GNU Linux-libre 4.4.289-gnu1
[releases.git] / drivers / dma / ep93xx_dma.c
1 /*
2  * Driver for the Cirrus Logic EP93xx DMA Controller
3  *
4  * Copyright (C) 2011 Mika Westerberg
5  *
6  * DMA M2P implementation is based on the original
7  * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
8  *
9  *   Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10  *   Copyright (C) 2006 Applied Data Systems
11  *   Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
12  *
13  * This driver is based on dw_dmac and amba-pl08x drivers.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  */
20
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28
29 #include <linux/platform_data/dma-ep93xx.h>
30
31 #include "dmaengine.h"
32
33 /* M2P registers */
34 #define M2P_CONTROL                     0x0000
35 #define M2P_CONTROL_STALLINT            BIT(0)
36 #define M2P_CONTROL_NFBINT              BIT(1)
37 #define M2P_CONTROL_CH_ERROR_INT        BIT(3)
38 #define M2P_CONTROL_ENABLE              BIT(4)
39 #define M2P_CONTROL_ICE                 BIT(6)
40
41 #define M2P_INTERRUPT                   0x0004
42 #define M2P_INTERRUPT_STALL             BIT(0)
43 #define M2P_INTERRUPT_NFB               BIT(1)
44 #define M2P_INTERRUPT_ERROR             BIT(3)
45
46 #define M2P_PPALLOC                     0x0008
47 #define M2P_STATUS                      0x000c
48
49 #define M2P_MAXCNT0                     0x0020
50 #define M2P_BASE0                       0x0024
51 #define M2P_MAXCNT1                     0x0030
52 #define M2P_BASE1                       0x0034
53
54 #define M2P_STATE_IDLE                  0
55 #define M2P_STATE_STALL                 1
56 #define M2P_STATE_ON                    2
57 #define M2P_STATE_NEXT                  3
58
59 /* M2M registers */
60 #define M2M_CONTROL                     0x0000
61 #define M2M_CONTROL_DONEINT             BIT(2)
62 #define M2M_CONTROL_ENABLE              BIT(3)
63 #define M2M_CONTROL_START               BIT(4)
64 #define M2M_CONTROL_DAH                 BIT(11)
65 #define M2M_CONTROL_SAH                 BIT(12)
66 #define M2M_CONTROL_PW_SHIFT            9
67 #define M2M_CONTROL_PW_8                (0 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_16               (1 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_PW_32               (2 << M2M_CONTROL_PW_SHIFT)
70 #define M2M_CONTROL_PW_MASK             (3 << M2M_CONTROL_PW_SHIFT)
71 #define M2M_CONTROL_TM_SHIFT            13
72 #define M2M_CONTROL_TM_TX               (1 << M2M_CONTROL_TM_SHIFT)
73 #define M2M_CONTROL_TM_RX               (2 << M2M_CONTROL_TM_SHIFT)
74 #define M2M_CONTROL_NFBINT              BIT(21)
75 #define M2M_CONTROL_RSS_SHIFT           22
76 #define M2M_CONTROL_RSS_SSPRX           (1 << M2M_CONTROL_RSS_SHIFT)
77 #define M2M_CONTROL_RSS_SSPTX           (2 << M2M_CONTROL_RSS_SHIFT)
78 #define M2M_CONTROL_RSS_IDE             (3 << M2M_CONTROL_RSS_SHIFT)
79 #define M2M_CONTROL_NO_HDSK             BIT(24)
80 #define M2M_CONTROL_PWSC_SHIFT          25
81
82 #define M2M_INTERRUPT                   0x0004
83 #define M2M_INTERRUPT_MASK              6
84
85 #define M2M_STATUS                      0x000c
86 #define M2M_STATUS_CTL_SHIFT            1
87 #define M2M_STATUS_CTL_IDLE             (0 << M2M_STATUS_CTL_SHIFT)
88 #define M2M_STATUS_CTL_STALL            (1 << M2M_STATUS_CTL_SHIFT)
89 #define M2M_STATUS_CTL_MEMRD            (2 << M2M_STATUS_CTL_SHIFT)
90 #define M2M_STATUS_CTL_MEMWR            (3 << M2M_STATUS_CTL_SHIFT)
91 #define M2M_STATUS_CTL_BWCWAIT          (4 << M2M_STATUS_CTL_SHIFT)
92 #define M2M_STATUS_CTL_MASK             (7 << M2M_STATUS_CTL_SHIFT)
93 #define M2M_STATUS_BUF_SHIFT            4
94 #define M2M_STATUS_BUF_NO               (0 << M2M_STATUS_BUF_SHIFT)
95 #define M2M_STATUS_BUF_ON               (1 << M2M_STATUS_BUF_SHIFT)
96 #define M2M_STATUS_BUF_NEXT             (2 << M2M_STATUS_BUF_SHIFT)
97 #define M2M_STATUS_BUF_MASK             (3 << M2M_STATUS_BUF_SHIFT)
98 #define M2M_STATUS_DONE                 BIT(6)
99
100 #define M2M_BCR0                        0x0010
101 #define M2M_BCR1                        0x0014
102 #define M2M_SAR_BASE0                   0x0018
103 #define M2M_SAR_BASE1                   0x001c
104 #define M2M_DAR_BASE0                   0x002c
105 #define M2M_DAR_BASE1                   0x0030
106
107 #define DMA_MAX_CHAN_BYTES              0xffff
108 #define DMA_MAX_CHAN_DESCRIPTORS        32
109
110 struct ep93xx_dma_engine;
111
112 /**
113  * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
114  * @src_addr: source address of the transaction
115  * @dst_addr: destination address of the transaction
116  * @size: size of the transaction (in bytes)
117  * @complete: this descriptor is completed
118  * @txd: dmaengine API descriptor
119  * @tx_list: list of linked descriptors
120  * @node: link used for putting this into a channel queue
121  */
122 struct ep93xx_dma_desc {
123         u32                             src_addr;
124         u32                             dst_addr;
125         size_t                          size;
126         bool                            complete;
127         struct dma_async_tx_descriptor  txd;
128         struct list_head                tx_list;
129         struct list_head                node;
130 };
131
132 /**
133  * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
134  * @chan: dmaengine API channel
135  * @edma: pointer to to the engine device
136  * @regs: memory mapped registers
137  * @irq: interrupt number of the channel
138  * @clk: clock used by this channel
139  * @tasklet: channel specific tasklet used for callbacks
140  * @lock: lock protecting the fields following
141  * @flags: flags for the channel
142  * @buffer: which buffer to use next (0/1)
143  * @active: flattened chain of descriptors currently being processed
144  * @queue: pending descriptors which are handled next
145  * @free_list: list of free descriptors which can be used
146  * @runtime_addr: physical address currently used as dest/src (M2M only). This
147  *                is set via .device_config before slave operation is
148  *                prepared
149  * @runtime_ctrl: M2M runtime values for the control register.
150  *
151  * As EP93xx DMA controller doesn't support real chained DMA descriptors we
152  * will have slightly different scheme here: @active points to a head of
153  * flattened DMA descriptor chain.
154  *
155  * @queue holds pending transactions. These are linked through the first
156  * descriptor in the chain. When a descriptor is moved to the @active queue,
157  * the first and chained descriptors are flattened into a single list.
158  *
159  * @chan.private holds pointer to &struct ep93xx_dma_data which contains
160  * necessary channel configuration information. For memcpy channels this must
161  * be %NULL.
162  */
163 struct ep93xx_dma_chan {
164         struct dma_chan                 chan;
165         const struct ep93xx_dma_engine  *edma;
166         void __iomem                    *regs;
167         int                             irq;
168         struct clk                      *clk;
169         struct tasklet_struct           tasklet;
170         /* protects the fields following */
171         spinlock_t                      lock;
172         unsigned long                   flags;
173 /* Channel is configured for cyclic transfers */
174 #define EP93XX_DMA_IS_CYCLIC            0
175
176         int                             buffer;
177         struct list_head                active;
178         struct list_head                queue;
179         struct list_head                free_list;
180         u32                             runtime_addr;
181         u32                             runtime_ctrl;
182 };
183
184 /**
185  * struct ep93xx_dma_engine - the EP93xx DMA engine instance
186  * @dma_dev: holds the dmaengine device
187  * @m2m: is this an M2M or M2P device
188  * @hw_setup: method which sets the channel up for operation
189  * @hw_shutdown: shuts the channel down and flushes whatever is left
190  * @hw_submit: pushes active descriptor(s) to the hardware
191  * @hw_interrupt: handle the interrupt
192  * @num_channels: number of channels for this instance
193  * @channels: array of channels
194  *
195  * There is one instance of this struct for the M2P channels and one for the
196  * M2M channels. hw_xxx() methods are used to perform operations which are
197  * different on M2M and M2P channels. These methods are called with channel
198  * lock held and interrupts disabled so they cannot sleep.
199  */
200 struct ep93xx_dma_engine {
201         struct dma_device       dma_dev;
202         bool                    m2m;
203         int                     (*hw_setup)(struct ep93xx_dma_chan *);
204         void                    (*hw_shutdown)(struct ep93xx_dma_chan *);
205         void                    (*hw_submit)(struct ep93xx_dma_chan *);
206         int                     (*hw_interrupt)(struct ep93xx_dma_chan *);
207 #define INTERRUPT_UNKNOWN       0
208 #define INTERRUPT_DONE          1
209 #define INTERRUPT_NEXT_BUFFER   2
210
211         size_t                  num_channels;
212         struct ep93xx_dma_chan  channels[];
213 };
214
215 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
216 {
217         return &edmac->chan.dev->device;
218 }
219
220 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
221 {
222         return container_of(chan, struct ep93xx_dma_chan, chan);
223 }
224
225 /**
226  * ep93xx_dma_set_active - set new active descriptor chain
227  * @edmac: channel
228  * @desc: head of the new active descriptor chain
229  *
230  * Sets @desc to be the head of the new active descriptor chain. This is the
231  * chain which is processed next. The active list must be empty before calling
232  * this function.
233  *
234  * Called with @edmac->lock held and interrupts disabled.
235  */
236 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
237                                   struct ep93xx_dma_desc *desc)
238 {
239         BUG_ON(!list_empty(&edmac->active));
240
241         list_add_tail(&desc->node, &edmac->active);
242
243         /* Flatten the @desc->tx_list chain into @edmac->active list */
244         while (!list_empty(&desc->tx_list)) {
245                 struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
246                         struct ep93xx_dma_desc, node);
247
248                 /*
249                  * We copy the callback parameters from the first descriptor
250                  * to all the chained descriptors. This way we can call the
251                  * callback without having to find out the first descriptor in
252                  * the chain. Useful for cyclic transfers.
253                  */
254                 d->txd.callback = desc->txd.callback;
255                 d->txd.callback_param = desc->txd.callback_param;
256
257                 list_move_tail(&d->node, &edmac->active);
258         }
259 }
260
261 /* Called with @edmac->lock held and interrupts disabled */
262 static struct ep93xx_dma_desc *
263 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
264 {
265         if (list_empty(&edmac->active))
266                 return NULL;
267
268         return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node);
269 }
270
271 /**
272  * ep93xx_dma_advance_active - advances to the next active descriptor
273  * @edmac: channel
274  *
275  * Function advances active descriptor to the next in the @edmac->active and
276  * returns %true if we still have descriptors in the chain to process.
277  * Otherwise returns %false.
278  *
279  * When the channel is in cyclic mode always returns %true.
280  *
281  * Called with @edmac->lock held and interrupts disabled.
282  */
283 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
284 {
285         struct ep93xx_dma_desc *desc;
286
287         list_rotate_left(&edmac->active);
288
289         if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
290                 return true;
291
292         desc = ep93xx_dma_get_active(edmac);
293         if (!desc)
294                 return false;
295
296         /*
297          * If txd.cookie is set it means that we are back in the first
298          * descriptor in the chain and hence done with it.
299          */
300         return !desc->txd.cookie;
301 }
302
303 /*
304  * M2P DMA implementation
305  */
306
307 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
308 {
309         writel(control, edmac->regs + M2P_CONTROL);
310         /*
311          * EP93xx User's Guide states that we must perform a dummy read after
312          * write to the control register.
313          */
314         readl(edmac->regs + M2P_CONTROL);
315 }
316
317 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
318 {
319         struct ep93xx_dma_data *data = edmac->chan.private;
320         u32 control;
321
322         writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
323
324         control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
325                 | M2P_CONTROL_ENABLE;
326         m2p_set_control(edmac, control);
327
328         edmac->buffer = 0;
329
330         return 0;
331 }
332
333 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
334 {
335         return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
336 }
337
338 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
339 {
340         u32 control;
341
342         control = readl(edmac->regs + M2P_CONTROL);
343         control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
344         m2p_set_control(edmac, control);
345
346         while (m2p_channel_state(edmac) >= M2P_STATE_ON)
347                 cpu_relax();
348
349         m2p_set_control(edmac, 0);
350
351         while (m2p_channel_state(edmac) == M2P_STATE_STALL)
352                 cpu_relax();
353 }
354
355 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
356 {
357         struct ep93xx_dma_desc *desc;
358         u32 bus_addr;
359
360         desc = ep93xx_dma_get_active(edmac);
361         if (!desc) {
362                 dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
363                 return;
364         }
365
366         if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
367                 bus_addr = desc->src_addr;
368         else
369                 bus_addr = desc->dst_addr;
370
371         if (edmac->buffer == 0) {
372                 writel(desc->size, edmac->regs + M2P_MAXCNT0);
373                 writel(bus_addr, edmac->regs + M2P_BASE0);
374         } else {
375                 writel(desc->size, edmac->regs + M2P_MAXCNT1);
376                 writel(bus_addr, edmac->regs + M2P_BASE1);
377         }
378
379         edmac->buffer ^= 1;
380 }
381
382 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
383 {
384         u32 control = readl(edmac->regs + M2P_CONTROL);
385
386         m2p_fill_desc(edmac);
387         control |= M2P_CONTROL_STALLINT;
388
389         if (ep93xx_dma_advance_active(edmac)) {
390                 m2p_fill_desc(edmac);
391                 control |= M2P_CONTROL_NFBINT;
392         }
393
394         m2p_set_control(edmac, control);
395 }
396
397 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
398 {
399         u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
400         u32 control;
401
402         if (irq_status & M2P_INTERRUPT_ERROR) {
403                 struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
404
405                 /* Clear the error interrupt */
406                 writel(1, edmac->regs + M2P_INTERRUPT);
407
408                 /*
409                  * It seems that there is no easy way of reporting errors back
410                  * to client so we just report the error here and continue as
411                  * usual.
412                  *
413                  * Revisit this when there is a mechanism to report back the
414                  * errors.
415                  */
416                 dev_err(chan2dev(edmac),
417                         "DMA transfer failed! Details:\n"
418                         "\tcookie       : %d\n"
419                         "\tsrc_addr     : 0x%08x\n"
420                         "\tdst_addr     : 0x%08x\n"
421                         "\tsize         : %zu\n",
422                         desc->txd.cookie, desc->src_addr, desc->dst_addr,
423                         desc->size);
424         }
425
426         switch (irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)) {
427         case M2P_INTERRUPT_STALL:
428                 /* Disable interrupts */
429                 control = readl(edmac->regs + M2P_CONTROL);
430                 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
431                 m2p_set_control(edmac, control);
432
433                 return INTERRUPT_DONE;
434
435         case M2P_INTERRUPT_NFB:
436                 if (ep93xx_dma_advance_active(edmac))
437                         m2p_fill_desc(edmac);
438
439                 return INTERRUPT_NEXT_BUFFER;
440         }
441
442         return INTERRUPT_UNKNOWN;
443 }
444
445 /*
446  * M2M DMA implementation
447  */
448
449 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
450 {
451         const struct ep93xx_dma_data *data = edmac->chan.private;
452         u32 control = 0;
453
454         if (!data) {
455                 /* This is memcpy channel, nothing to configure */
456                 writel(control, edmac->regs + M2M_CONTROL);
457                 return 0;
458         }
459
460         switch (data->port) {
461         case EP93XX_DMA_SSP:
462                 /*
463                  * This was found via experimenting - anything less than 5
464                  * causes the channel to perform only a partial transfer which
465                  * leads to problems since we don't get DONE interrupt then.
466                  */
467                 control = (5 << M2M_CONTROL_PWSC_SHIFT);
468                 control |= M2M_CONTROL_NO_HDSK;
469
470                 if (data->direction == DMA_MEM_TO_DEV) {
471                         control |= M2M_CONTROL_DAH;
472                         control |= M2M_CONTROL_TM_TX;
473                         control |= M2M_CONTROL_RSS_SSPTX;
474                 } else {
475                         control |= M2M_CONTROL_SAH;
476                         control |= M2M_CONTROL_TM_RX;
477                         control |= M2M_CONTROL_RSS_SSPRX;
478                 }
479                 break;
480
481         case EP93XX_DMA_IDE:
482                 /*
483                  * This IDE part is totally untested. Values below are taken
484                  * from the EP93xx Users's Guide and might not be correct.
485                  */
486                 if (data->direction == DMA_MEM_TO_DEV) {
487                         /* Worst case from the UG */
488                         control = (3 << M2M_CONTROL_PWSC_SHIFT);
489                         control |= M2M_CONTROL_DAH;
490                         control |= M2M_CONTROL_TM_TX;
491                 } else {
492                         control = (2 << M2M_CONTROL_PWSC_SHIFT);
493                         control |= M2M_CONTROL_SAH;
494                         control |= M2M_CONTROL_TM_RX;
495                 }
496
497                 control |= M2M_CONTROL_NO_HDSK;
498                 control |= M2M_CONTROL_RSS_IDE;
499                 control |= M2M_CONTROL_PW_16;
500                 break;
501
502         default:
503                 return -EINVAL;
504         }
505
506         writel(control, edmac->regs + M2M_CONTROL);
507         return 0;
508 }
509
510 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
511 {
512         /* Just disable the channel */
513         writel(0, edmac->regs + M2M_CONTROL);
514 }
515
516 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
517 {
518         struct ep93xx_dma_desc *desc;
519
520         desc = ep93xx_dma_get_active(edmac);
521         if (!desc) {
522                 dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
523                 return;
524         }
525
526         if (edmac->buffer == 0) {
527                 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
528                 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
529                 writel(desc->size, edmac->regs + M2M_BCR0);
530         } else {
531                 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
532                 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
533                 writel(desc->size, edmac->regs + M2M_BCR1);
534         }
535
536         edmac->buffer ^= 1;
537 }
538
539 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
540 {
541         struct ep93xx_dma_data *data = edmac->chan.private;
542         u32 control = readl(edmac->regs + M2M_CONTROL);
543
544         /*
545          * Since we allow clients to configure PW (peripheral width) we always
546          * clear PW bits here and then set them according what is given in
547          * the runtime configuration.
548          */
549         control &= ~M2M_CONTROL_PW_MASK;
550         control |= edmac->runtime_ctrl;
551
552         m2m_fill_desc(edmac);
553         control |= M2M_CONTROL_DONEINT;
554
555         if (ep93xx_dma_advance_active(edmac)) {
556                 m2m_fill_desc(edmac);
557                 control |= M2M_CONTROL_NFBINT;
558         }
559
560         /*
561          * Now we can finally enable the channel. For M2M channel this must be
562          * done _after_ the BCRx registers are programmed.
563          */
564         control |= M2M_CONTROL_ENABLE;
565         writel(control, edmac->regs + M2M_CONTROL);
566
567         if (!data) {
568                 /*
569                  * For memcpy channels the software trigger must be asserted
570                  * in order to start the memcpy operation.
571                  */
572                 control |= M2M_CONTROL_START;
573                 writel(control, edmac->regs + M2M_CONTROL);
574         }
575 }
576
577 /*
578  * According to EP93xx User's Guide, we should receive DONE interrupt when all
579  * M2M DMA controller transactions complete normally. This is not always the
580  * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
581  * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
582  * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
583  * In effect, disabling the channel when only DONE bit is set could stop
584  * currently running DMA transfer. To avoid this, we use Buffer FSM and
585  * Control FSM to check current state of DMA channel.
586  */
587 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
588 {
589         u32 status = readl(edmac->regs + M2M_STATUS);
590         u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
591         u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
592         bool done = status & M2M_STATUS_DONE;
593         bool last_done;
594         u32 control;
595         struct ep93xx_dma_desc *desc;
596
597         /* Accept only DONE and NFB interrupts */
598         if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
599                 return INTERRUPT_UNKNOWN;
600
601         if (done) {
602                 /* Clear the DONE bit */
603                 writel(0, edmac->regs + M2M_INTERRUPT);
604         }
605
606         /*
607          * Check whether we are done with descriptors or not. This, together
608          * with DMA channel state, determines action to take in interrupt.
609          */
610         desc = ep93xx_dma_get_active(edmac);
611         last_done = !desc || desc->txd.cookie;
612
613         /*
614          * Use M2M DMA Buffer FSM and Control FSM to check current state of
615          * DMA channel. Using DONE and NFB bits from channel status register
616          * or bits from channel interrupt register is not reliable.
617          */
618         if (!last_done &&
619             (buf_fsm == M2M_STATUS_BUF_NO ||
620              buf_fsm == M2M_STATUS_BUF_ON)) {
621                 /*
622                  * Two buffers are ready for update when Buffer FSM is in
623                  * DMA_NO_BUF state. Only one buffer can be prepared without
624                  * disabling the channel or polling the DONE bit.
625                  * To simplify things, always prepare only one buffer.
626                  */
627                 if (ep93xx_dma_advance_active(edmac)) {
628                         m2m_fill_desc(edmac);
629                         if (done && !edmac->chan.private) {
630                                 /* Software trigger for memcpy channel */
631                                 control = readl(edmac->regs + M2M_CONTROL);
632                                 control |= M2M_CONTROL_START;
633                                 writel(control, edmac->regs + M2M_CONTROL);
634                         }
635                         return INTERRUPT_NEXT_BUFFER;
636                 } else {
637                         last_done = true;
638                 }
639         }
640
641         /*
642          * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
643          * and Control FSM is in DMA_STALL state.
644          */
645         if (last_done &&
646             buf_fsm == M2M_STATUS_BUF_NO &&
647             ctl_fsm == M2M_STATUS_CTL_STALL) {
648                 /* Disable interrupts and the channel */
649                 control = readl(edmac->regs + M2M_CONTROL);
650                 control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
651                             | M2M_CONTROL_ENABLE);
652                 writel(control, edmac->regs + M2M_CONTROL);
653                 return INTERRUPT_DONE;
654         }
655
656         /*
657          * Nothing to do this time.
658          */
659         return INTERRUPT_NEXT_BUFFER;
660 }
661
662 /*
663  * DMA engine API implementation
664  */
665
666 static struct ep93xx_dma_desc *
667 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
668 {
669         struct ep93xx_dma_desc *desc, *_desc;
670         struct ep93xx_dma_desc *ret = NULL;
671         unsigned long flags;
672
673         spin_lock_irqsave(&edmac->lock, flags);
674         list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
675                 if (async_tx_test_ack(&desc->txd)) {
676                         list_del_init(&desc->node);
677
678                         /* Re-initialize the descriptor */
679                         desc->src_addr = 0;
680                         desc->dst_addr = 0;
681                         desc->size = 0;
682                         desc->complete = false;
683                         desc->txd.cookie = 0;
684                         desc->txd.callback = NULL;
685                         desc->txd.callback_param = NULL;
686
687                         ret = desc;
688                         break;
689                 }
690         }
691         spin_unlock_irqrestore(&edmac->lock, flags);
692         return ret;
693 }
694
695 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
696                                 struct ep93xx_dma_desc *desc)
697 {
698         if (desc) {
699                 unsigned long flags;
700
701                 spin_lock_irqsave(&edmac->lock, flags);
702                 list_splice_init(&desc->tx_list, &edmac->free_list);
703                 list_add(&desc->node, &edmac->free_list);
704                 spin_unlock_irqrestore(&edmac->lock, flags);
705         }
706 }
707
708 /**
709  * ep93xx_dma_advance_work - start processing the next pending transaction
710  * @edmac: channel
711  *
712  * If we have pending transactions queued and we are currently idling, this
713  * function takes the next queued transaction from the @edmac->queue and
714  * pushes it to the hardware for execution.
715  */
716 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
717 {
718         struct ep93xx_dma_desc *new;
719         unsigned long flags;
720
721         spin_lock_irqsave(&edmac->lock, flags);
722         if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
723                 spin_unlock_irqrestore(&edmac->lock, flags);
724                 return;
725         }
726
727         /* Take the next descriptor from the pending queue */
728         new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
729         list_del_init(&new->node);
730
731         ep93xx_dma_set_active(edmac, new);
732
733         /* Push it to the hardware */
734         edmac->edma->hw_submit(edmac);
735         spin_unlock_irqrestore(&edmac->lock, flags);
736 }
737
738 static void ep93xx_dma_tasklet(unsigned long data)
739 {
740         struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
741         struct ep93xx_dma_desc *desc, *d;
742         dma_async_tx_callback callback = NULL;
743         void *callback_param = NULL;
744         LIST_HEAD(list);
745
746         spin_lock_irq(&edmac->lock);
747         /*
748          * If dma_terminate_all() was called before we get to run, the active
749          * list has become empty. If that happens we aren't supposed to do
750          * anything more than call ep93xx_dma_advance_work().
751          */
752         desc = ep93xx_dma_get_active(edmac);
753         if (desc) {
754                 if (desc->complete) {
755                         /* mark descriptor complete for non cyclic case only */
756                         if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
757                                 dma_cookie_complete(&desc->txd);
758                         list_splice_init(&edmac->active, &list);
759                 }
760                 callback = desc->txd.callback;
761                 callback_param = desc->txd.callback_param;
762         }
763         spin_unlock_irq(&edmac->lock);
764
765         /* Pick up the next descriptor from the queue */
766         ep93xx_dma_advance_work(edmac);
767
768         /* Now we can release all the chained descriptors */
769         list_for_each_entry_safe(desc, d, &list, node) {
770                 dma_descriptor_unmap(&desc->txd);
771                 ep93xx_dma_desc_put(edmac, desc);
772         }
773
774         if (callback)
775                 callback(callback_param);
776 }
777
778 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
779 {
780         struct ep93xx_dma_chan *edmac = dev_id;
781         struct ep93xx_dma_desc *desc;
782         irqreturn_t ret = IRQ_HANDLED;
783
784         spin_lock(&edmac->lock);
785
786         desc = ep93xx_dma_get_active(edmac);
787         if (!desc) {
788                 dev_warn(chan2dev(edmac),
789                          "got interrupt while active list is empty\n");
790                 spin_unlock(&edmac->lock);
791                 return IRQ_NONE;
792         }
793
794         switch (edmac->edma->hw_interrupt(edmac)) {
795         case INTERRUPT_DONE:
796                 desc->complete = true;
797                 tasklet_schedule(&edmac->tasklet);
798                 break;
799
800         case INTERRUPT_NEXT_BUFFER:
801                 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
802                         tasklet_schedule(&edmac->tasklet);
803                 break;
804
805         default:
806                 dev_warn(chan2dev(edmac), "unknown interrupt!\n");
807                 ret = IRQ_NONE;
808                 break;
809         }
810
811         spin_unlock(&edmac->lock);
812         return ret;
813 }
814
815 /**
816  * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
817  * @tx: descriptor to be executed
818  *
819  * Function will execute given descriptor on the hardware or if the hardware
820  * is busy, queue the descriptor to be executed later on. Returns cookie which
821  * can be used to poll the status of the descriptor.
822  */
823 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
824 {
825         struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
826         struct ep93xx_dma_desc *desc;
827         dma_cookie_t cookie;
828         unsigned long flags;
829
830         spin_lock_irqsave(&edmac->lock, flags);
831         cookie = dma_cookie_assign(tx);
832
833         desc = container_of(tx, struct ep93xx_dma_desc, txd);
834
835         /*
836          * If nothing is currently prosessed, we push this descriptor
837          * directly to the hardware. Otherwise we put the descriptor
838          * to the pending queue.
839          */
840         if (list_empty(&edmac->active)) {
841                 ep93xx_dma_set_active(edmac, desc);
842                 edmac->edma->hw_submit(edmac);
843         } else {
844                 list_add_tail(&desc->node, &edmac->queue);
845         }
846
847         spin_unlock_irqrestore(&edmac->lock, flags);
848         return cookie;
849 }
850
851 /**
852  * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
853  * @chan: channel to allocate resources
854  *
855  * Function allocates necessary resources for the given DMA channel and
856  * returns number of allocated descriptors for the channel. Negative errno
857  * is returned in case of failure.
858  */
859 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
860 {
861         struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
862         struct ep93xx_dma_data *data = chan->private;
863         const char *name = dma_chan_name(chan);
864         int ret, i;
865
866         /* Sanity check the channel parameters */
867         if (!edmac->edma->m2m) {
868                 if (!data)
869                         return -EINVAL;
870                 if (data->port < EP93XX_DMA_I2S1 ||
871                     data->port > EP93XX_DMA_IRDA)
872                         return -EINVAL;
873                 if (data->direction != ep93xx_dma_chan_direction(chan))
874                         return -EINVAL;
875         } else {
876                 if (data) {
877                         switch (data->port) {
878                         case EP93XX_DMA_SSP:
879                         case EP93XX_DMA_IDE:
880                                 if (!is_slave_direction(data->direction))
881                                         return -EINVAL;
882                                 break;
883                         default:
884                                 return -EINVAL;
885                         }
886                 }
887         }
888
889         if (data && data->name)
890                 name = data->name;
891
892         ret = clk_enable(edmac->clk);
893         if (ret)
894                 return ret;
895
896         ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
897         if (ret)
898                 goto fail_clk_disable;
899
900         spin_lock_irq(&edmac->lock);
901         dma_cookie_init(&edmac->chan);
902         ret = edmac->edma->hw_setup(edmac);
903         spin_unlock_irq(&edmac->lock);
904
905         if (ret)
906                 goto fail_free_irq;
907
908         for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
909                 struct ep93xx_dma_desc *desc;
910
911                 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
912                 if (!desc) {
913                         dev_warn(chan2dev(edmac), "not enough descriptors\n");
914                         break;
915                 }
916
917                 INIT_LIST_HEAD(&desc->tx_list);
918
919                 dma_async_tx_descriptor_init(&desc->txd, chan);
920                 desc->txd.flags = DMA_CTRL_ACK;
921                 desc->txd.tx_submit = ep93xx_dma_tx_submit;
922
923                 ep93xx_dma_desc_put(edmac, desc);
924         }
925
926         return i;
927
928 fail_free_irq:
929         free_irq(edmac->irq, edmac);
930 fail_clk_disable:
931         clk_disable(edmac->clk);
932
933         return ret;
934 }
935
936 /**
937  * ep93xx_dma_free_chan_resources - release resources for the channel
938  * @chan: channel
939  *
940  * Function releases all the resources allocated for the given channel.
941  * The channel must be idle when this is called.
942  */
943 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
944 {
945         struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
946         struct ep93xx_dma_desc *desc, *d;
947         unsigned long flags;
948         LIST_HEAD(list);
949
950         BUG_ON(!list_empty(&edmac->active));
951         BUG_ON(!list_empty(&edmac->queue));
952
953         spin_lock_irqsave(&edmac->lock, flags);
954         edmac->edma->hw_shutdown(edmac);
955         edmac->runtime_addr = 0;
956         edmac->runtime_ctrl = 0;
957         edmac->buffer = 0;
958         list_splice_init(&edmac->free_list, &list);
959         spin_unlock_irqrestore(&edmac->lock, flags);
960
961         list_for_each_entry_safe(desc, d, &list, node)
962                 kfree(desc);
963
964         clk_disable(edmac->clk);
965         free_irq(edmac->irq, edmac);
966 }
967
968 /**
969  * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
970  * @chan: channel
971  * @dest: destination bus address
972  * @src: source bus address
973  * @len: size of the transaction
974  * @flags: flags for the descriptor
975  *
976  * Returns a valid DMA descriptor or %NULL in case of failure.
977  */
978 static struct dma_async_tx_descriptor *
979 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
980                            dma_addr_t src, size_t len, unsigned long flags)
981 {
982         struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
983         struct ep93xx_dma_desc *desc, *first;
984         size_t bytes, offset;
985
986         first = NULL;
987         for (offset = 0; offset < len; offset += bytes) {
988                 desc = ep93xx_dma_desc_get(edmac);
989                 if (!desc) {
990                         dev_warn(chan2dev(edmac), "couln't get descriptor\n");
991                         goto fail;
992                 }
993
994                 bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
995
996                 desc->src_addr = src + offset;
997                 desc->dst_addr = dest + offset;
998                 desc->size = bytes;
999
1000                 if (!first)
1001                         first = desc;
1002                 else
1003                         list_add_tail(&desc->node, &first->tx_list);
1004         }
1005
1006         first->txd.cookie = -EBUSY;
1007         first->txd.flags = flags;
1008
1009         return &first->txd;
1010 fail:
1011         ep93xx_dma_desc_put(edmac, first);
1012         return NULL;
1013 }
1014
1015 /**
1016  * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1017  * @chan: channel
1018  * @sgl: list of buffers to transfer
1019  * @sg_len: number of entries in @sgl
1020  * @dir: direction of tha DMA transfer
1021  * @flags: flags for the descriptor
1022  * @context: operation context (ignored)
1023  *
1024  * Returns a valid DMA descriptor or %NULL in case of failure.
1025  */
1026 static struct dma_async_tx_descriptor *
1027 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1028                          unsigned int sg_len, enum dma_transfer_direction dir,
1029                          unsigned long flags, void *context)
1030 {
1031         struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1032         struct ep93xx_dma_desc *desc, *first;
1033         struct scatterlist *sg;
1034         int i;
1035
1036         if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1037                 dev_warn(chan2dev(edmac),
1038                          "channel was configured with different direction\n");
1039                 return NULL;
1040         }
1041
1042         if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1043                 dev_warn(chan2dev(edmac),
1044                          "channel is already used for cyclic transfers\n");
1045                 return NULL;
1046         }
1047
1048         first = NULL;
1049         for_each_sg(sgl, sg, sg_len, i) {
1050                 size_t sg_len = sg_dma_len(sg);
1051
1052                 if (sg_len > DMA_MAX_CHAN_BYTES) {
1053                         dev_warn(chan2dev(edmac), "too big transfer size %d\n",
1054                                  sg_len);
1055                         goto fail;
1056                 }
1057
1058                 desc = ep93xx_dma_desc_get(edmac);
1059                 if (!desc) {
1060                         dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1061                         goto fail;
1062                 }
1063
1064                 if (dir == DMA_MEM_TO_DEV) {
1065                         desc->src_addr = sg_dma_address(sg);
1066                         desc->dst_addr = edmac->runtime_addr;
1067                 } else {
1068                         desc->src_addr = edmac->runtime_addr;
1069                         desc->dst_addr = sg_dma_address(sg);
1070                 }
1071                 desc->size = sg_len;
1072
1073                 if (!first)
1074                         first = desc;
1075                 else
1076                         list_add_tail(&desc->node, &first->tx_list);
1077         }
1078
1079         first->txd.cookie = -EBUSY;
1080         first->txd.flags = flags;
1081
1082         return &first->txd;
1083
1084 fail:
1085         ep93xx_dma_desc_put(edmac, first);
1086         return NULL;
1087 }
1088
1089 /**
1090  * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1091  * @chan: channel
1092  * @dma_addr: DMA mapped address of the buffer
1093  * @buf_len: length of the buffer (in bytes)
1094  * @period_len: length of a single period
1095  * @dir: direction of the operation
1096  * @flags: tx descriptor status flags
1097  *
1098  * Prepares a descriptor for cyclic DMA operation. This means that once the
1099  * descriptor is submitted, we will be submitting in a @period_len sized
1100  * buffers and calling callback once the period has been elapsed. Transfer
1101  * terminates only when client calls dmaengine_terminate_all() for this
1102  * channel.
1103  *
1104  * Returns a valid DMA descriptor or %NULL in case of failure.
1105  */
1106 static struct dma_async_tx_descriptor *
1107 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1108                            size_t buf_len, size_t period_len,
1109                            enum dma_transfer_direction dir, unsigned long flags)
1110 {
1111         struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1112         struct ep93xx_dma_desc *desc, *first;
1113         size_t offset = 0;
1114
1115         if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1116                 dev_warn(chan2dev(edmac),
1117                          "channel was configured with different direction\n");
1118                 return NULL;
1119         }
1120
1121         if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1122                 dev_warn(chan2dev(edmac),
1123                          "channel is already used for cyclic transfers\n");
1124                 return NULL;
1125         }
1126
1127         if (period_len > DMA_MAX_CHAN_BYTES) {
1128                 dev_warn(chan2dev(edmac), "too big period length %d\n",
1129                          period_len);
1130                 return NULL;
1131         }
1132
1133         /* Split the buffer into period size chunks */
1134         first = NULL;
1135         for (offset = 0; offset < buf_len; offset += period_len) {
1136                 desc = ep93xx_dma_desc_get(edmac);
1137                 if (!desc) {
1138                         dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1139                         goto fail;
1140                 }
1141
1142                 if (dir == DMA_MEM_TO_DEV) {
1143                         desc->src_addr = dma_addr + offset;
1144                         desc->dst_addr = edmac->runtime_addr;
1145                 } else {
1146                         desc->src_addr = edmac->runtime_addr;
1147                         desc->dst_addr = dma_addr + offset;
1148                 }
1149
1150                 desc->size = period_len;
1151
1152                 if (!first)
1153                         first = desc;
1154                 else
1155                         list_add_tail(&desc->node, &first->tx_list);
1156         }
1157
1158         first->txd.cookie = -EBUSY;
1159
1160         return &first->txd;
1161
1162 fail:
1163         ep93xx_dma_desc_put(edmac, first);
1164         return NULL;
1165 }
1166
1167 /**
1168  * ep93xx_dma_terminate_all - terminate all transactions
1169  * @chan: channel
1170  *
1171  * Stops all DMA transactions. All descriptors are put back to the
1172  * @edmac->free_list and callbacks are _not_ called.
1173  */
1174 static int ep93xx_dma_terminate_all(struct dma_chan *chan)
1175 {
1176         struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1177         struct ep93xx_dma_desc *desc, *_d;
1178         unsigned long flags;
1179         LIST_HEAD(list);
1180
1181         spin_lock_irqsave(&edmac->lock, flags);
1182         /* First we disable and flush the DMA channel */
1183         edmac->edma->hw_shutdown(edmac);
1184         clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1185         list_splice_init(&edmac->active, &list);
1186         list_splice_init(&edmac->queue, &list);
1187         /*
1188          * We then re-enable the channel. This way we can continue submitting
1189          * the descriptors by just calling ->hw_submit() again.
1190          */
1191         edmac->edma->hw_setup(edmac);
1192         spin_unlock_irqrestore(&edmac->lock, flags);
1193
1194         list_for_each_entry_safe(desc, _d, &list, node)
1195                 ep93xx_dma_desc_put(edmac, desc);
1196
1197         return 0;
1198 }
1199
1200 static int ep93xx_dma_slave_config(struct dma_chan *chan,
1201                                    struct dma_slave_config *config)
1202 {
1203         struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1204         enum dma_slave_buswidth width;
1205         unsigned long flags;
1206         u32 addr, ctrl;
1207
1208         if (!edmac->edma->m2m)
1209                 return -EINVAL;
1210
1211         switch (config->direction) {
1212         case DMA_DEV_TO_MEM:
1213                 width = config->src_addr_width;
1214                 addr = config->src_addr;
1215                 break;
1216
1217         case DMA_MEM_TO_DEV:
1218                 width = config->dst_addr_width;
1219                 addr = config->dst_addr;
1220                 break;
1221
1222         default:
1223                 return -EINVAL;
1224         }
1225
1226         switch (width) {
1227         case DMA_SLAVE_BUSWIDTH_1_BYTE:
1228                 ctrl = 0;
1229                 break;
1230         case DMA_SLAVE_BUSWIDTH_2_BYTES:
1231                 ctrl = M2M_CONTROL_PW_16;
1232                 break;
1233         case DMA_SLAVE_BUSWIDTH_4_BYTES:
1234                 ctrl = M2M_CONTROL_PW_32;
1235                 break;
1236         default:
1237                 return -EINVAL;
1238         }
1239
1240         spin_lock_irqsave(&edmac->lock, flags);
1241         edmac->runtime_addr = addr;
1242         edmac->runtime_ctrl = ctrl;
1243         spin_unlock_irqrestore(&edmac->lock, flags);
1244
1245         return 0;
1246 }
1247
1248 /**
1249  * ep93xx_dma_tx_status - check if a transaction is completed
1250  * @chan: channel
1251  * @cookie: transaction specific cookie
1252  * @state: state of the transaction is stored here if given
1253  *
1254  * This function can be used to query state of a given transaction.
1255  */
1256 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1257                                             dma_cookie_t cookie,
1258                                             struct dma_tx_state *state)
1259 {
1260         return dma_cookie_status(chan, cookie, state);
1261 }
1262
1263 /**
1264  * ep93xx_dma_issue_pending - push pending transactions to the hardware
1265  * @chan: channel
1266  *
1267  * When this function is called, all pending transactions are pushed to the
1268  * hardware and executed.
1269  */
1270 static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1271 {
1272         ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1273 }
1274
1275 static int __init ep93xx_dma_probe(struct platform_device *pdev)
1276 {
1277         struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1278         struct ep93xx_dma_engine *edma;
1279         struct dma_device *dma_dev;
1280         size_t edma_size;
1281         int ret, i;
1282
1283         edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1284         edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1285         if (!edma)
1286                 return -ENOMEM;
1287
1288         dma_dev = &edma->dma_dev;
1289         edma->m2m = platform_get_device_id(pdev)->driver_data;
1290         edma->num_channels = pdata->num_channels;
1291
1292         INIT_LIST_HEAD(&dma_dev->channels);
1293         for (i = 0; i < pdata->num_channels; i++) {
1294                 const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1295                 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1296
1297                 edmac->chan.device = dma_dev;
1298                 edmac->regs = cdata->base;
1299                 edmac->irq = cdata->irq;
1300                 edmac->edma = edma;
1301
1302                 edmac->clk = clk_get(NULL, cdata->name);
1303                 if (IS_ERR(edmac->clk)) {
1304                         dev_warn(&pdev->dev, "failed to get clock for %s\n",
1305                                  cdata->name);
1306                         continue;
1307                 }
1308
1309                 spin_lock_init(&edmac->lock);
1310                 INIT_LIST_HEAD(&edmac->active);
1311                 INIT_LIST_HEAD(&edmac->queue);
1312                 INIT_LIST_HEAD(&edmac->free_list);
1313                 tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1314                              (unsigned long)edmac);
1315
1316                 list_add_tail(&edmac->chan.device_node,
1317                               &dma_dev->channels);
1318         }
1319
1320         dma_cap_zero(dma_dev->cap_mask);
1321         dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1322         dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1323
1324         dma_dev->dev = &pdev->dev;
1325         dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1326         dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1327         dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1328         dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1329         dma_dev->device_config = ep93xx_dma_slave_config;
1330         dma_dev->device_terminate_all = ep93xx_dma_terminate_all;
1331         dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1332         dma_dev->device_tx_status = ep93xx_dma_tx_status;
1333
1334         dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1335
1336         if (edma->m2m) {
1337                 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1338                 dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1339
1340                 edma->hw_setup = m2m_hw_setup;
1341                 edma->hw_shutdown = m2m_hw_shutdown;
1342                 edma->hw_submit = m2m_hw_submit;
1343                 edma->hw_interrupt = m2m_hw_interrupt;
1344         } else {
1345                 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1346
1347                 edma->hw_setup = m2p_hw_setup;
1348                 edma->hw_shutdown = m2p_hw_shutdown;
1349                 edma->hw_submit = m2p_hw_submit;
1350                 edma->hw_interrupt = m2p_hw_interrupt;
1351         }
1352
1353         ret = dma_async_device_register(dma_dev);
1354         if (unlikely(ret)) {
1355                 for (i = 0; i < edma->num_channels; i++) {
1356                         struct ep93xx_dma_chan *edmac = &edma->channels[i];
1357                         if (!IS_ERR_OR_NULL(edmac->clk))
1358                                 clk_put(edmac->clk);
1359                 }
1360                 kfree(edma);
1361         } else {
1362                 dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1363                          edma->m2m ? "M" : "P");
1364         }
1365
1366         return ret;
1367 }
1368
1369 static const struct platform_device_id ep93xx_dma_driver_ids[] = {
1370         { "ep93xx-dma-m2p", 0 },
1371         { "ep93xx-dma-m2m", 1 },
1372         { },
1373 };
1374
1375 static struct platform_driver ep93xx_dma_driver = {
1376         .driver         = {
1377                 .name   = "ep93xx-dma",
1378         },
1379         .id_table       = ep93xx_dma_driver_ids,
1380 };
1381
1382 static int __init ep93xx_dma_module_init(void)
1383 {
1384         return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1385 }
1386 subsys_initcall(ep93xx_dma_module_init);
1387
1388 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1389 MODULE_DESCRIPTION("EP93xx DMA driver");
1390 MODULE_LICENSE("GPL");