GNU Linux-libre 5.4.200-gnu1
[releases.git] / drivers / dma / imx-sdma.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125
126 /*
127  *  p_2_p watermark_level description
128  *      Bits            Name                    Description
129  *      0-7             Lower WML               Lower watermark level
130  *      8               PS                      1: Pad Swallowing
131  *                                              0: No Pad Swallowing
132  *      9               PA                      1: Pad Adding
133  *                                              0: No Pad Adding
134  *      10              SPDIF                   If this bit is set both source
135  *                                              and destination are on SPBA
136  *      11              Source Bit(SP)          1: Source on SPBA
137  *                                              0: Source on AIPS
138  *      12              Destination Bit(DP)     1: Destination on SPBA
139  *                                              0: Destination on AIPS
140  *      13-15           ---------               MUST BE 0
141  *      16-23           Higher WML              HWML
142  *      24-27           N                       Total number of samples after
143  *                                              which Pad adding/Swallowing
144  *                                              must be done. It must be odd.
145  *      28              Lower WML Event(LWE)    SDMA events reg to check for
146  *                                              LWML event mask
147  *                                              0: LWE in EVENTS register
148  *                                              1: LWE in EVENTS2 register
149  *      29              Higher WML Event(HWE)   SDMA events reg to check for
150  *                                              HWML event mask
151  *                                              0: HWE in EVENTS register
152  *                                              1: HWE in EVENTS2 register
153  *      30              ---------               MUST BE 0
154  *      31              CONT                    1: Amount of samples to be
155  *                                              transferred is unknown and
156  *                                              script will keep on
157  *                                              transferring samples as long as
158  *                                              both events are detected and
159  *                                              script must be manually stopped
160  *                                              by the application
161  *                                              0: The amount of samples to be
162  *                                              transferred is equal to the
163  *                                              count field of mode word
164  */
165 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
166 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
175
176 #define SDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179
180 #define SDMA_DMA_DIRECTIONS     (BIT(DMA_DEV_TO_MEM) | \
181                                  BIT(DMA_MEM_TO_DEV) | \
182                                  BIT(DMA_DEV_TO_DEV))
183
184 /*
185  * Mode/Count of data node descriptors - IPCv2
186  */
187 struct sdma_mode_count {
188 #define SDMA_BD_MAX_CNT 0xffff
189         u32 count   : 16; /* size of the buffer pointed by this BD */
190         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
191         u32 command :  8; /* command mostly used for channel 0 */
192 };
193
194 /*
195  * Buffer descriptor
196  */
197 struct sdma_buffer_descriptor {
198         struct sdma_mode_count  mode;
199         u32 buffer_addr;        /* address of the buffer described */
200         u32 ext_buffer_addr;    /* extended buffer address */
201 } __attribute__ ((packed));
202
203 /**
204  * struct sdma_channel_control - Channel control Block
205  *
206  * @current_bd_ptr:     current buffer descriptor processed
207  * @base_bd_ptr:        first element of buffer descriptor array
208  * @unused:             padding. The SDMA engine expects an array of 128 byte
209  *                      control blocks
210  */
211 struct sdma_channel_control {
212         u32 current_bd_ptr;
213         u32 base_bd_ptr;
214         u32 unused[2];
215 } __attribute__ ((packed));
216
217 /**
218  * struct sdma_state_registers - SDMA context for a channel
219  *
220  * @pc:         program counter
221  * @unused1:    unused
222  * @t:          test bit: status of arithmetic & test instruction
223  * @rpc:        return program counter
224  * @unused0:    unused
225  * @sf:         source fault while loading data
226  * @spc:        loop start program counter
227  * @unused2:    unused
228  * @df:         destination fault while storing data
229  * @epc:        loop end program counter
230  * @lm:         loop mode
231  */
232 struct sdma_state_registers {
233         u32 pc     :14;
234         u32 unused1: 1;
235         u32 t      : 1;
236         u32 rpc    :14;
237         u32 unused0: 1;
238         u32 sf     : 1;
239         u32 spc    :14;
240         u32 unused2: 1;
241         u32 df     : 1;
242         u32 epc    :14;
243         u32 lm     : 2;
244 } __attribute__ ((packed));
245
246 /**
247  * struct sdma_context_data - sdma context specific to a channel
248  *
249  * @channel_state:      channel state bits
250  * @gReg:               general registers
251  * @mda:                burst dma destination address register
252  * @msa:                burst dma source address register
253  * @ms:                 burst dma status register
254  * @md:                 burst dma data register
255  * @pda:                peripheral dma destination address register
256  * @psa:                peripheral dma source address register
257  * @ps:                 peripheral dma status register
258  * @pd:                 peripheral dma data register
259  * @ca:                 CRC polynomial register
260  * @cs:                 CRC accumulator register
261  * @dda:                dedicated core destination address register
262  * @dsa:                dedicated core source address register
263  * @ds:                 dedicated core status register
264  * @dd:                 dedicated core data register
265  * @scratch0:           1st word of dedicated ram for context switch
266  * @scratch1:           2nd word of dedicated ram for context switch
267  * @scratch2:           3rd word of dedicated ram for context switch
268  * @scratch3:           4th word of dedicated ram for context switch
269  * @scratch4:           5th word of dedicated ram for context switch
270  * @scratch5:           6th word of dedicated ram for context switch
271  * @scratch6:           7th word of dedicated ram for context switch
272  * @scratch7:           8th word of dedicated ram for context switch
273  */
274 struct sdma_context_data {
275         struct sdma_state_registers  channel_state;
276         u32  gReg[8];
277         u32  mda;
278         u32  msa;
279         u32  ms;
280         u32  md;
281         u32  pda;
282         u32  psa;
283         u32  ps;
284         u32  pd;
285         u32  ca;
286         u32  cs;
287         u32  dda;
288         u32  dsa;
289         u32  ds;
290         u32  dd;
291         u32  scratch0;
292         u32  scratch1;
293         u32  scratch2;
294         u32  scratch3;
295         u32  scratch4;
296         u32  scratch5;
297         u32  scratch6;
298         u32  scratch7;
299 } __attribute__ ((packed));
300
301
302 struct sdma_engine;
303
304 /**
305  * struct sdma_desc - descriptor structor for one transfer
306  * @vd:                 descriptor for virt dma
307  * @num_bd:             number of descriptors currently handling
308  * @bd_phys:            physical address of bd
309  * @buf_tail:           ID of the buffer that was processed
310  * @buf_ptail:          ID of the previous buffer that was processed
311  * @period_len:         period length, used in cyclic.
312  * @chn_real_count:     the real count updated from bd->mode.count
313  * @chn_count:          the transfer count set
314  * @sdmac:              sdma_channel pointer
315  * @bd:                 pointer of allocate bd
316  */
317 struct sdma_desc {
318         struct virt_dma_desc    vd;
319         unsigned int            num_bd;
320         dma_addr_t              bd_phys;
321         unsigned int            buf_tail;
322         unsigned int            buf_ptail;
323         unsigned int            period_len;
324         unsigned int            chn_real_count;
325         unsigned int            chn_count;
326         struct sdma_channel     *sdmac;
327         struct sdma_buffer_descriptor *bd;
328 };
329
330 /**
331  * struct sdma_channel - housekeeping for a SDMA channel
332  *
333  * @vc:                 virt_dma base structure
334  * @desc:               sdma description including vd and other special member
335  * @sdma:               pointer to the SDMA engine for this channel
336  * @channel:            the channel number, matches dmaengine chan_id + 1
337  * @direction:          transfer type. Needed for setting SDMA script
338  * @slave_config        Slave configuration
339  * @peripheral_type:    Peripheral type. Needed for setting SDMA script
340  * @event_id0:          aka dma request line
341  * @event_id1:          for channels that use 2 events
342  * @word_size:          peripheral access size
343  * @pc_from_device:     script address for those device_2_memory
344  * @pc_to_device:       script address for those memory_2_device
345  * @device_to_device:   script address for those device_2_device
346  * @pc_to_pc:           script address for those memory_2_memory
347  * @flags:              loop mode or not
348  * @per_address:        peripheral source or destination address in common case
349  *                      destination address in p_2_p case
350  * @per_address2:       peripheral source address in p_2_p case
351  * @event_mask:         event mask used in p_2_p script
352  * @watermark_level:    value for gReg[7], some script will extend it from
353  *                      basic watermark such as p_2_p
354  * @shp_addr:           value for gReg[6]
355  * @per_addr:           value for gReg[2]
356  * @status:             status of dma channel
357  * @data:               specific sdma interface structure
358  * @bd_pool:            dma_pool for bd
359  */
360 struct sdma_channel {
361         struct virt_dma_chan            vc;
362         struct sdma_desc                *desc;
363         struct sdma_engine              *sdma;
364         unsigned int                    channel;
365         enum dma_transfer_direction             direction;
366         struct dma_slave_config         slave_config;
367         enum sdma_peripheral_type       peripheral_type;
368         unsigned int                    event_id0;
369         unsigned int                    event_id1;
370         enum dma_slave_buswidth         word_size;
371         unsigned int                    pc_from_device, pc_to_device;
372         unsigned int                    device_to_device;
373         unsigned int                    pc_to_pc;
374         unsigned long                   flags;
375         dma_addr_t                      per_address, per_address2;
376         unsigned long                   event_mask[2];
377         unsigned long                   watermark_level;
378         u32                             shp_addr, per_addr;
379         enum dma_status                 status;
380         struct imx_dma_data             data;
381         struct work_struct              terminate_worker;
382 };
383
384 #define IMX_DMA_SG_LOOP         BIT(0)
385
386 #define MAX_DMA_CHANNELS 32
387 #define MXC_SDMA_DEFAULT_PRIORITY 1
388 #define MXC_SDMA_MIN_PRIORITY 1
389 #define MXC_SDMA_MAX_PRIORITY 7
390
391 #define SDMA_FIRMWARE_MAGIC 0x414d4453
392
393 /**
394  * struct sdma_firmware_header - Layout of the firmware image
395  *
396  * @magic:              "SDMA"
397  * @version_major:      increased whenever layout of struct
398  *                      sdma_script_start_addrs changes.
399  * @version_minor:      firmware minor version (for binary compatible changes)
400  * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
401  * @num_script_addrs:   Number of script addresses in this image
402  * @ram_code_start:     offset of SDMA ram image in this firmware image
403  * @ram_code_size:      size of SDMA ram image
404  * @script_addrs:       Stores the start address of the SDMA scripts
405  *                      (in SDMA memory space)
406  */
407 struct sdma_firmware_header {
408         u32     magic;
409         u32     version_major;
410         u32     version_minor;
411         u32     script_addrs_start;
412         u32     num_script_addrs;
413         u32     ram_code_start;
414         u32     ram_code_size;
415 };
416
417 struct sdma_driver_data {
418         int chnenbl0;
419         int num_events;
420         struct sdma_script_start_addrs  *script_addrs;
421         bool check_ratio;
422 };
423
424 struct sdma_engine {
425         struct device                   *dev;
426         struct device_dma_parameters    dma_parms;
427         struct sdma_channel             channel[MAX_DMA_CHANNELS];
428         struct sdma_channel_control     *channel_control;
429         void __iomem                    *regs;
430         struct sdma_context_data        *context;
431         dma_addr_t                      context_phys;
432         struct dma_device               dma_device;
433         struct clk                      *clk_ipg;
434         struct clk                      *clk_ahb;
435         spinlock_t                      channel_0_lock;
436         u32                             script_number;
437         struct sdma_script_start_addrs  *script_addrs;
438         const struct sdma_driver_data   *drvdata;
439         u32                             spba_start_addr;
440         u32                             spba_end_addr;
441         unsigned int                    irq;
442         dma_addr_t                      bd0_phys;
443         struct sdma_buffer_descriptor   *bd0;
444         /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
445         bool                            clk_ratio;
446 };
447
448 static int sdma_config_write(struct dma_chan *chan,
449                        struct dma_slave_config *dmaengine_cfg,
450                        enum dma_transfer_direction direction);
451
452 static struct sdma_driver_data sdma_imx31 = {
453         .chnenbl0 = SDMA_CHNENBL0_IMX31,
454         .num_events = 32,
455 };
456
457 static struct sdma_script_start_addrs sdma_script_imx25 = {
458         .ap_2_ap_addr = 729,
459         .uart_2_mcu_addr = 904,
460         .per_2_app_addr = 1255,
461         .mcu_2_app_addr = 834,
462         .uartsh_2_mcu_addr = 1120,
463         .per_2_shp_addr = 1329,
464         .mcu_2_shp_addr = 1048,
465         .ata_2_mcu_addr = 1560,
466         .mcu_2_ata_addr = 1479,
467         .app_2_per_addr = 1189,
468         .app_2_mcu_addr = 770,
469         .shp_2_per_addr = 1407,
470         .shp_2_mcu_addr = 979,
471 };
472
473 static struct sdma_driver_data sdma_imx25 = {
474         .chnenbl0 = SDMA_CHNENBL0_IMX35,
475         .num_events = 48,
476         .script_addrs = &sdma_script_imx25,
477 };
478
479 static struct sdma_driver_data sdma_imx35 = {
480         .chnenbl0 = SDMA_CHNENBL0_IMX35,
481         .num_events = 48,
482 };
483
484 static struct sdma_script_start_addrs sdma_script_imx51 = {
485         .ap_2_ap_addr = 642,
486         .uart_2_mcu_addr = 817,
487         .mcu_2_app_addr = 747,
488         .mcu_2_shp_addr = 961,
489         .ata_2_mcu_addr = 1473,
490         .mcu_2_ata_addr = 1392,
491         .app_2_per_addr = 1033,
492         .app_2_mcu_addr = 683,
493         .shp_2_per_addr = 1251,
494         .shp_2_mcu_addr = 892,
495 };
496
497 static struct sdma_driver_data sdma_imx51 = {
498         .chnenbl0 = SDMA_CHNENBL0_IMX35,
499         .num_events = 48,
500         .script_addrs = &sdma_script_imx51,
501 };
502
503 static struct sdma_script_start_addrs sdma_script_imx53 = {
504         .ap_2_ap_addr = 642,
505         .app_2_mcu_addr = 683,
506         .mcu_2_app_addr = 747,
507         .uart_2_mcu_addr = 817,
508         .shp_2_mcu_addr = 891,
509         .mcu_2_shp_addr = 960,
510         .uartsh_2_mcu_addr = 1032,
511         .spdif_2_mcu_addr = 1100,
512         .mcu_2_spdif_addr = 1134,
513         .firi_2_mcu_addr = 1193,
514         .mcu_2_firi_addr = 1290,
515 };
516
517 static struct sdma_driver_data sdma_imx53 = {
518         .chnenbl0 = SDMA_CHNENBL0_IMX35,
519         .num_events = 48,
520         .script_addrs = &sdma_script_imx53,
521 };
522
523 static struct sdma_script_start_addrs sdma_script_imx6q = {
524         .ap_2_ap_addr = 642,
525         .uart_2_mcu_addr = 817,
526         .mcu_2_app_addr = 747,
527         .per_2_per_addr = 6331,
528         .uartsh_2_mcu_addr = 1032,
529         .mcu_2_shp_addr = 960,
530         .app_2_mcu_addr = 683,
531         .shp_2_mcu_addr = 891,
532         .spdif_2_mcu_addr = 1100,
533         .mcu_2_spdif_addr = 1134,
534 };
535
536 static struct sdma_driver_data sdma_imx6q = {
537         .chnenbl0 = SDMA_CHNENBL0_IMX35,
538         .num_events = 48,
539         .script_addrs = &sdma_script_imx6q,
540 };
541
542 static struct sdma_script_start_addrs sdma_script_imx7d = {
543         .ap_2_ap_addr = 644,
544         .uart_2_mcu_addr = 819,
545         .mcu_2_app_addr = 749,
546         .uartsh_2_mcu_addr = 1034,
547         .mcu_2_shp_addr = 962,
548         .app_2_mcu_addr = 685,
549         .shp_2_mcu_addr = 893,
550         .spdif_2_mcu_addr = 1102,
551         .mcu_2_spdif_addr = 1136,
552 };
553
554 static struct sdma_driver_data sdma_imx7d = {
555         .chnenbl0 = SDMA_CHNENBL0_IMX35,
556         .num_events = 48,
557         .script_addrs = &sdma_script_imx7d,
558 };
559
560 static struct sdma_driver_data sdma_imx8mq = {
561         .chnenbl0 = SDMA_CHNENBL0_IMX35,
562         .num_events = 48,
563         .script_addrs = &sdma_script_imx7d,
564         .check_ratio = 1,
565 };
566
567 static const struct platform_device_id sdma_devtypes[] = {
568         {
569                 .name = "imx25-sdma",
570                 .driver_data = (unsigned long)&sdma_imx25,
571         }, {
572                 .name = "imx31-sdma",
573                 .driver_data = (unsigned long)&sdma_imx31,
574         }, {
575                 .name = "imx35-sdma",
576                 .driver_data = (unsigned long)&sdma_imx35,
577         }, {
578                 .name = "imx51-sdma",
579                 .driver_data = (unsigned long)&sdma_imx51,
580         }, {
581                 .name = "imx53-sdma",
582                 .driver_data = (unsigned long)&sdma_imx53,
583         }, {
584                 .name = "imx6q-sdma",
585                 .driver_data = (unsigned long)&sdma_imx6q,
586         }, {
587                 .name = "imx7d-sdma",
588                 .driver_data = (unsigned long)&sdma_imx7d,
589         }, {
590                 .name = "imx8mq-sdma",
591                 .driver_data = (unsigned long)&sdma_imx8mq,
592         }, {
593                 /* sentinel */
594         }
595 };
596 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
597
598 static const struct of_device_id sdma_dt_ids[] = {
599         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
600         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
601         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
602         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
603         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
604         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
605         { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
606         { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
607         { /* sentinel */ }
608 };
609 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
610
611 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
612 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
613 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
614 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
615
616 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
617 {
618         u32 chnenbl0 = sdma->drvdata->chnenbl0;
619         return chnenbl0 + event * 4;
620 }
621
622 static int sdma_config_ownership(struct sdma_channel *sdmac,
623                 bool event_override, bool mcu_override, bool dsp_override)
624 {
625         struct sdma_engine *sdma = sdmac->sdma;
626         int channel = sdmac->channel;
627         unsigned long evt, mcu, dsp;
628
629         if (event_override && mcu_override && dsp_override)
630                 return -EINVAL;
631
632         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
633         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
634         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
635
636         if (dsp_override)
637                 __clear_bit(channel, &dsp);
638         else
639                 __set_bit(channel, &dsp);
640
641         if (event_override)
642                 __clear_bit(channel, &evt);
643         else
644                 __set_bit(channel, &evt);
645
646         if (mcu_override)
647                 __clear_bit(channel, &mcu);
648         else
649                 __set_bit(channel, &mcu);
650
651         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
652         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
653         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
654
655         return 0;
656 }
657
658 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
659 {
660         writel(BIT(channel), sdma->regs + SDMA_H_START);
661 }
662
663 /*
664  * sdma_run_channel0 - run a channel and wait till it's done
665  */
666 static int sdma_run_channel0(struct sdma_engine *sdma)
667 {
668         int ret;
669         u32 reg;
670
671         sdma_enable_channel(sdma, 0);
672
673         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
674                                                 reg, !(reg & 1), 1, 500);
675         if (ret)
676                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
677
678         /* Set bits of CONFIG register with dynamic context switching */
679         reg = readl(sdma->regs + SDMA_H_CONFIG);
680         if ((reg & SDMA_H_CONFIG_CSM) == 0) {
681                 reg |= SDMA_H_CONFIG_CSM;
682                 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
683         }
684
685         return ret;
686 }
687
688 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
689                 u32 address)
690 {
691         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
692         void *buf_virt;
693         dma_addr_t buf_phys;
694         int ret;
695         unsigned long flags;
696
697         buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
698         if (!buf_virt) {
699                 return -ENOMEM;
700         }
701
702         spin_lock_irqsave(&sdma->channel_0_lock, flags);
703
704         bd0->mode.command = C0_SETPM;
705         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
706         bd0->mode.count = size / 2;
707         bd0->buffer_addr = buf_phys;
708         bd0->ext_buffer_addr = address;
709
710         memcpy(buf_virt, buf, size);
711
712         ret = sdma_run_channel0(sdma);
713
714         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
715
716         dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
717
718         return ret;
719 }
720
721 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
722 {
723         struct sdma_engine *sdma = sdmac->sdma;
724         int channel = sdmac->channel;
725         unsigned long val;
726         u32 chnenbl = chnenbl_ofs(sdma, event);
727
728         val = readl_relaxed(sdma->regs + chnenbl);
729         __set_bit(channel, &val);
730         writel_relaxed(val, sdma->regs + chnenbl);
731 }
732
733 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
734 {
735         struct sdma_engine *sdma = sdmac->sdma;
736         int channel = sdmac->channel;
737         u32 chnenbl = chnenbl_ofs(sdma, event);
738         unsigned long val;
739
740         val = readl_relaxed(sdma->regs + chnenbl);
741         __clear_bit(channel, &val);
742         writel_relaxed(val, sdma->regs + chnenbl);
743 }
744
745 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
746 {
747         return container_of(t, struct sdma_desc, vd.tx);
748 }
749
750 static void sdma_start_desc(struct sdma_channel *sdmac)
751 {
752         struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
753         struct sdma_desc *desc;
754         struct sdma_engine *sdma = sdmac->sdma;
755         int channel = sdmac->channel;
756
757         if (!vd) {
758                 sdmac->desc = NULL;
759                 return;
760         }
761         sdmac->desc = desc = to_sdma_desc(&vd->tx);
762         /*
763          * Do not delete the node in desc_issued list in cyclic mode, otherwise
764          * the desc allocated will never be freed in vchan_dma_desc_free_list
765          */
766         if (!(sdmac->flags & IMX_DMA_SG_LOOP))
767                 list_del(&vd->node);
768
769         sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
770         sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
771         sdma_enable_channel(sdma, sdmac->channel);
772 }
773
774 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
775 {
776         struct sdma_buffer_descriptor *bd;
777         int error = 0;
778         enum dma_status old_status = sdmac->status;
779
780         /*
781          * loop mode. Iterate over descriptors, re-setup them and
782          * call callback function.
783          */
784         while (sdmac->desc) {
785                 struct sdma_desc *desc = sdmac->desc;
786
787                 bd = &desc->bd[desc->buf_tail];
788
789                 if (bd->mode.status & BD_DONE)
790                         break;
791
792                 if (bd->mode.status & BD_RROR) {
793                         bd->mode.status &= ~BD_RROR;
794                         sdmac->status = DMA_ERROR;
795                         error = -EIO;
796                 }
797
798                /*
799                 * We use bd->mode.count to calculate the residue, since contains
800                 * the number of bytes present in the current buffer descriptor.
801                 */
802
803                 desc->chn_real_count = bd->mode.count;
804                 bd->mode.status |= BD_DONE;
805                 bd->mode.count = desc->period_len;
806                 desc->buf_ptail = desc->buf_tail;
807                 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
808
809                 /*
810                  * The callback is called from the interrupt context in order
811                  * to reduce latency and to avoid the risk of altering the
812                  * SDMA transaction status by the time the client tasklet is
813                  * executed.
814                  */
815                 spin_unlock(&sdmac->vc.lock);
816                 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
817                 spin_lock(&sdmac->vc.lock);
818
819                 if (error)
820                         sdmac->status = old_status;
821         }
822 }
823
824 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
825 {
826         struct sdma_channel *sdmac = (struct sdma_channel *) data;
827         struct sdma_buffer_descriptor *bd;
828         int i, error = 0;
829
830         sdmac->desc->chn_real_count = 0;
831         /*
832          * non loop mode. Iterate over all descriptors, collect
833          * errors and call callback function
834          */
835         for (i = 0; i < sdmac->desc->num_bd; i++) {
836                 bd = &sdmac->desc->bd[i];
837
838                  if (bd->mode.status & (BD_DONE | BD_RROR))
839                         error = -EIO;
840                  sdmac->desc->chn_real_count += bd->mode.count;
841         }
842
843         if (error)
844                 sdmac->status = DMA_ERROR;
845         else
846                 sdmac->status = DMA_COMPLETE;
847 }
848
849 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
850 {
851         struct sdma_engine *sdma = dev_id;
852         unsigned long stat;
853
854         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
855         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
856         /* channel 0 is special and not handled here, see run_channel0() */
857         stat &= ~1;
858
859         while (stat) {
860                 int channel = fls(stat) - 1;
861                 struct sdma_channel *sdmac = &sdma->channel[channel];
862                 struct sdma_desc *desc;
863
864                 spin_lock(&sdmac->vc.lock);
865                 desc = sdmac->desc;
866                 if (desc) {
867                         if (sdmac->flags & IMX_DMA_SG_LOOP) {
868                                 sdma_update_channel_loop(sdmac);
869                         } else {
870                                 mxc_sdma_handle_channel_normal(sdmac);
871                                 vchan_cookie_complete(&desc->vd);
872                                 sdma_start_desc(sdmac);
873                         }
874                 }
875
876                 spin_unlock(&sdmac->vc.lock);
877                 __clear_bit(channel, &stat);
878         }
879
880         return IRQ_HANDLED;
881 }
882
883 /*
884  * sets the pc of SDMA script according to the peripheral type
885  */
886 static void sdma_get_pc(struct sdma_channel *sdmac,
887                 enum sdma_peripheral_type peripheral_type)
888 {
889         struct sdma_engine *sdma = sdmac->sdma;
890         int per_2_emi = 0, emi_2_per = 0;
891         /*
892          * These are needed once we start to support transfers between
893          * two peripherals or memory-to-memory transfers
894          */
895         int per_2_per = 0, emi_2_emi = 0;
896
897         sdmac->pc_from_device = 0;
898         sdmac->pc_to_device = 0;
899         sdmac->device_to_device = 0;
900         sdmac->pc_to_pc = 0;
901
902         switch (peripheral_type) {
903         case IMX_DMATYPE_MEMORY:
904                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
905                 break;
906         case IMX_DMATYPE_DSP:
907                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
908                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
909                 break;
910         case IMX_DMATYPE_FIRI:
911                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
912                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
913                 break;
914         case IMX_DMATYPE_UART:
915                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
916                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
917                 break;
918         case IMX_DMATYPE_UART_SP:
919                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
920                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
921                 break;
922         case IMX_DMATYPE_ATA:
923                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
924                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
925                 break;
926         case IMX_DMATYPE_CSPI:
927         case IMX_DMATYPE_EXT:
928         case IMX_DMATYPE_SSI:
929         case IMX_DMATYPE_SAI:
930                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
931                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
932                 break;
933         case IMX_DMATYPE_SSI_DUAL:
934                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
935                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
936                 break;
937         case IMX_DMATYPE_SSI_SP:
938         case IMX_DMATYPE_MMC:
939         case IMX_DMATYPE_SDHC:
940         case IMX_DMATYPE_CSPI_SP:
941         case IMX_DMATYPE_ESAI:
942         case IMX_DMATYPE_MSHC_SP:
943                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
944                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
945                 break;
946         case IMX_DMATYPE_ASRC:
947                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
948                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
949                 per_2_per = sdma->script_addrs->per_2_per_addr;
950                 break;
951         case IMX_DMATYPE_ASRC_SP:
952                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
953                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
954                 per_2_per = sdma->script_addrs->per_2_per_addr;
955                 break;
956         case IMX_DMATYPE_MSHC:
957                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
958                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
959                 break;
960         case IMX_DMATYPE_CCM:
961                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
962                 break;
963         case IMX_DMATYPE_SPDIF:
964                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
965                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
966                 break;
967         case IMX_DMATYPE_IPU_MEMORY:
968                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
969                 break;
970         default:
971                 break;
972         }
973
974         sdmac->pc_from_device = per_2_emi;
975         sdmac->pc_to_device = emi_2_per;
976         sdmac->device_to_device = per_2_per;
977         sdmac->pc_to_pc = emi_2_emi;
978 }
979
980 static int sdma_load_context(struct sdma_channel *sdmac)
981 {
982         struct sdma_engine *sdma = sdmac->sdma;
983         int channel = sdmac->channel;
984         int load_address;
985         struct sdma_context_data *context = sdma->context;
986         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
987         int ret;
988         unsigned long flags;
989
990         if (sdmac->direction == DMA_DEV_TO_MEM)
991                 load_address = sdmac->pc_from_device;
992         else if (sdmac->direction == DMA_DEV_TO_DEV)
993                 load_address = sdmac->device_to_device;
994         else if (sdmac->direction == DMA_MEM_TO_MEM)
995                 load_address = sdmac->pc_to_pc;
996         else
997                 load_address = sdmac->pc_to_device;
998
999         if (load_address < 0)
1000                 return load_address;
1001
1002         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1003         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1004         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1005         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1006         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1007         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1008
1009         spin_lock_irqsave(&sdma->channel_0_lock, flags);
1010
1011         memset(context, 0, sizeof(*context));
1012         context->channel_state.pc = load_address;
1013
1014         /* Send by context the event mask,base address for peripheral
1015          * and watermark level
1016          */
1017         context->gReg[0] = sdmac->event_mask[1];
1018         context->gReg[1] = sdmac->event_mask[0];
1019         context->gReg[2] = sdmac->per_addr;
1020         context->gReg[6] = sdmac->shp_addr;
1021         context->gReg[7] = sdmac->watermark_level;
1022
1023         bd0->mode.command = C0_SETDM;
1024         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1025         bd0->mode.count = sizeof(*context) / 4;
1026         bd0->buffer_addr = sdma->context_phys;
1027         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1028         ret = sdma_run_channel0(sdma);
1029
1030         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1031
1032         return ret;
1033 }
1034
1035 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1036 {
1037         return container_of(chan, struct sdma_channel, vc.chan);
1038 }
1039
1040 static int sdma_disable_channel(struct dma_chan *chan)
1041 {
1042         struct sdma_channel *sdmac = to_sdma_chan(chan);
1043         struct sdma_engine *sdma = sdmac->sdma;
1044         int channel = sdmac->channel;
1045
1046         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1047         sdmac->status = DMA_ERROR;
1048
1049         return 0;
1050 }
1051 static void sdma_channel_terminate_work(struct work_struct *work)
1052 {
1053         struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1054                                                   terminate_worker);
1055         unsigned long flags;
1056         LIST_HEAD(head);
1057
1058         /*
1059          * According to NXP R&D team a delay of one BD SDMA cost time
1060          * (maximum is 1ms) should be added after disable of the channel
1061          * bit, to ensure SDMA core has really been stopped after SDMA
1062          * clients call .device_terminate_all.
1063          */
1064         usleep_range(1000, 2000);
1065
1066         spin_lock_irqsave(&sdmac->vc.lock, flags);
1067         vchan_get_all_descriptors(&sdmac->vc, &head);
1068         sdmac->desc = NULL;
1069         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1070         vchan_dma_desc_free_list(&sdmac->vc, &head);
1071 }
1072
1073 static int sdma_disable_channel_async(struct dma_chan *chan)
1074 {
1075         struct sdma_channel *sdmac = to_sdma_chan(chan);
1076
1077         sdma_disable_channel(chan);
1078
1079         if (sdmac->desc)
1080                 schedule_work(&sdmac->terminate_worker);
1081
1082         return 0;
1083 }
1084
1085 static void sdma_channel_synchronize(struct dma_chan *chan)
1086 {
1087         struct sdma_channel *sdmac = to_sdma_chan(chan);
1088
1089         vchan_synchronize(&sdmac->vc);
1090
1091         flush_work(&sdmac->terminate_worker);
1092 }
1093
1094 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1095 {
1096         struct sdma_engine *sdma = sdmac->sdma;
1097
1098         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1099         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1100
1101         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1102         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1103
1104         if (sdmac->event_id0 > 31)
1105                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1106
1107         if (sdmac->event_id1 > 31)
1108                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1109
1110         /*
1111          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1112          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1113          * r0(event_mask[1]) and r1(event_mask[0]).
1114          */
1115         if (lwml > hwml) {
1116                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1117                                                 SDMA_WATERMARK_LEVEL_HWML);
1118                 sdmac->watermark_level |= hwml;
1119                 sdmac->watermark_level |= lwml << 16;
1120                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1121         }
1122
1123         if (sdmac->per_address2 >= sdma->spba_start_addr &&
1124                         sdmac->per_address2 <= sdma->spba_end_addr)
1125                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1126
1127         if (sdmac->per_address >= sdma->spba_start_addr &&
1128                         sdmac->per_address <= sdma->spba_end_addr)
1129                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1130
1131         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1132 }
1133
1134 static int sdma_config_channel(struct dma_chan *chan)
1135 {
1136         struct sdma_channel *sdmac = to_sdma_chan(chan);
1137
1138         sdma_disable_channel(chan);
1139
1140         sdmac->event_mask[0] = 0;
1141         sdmac->event_mask[1] = 0;
1142         sdmac->shp_addr = 0;
1143         sdmac->per_addr = 0;
1144
1145         switch (sdmac->peripheral_type) {
1146         case IMX_DMATYPE_DSP:
1147                 sdma_config_ownership(sdmac, false, true, true);
1148                 break;
1149         case IMX_DMATYPE_MEMORY:
1150                 sdma_config_ownership(sdmac, false, true, false);
1151                 break;
1152         default:
1153                 sdma_config_ownership(sdmac, true, true, false);
1154                 break;
1155         }
1156
1157         sdma_get_pc(sdmac, sdmac->peripheral_type);
1158
1159         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1160                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1161                 /* Handle multiple event channels differently */
1162                 if (sdmac->event_id1) {
1163                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1164                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1165                                 sdma_set_watermarklevel_for_p2p(sdmac);
1166                 } else
1167                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1168
1169                 /* Address */
1170                 sdmac->shp_addr = sdmac->per_address;
1171                 sdmac->per_addr = sdmac->per_address2;
1172         } else {
1173                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1174         }
1175
1176         return 0;
1177 }
1178
1179 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1180                 unsigned int priority)
1181 {
1182         struct sdma_engine *sdma = sdmac->sdma;
1183         int channel = sdmac->channel;
1184
1185         if (priority < MXC_SDMA_MIN_PRIORITY
1186             || priority > MXC_SDMA_MAX_PRIORITY) {
1187                 return -EINVAL;
1188         }
1189
1190         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1191
1192         return 0;
1193 }
1194
1195 static int sdma_request_channel0(struct sdma_engine *sdma)
1196 {
1197         int ret = -EBUSY;
1198
1199         sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1200                                         GFP_NOWAIT);
1201         if (!sdma->bd0) {
1202                 ret = -ENOMEM;
1203                 goto out;
1204         }
1205
1206         sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1207         sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1208
1209         sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1210         return 0;
1211 out:
1212
1213         return ret;
1214 }
1215
1216
1217 static int sdma_alloc_bd(struct sdma_desc *desc)
1218 {
1219         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1220         int ret = 0;
1221
1222         desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1223                                        &desc->bd_phys, GFP_NOWAIT);
1224         if (!desc->bd) {
1225                 ret = -ENOMEM;
1226                 goto out;
1227         }
1228 out:
1229         return ret;
1230 }
1231
1232 static void sdma_free_bd(struct sdma_desc *desc)
1233 {
1234         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1235
1236         dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1237                           desc->bd_phys);
1238 }
1239
1240 static void sdma_desc_free(struct virt_dma_desc *vd)
1241 {
1242         struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1243
1244         sdma_free_bd(desc);
1245         kfree(desc);
1246 }
1247
1248 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1249 {
1250         struct sdma_channel *sdmac = to_sdma_chan(chan);
1251         struct imx_dma_data *data = chan->private;
1252         struct imx_dma_data mem_data;
1253         int prio, ret;
1254
1255         /*
1256          * MEMCPY may never setup chan->private by filter function such as
1257          * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1258          * Please note in any other slave case, you have to setup chan->private
1259          * with 'struct imx_dma_data' in your own filter function if you want to
1260          * request dma channel by dma_request_channel() rather than
1261          * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1262          * to warn you to correct your filter function.
1263          */
1264         if (!data) {
1265                 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1266                 mem_data.priority = 2;
1267                 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1268                 mem_data.dma_request = 0;
1269                 mem_data.dma_request2 = 0;
1270                 data = &mem_data;
1271
1272                 sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1273         }
1274
1275         switch (data->priority) {
1276         case DMA_PRIO_HIGH:
1277                 prio = 3;
1278                 break;
1279         case DMA_PRIO_MEDIUM:
1280                 prio = 2;
1281                 break;
1282         case DMA_PRIO_LOW:
1283         default:
1284                 prio = 1;
1285                 break;
1286         }
1287
1288         sdmac->peripheral_type = data->peripheral_type;
1289         sdmac->event_id0 = data->dma_request;
1290         sdmac->event_id1 = data->dma_request2;
1291
1292         ret = clk_enable(sdmac->sdma->clk_ipg);
1293         if (ret)
1294                 return ret;
1295         ret = clk_enable(sdmac->sdma->clk_ahb);
1296         if (ret)
1297                 goto disable_clk_ipg;
1298
1299         ret = sdma_set_channel_priority(sdmac, prio);
1300         if (ret)
1301                 goto disable_clk_ahb;
1302
1303         return 0;
1304
1305 disable_clk_ahb:
1306         clk_disable(sdmac->sdma->clk_ahb);
1307 disable_clk_ipg:
1308         clk_disable(sdmac->sdma->clk_ipg);
1309         return ret;
1310 }
1311
1312 static void sdma_free_chan_resources(struct dma_chan *chan)
1313 {
1314         struct sdma_channel *sdmac = to_sdma_chan(chan);
1315         struct sdma_engine *sdma = sdmac->sdma;
1316
1317         sdma_disable_channel_async(chan);
1318
1319         sdma_channel_synchronize(chan);
1320
1321         if (sdmac->event_id0 >= 0)
1322                 sdma_event_disable(sdmac, sdmac->event_id0);
1323         if (sdmac->event_id1)
1324                 sdma_event_disable(sdmac, sdmac->event_id1);
1325
1326         sdmac->event_id0 = 0;
1327         sdmac->event_id1 = 0;
1328
1329         sdma_set_channel_priority(sdmac, 0);
1330
1331         clk_disable(sdma->clk_ipg);
1332         clk_disable(sdma->clk_ahb);
1333 }
1334
1335 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1336                                 enum dma_transfer_direction direction, u32 bds)
1337 {
1338         struct sdma_desc *desc;
1339
1340         desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1341         if (!desc)
1342                 goto err_out;
1343
1344         sdmac->status = DMA_IN_PROGRESS;
1345         sdmac->direction = direction;
1346         sdmac->flags = 0;
1347
1348         desc->chn_count = 0;
1349         desc->chn_real_count = 0;
1350         desc->buf_tail = 0;
1351         desc->buf_ptail = 0;
1352         desc->sdmac = sdmac;
1353         desc->num_bd = bds;
1354
1355         if (sdma_alloc_bd(desc))
1356                 goto err_desc_out;
1357
1358         /* No slave_config called in MEMCPY case, so do here */
1359         if (direction == DMA_MEM_TO_MEM)
1360                 sdma_config_ownership(sdmac, false, true, false);
1361
1362         if (sdma_load_context(sdmac))
1363                 goto err_desc_out;
1364
1365         return desc;
1366
1367 err_desc_out:
1368         kfree(desc);
1369 err_out:
1370         return NULL;
1371 }
1372
1373 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1374                 struct dma_chan *chan, dma_addr_t dma_dst,
1375                 dma_addr_t dma_src, size_t len, unsigned long flags)
1376 {
1377         struct sdma_channel *sdmac = to_sdma_chan(chan);
1378         struct sdma_engine *sdma = sdmac->sdma;
1379         int channel = sdmac->channel;
1380         size_t count;
1381         int i = 0, param;
1382         struct sdma_buffer_descriptor *bd;
1383         struct sdma_desc *desc;
1384
1385         if (!chan || !len)
1386                 return NULL;
1387
1388         dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1389                 &dma_src, &dma_dst, len, channel);
1390
1391         desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1392                                         len / SDMA_BD_MAX_CNT + 1);
1393         if (!desc)
1394                 return NULL;
1395
1396         do {
1397                 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1398                 bd = &desc->bd[i];
1399                 bd->buffer_addr = dma_src;
1400                 bd->ext_buffer_addr = dma_dst;
1401                 bd->mode.count = count;
1402                 desc->chn_count += count;
1403                 bd->mode.command = 0;
1404
1405                 dma_src += count;
1406                 dma_dst += count;
1407                 len -= count;
1408                 i++;
1409
1410                 param = BD_DONE | BD_EXTD | BD_CONT;
1411                 /* last bd */
1412                 if (!len) {
1413                         param |= BD_INTR;
1414                         param |= BD_LAST;
1415                         param &= ~BD_CONT;
1416                 }
1417
1418                 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1419                                 i, count, bd->buffer_addr,
1420                                 param & BD_WRAP ? "wrap" : "",
1421                                 param & BD_INTR ? " intr" : "");
1422
1423                 bd->mode.status = param;
1424         } while (len);
1425
1426         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1427 }
1428
1429 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1430                 struct dma_chan *chan, struct scatterlist *sgl,
1431                 unsigned int sg_len, enum dma_transfer_direction direction,
1432                 unsigned long flags, void *context)
1433 {
1434         struct sdma_channel *sdmac = to_sdma_chan(chan);
1435         struct sdma_engine *sdma = sdmac->sdma;
1436         int i, count;
1437         int channel = sdmac->channel;
1438         struct scatterlist *sg;
1439         struct sdma_desc *desc;
1440
1441         sdma_config_write(chan, &sdmac->slave_config, direction);
1442
1443         desc = sdma_transfer_init(sdmac, direction, sg_len);
1444         if (!desc)
1445                 goto err_out;
1446
1447         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1448                         sg_len, channel);
1449
1450         for_each_sg(sgl, sg, sg_len, i) {
1451                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1452                 int param;
1453
1454                 bd->buffer_addr = sg->dma_address;
1455
1456                 count = sg_dma_len(sg);
1457
1458                 if (count > SDMA_BD_MAX_CNT) {
1459                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1460                                         channel, count, SDMA_BD_MAX_CNT);
1461                         goto err_bd_out;
1462                 }
1463
1464                 bd->mode.count = count;
1465                 desc->chn_count += count;
1466
1467                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1468                         goto err_bd_out;
1469
1470                 switch (sdmac->word_size) {
1471                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1472                         bd->mode.command = 0;
1473                         if (count & 3 || sg->dma_address & 3)
1474                                 goto err_bd_out;
1475                         break;
1476                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1477                         bd->mode.command = 2;
1478                         if (count & 1 || sg->dma_address & 1)
1479                                 goto err_bd_out;
1480                         break;
1481                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1482                         bd->mode.command = 1;
1483                         break;
1484                 default:
1485                         goto err_bd_out;
1486                 }
1487
1488                 param = BD_DONE | BD_EXTD | BD_CONT;
1489
1490                 if (i + 1 == sg_len) {
1491                         param |= BD_INTR;
1492                         param |= BD_LAST;
1493                         param &= ~BD_CONT;
1494                 }
1495
1496                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1497                                 i, count, (u64)sg->dma_address,
1498                                 param & BD_WRAP ? "wrap" : "",
1499                                 param & BD_INTR ? " intr" : "");
1500
1501                 bd->mode.status = param;
1502         }
1503
1504         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1505 err_bd_out:
1506         sdma_free_bd(desc);
1507         kfree(desc);
1508 err_out:
1509         sdmac->status = DMA_ERROR;
1510         return NULL;
1511 }
1512
1513 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1514                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1515                 size_t period_len, enum dma_transfer_direction direction,
1516                 unsigned long flags)
1517 {
1518         struct sdma_channel *sdmac = to_sdma_chan(chan);
1519         struct sdma_engine *sdma = sdmac->sdma;
1520         int num_periods = buf_len / period_len;
1521         int channel = sdmac->channel;
1522         int i = 0, buf = 0;
1523         struct sdma_desc *desc;
1524
1525         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1526
1527         sdma_config_write(chan, &sdmac->slave_config, direction);
1528
1529         desc = sdma_transfer_init(sdmac, direction, num_periods);
1530         if (!desc)
1531                 goto err_out;
1532
1533         desc->period_len = period_len;
1534
1535         sdmac->flags |= IMX_DMA_SG_LOOP;
1536
1537         if (period_len > SDMA_BD_MAX_CNT) {
1538                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1539                                 channel, period_len, SDMA_BD_MAX_CNT);
1540                 goto err_bd_out;
1541         }
1542
1543         while (buf < buf_len) {
1544                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1545                 int param;
1546
1547                 bd->buffer_addr = dma_addr;
1548
1549                 bd->mode.count = period_len;
1550
1551                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1552                         goto err_bd_out;
1553                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1554                         bd->mode.command = 0;
1555                 else
1556                         bd->mode.command = sdmac->word_size;
1557
1558                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1559                 if (i + 1 == num_periods)
1560                         param |= BD_WRAP;
1561
1562                 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1563                                 i, period_len, (u64)dma_addr,
1564                                 param & BD_WRAP ? "wrap" : "",
1565                                 param & BD_INTR ? " intr" : "");
1566
1567                 bd->mode.status = param;
1568
1569                 dma_addr += period_len;
1570                 buf += period_len;
1571
1572                 i++;
1573         }
1574
1575         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1576 err_bd_out:
1577         sdma_free_bd(desc);
1578         kfree(desc);
1579 err_out:
1580         sdmac->status = DMA_ERROR;
1581         return NULL;
1582 }
1583
1584 static int sdma_config_write(struct dma_chan *chan,
1585                        struct dma_slave_config *dmaengine_cfg,
1586                        enum dma_transfer_direction direction)
1587 {
1588         struct sdma_channel *sdmac = to_sdma_chan(chan);
1589
1590         if (direction == DMA_DEV_TO_MEM) {
1591                 sdmac->per_address = dmaengine_cfg->src_addr;
1592                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1593                         dmaengine_cfg->src_addr_width;
1594                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1595         } else if (direction == DMA_DEV_TO_DEV) {
1596                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1597                 sdmac->per_address = dmaengine_cfg->dst_addr;
1598                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1599                         SDMA_WATERMARK_LEVEL_LWML;
1600                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1601                         SDMA_WATERMARK_LEVEL_HWML;
1602                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1603         } else {
1604                 sdmac->per_address = dmaengine_cfg->dst_addr;
1605                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1606                         dmaengine_cfg->dst_addr_width;
1607                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1608         }
1609         sdmac->direction = direction;
1610         return sdma_config_channel(chan);
1611 }
1612
1613 static int sdma_config(struct dma_chan *chan,
1614                        struct dma_slave_config *dmaengine_cfg)
1615 {
1616         struct sdma_channel *sdmac = to_sdma_chan(chan);
1617
1618         memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1619
1620         /* Set ENBLn earlier to make sure dma request triggered after that */
1621         if (sdmac->event_id0 >= 0) {
1622                 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1623                         return -EINVAL;
1624                 sdma_event_enable(sdmac, sdmac->event_id0);
1625         }
1626
1627         if (sdmac->event_id1) {
1628                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1629                         return -EINVAL;
1630                 sdma_event_enable(sdmac, sdmac->event_id1);
1631         }
1632
1633         return 0;
1634 }
1635
1636 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1637                                       dma_cookie_t cookie,
1638                                       struct dma_tx_state *txstate)
1639 {
1640         struct sdma_channel *sdmac = to_sdma_chan(chan);
1641         struct sdma_desc *desc;
1642         u32 residue;
1643         struct virt_dma_desc *vd;
1644         enum dma_status ret;
1645         unsigned long flags;
1646
1647         ret = dma_cookie_status(chan, cookie, txstate);
1648         if (ret == DMA_COMPLETE || !txstate)
1649                 return ret;
1650
1651         spin_lock_irqsave(&sdmac->vc.lock, flags);
1652         vd = vchan_find_desc(&sdmac->vc, cookie);
1653         if (vd) {
1654                 desc = to_sdma_desc(&vd->tx);
1655                 if (sdmac->flags & IMX_DMA_SG_LOOP)
1656                         residue = (desc->num_bd - desc->buf_ptail) *
1657                                 desc->period_len - desc->chn_real_count;
1658                 else
1659                         residue = desc->chn_count - desc->chn_real_count;
1660         } else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) {
1661                 residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count;
1662         } else {
1663                 residue = 0;
1664         }
1665         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1666
1667         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1668                          residue);
1669
1670         return sdmac->status;
1671 }
1672
1673 static void sdma_issue_pending(struct dma_chan *chan)
1674 {
1675         struct sdma_channel *sdmac = to_sdma_chan(chan);
1676         unsigned long flags;
1677
1678         spin_lock_irqsave(&sdmac->vc.lock, flags);
1679         if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1680                 sdma_start_desc(sdmac);
1681         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1682 }
1683
1684 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1685 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1686 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1687 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1688
1689 static void sdma_add_scripts(struct sdma_engine *sdma,
1690                 const struct sdma_script_start_addrs *addr)
1691 {
1692         s32 *addr_arr = (u32 *)addr;
1693         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1694         int i;
1695
1696         /* use the default firmware in ROM if missing external firmware */
1697         if (!sdma->script_number)
1698                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1699
1700         if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1701                                   / sizeof(s32)) {
1702                 dev_err(sdma->dev,
1703                         "SDMA script number %d not match with firmware.\n",
1704                         sdma->script_number);
1705                 return;
1706         }
1707
1708         for (i = 0; i < sdma->script_number; i++)
1709                 if (addr_arr[i] > 0)
1710                         saddr_arr[i] = addr_arr[i];
1711 }
1712
1713 static void sdma_load_firmware(const struct firmware *fw, void *context)
1714 {
1715         struct sdma_engine *sdma = context;
1716         const struct sdma_firmware_header *header;
1717         const struct sdma_script_start_addrs *addr;
1718         unsigned short *ram_code;
1719
1720         if (!fw) {
1721                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1722                 /* In this case we just use the ROM firmware. */
1723                 return;
1724         }
1725
1726         if (fw->size < sizeof(*header))
1727                 goto err_firmware;
1728
1729         header = (struct sdma_firmware_header *)fw->data;
1730
1731         if (header->magic != SDMA_FIRMWARE_MAGIC)
1732                 goto err_firmware;
1733         if (header->ram_code_start + header->ram_code_size > fw->size)
1734                 goto err_firmware;
1735         switch (header->version_major) {
1736         case 1:
1737                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1738                 break;
1739         case 2:
1740                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1741                 break;
1742         case 3:
1743                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1744                 break;
1745         case 4:
1746                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1747                 break;
1748         default:
1749                 dev_err(sdma->dev, "unknown firmware version\n");
1750                 goto err_firmware;
1751         }
1752
1753         addr = (void *)header + header->script_addrs_start;
1754         ram_code = (void *)header + header->ram_code_start;
1755
1756         clk_enable(sdma->clk_ipg);
1757         clk_enable(sdma->clk_ahb);
1758         /* download the RAM image for SDMA */
1759         sdma_load_script(sdma, ram_code,
1760                         header->ram_code_size,
1761                         addr->ram_code_start_addr);
1762         clk_disable(sdma->clk_ipg);
1763         clk_disable(sdma->clk_ahb);
1764
1765         sdma_add_scripts(sdma, addr);
1766
1767         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1768                         header->version_major,
1769                         header->version_minor);
1770
1771 err_firmware:
1772         release_firmware(fw);
1773 }
1774
1775 #define EVENT_REMAP_CELLS 3
1776
1777 static int sdma_event_remap(struct sdma_engine *sdma)
1778 {
1779         struct device_node *np = sdma->dev->of_node;
1780         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1781         struct property *event_remap;
1782         struct regmap *gpr;
1783         char propname[] = "fsl,sdma-event-remap";
1784         u32 reg, val, shift, num_map, i;
1785         int ret = 0;
1786
1787         if (IS_ERR(np) || !gpr_np)
1788                 goto out;
1789
1790         event_remap = of_find_property(np, propname, NULL);
1791         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1792         if (!num_map) {
1793                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1794                 goto out;
1795         } else if (num_map % EVENT_REMAP_CELLS) {
1796                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1797                                 propname, EVENT_REMAP_CELLS);
1798                 ret = -EINVAL;
1799                 goto out;
1800         }
1801
1802         gpr = syscon_node_to_regmap(gpr_np);
1803         if (IS_ERR(gpr)) {
1804                 dev_err(sdma->dev, "failed to get gpr regmap\n");
1805                 ret = PTR_ERR(gpr);
1806                 goto out;
1807         }
1808
1809         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1810                 ret = of_property_read_u32_index(np, propname, i, &reg);
1811                 if (ret) {
1812                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1813                                         propname, i);
1814                         goto out;
1815                 }
1816
1817                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1818                 if (ret) {
1819                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1820                                         propname, i + 1);
1821                         goto out;
1822                 }
1823
1824                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1825                 if (ret) {
1826                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1827                                         propname, i + 2);
1828                         goto out;
1829                 }
1830
1831                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1832         }
1833
1834 out:
1835         if (gpr_np)
1836                 of_node_put(gpr_np);
1837
1838         return ret;
1839 }
1840
1841 static int sdma_get_firmware(struct sdma_engine *sdma,
1842                 const char *fw_name)
1843 {
1844         int ret;
1845
1846         ret = reject_firmware_nowait(THIS_MODULE,
1847                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1848                         GFP_KERNEL, sdma, sdma_load_firmware);
1849
1850         return ret;
1851 }
1852
1853 static int sdma_init(struct sdma_engine *sdma)
1854 {
1855         int i, ret;
1856         dma_addr_t ccb_phys;
1857
1858         ret = clk_enable(sdma->clk_ipg);
1859         if (ret)
1860                 return ret;
1861         ret = clk_enable(sdma->clk_ahb);
1862         if (ret)
1863                 goto disable_clk_ipg;
1864
1865         if (sdma->drvdata->check_ratio &&
1866             (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1867                 sdma->clk_ratio = 1;
1868
1869         /* Be sure SDMA has not started yet */
1870         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1871
1872         sdma->channel_control = dma_alloc_coherent(sdma->dev,
1873                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1874                         sizeof(struct sdma_context_data),
1875                         &ccb_phys, GFP_KERNEL);
1876
1877         if (!sdma->channel_control) {
1878                 ret = -ENOMEM;
1879                 goto err_dma_alloc;
1880         }
1881
1882         sdma->context = (void *)sdma->channel_control +
1883                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1884         sdma->context_phys = ccb_phys +
1885                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1886
1887         /* disable all channels */
1888         for (i = 0; i < sdma->drvdata->num_events; i++)
1889                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1890
1891         /* All channels have priority 0 */
1892         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1893                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1894
1895         ret = sdma_request_channel0(sdma);
1896         if (ret)
1897                 goto err_dma_alloc;
1898
1899         sdma_config_ownership(&sdma->channel[0], false, true, false);
1900
1901         /* Set Command Channel (Channel Zero) */
1902         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1903
1904         /* Set bits of CONFIG register but with static context switching */
1905         if (sdma->clk_ratio)
1906                 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1907         else
1908                 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1909
1910         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1911
1912         /* Initializes channel's priorities */
1913         sdma_set_channel_priority(&sdma->channel[0], 7);
1914
1915         clk_disable(sdma->clk_ipg);
1916         clk_disable(sdma->clk_ahb);
1917
1918         return 0;
1919
1920 err_dma_alloc:
1921         clk_disable(sdma->clk_ahb);
1922 disable_clk_ipg:
1923         clk_disable(sdma->clk_ipg);
1924         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1925         return ret;
1926 }
1927
1928 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1929 {
1930         struct sdma_channel *sdmac = to_sdma_chan(chan);
1931         struct imx_dma_data *data = fn_param;
1932
1933         if (!imx_dma_is_general_purpose(chan))
1934                 return false;
1935
1936         sdmac->data = *data;
1937         chan->private = &sdmac->data;
1938
1939         return true;
1940 }
1941
1942 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1943                                    struct of_dma *ofdma)
1944 {
1945         struct sdma_engine *sdma = ofdma->of_dma_data;
1946         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1947         struct imx_dma_data data;
1948
1949         if (dma_spec->args_count != 3)
1950                 return NULL;
1951
1952         data.dma_request = dma_spec->args[0];
1953         data.peripheral_type = dma_spec->args[1];
1954         data.priority = dma_spec->args[2];
1955         /*
1956          * init dma_request2 to zero, which is not used by the dts.
1957          * For P2P, dma_request2 is init from dma_request_channel(),
1958          * chan->private will point to the imx_dma_data, and in
1959          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1960          * be set to sdmac->event_id1.
1961          */
1962         data.dma_request2 = 0;
1963
1964         return __dma_request_channel(&mask, sdma_filter_fn, &data,
1965                                      ofdma->of_node);
1966 }
1967
1968 static int sdma_probe(struct platform_device *pdev)
1969 {
1970         const struct of_device_id *of_id =
1971                         of_match_device(sdma_dt_ids, &pdev->dev);
1972         struct device_node *np = pdev->dev.of_node;
1973         struct device_node *spba_bus;
1974         const char *fw_name;
1975         int ret;
1976         int irq;
1977         struct resource *iores;
1978         struct resource spba_res;
1979         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1980         int i;
1981         struct sdma_engine *sdma;
1982         s32 *saddr_arr;
1983         const struct sdma_driver_data *drvdata = NULL;
1984
1985         if (of_id)
1986                 drvdata = of_id->data;
1987         else if (pdev->id_entry)
1988                 drvdata = (void *)pdev->id_entry->driver_data;
1989
1990         if (!drvdata) {
1991                 dev_err(&pdev->dev, "unable to find driver data\n");
1992                 return -EINVAL;
1993         }
1994
1995         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1996         if (ret)
1997                 return ret;
1998
1999         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2000         if (!sdma)
2001                 return -ENOMEM;
2002
2003         spin_lock_init(&sdma->channel_0_lock);
2004
2005         sdma->dev = &pdev->dev;
2006         sdma->drvdata = drvdata;
2007
2008         irq = platform_get_irq(pdev, 0);
2009         if (irq < 0)
2010                 return irq;
2011
2012         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2013         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2014         if (IS_ERR(sdma->regs))
2015                 return PTR_ERR(sdma->regs);
2016
2017         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2018         if (IS_ERR(sdma->clk_ipg))
2019                 return PTR_ERR(sdma->clk_ipg);
2020
2021         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2022         if (IS_ERR(sdma->clk_ahb))
2023                 return PTR_ERR(sdma->clk_ahb);
2024
2025         ret = clk_prepare(sdma->clk_ipg);
2026         if (ret)
2027                 return ret;
2028
2029         ret = clk_prepare(sdma->clk_ahb);
2030         if (ret)
2031                 goto err_clk;
2032
2033         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2034                                sdma);
2035         if (ret)
2036                 goto err_irq;
2037
2038         sdma->irq = irq;
2039
2040         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2041         if (!sdma->script_addrs) {
2042                 ret = -ENOMEM;
2043                 goto err_irq;
2044         }
2045
2046         /* initially no scripts available */
2047         saddr_arr = (s32 *)sdma->script_addrs;
2048         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
2049                 saddr_arr[i] = -EINVAL;
2050
2051         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2052         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2053         dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2054
2055         INIT_LIST_HEAD(&sdma->dma_device.channels);
2056         /* Initialize channel parameters */
2057         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2058                 struct sdma_channel *sdmac = &sdma->channel[i];
2059
2060                 sdmac->sdma = sdma;
2061
2062                 sdmac->channel = i;
2063                 sdmac->vc.desc_free = sdma_desc_free;
2064                 INIT_WORK(&sdmac->terminate_worker,
2065                                 sdma_channel_terminate_work);
2066                 /*
2067                  * Add the channel to the DMAC list. Do not add channel 0 though
2068                  * because we need it internally in the SDMA driver. This also means
2069                  * that channel 0 in dmaengine counting matches sdma channel 1.
2070                  */
2071                 if (i)
2072                         vchan_init(&sdmac->vc, &sdma->dma_device);
2073         }
2074
2075         ret = sdma_init(sdma);
2076         if (ret)
2077                 goto err_init;
2078
2079         ret = sdma_event_remap(sdma);
2080         if (ret)
2081                 goto err_init;
2082
2083         if (sdma->drvdata->script_addrs)
2084                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2085         if (pdata && pdata->script_addrs)
2086                 sdma_add_scripts(sdma, pdata->script_addrs);
2087
2088         sdma->dma_device.dev = &pdev->dev;
2089
2090         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2091         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2092         sdma->dma_device.device_tx_status = sdma_tx_status;
2093         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2094         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2095         sdma->dma_device.device_config = sdma_config;
2096         sdma->dma_device.device_terminate_all = sdma_disable_channel_async;
2097         sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2098         sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2099         sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2100         sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2101         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2102         sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2103         sdma->dma_device.device_issue_pending = sdma_issue_pending;
2104         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
2105         sdma->dma_device.copy_align = 2;
2106         dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2107
2108         platform_set_drvdata(pdev, sdma);
2109
2110         ret = dma_async_device_register(&sdma->dma_device);
2111         if (ret) {
2112                 dev_err(&pdev->dev, "unable to register\n");
2113                 goto err_init;
2114         }
2115
2116         if (np) {
2117                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2118                 if (ret) {
2119                         dev_err(&pdev->dev, "failed to register controller\n");
2120                         goto err_register;
2121                 }
2122
2123                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2124                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2125                 if (!ret) {
2126                         sdma->spba_start_addr = spba_res.start;
2127                         sdma->spba_end_addr = spba_res.end;
2128                 }
2129                 of_node_put(spba_bus);
2130         }
2131
2132         /*
2133          * Kick off firmware loading as the very last step:
2134          * attempt to load firmware only if we're not on the error path, because
2135          * the firmware callback requires a fully functional and allocated sdma
2136          * instance.
2137          */
2138         if (pdata) {
2139                 ret = sdma_get_firmware(sdma, pdata->fw_name);
2140                 if (ret)
2141                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2142         } else {
2143                 /*
2144                  * Because that device tree does not encode ROM script address,
2145                  * the RAM script in firmware is mandatory for device tree
2146                  * probe, otherwise it fails.
2147                  */
2148                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2149                                               &fw_name);
2150                 if (ret) {
2151                         dev_warn(&pdev->dev, "failed to get firmware name\n");
2152                 } else {
2153                         ret = sdma_get_firmware(sdma, fw_name);
2154                         if (ret)
2155                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2156                 }
2157         }
2158
2159         return 0;
2160
2161 err_register:
2162         dma_async_device_unregister(&sdma->dma_device);
2163 err_init:
2164         kfree(sdma->script_addrs);
2165 err_irq:
2166         clk_unprepare(sdma->clk_ahb);
2167 err_clk:
2168         clk_unprepare(sdma->clk_ipg);
2169         return ret;
2170 }
2171
2172 static int sdma_remove(struct platform_device *pdev)
2173 {
2174         struct sdma_engine *sdma = platform_get_drvdata(pdev);
2175         int i;
2176
2177         devm_free_irq(&pdev->dev, sdma->irq, sdma);
2178         dma_async_device_unregister(&sdma->dma_device);
2179         kfree(sdma->script_addrs);
2180         clk_unprepare(sdma->clk_ahb);
2181         clk_unprepare(sdma->clk_ipg);
2182         /* Kill the tasklet */
2183         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2184                 struct sdma_channel *sdmac = &sdma->channel[i];
2185
2186                 tasklet_kill(&sdmac->vc.task);
2187                 sdma_free_chan_resources(&sdmac->vc.chan);
2188         }
2189
2190         platform_set_drvdata(pdev, NULL);
2191         return 0;
2192 }
2193
2194 static struct platform_driver sdma_driver = {
2195         .driver         = {
2196                 .name   = "imx-sdma",
2197                 .of_match_table = sdma_dt_ids,
2198         },
2199         .id_table       = sdma_devtypes,
2200         .remove         = sdma_remove,
2201         .probe          = sdma_probe,
2202 };
2203
2204 module_platform_driver(sdma_driver);
2205
2206 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2207 MODULE_DESCRIPTION("i.MX SDMA driver");
2208 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2209 /*(DEBLOBBED)*/
2210 #endif
2211 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2212 /*(DEBLOBBED)*/
2213 #endif
2214 MODULE_LICENSE("GPL");