DMA_SLAVE fields */
1422         dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1423         dma_dev->device_config = nbpf_config;
1424         dma_dev->device_pause = nbpf_pause;
1425         dma_dev->device_terminate_all = nbpf_terminate_all;
1426
1427         dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1428         dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1429         dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1430
1431         platform_set_drvdata(pdev, nbpf);
1432
1433         ret = clk_prepare_enable(nbpf->clk);
1434         if (ret < 0)
1435                 return ret;
1436
1437         nbpf_configure(nbpf);
1438
1439         ret = dma_async_device_register(dma_dev);
1440         if (ret < 0)
1441                 goto e_clk_off;
1442
1443         ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1444         if (ret < 0)
1445                 goto e_dma_dev_unreg;
1446
1447         return 0;
1448
1449 e_dma_dev_unreg:
1450         dma_async_device_unregister(dma_dev);
1451 e_clk_off:
1452         clk_disable_unprepare(nbpf->clk);
1453
1454         return ret;
1455 }
1456
1457 static void nbpf_remove(struct platform_device *pdev)
1458 {
1459         struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1460         int i;
1461
1462         devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
1463
1464         for (i = 0; i < nbpf->config->num_channels; i++) {
1465                 struct nbpf_channel *chan = nbpf->chan + i;
1466
1467                 devm_free_irq(&pdev->dev, chan->irq, chan);
1468
1469                 tasklet_kill(&chan->tasklet);
1470         }
1471
1472         of_dma_controller_free(pdev->dev.of_node);
1473         dma_async_device_unregister(&nbpf->dma_dev);
1474         clk_disable_unprepare(nbpf->clk);
1475 }
1476
1477 static const struct platform_device_id nbpf_ids[] = {
1478         {"nbpfaxi64dmac1b4",    (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1479         {"nbpfaxi64dmac1b8",    (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1480         {"nbpfaxi64dmac1b16",   (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1481         {"nbpfaxi64dmac4b4",    (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1482         {"nbpfaxi64dmac4b8",    (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1483         {"nbpfaxi64dmac4b16",   (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1484         {"nbpfaxi64dmac8b4",    (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1485         {"nbpfaxi64dmac8b8",    (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1486         {"nbpfaxi64dmac8b16",   (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1487         {},
1488 };
1489 MODULE_DEVICE_TABLE(platform, nbpf_ids);
1490
1491 #ifdef CONFIG_PM
1492 static int nbpf_runtime_suspend(struct device *dev)
1493 {
1494         struct nbpf_device *nbpf = dev_get_drvdata(dev);
1495         clk_disable_unprepare(nbpf->clk);
1496         return 0;
1497 }
1498
1499 static int nbpf_runtime_resume(struct device *dev)
1500 {
1501         struct nbpf_device *nbpf = dev_get_drvdata(dev);
1502         return clk_prepare_enable(nbpf->clk);
1503 }
1504 #endif
1505
1506 static const struct dev_pm_ops nbpf_pm_ops = {
1507         SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1508 };
1509
1510 static struct platform_driver nbpf_driver = {
1511         .driver = {
1512                 .name = "dma-nbpf",
1513                 .of_match_table = nbpf_match,
1514                 .pm = &nbpf_pm_ops,
1515         },
1516         .id_table = nbpf_ids,
1517         .probe = nbpf_probe,
1518         .remove_new = nbpf_remove,
1519 };
1520
1521 module_platform_driver(nbpf_driver);
1522
1523 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1524 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1525 MODULE_LICENSE("GPL v2");