GNU Linux-libre 4.4.299-gnu1
[releases.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_address.h>
39 #include <linux/of_device.h>
40 #include <linux/of_dma.h>
41
42 #include <asm/irq.h>
43 #include <linux/platform_data/dma-imx-sdma.h>
44 #include <linux/platform_data/dma-imx.h>
45 #include <linux/regmap.h>
46 #include <linux/mfd/syscon.h>
47 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
48
49 #include "dmaengine.h"
50
51 /* SDMA registers */
52 #define SDMA_H_C0PTR            0x000
53 #define SDMA_H_INTR             0x004
54 #define SDMA_H_STATSTOP         0x008
55 #define SDMA_H_START            0x00c
56 #define SDMA_H_EVTOVR           0x010
57 #define SDMA_H_DSPOVR           0x014
58 #define SDMA_H_HOSTOVR          0x018
59 #define SDMA_H_EVTPEND          0x01c
60 #define SDMA_H_DSPENBL          0x020
61 #define SDMA_H_RESET            0x024
62 #define SDMA_H_EVTERR           0x028
63 #define SDMA_H_INTRMSK          0x02c
64 #define SDMA_H_PSW              0x030
65 #define SDMA_H_EVTERRDBG        0x034
66 #define SDMA_H_CONFIG           0x038
67 #define SDMA_ONCE_ENB           0x040
68 #define SDMA_ONCE_DATA          0x044
69 #define SDMA_ONCE_INSTR         0x048
70 #define SDMA_ONCE_STAT          0x04c
71 #define SDMA_ONCE_CMD           0x050
72 #define SDMA_EVT_MIRROR         0x054
73 #define SDMA_ILLINSTADDR        0x058
74 #define SDMA_CHN0ADDR           0x05c
75 #define SDMA_ONCE_RTB           0x060
76 #define SDMA_XTRIG_CONF1        0x070
77 #define SDMA_XTRIG_CONF2        0x074
78 #define SDMA_CHNENBL0_IMX35     0x200
79 #define SDMA_CHNENBL0_IMX31     0x080
80 #define SDMA_CHNPRI_0           0x100
81
82 /*
83  * Buffer descriptor status values.
84  */
85 #define BD_DONE  0x01
86 #define BD_WRAP  0x02
87 #define BD_CONT  0x04
88 #define BD_INTR  0x08
89 #define BD_RROR  0x10
90 #define BD_LAST  0x20
91 #define BD_EXTD  0x80
92
93 /*
94  * Data Node descriptor status values.
95  */
96 #define DND_END_OF_FRAME  0x80
97 #define DND_END_OF_XFER   0x40
98 #define DND_DONE          0x20
99 #define DND_UNUSED        0x01
100
101 /*
102  * IPCV2 descriptor status values.
103  */
104 #define BD_IPCV2_END_OF_FRAME  0x40
105
106 #define IPCV2_MAX_NODES        50
107 /*
108  * Error bit set in the CCB status field by the SDMA,
109  * in setbd routine, in case of a transfer error
110  */
111 #define DATA_ERROR  0x10000000
112
113 /*
114  * Buffer descriptor commands.
115  */
116 #define C0_ADDR             0x01
117 #define C0_LOAD             0x02
118 #define C0_DUMP             0x03
119 #define C0_SETCTX           0x07
120 #define C0_GETCTX           0x03
121 #define C0_SETDM            0x01
122 #define C0_SETPM            0x04
123 #define C0_GETDM            0x02
124 #define C0_GETPM            0x08
125 /*
126  * Change endianness indicator in the BD command field
127  */
128 #define CHANGE_ENDIANNESS   0x80
129
130 /*
131  *  p_2_p watermark_level description
132  *      Bits            Name                    Description
133  *      0-7             Lower WML               Lower watermark level
134  *      8               PS                      1: Pad Swallowing
135  *                                              0: No Pad Swallowing
136  *      9               PA                      1: Pad Adding
137  *                                              0: No Pad Adding
138  *      10              SPDIF                   If this bit is set both source
139  *                                              and destination are on SPBA
140  *      11              Source Bit(SP)          1: Source on SPBA
141  *                                              0: Source on AIPS
142  *      12              Destination Bit(DP)     1: Destination on SPBA
143  *                                              0: Destination on AIPS
144  *      13-15           ---------               MUST BE 0
145  *      16-23           Higher WML              HWML
146  *      24-27           N                       Total number of samples after
147  *                                              which Pad adding/Swallowing
148  *                                              must be done. It must be odd.
149  *      28              Lower WML Event(LWE)    SDMA events reg to check for
150  *                                              LWML event mask
151  *                                              0: LWE in EVENTS register
152  *                                              1: LWE in EVENTS2 register
153  *      29              Higher WML Event(HWE)   SDMA events reg to check for
154  *                                              HWML event mask
155  *                                              0: HWE in EVENTS register
156  *                                              1: HWE in EVENTS2 register
157  *      30              ---------               MUST BE 0
158  *      31              CONT                    1: Amount of samples to be
159  *                                              transferred is unknown and
160  *                                              script will keep on
161  *                                              transferring samples as long as
162  *                                              both events are detected and
163  *                                              script must be manually stopped
164  *                                              by the application
165  *                                              0: The amount of samples to be
166  *                                              transferred is equal to the
167  *                                              count field of mode word
168  */
169 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
170 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
171 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
172 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
173 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
174 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
175 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
176 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
177 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
178 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
179
180 /*
181  * Mode/Count of data node descriptors - IPCv2
182  */
183 struct sdma_mode_count {
184         u32 count   : 16; /* size of the buffer pointed by this BD */
185         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
186         u32 command :  8; /* command mostlky used for channel 0 */
187 };
188
189 /*
190  * Buffer descriptor
191  */
192 struct sdma_buffer_descriptor {
193         struct sdma_mode_count  mode;
194         u32 buffer_addr;        /* address of the buffer described */
195         u32 ext_buffer_addr;    /* extended buffer address */
196 } __attribute__ ((packed));
197
198 /**
199  * struct sdma_channel_control - Channel control Block
200  *
201  * @current_bd_ptr      current buffer descriptor processed
202  * @base_bd_ptr         first element of buffer descriptor array
203  * @unused              padding. The SDMA engine expects an array of 128 byte
204  *                      control blocks
205  */
206 struct sdma_channel_control {
207         u32 current_bd_ptr;
208         u32 base_bd_ptr;
209         u32 unused[2];
210 } __attribute__ ((packed));
211
212 /**
213  * struct sdma_state_registers - SDMA context for a channel
214  *
215  * @pc:         program counter
216  * @t:          test bit: status of arithmetic & test instruction
217  * @rpc:        return program counter
218  * @sf:         source fault while loading data
219  * @spc:        loop start program counter
220  * @df:         destination fault while storing data
221  * @epc:        loop end program counter
222  * @lm:         loop mode
223  */
224 struct sdma_state_registers {
225         u32 pc     :14;
226         u32 unused1: 1;
227         u32 t      : 1;
228         u32 rpc    :14;
229         u32 unused0: 1;
230         u32 sf     : 1;
231         u32 spc    :14;
232         u32 unused2: 1;
233         u32 df     : 1;
234         u32 epc    :14;
235         u32 lm     : 2;
236 } __attribute__ ((packed));
237
238 /**
239  * struct sdma_context_data - sdma context specific to a channel
240  *
241  * @channel_state:      channel state bits
242  * @gReg:               general registers
243  * @mda:                burst dma destination address register
244  * @msa:                burst dma source address register
245  * @ms:                 burst dma status register
246  * @md:                 burst dma data register
247  * @pda:                peripheral dma destination address register
248  * @psa:                peripheral dma source address register
249  * @ps:                 peripheral dma status register
250  * @pd:                 peripheral dma data register
251  * @ca:                 CRC polynomial register
252  * @cs:                 CRC accumulator register
253  * @dda:                dedicated core destination address register
254  * @dsa:                dedicated core source address register
255  * @ds:                 dedicated core status register
256  * @dd:                 dedicated core data register
257  */
258 struct sdma_context_data {
259         struct sdma_state_registers  channel_state;
260         u32  gReg[8];
261         u32  mda;
262         u32  msa;
263         u32  ms;
264         u32  md;
265         u32  pda;
266         u32  psa;
267         u32  ps;
268         u32  pd;
269         u32  ca;
270         u32  cs;
271         u32  dda;
272         u32  dsa;
273         u32  ds;
274         u32  dd;
275         u32  scratch0;
276         u32  scratch1;
277         u32  scratch2;
278         u32  scratch3;
279         u32  scratch4;
280         u32  scratch5;
281         u32  scratch6;
282         u32  scratch7;
283 } __attribute__ ((packed));
284
285 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
286
287 struct sdma_engine;
288
289 /**
290  * struct sdma_channel - housekeeping for a SDMA channel
291  *
292  * @sdma                pointer to the SDMA engine for this channel
293  * @channel             the channel number, matches dmaengine chan_id + 1
294  * @direction           transfer type. Needed for setting SDMA script
295  * @peripheral_type     Peripheral type. Needed for setting SDMA script
296  * @event_id0           aka dma request line
297  * @event_id1           for channels that use 2 events
298  * @word_size           peripheral access size
299  * @buf_tail            ID of the buffer that was processed
300  * @num_bd              max NUM_BD. number of descriptors currently handling
301  */
302 struct sdma_channel {
303         struct sdma_engine              *sdma;
304         unsigned int                    channel;
305         enum dma_transfer_direction             direction;
306         enum sdma_peripheral_type       peripheral_type;
307         unsigned int                    event_id0;
308         unsigned int                    event_id1;
309         enum dma_slave_buswidth         word_size;
310         unsigned int                    buf_tail;
311         unsigned int                    num_bd;
312         unsigned int                    period_len;
313         struct sdma_buffer_descriptor   *bd;
314         dma_addr_t                      bd_phys;
315         unsigned int                    pc_from_device, pc_to_device;
316         unsigned int                    device_to_device;
317         unsigned long                   flags;
318         dma_addr_t                      per_address, per_address2;
319         unsigned long                   event_mask[2];
320         unsigned long                   watermark_level;
321         u32                             shp_addr, per_addr;
322         struct dma_chan                 chan;
323         spinlock_t                      lock;
324         struct dma_async_tx_descriptor  desc;
325         enum dma_status                 status;
326         unsigned int                    chn_count;
327         unsigned int                    chn_real_count;
328         struct tasklet_struct           tasklet;
329         struct imx_dma_data             data;
330 };
331
332 #define IMX_DMA_SG_LOOP         BIT(0)
333
334 #define MAX_DMA_CHANNELS 32
335 #define MXC_SDMA_DEFAULT_PRIORITY 1
336 #define MXC_SDMA_MIN_PRIORITY 1
337 #define MXC_SDMA_MAX_PRIORITY 7
338
339 #define SDMA_FIRMWARE_MAGIC 0x414d4453
340
341 /**
342  * struct sdma_firmware_header - Layout of the firmware image
343  *
344  * @magic               "SDMA"
345  * @version_major       increased whenever layout of struct sdma_script_start_addrs
346  *                      changes.
347  * @version_minor       firmware minor version (for binary compatible changes)
348  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
349  * @num_script_addrs    Number of script addresses in this image
350  * @ram_code_start      offset of SDMA ram image in this firmware image
351  * @ram_code_size       size of SDMA ram image
352  * @script_addrs        Stores the start address of the SDMA scripts
353  *                      (in SDMA memory space)
354  */
355 struct sdma_firmware_header {
356         u32     magic;
357         u32     version_major;
358         u32     version_minor;
359         u32     script_addrs_start;
360         u32     num_script_addrs;
361         u32     ram_code_start;
362         u32     ram_code_size;
363 };
364
365 struct sdma_driver_data {
366         int chnenbl0;
367         int num_events;
368         struct sdma_script_start_addrs  *script_addrs;
369 };
370
371 struct sdma_engine {
372         struct device                   *dev;
373         struct device_dma_parameters    dma_parms;
374         struct sdma_channel             channel[MAX_DMA_CHANNELS];
375         struct sdma_channel_control     *channel_control;
376         void __iomem                    *regs;
377         struct sdma_context_data        *context;
378         dma_addr_t                      context_phys;
379         struct dma_device               dma_device;
380         struct clk                      *clk_ipg;
381         struct clk                      *clk_ahb;
382         spinlock_t                      channel_0_lock;
383         u32                             script_number;
384         struct sdma_script_start_addrs  *script_addrs;
385         const struct sdma_driver_data   *drvdata;
386         u32                             spba_start_addr;
387         u32                             spba_end_addr;
388 };
389
390 static struct sdma_driver_data sdma_imx31 = {
391         .chnenbl0 = SDMA_CHNENBL0_IMX31,
392         .num_events = 32,
393 };
394
395 static struct sdma_script_start_addrs sdma_script_imx25 = {
396         .ap_2_ap_addr = 729,
397         .uart_2_mcu_addr = 904,
398         .per_2_app_addr = 1255,
399         .mcu_2_app_addr = 834,
400         .uartsh_2_mcu_addr = 1120,
401         .per_2_shp_addr = 1329,
402         .mcu_2_shp_addr = 1048,
403         .ata_2_mcu_addr = 1560,
404         .mcu_2_ata_addr = 1479,
405         .app_2_per_addr = 1189,
406         .app_2_mcu_addr = 770,
407         .shp_2_per_addr = 1407,
408         .shp_2_mcu_addr = 979,
409 };
410
411 static struct sdma_driver_data sdma_imx25 = {
412         .chnenbl0 = SDMA_CHNENBL0_IMX35,
413         .num_events = 48,
414         .script_addrs = &sdma_script_imx25,
415 };
416
417 static struct sdma_driver_data sdma_imx35 = {
418         .chnenbl0 = SDMA_CHNENBL0_IMX35,
419         .num_events = 48,
420 };
421
422 static struct sdma_script_start_addrs sdma_script_imx51 = {
423         .ap_2_ap_addr = 642,
424         .uart_2_mcu_addr = 817,
425         .mcu_2_app_addr = 747,
426         .mcu_2_shp_addr = 961,
427         .ata_2_mcu_addr = 1473,
428         .mcu_2_ata_addr = 1392,
429         .app_2_per_addr = 1033,
430         .app_2_mcu_addr = 683,
431         .shp_2_per_addr = 1251,
432         .shp_2_mcu_addr = 892,
433 };
434
435 static struct sdma_driver_data sdma_imx51 = {
436         .chnenbl0 = SDMA_CHNENBL0_IMX35,
437         .num_events = 48,
438         .script_addrs = &sdma_script_imx51,
439 };
440
441 static struct sdma_script_start_addrs sdma_script_imx53 = {
442         .ap_2_ap_addr = 642,
443         .app_2_mcu_addr = 683,
444         .mcu_2_app_addr = 747,
445         .uart_2_mcu_addr = 817,
446         .shp_2_mcu_addr = 891,
447         .mcu_2_shp_addr = 960,
448         .uartsh_2_mcu_addr = 1032,
449         .spdif_2_mcu_addr = 1100,
450         .mcu_2_spdif_addr = 1134,
451         .firi_2_mcu_addr = 1193,
452         .mcu_2_firi_addr = 1290,
453 };
454
455 static struct sdma_driver_data sdma_imx53 = {
456         .chnenbl0 = SDMA_CHNENBL0_IMX35,
457         .num_events = 48,
458         .script_addrs = &sdma_script_imx53,
459 };
460
461 static struct sdma_script_start_addrs sdma_script_imx6q = {
462         .ap_2_ap_addr = 642,
463         .uart_2_mcu_addr = 817,
464         .mcu_2_app_addr = 747,
465         .per_2_per_addr = 6331,
466         .uartsh_2_mcu_addr = 1032,
467         .mcu_2_shp_addr = 960,
468         .app_2_mcu_addr = 683,
469         .shp_2_mcu_addr = 891,
470         .spdif_2_mcu_addr = 1100,
471         .mcu_2_spdif_addr = 1134,
472 };
473
474 static struct sdma_driver_data sdma_imx6q = {
475         .chnenbl0 = SDMA_CHNENBL0_IMX35,
476         .num_events = 48,
477         .script_addrs = &sdma_script_imx6q,
478 };
479
480 static const struct platform_device_id sdma_devtypes[] = {
481         {
482                 .name = "imx25-sdma",
483                 .driver_data = (unsigned long)&sdma_imx25,
484         }, {
485                 .name = "imx31-sdma",
486                 .driver_data = (unsigned long)&sdma_imx31,
487         }, {
488                 .name = "imx35-sdma",
489                 .driver_data = (unsigned long)&sdma_imx35,
490         }, {
491                 .name = "imx51-sdma",
492                 .driver_data = (unsigned long)&sdma_imx51,
493         }, {
494                 .name = "imx53-sdma",
495                 .driver_data = (unsigned long)&sdma_imx53,
496         }, {
497                 .name = "imx6q-sdma",
498                 .driver_data = (unsigned long)&sdma_imx6q,
499         }, {
500                 /* sentinel */
501         }
502 };
503 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
504
505 static const struct of_device_id sdma_dt_ids[] = {
506         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
507         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
508         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
509         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
510         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
511         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
512         { /* sentinel */ }
513 };
514 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
515
516 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
517 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
518 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
519 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
520
521 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
522 {
523         u32 chnenbl0 = sdma->drvdata->chnenbl0;
524         return chnenbl0 + event * 4;
525 }
526
527 static int sdma_config_ownership(struct sdma_channel *sdmac,
528                 bool event_override, bool mcu_override, bool dsp_override)
529 {
530         struct sdma_engine *sdma = sdmac->sdma;
531         int channel = sdmac->channel;
532         unsigned long evt, mcu, dsp;
533
534         if (event_override && mcu_override && dsp_override)
535                 return -EINVAL;
536
537         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
538         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
539         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
540
541         if (dsp_override)
542                 __clear_bit(channel, &dsp);
543         else
544                 __set_bit(channel, &dsp);
545
546         if (event_override)
547                 __clear_bit(channel, &evt);
548         else
549                 __set_bit(channel, &evt);
550
551         if (mcu_override)
552                 __clear_bit(channel, &mcu);
553         else
554                 __set_bit(channel, &mcu);
555
556         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
557         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
558         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
559
560         return 0;
561 }
562
563 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
564 {
565         writel(BIT(channel), sdma->regs + SDMA_H_START);
566 }
567
568 /*
569  * sdma_run_channel0 - run a channel and wait till it's done
570  */
571 static int sdma_run_channel0(struct sdma_engine *sdma)
572 {
573         int ret;
574         unsigned long timeout = 500;
575
576         sdma_enable_channel(sdma, 0);
577
578         while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
579                 if (timeout-- <= 0)
580                         break;
581                 udelay(1);
582         }
583
584         if (ret) {
585                 /* Clear the interrupt status */
586                 writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
587         } else {
588                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
589         }
590
591         /* Set bits of CONFIG register with dynamic context switching */
592         if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
593                 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
594
595         return ret ? 0 : -ETIMEDOUT;
596 }
597
598 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
599                 u32 address)
600 {
601         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
602         void *buf_virt;
603         dma_addr_t buf_phys;
604         int ret;
605         unsigned long flags;
606
607         buf_virt = dma_alloc_coherent(NULL,
608                         size,
609                         &buf_phys, GFP_KERNEL);
610         if (!buf_virt) {
611                 return -ENOMEM;
612         }
613
614         spin_lock_irqsave(&sdma->channel_0_lock, flags);
615
616         bd0->mode.command = C0_SETPM;
617         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
618         bd0->mode.count = size / 2;
619         bd0->buffer_addr = buf_phys;
620         bd0->ext_buffer_addr = address;
621
622         memcpy(buf_virt, buf, size);
623
624         ret = sdma_run_channel0(sdma);
625
626         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
627
628         dma_free_coherent(NULL, size, buf_virt, buf_phys);
629
630         return ret;
631 }
632
633 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
634 {
635         struct sdma_engine *sdma = sdmac->sdma;
636         int channel = sdmac->channel;
637         unsigned long val;
638         u32 chnenbl = chnenbl_ofs(sdma, event);
639
640         val = readl_relaxed(sdma->regs + chnenbl);
641         __set_bit(channel, &val);
642         writel_relaxed(val, sdma->regs + chnenbl);
643 }
644
645 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
646 {
647         struct sdma_engine *sdma = sdmac->sdma;
648         int channel = sdmac->channel;
649         u32 chnenbl = chnenbl_ofs(sdma, event);
650         unsigned long val;
651
652         val = readl_relaxed(sdma->regs + chnenbl);
653         __clear_bit(channel, &val);
654         writel_relaxed(val, sdma->regs + chnenbl);
655 }
656
657 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
658 {
659         if (sdmac->desc.callback)
660                 sdmac->desc.callback(sdmac->desc.callback_param);
661 }
662
663 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
664 {
665         struct sdma_buffer_descriptor *bd;
666
667         /*
668          * loop mode. Iterate over descriptors, re-setup them and
669          * call callback function.
670          */
671         while (1) {
672                 bd = &sdmac->bd[sdmac->buf_tail];
673
674                 if (bd->mode.status & BD_DONE)
675                         break;
676
677                 if (bd->mode.status & BD_RROR)
678                         sdmac->status = DMA_ERROR;
679
680                 bd->mode.status |= BD_DONE;
681                 sdmac->buf_tail++;
682                 sdmac->buf_tail %= sdmac->num_bd;
683         }
684 }
685
686 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
687 {
688         struct sdma_buffer_descriptor *bd;
689         int i, error = 0;
690
691         sdmac->chn_real_count = 0;
692         /*
693          * non loop mode. Iterate over all descriptors, collect
694          * errors and call callback function
695          */
696         for (i = 0; i < sdmac->num_bd; i++) {
697                 bd = &sdmac->bd[i];
698
699                  if (bd->mode.status & (BD_DONE | BD_RROR))
700                         error = -EIO;
701                  sdmac->chn_real_count += bd->mode.count;
702         }
703
704         if (error)
705                 sdmac->status = DMA_ERROR;
706         else
707                 sdmac->status = DMA_COMPLETE;
708
709         dma_cookie_complete(&sdmac->desc);
710         if (sdmac->desc.callback)
711                 sdmac->desc.callback(sdmac->desc.callback_param);
712 }
713
714 static void sdma_tasklet(unsigned long data)
715 {
716         struct sdma_channel *sdmac = (struct sdma_channel *) data;
717
718         if (sdmac->flags & IMX_DMA_SG_LOOP)
719                 sdma_handle_channel_loop(sdmac);
720         else
721                 mxc_sdma_handle_channel_normal(sdmac);
722 }
723
724 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
725 {
726         struct sdma_engine *sdma = dev_id;
727         unsigned long stat;
728
729         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
730         /* not interested in channel 0 interrupts */
731         stat &= ~1;
732         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
733
734         while (stat) {
735                 int channel = fls(stat) - 1;
736                 struct sdma_channel *sdmac = &sdma->channel[channel];
737
738                 if (sdmac->flags & IMX_DMA_SG_LOOP)
739                         sdma_update_channel_loop(sdmac);
740
741                 tasklet_schedule(&sdmac->tasklet);
742
743                 __clear_bit(channel, &stat);
744         }
745
746         return IRQ_HANDLED;
747 }
748
749 /*
750  * sets the pc of SDMA script according to the peripheral type
751  */
752 static void sdma_get_pc(struct sdma_channel *sdmac,
753                 enum sdma_peripheral_type peripheral_type)
754 {
755         struct sdma_engine *sdma = sdmac->sdma;
756         int per_2_emi = 0, emi_2_per = 0;
757         /*
758          * These are needed once we start to support transfers between
759          * two peripherals or memory-to-memory transfers
760          */
761         int per_2_per = 0, emi_2_emi = 0;
762
763         sdmac->pc_from_device = 0;
764         sdmac->pc_to_device = 0;
765         sdmac->device_to_device = 0;
766
767         switch (peripheral_type) {
768         case IMX_DMATYPE_MEMORY:
769                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
770                 break;
771         case IMX_DMATYPE_DSP:
772                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
773                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
774                 break;
775         case IMX_DMATYPE_FIRI:
776                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
777                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
778                 break;
779         case IMX_DMATYPE_UART:
780                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
781                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
782                 break;
783         case IMX_DMATYPE_UART_SP:
784                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
785                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
786                 break;
787         case IMX_DMATYPE_ATA:
788                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
789                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
790                 break;
791         case IMX_DMATYPE_CSPI:
792         case IMX_DMATYPE_EXT:
793         case IMX_DMATYPE_SSI:
794         case IMX_DMATYPE_SAI:
795                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
796                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
797                 break;
798         case IMX_DMATYPE_SSI_DUAL:
799                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
800                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
801                 break;
802         case IMX_DMATYPE_SSI_SP:
803         case IMX_DMATYPE_MMC:
804         case IMX_DMATYPE_SDHC:
805         case IMX_DMATYPE_CSPI_SP:
806         case IMX_DMATYPE_ESAI:
807         case IMX_DMATYPE_MSHC_SP:
808                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
809                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
810                 break;
811         case IMX_DMATYPE_ASRC:
812                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
813                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
814                 per_2_per = sdma->script_addrs->per_2_per_addr;
815                 break;
816         case IMX_DMATYPE_ASRC_SP:
817                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
818                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
819                 per_2_per = sdma->script_addrs->per_2_per_addr;
820                 break;
821         case IMX_DMATYPE_MSHC:
822                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
823                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
824                 break;
825         case IMX_DMATYPE_CCM:
826                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
827                 break;
828         case IMX_DMATYPE_SPDIF:
829                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
830                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
831                 break;
832         case IMX_DMATYPE_IPU_MEMORY:
833                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
834                 break;
835         default:
836                 break;
837         }
838
839         sdmac->pc_from_device = per_2_emi;
840         sdmac->pc_to_device = emi_2_per;
841         sdmac->device_to_device = per_2_per;
842 }
843
844 static int sdma_load_context(struct sdma_channel *sdmac)
845 {
846         struct sdma_engine *sdma = sdmac->sdma;
847         int channel = sdmac->channel;
848         int load_address;
849         struct sdma_context_data *context = sdma->context;
850         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
851         int ret;
852         unsigned long flags;
853
854         if (sdmac->direction == DMA_DEV_TO_MEM)
855                 load_address = sdmac->pc_from_device;
856         else if (sdmac->direction == DMA_DEV_TO_DEV)
857                 load_address = sdmac->device_to_device;
858         else
859                 load_address = sdmac->pc_to_device;
860
861         if (load_address < 0)
862                 return load_address;
863
864         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
865         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
866         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
867         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
868         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
869         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
870
871         spin_lock_irqsave(&sdma->channel_0_lock, flags);
872
873         memset(context, 0, sizeof(*context));
874         context->channel_state.pc = load_address;
875
876         /* Send by context the event mask,base address for peripheral
877          * and watermark level
878          */
879         context->gReg[0] = sdmac->event_mask[1];
880         context->gReg[1] = sdmac->event_mask[0];
881         context->gReg[2] = sdmac->per_addr;
882         context->gReg[6] = sdmac->shp_addr;
883         context->gReg[7] = sdmac->watermark_level;
884
885         bd0->mode.command = C0_SETDM;
886         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
887         bd0->mode.count = sizeof(*context) / 4;
888         bd0->buffer_addr = sdma->context_phys;
889         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
890         ret = sdma_run_channel0(sdma);
891
892         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
893
894         return ret;
895 }
896
897 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
898 {
899         return container_of(chan, struct sdma_channel, chan);
900 }
901
902 static int sdma_disable_channel(struct dma_chan *chan)
903 {
904         struct sdma_channel *sdmac = to_sdma_chan(chan);
905         struct sdma_engine *sdma = sdmac->sdma;
906         int channel = sdmac->channel;
907
908         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
909         sdmac->status = DMA_ERROR;
910
911         return 0;
912 }
913
914 static int sdma_disable_channel_with_delay(struct dma_chan *chan)
915 {
916         sdma_disable_channel(chan);
917
918         /*
919          * According to NXP R&D team a delay of one BD SDMA cost time
920          * (maximum is 1ms) should be added after disable of the channel
921          * bit, to ensure SDMA core has really been stopped after SDMA
922          * clients call .device_terminate_all.
923          */
924         mdelay(1);
925
926         return 0;
927 }
928
929 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
930 {
931         struct sdma_engine *sdma = sdmac->sdma;
932
933         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
934         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
935
936         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
937         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
938
939         if (sdmac->event_id0 > 31)
940                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
941
942         if (sdmac->event_id1 > 31)
943                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
944
945         /*
946          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
947          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
948          * r0(event_mask[1]) and r1(event_mask[0]).
949          */
950         if (lwml > hwml) {
951                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
952                                                 SDMA_WATERMARK_LEVEL_HWML);
953                 sdmac->watermark_level |= hwml;
954                 sdmac->watermark_level |= lwml << 16;
955                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
956         }
957
958         if (sdmac->per_address2 >= sdma->spba_start_addr &&
959                         sdmac->per_address2 <= sdma->spba_end_addr)
960                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
961
962         if (sdmac->per_address >= sdma->spba_start_addr &&
963                         sdmac->per_address <= sdma->spba_end_addr)
964                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
965
966         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
967 }
968
969 static int sdma_config_channel(struct dma_chan *chan)
970 {
971         struct sdma_channel *sdmac = to_sdma_chan(chan);
972         int ret;
973
974         sdma_disable_channel(chan);
975
976         sdmac->event_mask[0] = 0;
977         sdmac->event_mask[1] = 0;
978         sdmac->shp_addr = 0;
979         sdmac->per_addr = 0;
980
981         if (sdmac->event_id0) {
982                 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
983                         return -EINVAL;
984                 sdma_event_enable(sdmac, sdmac->event_id0);
985         }
986
987         if (sdmac->event_id1) {
988                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
989                         return -EINVAL;
990                 sdma_event_enable(sdmac, sdmac->event_id1);
991         }
992
993         switch (sdmac->peripheral_type) {
994         case IMX_DMATYPE_DSP:
995                 sdma_config_ownership(sdmac, false, true, true);
996                 break;
997         case IMX_DMATYPE_MEMORY:
998                 sdma_config_ownership(sdmac, false, true, false);
999                 break;
1000         default:
1001                 sdma_config_ownership(sdmac, true, true, false);
1002                 break;
1003         }
1004
1005         sdma_get_pc(sdmac, sdmac->peripheral_type);
1006
1007         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1008                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1009                 /* Handle multiple event channels differently */
1010                 if (sdmac->event_id1) {
1011                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1012                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1013                                 sdma_set_watermarklevel_for_p2p(sdmac);
1014                 } else
1015                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1016
1017                 /* Watermark Level */
1018                 sdmac->watermark_level |= sdmac->watermark_level;
1019                 /* Address */
1020                 sdmac->shp_addr = sdmac->per_address;
1021                 sdmac->per_addr = sdmac->per_address2;
1022         } else {
1023                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1024         }
1025
1026         ret = sdma_load_context(sdmac);
1027
1028         return ret;
1029 }
1030
1031 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1032                 unsigned int priority)
1033 {
1034         struct sdma_engine *sdma = sdmac->sdma;
1035         int channel = sdmac->channel;
1036
1037         if (priority < MXC_SDMA_MIN_PRIORITY
1038             || priority > MXC_SDMA_MAX_PRIORITY) {
1039                 return -EINVAL;
1040         }
1041
1042         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1043
1044         return 0;
1045 }
1046
1047 static int sdma_request_channel(struct sdma_channel *sdmac)
1048 {
1049         struct sdma_engine *sdma = sdmac->sdma;
1050         int channel = sdmac->channel;
1051         int ret = -EBUSY;
1052
1053         sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1054                                         GFP_KERNEL);
1055         if (!sdmac->bd) {
1056                 ret = -ENOMEM;
1057                 goto out;
1058         }
1059
1060         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1061         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1062
1063         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1064         return 0;
1065 out:
1066
1067         return ret;
1068 }
1069
1070 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1071 {
1072         unsigned long flags;
1073         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1074         dma_cookie_t cookie;
1075
1076         spin_lock_irqsave(&sdmac->lock, flags);
1077
1078         cookie = dma_cookie_assign(tx);
1079
1080         spin_unlock_irqrestore(&sdmac->lock, flags);
1081
1082         return cookie;
1083 }
1084
1085 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1086 {
1087         struct sdma_channel *sdmac = to_sdma_chan(chan);
1088         struct imx_dma_data *data = chan->private;
1089         int prio, ret;
1090
1091         if (!data)
1092                 return -EINVAL;
1093
1094         switch (data->priority) {
1095         case DMA_PRIO_HIGH:
1096                 prio = 3;
1097                 break;
1098         case DMA_PRIO_MEDIUM:
1099                 prio = 2;
1100                 break;
1101         case DMA_PRIO_LOW:
1102         default:
1103                 prio = 1;
1104                 break;
1105         }
1106
1107         sdmac->peripheral_type = data->peripheral_type;
1108         sdmac->event_id0 = data->dma_request;
1109         sdmac->event_id1 = data->dma_request2;
1110
1111         ret = clk_enable(sdmac->sdma->clk_ipg);
1112         if (ret)
1113                 return ret;
1114         ret = clk_enable(sdmac->sdma->clk_ahb);
1115         if (ret)
1116                 goto disable_clk_ipg;
1117
1118         ret = sdma_request_channel(sdmac);
1119         if (ret)
1120                 goto disable_clk_ahb;
1121
1122         ret = sdma_set_channel_priority(sdmac, prio);
1123         if (ret)
1124                 goto disable_clk_ahb;
1125
1126         dma_async_tx_descriptor_init(&sdmac->desc, chan);
1127         sdmac->desc.tx_submit = sdma_tx_submit;
1128         /* txd.flags will be overwritten in prep funcs */
1129         sdmac->desc.flags = DMA_CTRL_ACK;
1130
1131         return 0;
1132
1133 disable_clk_ahb:
1134         clk_disable(sdmac->sdma->clk_ahb);
1135 disable_clk_ipg:
1136         clk_disable(sdmac->sdma->clk_ipg);
1137         return ret;
1138 }
1139
1140 static void sdma_free_chan_resources(struct dma_chan *chan)
1141 {
1142         struct sdma_channel *sdmac = to_sdma_chan(chan);
1143         struct sdma_engine *sdma = sdmac->sdma;
1144
1145         sdma_disable_channel(chan);
1146
1147         if (sdmac->event_id0)
1148                 sdma_event_disable(sdmac, sdmac->event_id0);
1149         if (sdmac->event_id1)
1150                 sdma_event_disable(sdmac, sdmac->event_id1);
1151
1152         sdmac->event_id0 = 0;
1153         sdmac->event_id1 = 0;
1154
1155         sdma_set_channel_priority(sdmac, 0);
1156
1157         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1158
1159         clk_disable(sdma->clk_ipg);
1160         clk_disable(sdma->clk_ahb);
1161 }
1162
1163 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1164                 struct dma_chan *chan, struct scatterlist *sgl,
1165                 unsigned int sg_len, enum dma_transfer_direction direction,
1166                 unsigned long flags, void *context)
1167 {
1168         struct sdma_channel *sdmac = to_sdma_chan(chan);
1169         struct sdma_engine *sdma = sdmac->sdma;
1170         int ret, i, count;
1171         int channel = sdmac->channel;
1172         struct scatterlist *sg;
1173
1174         if (sdmac->status == DMA_IN_PROGRESS)
1175                 return NULL;
1176         sdmac->status = DMA_IN_PROGRESS;
1177
1178         sdmac->flags = 0;
1179
1180         sdmac->buf_tail = 0;
1181
1182         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1183                         sg_len, channel);
1184
1185         sdmac->direction = direction;
1186         ret = sdma_load_context(sdmac);
1187         if (ret)
1188                 goto err_out;
1189
1190         if (sg_len > NUM_BD) {
1191                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1192                                 channel, sg_len, NUM_BD);
1193                 ret = -EINVAL;
1194                 goto err_out;
1195         }
1196
1197         sdmac->chn_count = 0;
1198         for_each_sg(sgl, sg, sg_len, i) {
1199                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1200                 int param;
1201
1202                 bd->buffer_addr = sg->dma_address;
1203
1204                 count = sg_dma_len(sg);
1205
1206                 if (count > 0xffff) {
1207                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1208                                         channel, count, 0xffff);
1209                         ret = -EINVAL;
1210                         goto err_out;
1211                 }
1212
1213                 bd->mode.count = count;
1214                 sdmac->chn_count += count;
1215
1216                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1217                         ret =  -EINVAL;
1218                         goto err_out;
1219                 }
1220
1221                 switch (sdmac->word_size) {
1222                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1223                         bd->mode.command = 0;
1224                         if (count & 3 || sg->dma_address & 3)
1225                                 return NULL;
1226                         break;
1227                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1228                         bd->mode.command = 2;
1229                         if (count & 1 || sg->dma_address & 1)
1230                                 return NULL;
1231                         break;
1232                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1233                         bd->mode.command = 1;
1234                         break;
1235                 default:
1236                         return NULL;
1237                 }
1238
1239                 param = BD_DONE | BD_EXTD | BD_CONT;
1240
1241                 if (i + 1 == sg_len) {
1242                         param |= BD_INTR;
1243                         param |= BD_LAST;
1244                         param &= ~BD_CONT;
1245                 }
1246
1247                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1248                                 i, count, (u64)sg->dma_address,
1249                                 param & BD_WRAP ? "wrap" : "",
1250                                 param & BD_INTR ? " intr" : "");
1251
1252                 bd->mode.status = param;
1253         }
1254
1255         sdmac->num_bd = sg_len;
1256         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1257
1258         return &sdmac->desc;
1259 err_out:
1260         sdmac->status = DMA_ERROR;
1261         return NULL;
1262 }
1263
1264 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1265                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1266                 size_t period_len, enum dma_transfer_direction direction,
1267                 unsigned long flags)
1268 {
1269         struct sdma_channel *sdmac = to_sdma_chan(chan);
1270         struct sdma_engine *sdma = sdmac->sdma;
1271         int num_periods = buf_len / period_len;
1272         int channel = sdmac->channel;
1273         int ret, i = 0, buf = 0;
1274
1275         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1276
1277         if (sdmac->status == DMA_IN_PROGRESS)
1278                 return NULL;
1279
1280         sdmac->status = DMA_IN_PROGRESS;
1281
1282         sdmac->buf_tail = 0;
1283         sdmac->period_len = period_len;
1284
1285         sdmac->flags |= IMX_DMA_SG_LOOP;
1286         sdmac->direction = direction;
1287         ret = sdma_load_context(sdmac);
1288         if (ret)
1289                 goto err_out;
1290
1291         if (num_periods > NUM_BD) {
1292                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1293                                 channel, num_periods, NUM_BD);
1294                 goto err_out;
1295         }
1296
1297         if (period_len > 0xffff) {
1298                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1299                                 channel, period_len, 0xffff);
1300                 goto err_out;
1301         }
1302
1303         while (buf < buf_len) {
1304                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1305                 int param;
1306
1307                 bd->buffer_addr = dma_addr;
1308
1309                 bd->mode.count = period_len;
1310
1311                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1312                         goto err_out;
1313                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1314                         bd->mode.command = 0;
1315                 else
1316                         bd->mode.command = sdmac->word_size;
1317
1318                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1319                 if (i + 1 == num_periods)
1320                         param |= BD_WRAP;
1321
1322                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1323                                 i, period_len, (u64)dma_addr,
1324                                 param & BD_WRAP ? "wrap" : "",
1325                                 param & BD_INTR ? " intr" : "");
1326
1327                 bd->mode.status = param;
1328
1329                 dma_addr += period_len;
1330                 buf += period_len;
1331
1332                 i++;
1333         }
1334
1335         sdmac->num_bd = num_periods;
1336         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1337
1338         return &sdmac->desc;
1339 err_out:
1340         sdmac->status = DMA_ERROR;
1341         return NULL;
1342 }
1343
1344 static int sdma_config(struct dma_chan *chan,
1345                        struct dma_slave_config *dmaengine_cfg)
1346 {
1347         struct sdma_channel *sdmac = to_sdma_chan(chan);
1348
1349         if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1350                 sdmac->per_address = dmaengine_cfg->src_addr;
1351                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1352                         dmaengine_cfg->src_addr_width;
1353                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1354         } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1355                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1356                 sdmac->per_address = dmaengine_cfg->dst_addr;
1357                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1358                         SDMA_WATERMARK_LEVEL_LWML;
1359                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1360                         SDMA_WATERMARK_LEVEL_HWML;
1361                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1362         } else {
1363                 sdmac->per_address = dmaengine_cfg->dst_addr;
1364                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1365                         dmaengine_cfg->dst_addr_width;
1366                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1367         }
1368         sdmac->direction = dmaengine_cfg->direction;
1369         return sdma_config_channel(chan);
1370 }
1371
1372 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1373                                       dma_cookie_t cookie,
1374                                       struct dma_tx_state *txstate)
1375 {
1376         struct sdma_channel *sdmac = to_sdma_chan(chan);
1377         u32 residue;
1378
1379         if (sdmac->flags & IMX_DMA_SG_LOOP)
1380                 residue = (sdmac->num_bd - sdmac->buf_tail) * sdmac->period_len;
1381         else
1382                 residue = sdmac->chn_count - sdmac->chn_real_count;
1383
1384         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1385                          residue);
1386
1387         return sdmac->status;
1388 }
1389
1390 static void sdma_issue_pending(struct dma_chan *chan)
1391 {
1392         struct sdma_channel *sdmac = to_sdma_chan(chan);
1393         struct sdma_engine *sdma = sdmac->sdma;
1394
1395         if (sdmac->status == DMA_IN_PROGRESS)
1396                 sdma_enable_channel(sdma, sdmac->channel);
1397 }
1398
1399 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1400 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1401 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1402
1403 static void sdma_add_scripts(struct sdma_engine *sdma,
1404                 const struct sdma_script_start_addrs *addr)
1405 {
1406         s32 *addr_arr = (u32 *)addr;
1407         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1408         int i;
1409
1410         /* use the default firmware in ROM if missing external firmware */
1411         if (!sdma->script_number)
1412                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1413
1414         if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1415                                   / sizeof(s32)) {
1416                 dev_err(sdma->dev,
1417                         "SDMA script number %d not match with firmware.\n",
1418                         sdma->script_number);
1419                 return;
1420         }
1421
1422         for (i = 0; i < sdma->script_number; i++)
1423                 if (addr_arr[i] > 0)
1424                         saddr_arr[i] = addr_arr[i];
1425 }
1426
1427 static void sdma_load_firmware(const struct firmware *fw, void *context)
1428 {
1429         struct sdma_engine *sdma = context;
1430         const struct sdma_firmware_header *header;
1431         const struct sdma_script_start_addrs *addr;
1432         unsigned short *ram_code;
1433
1434         if (!fw) {
1435                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1436                 /* In this case we just use the ROM firmware. */
1437                 return;
1438         }
1439
1440         if (fw->size < sizeof(*header))
1441                 goto err_firmware;
1442
1443         header = (struct sdma_firmware_header *)fw->data;
1444
1445         if (header->magic != SDMA_FIRMWARE_MAGIC)
1446                 goto err_firmware;
1447         if (header->ram_code_start + header->ram_code_size > fw->size)
1448                 goto err_firmware;
1449         switch (header->version_major) {
1450         case 1:
1451                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1452                 break;
1453         case 2:
1454                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1455                 break;
1456         case 3:
1457                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1458                 break;
1459         default:
1460                 dev_err(sdma->dev, "unknown firmware version\n");
1461                 goto err_firmware;
1462         }
1463
1464         addr = (void *)header + header->script_addrs_start;
1465         ram_code = (void *)header + header->ram_code_start;
1466
1467         clk_enable(sdma->clk_ipg);
1468         clk_enable(sdma->clk_ahb);
1469         /* download the RAM image for SDMA */
1470         sdma_load_script(sdma, ram_code,
1471                         header->ram_code_size,
1472                         addr->ram_code_start_addr);
1473         clk_disable(sdma->clk_ipg);
1474         clk_disable(sdma->clk_ahb);
1475
1476         sdma_add_scripts(sdma, addr);
1477
1478         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1479                         header->version_major,
1480                         header->version_minor);
1481
1482 err_firmware:
1483         release_firmware(fw);
1484 }
1485
1486 #define EVENT_REMAP_CELLS 3
1487
1488 static int sdma_event_remap(struct sdma_engine *sdma)
1489 {
1490         struct device_node *np = sdma->dev->of_node;
1491         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1492         struct property *event_remap;
1493         struct regmap *gpr;
1494         char propname[] = "fsl,sdma-event-remap";
1495         u32 reg, val, shift, num_map, i;
1496         int ret = 0;
1497
1498         if (IS_ERR(np) || IS_ERR(gpr_np))
1499                 goto out;
1500
1501         event_remap = of_find_property(np, propname, NULL);
1502         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1503         if (!num_map) {
1504                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1505                 goto out;
1506         } else if (num_map % EVENT_REMAP_CELLS) {
1507                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1508                                 propname, EVENT_REMAP_CELLS);
1509                 ret = -EINVAL;
1510                 goto out;
1511         }
1512
1513         gpr = syscon_node_to_regmap(gpr_np);
1514         if (IS_ERR(gpr)) {
1515                 dev_err(sdma->dev, "failed to get gpr regmap\n");
1516                 ret = PTR_ERR(gpr);
1517                 goto out;
1518         }
1519
1520         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1521                 ret = of_property_read_u32_index(np, propname, i, &reg);
1522                 if (ret) {
1523                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1524                                         propname, i);
1525                         goto out;
1526                 }
1527
1528                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1529                 if (ret) {
1530                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1531                                         propname, i + 1);
1532                         goto out;
1533                 }
1534
1535                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1536                 if (ret) {
1537                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1538                                         propname, i + 2);
1539                         goto out;
1540                 }
1541
1542                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1543         }
1544
1545 out:
1546         if (!IS_ERR(gpr_np))
1547                 of_node_put(gpr_np);
1548
1549         return ret;
1550 }
1551
1552 static int sdma_get_firmware(struct sdma_engine *sdma,
1553                 const char *fw_name)
1554 {
1555         int ret;
1556
1557         ret = reject_firmware_nowait(THIS_MODULE,
1558                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1559                         GFP_KERNEL, sdma, sdma_load_firmware);
1560
1561         return ret;
1562 }
1563
1564 static int sdma_init(struct sdma_engine *sdma)
1565 {
1566         int i, ret;
1567         dma_addr_t ccb_phys;
1568
1569         ret = clk_enable(sdma->clk_ipg);
1570         if (ret)
1571                 return ret;
1572         ret = clk_enable(sdma->clk_ahb);
1573         if (ret)
1574                 goto disable_clk_ipg;
1575
1576         /* Be sure SDMA has not started yet */
1577         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1578
1579         sdma->channel_control = dma_alloc_coherent(NULL,
1580                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1581                         sizeof(struct sdma_context_data),
1582                         &ccb_phys, GFP_KERNEL);
1583
1584         if (!sdma->channel_control) {
1585                 ret = -ENOMEM;
1586                 goto err_dma_alloc;
1587         }
1588
1589         sdma->context = (void *)sdma->channel_control +
1590                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1591         sdma->context_phys = ccb_phys +
1592                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1593
1594         /* Zero-out the CCB structures array just allocated */
1595         memset(sdma->channel_control, 0,
1596                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1597
1598         /* disable all channels */
1599         for (i = 0; i < sdma->drvdata->num_events; i++)
1600                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1601
1602         /* All channels have priority 0 */
1603         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1604                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1605
1606         ret = sdma_request_channel(&sdma->channel[0]);
1607         if (ret)
1608                 goto err_dma_alloc;
1609
1610         sdma_config_ownership(&sdma->channel[0], false, true, false);
1611
1612         /* Set Command Channel (Channel Zero) */
1613         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1614
1615         /* Set bits of CONFIG register but with static context switching */
1616         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1617         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1618
1619         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1620
1621         /* Initializes channel's priorities */
1622         sdma_set_channel_priority(&sdma->channel[0], 7);
1623
1624         clk_disable(sdma->clk_ipg);
1625         clk_disable(sdma->clk_ahb);
1626
1627         return 0;
1628
1629 err_dma_alloc:
1630         clk_disable(sdma->clk_ahb);
1631 disable_clk_ipg:
1632         clk_disable(sdma->clk_ipg);
1633         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1634         return ret;
1635 }
1636
1637 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1638 {
1639         struct sdma_channel *sdmac = to_sdma_chan(chan);
1640         struct imx_dma_data *data = fn_param;
1641
1642         if (!imx_dma_is_general_purpose(chan))
1643                 return false;
1644
1645         sdmac->data = *data;
1646         chan->private = &sdmac->data;
1647
1648         return true;
1649 }
1650
1651 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1652                                    struct of_dma *ofdma)
1653 {
1654         struct sdma_engine *sdma = ofdma->of_dma_data;
1655         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1656         struct imx_dma_data data;
1657
1658         if (dma_spec->args_count != 3)
1659                 return NULL;
1660
1661         data.dma_request = dma_spec->args[0];
1662         data.peripheral_type = dma_spec->args[1];
1663         data.priority = dma_spec->args[2];
1664         /*
1665          * init dma_request2 to zero, which is not used by the dts.
1666          * For P2P, dma_request2 is init from dma_request_channel(),
1667          * chan->private will point to the imx_dma_data, and in
1668          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1669          * be set to sdmac->event_id1.
1670          */
1671         data.dma_request2 = 0;
1672
1673         return dma_request_channel(mask, sdma_filter_fn, &data);
1674 }
1675
1676 static int sdma_probe(struct platform_device *pdev)
1677 {
1678         const struct of_device_id *of_id =
1679                         of_match_device(sdma_dt_ids, &pdev->dev);
1680         struct device_node *np = pdev->dev.of_node;
1681         struct device_node *spba_bus;
1682         const char *fw_name;
1683         int ret;
1684         int irq;
1685         struct resource *iores;
1686         struct resource spba_res;
1687         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1688         int i;
1689         struct sdma_engine *sdma;
1690         s32 *saddr_arr;
1691         const struct sdma_driver_data *drvdata = NULL;
1692
1693         if (of_id)
1694                 drvdata = of_id->data;
1695         else if (pdev->id_entry)
1696                 drvdata = (void *)pdev->id_entry->driver_data;
1697
1698         if (!drvdata) {
1699                 dev_err(&pdev->dev, "unable to find driver data\n");
1700                 return -EINVAL;
1701         }
1702
1703         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1704         if (ret)
1705                 return ret;
1706
1707         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1708         if (!sdma)
1709                 return -ENOMEM;
1710
1711         spin_lock_init(&sdma->channel_0_lock);
1712
1713         sdma->dev = &pdev->dev;
1714         sdma->drvdata = drvdata;
1715
1716         irq = platform_get_irq(pdev, 0);
1717         if (irq < 0)
1718                 return irq;
1719
1720         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1721         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1722         if (IS_ERR(sdma->regs))
1723                 return PTR_ERR(sdma->regs);
1724
1725         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1726         if (IS_ERR(sdma->clk_ipg))
1727                 return PTR_ERR(sdma->clk_ipg);
1728
1729         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1730         if (IS_ERR(sdma->clk_ahb))
1731                 return PTR_ERR(sdma->clk_ahb);
1732
1733         ret = clk_prepare(sdma->clk_ipg);
1734         if (ret)
1735                 return ret;
1736
1737         ret = clk_prepare(sdma->clk_ahb);
1738         if (ret)
1739                 goto err_clk;
1740
1741         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1742                                sdma);
1743         if (ret)
1744                 goto err_irq;
1745
1746         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1747         if (!sdma->script_addrs) {
1748                 ret = -ENOMEM;
1749                 goto err_irq;
1750         }
1751
1752         /* initially no scripts available */
1753         saddr_arr = (s32 *)sdma->script_addrs;
1754         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1755                 saddr_arr[i] = -EINVAL;
1756
1757         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1758         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1759
1760         INIT_LIST_HEAD(&sdma->dma_device.channels);
1761         /* Initialize channel parameters */
1762         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1763                 struct sdma_channel *sdmac = &sdma->channel[i];
1764
1765                 sdmac->sdma = sdma;
1766                 spin_lock_init(&sdmac->lock);
1767
1768                 sdmac->chan.device = &sdma->dma_device;
1769                 dma_cookie_init(&sdmac->chan);
1770                 sdmac->channel = i;
1771
1772                 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1773                              (unsigned long) sdmac);
1774                 /*
1775                  * Add the channel to the DMAC list. Do not add channel 0 though
1776                  * because we need it internally in the SDMA driver. This also means
1777                  * that channel 0 in dmaengine counting matches sdma channel 1.
1778                  */
1779                 if (i)
1780                         list_add_tail(&sdmac->chan.device_node,
1781                                         &sdma->dma_device.channels);
1782         }
1783
1784         ret = sdma_init(sdma);
1785         if (ret)
1786                 goto err_init;
1787
1788         ret = sdma_event_remap(sdma);
1789         if (ret)
1790                 goto err_init;
1791
1792         if (sdma->drvdata->script_addrs)
1793                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1794         if (pdata && pdata->script_addrs)
1795                 sdma_add_scripts(sdma, pdata->script_addrs);
1796
1797         sdma->dma_device.dev = &pdev->dev;
1798
1799         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1800         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1801         sdma->dma_device.device_tx_status = sdma_tx_status;
1802         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1803         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1804         sdma->dma_device.device_config = sdma_config;
1805         sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay;
1806         sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1807         sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1808         sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1809         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1810         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1811         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1812         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1813
1814         platform_set_drvdata(pdev, sdma);
1815
1816         ret = dma_async_device_register(&sdma->dma_device);
1817         if (ret) {
1818                 dev_err(&pdev->dev, "unable to register\n");
1819                 goto err_init;
1820         }
1821
1822         if (np) {
1823                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1824                 if (ret) {
1825                         dev_err(&pdev->dev, "failed to register controller\n");
1826                         goto err_register;
1827                 }
1828
1829                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1830                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
1831                 if (!ret) {
1832                         sdma->spba_start_addr = spba_res.start;
1833                         sdma->spba_end_addr = spba_res.end;
1834                 }
1835                 of_node_put(spba_bus);
1836         }
1837
1838         /*
1839          * Kick off firmware loading as the very last step:
1840          * attempt to load firmware only if we're not on the error path, because
1841          * the firmware callback requires a fully functional and allocated sdma
1842          * instance.
1843          */
1844         if (pdata) {
1845                 ret = sdma_get_firmware(sdma, pdata->fw_name);
1846                 if (ret)
1847                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1848         } else {
1849                 /*
1850                  * Because that device tree does not encode ROM script address,
1851                  * the RAM script in firmware is mandatory for device tree
1852                  * probe, otherwise it fails.
1853                  */
1854                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1855                                               &fw_name);
1856                 if (ret) {
1857                         dev_warn(&pdev->dev, "failed to get firmware name\n");
1858                 } else {
1859                         ret = sdma_get_firmware(sdma, fw_name);
1860                         if (ret)
1861                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1862                 }
1863         }
1864
1865         return 0;
1866
1867 err_register:
1868         dma_async_device_unregister(&sdma->dma_device);
1869 err_init:
1870         kfree(sdma->script_addrs);
1871 err_irq:
1872         clk_unprepare(sdma->clk_ahb);
1873 err_clk:
1874         clk_unprepare(sdma->clk_ipg);
1875         return ret;
1876 }
1877
1878 static int sdma_remove(struct platform_device *pdev)
1879 {
1880         struct sdma_engine *sdma = platform_get_drvdata(pdev);
1881         int i;
1882
1883         dma_async_device_unregister(&sdma->dma_device);
1884         kfree(sdma->script_addrs);
1885         clk_unprepare(sdma->clk_ahb);
1886         clk_unprepare(sdma->clk_ipg);
1887         /* Kill the tasklet */
1888         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1889                 struct sdma_channel *sdmac = &sdma->channel[i];
1890
1891                 tasklet_kill(&sdmac->tasklet);
1892         }
1893
1894         platform_set_drvdata(pdev, NULL);
1895         return 0;
1896 }
1897
1898 static struct platform_driver sdma_driver = {
1899         .driver         = {
1900                 .name   = "imx-sdma",
1901                 .of_match_table = sdma_dt_ids,
1902         },
1903         .id_table       = sdma_devtypes,
1904         .remove         = sdma_remove,
1905         .probe          = sdma_probe,
1906 };
1907
1908 module_platform_driver(sdma_driver);
1909
1910 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1911 MODULE_DESCRIPTION("i.MX SDMA driver");
1912 MODULE_LICENSE("GPL");