GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / dma / dw-edma / dw-edma-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018-2019 Synopsys, Inc. and/or its affiliates.
4  * Synopsys DesignWare eDMA core driver
5  *
6  * Author: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
7  */
8
9 #include <linux/module.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/dma/edma.h>
18 #include <linux/dma-mapping.h>
19
20 #include "dw-edma-core.h"
21 #include "dw-edma-v0-core.h"
22 #include "../dmaengine.h"
23 #include "../virt-dma.h"
24
25 static inline
26 struct device *dchan2dev(struct dma_chan *dchan)
27 {
28         return &dchan->dev->device;
29 }
30
31 static inline
32 struct device *chan2dev(struct dw_edma_chan *chan)
33 {
34         return &chan->vc.chan.dev->device;
35 }
36
37 static inline
38 struct dw_edma_desc *vd2dw_edma_desc(struct virt_dma_desc *vd)
39 {
40         return container_of(vd, struct dw_edma_desc, vd);
41 }
42
43 static struct dw_edma_burst *dw_edma_alloc_burst(struct dw_edma_chunk *chunk)
44 {
45         struct dw_edma_burst *burst;
46
47         burst = kzalloc(sizeof(*burst), GFP_NOWAIT);
48         if (unlikely(!burst))
49                 return NULL;
50
51         INIT_LIST_HEAD(&burst->list);
52         if (chunk->burst) {
53                 /* Create and add new element into the linked list */
54                 chunk->bursts_alloc++;
55                 list_add_tail(&burst->list, &chunk->burst->list);
56         } else {
57                 /* List head */
58                 chunk->bursts_alloc = 0;
59                 chunk->burst = burst;
60         }
61
62         return burst;
63 }
64
65 static struct dw_edma_chunk *dw_edma_alloc_chunk(struct dw_edma_desc *desc)
66 {
67         struct dw_edma_chan *chan = desc->chan;
68         struct dw_edma *dw = chan->chip->dw;
69         struct dw_edma_chunk *chunk;
70
71         chunk = kzalloc(sizeof(*chunk), GFP_NOWAIT);
72         if (unlikely(!chunk))
73                 return NULL;
74
75         INIT_LIST_HEAD(&chunk->list);
76         chunk->chan = chan;
77         /* Toggling change bit (CB) in each chunk, this is a mechanism to
78          * inform the eDMA HW block that this is a new linked list ready
79          * to be consumed.
80          *  - Odd chunks originate CB equal to 0
81          *  - Even chunks originate CB equal to 1
82          */
83         chunk->cb = !(desc->chunks_alloc % 2);
84         chunk->ll_region.paddr = dw->ll_region.paddr + chan->ll_off;
85         chunk->ll_region.vaddr = dw->ll_region.vaddr + chan->ll_off;
86
87         if (desc->chunk) {
88                 /* Create and add new element into the linked list */
89                 if (!dw_edma_alloc_burst(chunk)) {
90                         kfree(chunk);
91                         return NULL;
92                 }
93                 desc->chunks_alloc++;
94                 list_add_tail(&chunk->list, &desc->chunk->list);
95         } else {
96                 /* List head */
97                 chunk->burst = NULL;
98                 desc->chunks_alloc = 0;
99                 desc->chunk = chunk;
100         }
101
102         return chunk;
103 }
104
105 static struct dw_edma_desc *dw_edma_alloc_desc(struct dw_edma_chan *chan)
106 {
107         struct dw_edma_desc *desc;
108
109         desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
110         if (unlikely(!desc))
111                 return NULL;
112
113         desc->chan = chan;
114         if (!dw_edma_alloc_chunk(desc)) {
115                 kfree(desc);
116                 return NULL;
117         }
118
119         return desc;
120 }
121
122 static void dw_edma_free_burst(struct dw_edma_chunk *chunk)
123 {
124         struct dw_edma_burst *child, *_next;
125
126         /* Remove all the list elements */
127         list_for_each_entry_safe(child, _next, &chunk->burst->list, list) {
128                 list_del(&child->list);
129                 kfree(child);
130                 chunk->bursts_alloc--;
131         }
132
133         /* Remove the list head */
134         kfree(child);
135         chunk->burst = NULL;
136 }
137
138 static void dw_edma_free_chunk(struct dw_edma_desc *desc)
139 {
140         struct dw_edma_chunk *child, *_next;
141
142         if (!desc->chunk)
143                 return;
144
145         /* Remove all the list elements */
146         list_for_each_entry_safe(child, _next, &desc->chunk->list, list) {
147                 dw_edma_free_burst(child);
148                 list_del(&child->list);
149                 kfree(child);
150                 desc->chunks_alloc--;
151         }
152
153         /* Remove the list head */
154         kfree(child);
155         desc->chunk = NULL;
156 }
157
158 static void dw_edma_free_desc(struct dw_edma_desc *desc)
159 {
160         dw_edma_free_chunk(desc);
161         kfree(desc);
162 }
163
164 static void vchan_free_desc(struct virt_dma_desc *vdesc)
165 {
166         dw_edma_free_desc(vd2dw_edma_desc(vdesc));
167 }
168
169 static void dw_edma_start_transfer(struct dw_edma_chan *chan)
170 {
171         struct dw_edma_chunk *child;
172         struct dw_edma_desc *desc;
173         struct virt_dma_desc *vd;
174
175         vd = vchan_next_desc(&chan->vc);
176         if (!vd)
177                 return;
178
179         desc = vd2dw_edma_desc(vd);
180         if (!desc)
181                 return;
182
183         child = list_first_entry_or_null(&desc->chunk->list,
184                                          struct dw_edma_chunk, list);
185         if (!child)
186                 return;
187
188         dw_edma_v0_core_start(child, !desc->xfer_sz);
189         desc->xfer_sz += child->ll_region.sz;
190         dw_edma_free_burst(child);
191         list_del(&child->list);
192         kfree(child);
193         desc->chunks_alloc--;
194 }
195
196 static int dw_edma_device_config(struct dma_chan *dchan,
197                                  struct dma_slave_config *config)
198 {
199         struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
200
201         memcpy(&chan->config, config, sizeof(*config));
202         chan->configured = true;
203
204         return 0;
205 }
206
207 static int dw_edma_device_pause(struct dma_chan *dchan)
208 {
209         struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
210         int err = 0;
211
212         if (!chan->configured)
213                 err = -EPERM;
214         else if (chan->status != EDMA_ST_BUSY)
215                 err = -EPERM;
216         else if (chan->request != EDMA_REQ_NONE)
217                 err = -EPERM;
218         else
219                 chan->request = EDMA_REQ_PAUSE;
220
221         return err;
222 }
223
224 static int dw_edma_device_resume(struct dma_chan *dchan)
225 {
226         struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
227         int err = 0;
228
229         if (!chan->configured) {
230                 err = -EPERM;
231         } else if (chan->status != EDMA_ST_PAUSE) {
232                 err = -EPERM;
233         } else if (chan->request != EDMA_REQ_NONE) {
234                 err = -EPERM;
235         } else {
236                 chan->status = EDMA_ST_BUSY;
237                 dw_edma_start_transfer(chan);
238         }
239
240         return err;
241 }
242
243 static int dw_edma_device_terminate_all(struct dma_chan *dchan)
244 {
245         struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
246         int err = 0;
247         LIST_HEAD(head);
248
249         if (!chan->configured) {
250                 /* Do nothing */
251         } else if (chan->status == EDMA_ST_PAUSE) {
252                 chan->status = EDMA_ST_IDLE;
253                 chan->configured = false;
254         } else if (chan->status == EDMA_ST_IDLE) {
255                 chan->configured = false;
256         } else if (dw_edma_v0_core_ch_status(chan) == DMA_COMPLETE) {
257                 /*
258                  * The channel is in a false BUSY state, probably didn't
259                  * receive or lost an interrupt
260                  */
261                 chan->status = EDMA_ST_IDLE;
262                 chan->configured = false;
263         } else if (chan->request > EDMA_REQ_PAUSE) {
264                 err = -EPERM;
265         } else {
266                 chan->request = EDMA_REQ_STOP;
267         }
268
269         return err;
270 }
271
272 static void dw_edma_device_issue_pending(struct dma_chan *dchan)
273 {
274         struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
275         unsigned long flags;
276
277         spin_lock_irqsave(&chan->vc.lock, flags);
278         if (chan->configured && chan->request == EDMA_REQ_NONE &&
279             chan->status == EDMA_ST_IDLE && vchan_issue_pending(&chan->vc)) {
280                 chan->status = EDMA_ST_BUSY;
281                 dw_edma_start_transfer(chan);
282         }
283         spin_unlock_irqrestore(&chan->vc.lock, flags);
284 }
285
286 static enum dma_status
287 dw_edma_device_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
288                          struct dma_tx_state *txstate)
289 {
290         struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
291         struct dw_edma_desc *desc;
292         struct virt_dma_desc *vd;
293         unsigned long flags;
294         enum dma_status ret;
295         u32 residue = 0;
296
297         ret = dma_cookie_status(dchan, cookie, txstate);
298         if (ret == DMA_COMPLETE)
299                 return ret;
300
301         if (ret == DMA_IN_PROGRESS && chan->status == EDMA_ST_PAUSE)
302                 ret = DMA_PAUSED;
303
304         if (!txstate)
305                 goto ret_residue;
306
307         spin_lock_irqsave(&chan->vc.lock, flags);
308         vd = vchan_find_desc(&chan->vc, cookie);
309         if (vd) {
310                 desc = vd2dw_edma_desc(vd);
311                 if (desc)
312                         residue = desc->alloc_sz - desc->xfer_sz;
313         }
314         spin_unlock_irqrestore(&chan->vc.lock, flags);
315
316 ret_residue:
317         dma_set_residue(txstate, residue);
318
319         return ret;
320 }
321
322 static struct dma_async_tx_descriptor *
323 dw_edma_device_transfer(struct dw_edma_transfer *xfer)
324 {
325         struct dw_edma_chan *chan = dchan2dw_edma_chan(xfer->dchan);
326         enum dma_transfer_direction dir = xfer->direction;
327         phys_addr_t src_addr, dst_addr;
328         struct scatterlist *sg = NULL;
329         struct dw_edma_chunk *chunk;
330         struct dw_edma_burst *burst;
331         struct dw_edma_desc *desc;
332         u32 cnt;
333         int i;
334
335         if (!chan->configured)
336                 return NULL;
337
338         switch (chan->config.direction) {
339         case DMA_DEV_TO_MEM: /* local dma */
340                 if (dir == DMA_DEV_TO_MEM && chan->dir == EDMA_DIR_READ)
341                         break;
342                 return NULL;
343         case DMA_MEM_TO_DEV: /* local dma */
344                 if (dir == DMA_MEM_TO_DEV && chan->dir == EDMA_DIR_WRITE)
345                         break;
346                 return NULL;
347         default: /* remote dma */
348                 if (dir == DMA_MEM_TO_DEV && chan->dir == EDMA_DIR_READ)
349                         break;
350                 if (dir == DMA_DEV_TO_MEM && chan->dir == EDMA_DIR_WRITE)
351                         break;
352                 return NULL;
353         }
354
355         if (xfer->cyclic) {
356                 if (!xfer->xfer.cyclic.len || !xfer->xfer.cyclic.cnt)
357                         return NULL;
358         } else {
359                 if (xfer->xfer.sg.len < 1)
360                         return NULL;
361         }
362
363         desc = dw_edma_alloc_desc(chan);
364         if (unlikely(!desc))
365                 goto err_alloc;
366
367         chunk = dw_edma_alloc_chunk(desc);
368         if (unlikely(!chunk))
369                 goto err_alloc;
370
371         src_addr = chan->config.src_addr;
372         dst_addr = chan->config.dst_addr;
373
374         if (xfer->cyclic) {
375                 cnt = xfer->xfer.cyclic.cnt;
376         } else {
377                 cnt = xfer->xfer.sg.len;
378                 sg = xfer->xfer.sg.sgl;
379         }
380
381         for (i = 0; i < cnt; i++) {
382                 if (!xfer->cyclic && !sg)
383                         break;
384
385                 if (chunk->bursts_alloc == chan->ll_max) {
386                         chunk = dw_edma_alloc_chunk(desc);
387                         if (unlikely(!chunk))
388                                 goto err_alloc;
389                 }
390
391                 burst = dw_edma_alloc_burst(chunk);
392                 if (unlikely(!burst))
393                         goto err_alloc;
394
395                 if (xfer->cyclic)
396                         burst->sz = xfer->xfer.cyclic.len;
397                 else
398                         burst->sz = sg_dma_len(sg);
399
400                 chunk->ll_region.sz += burst->sz;
401                 desc->alloc_sz += burst->sz;
402
403                 if (dir == DMA_DEV_TO_MEM) {
404                         burst->sar = src_addr;
405                         if (xfer->cyclic) {
406                                 burst->dar = xfer->xfer.cyclic.paddr;
407                         } else {
408                                 burst->dar = dst_addr;
409                                 /* Unlike the typical assumption by other
410                                  * drivers/IPs the peripheral memory isn't
411                                  * a FIFO memory, in this case, it's a
412                                  * linear memory and that why the source
413                                  * and destination addresses are increased
414                                  * by the same portion (data length)
415                                  */
416                         }
417                 } else {
418                         burst->dar = dst_addr;
419                         if (xfer->cyclic) {
420                                 burst->sar = xfer->xfer.cyclic.paddr;
421                         } else {
422                                 burst->sar = src_addr;
423                                 /* Unlike the typical assumption by other
424                                  * drivers/IPs the peripheral memory isn't
425                                  * a FIFO memory, in this case, it's a
426                                  * linear memory and that why the source
427                                  * and destination addresses are increased
428                                  * by the same portion (data length)
429                                  */
430                         }
431                 }
432
433                 if (!xfer->cyclic) {
434                         src_addr += sg_dma_len(sg);
435                         dst_addr += sg_dma_len(sg);
436                         sg = sg_next(sg);
437                 }
438         }
439
440         return vchan_tx_prep(&chan->vc, &desc->vd, xfer->flags);
441
442 err_alloc:
443         if (desc)
444                 dw_edma_free_desc(desc);
445
446         return NULL;
447 }
448
449 static struct dma_async_tx_descriptor *
450 dw_edma_device_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
451                              unsigned int len,
452                              enum dma_transfer_direction direction,
453                              unsigned long flags, void *context)
454 {
455         struct dw_edma_transfer xfer;
456
457         xfer.dchan = dchan;
458         xfer.direction = direction;
459         xfer.xfer.sg.sgl = sgl;
460         xfer.xfer.sg.len = len;
461         xfer.flags = flags;
462         xfer.cyclic = false;
463
464         return dw_edma_device_transfer(&xfer);
465 }
466
467 static struct dma_async_tx_descriptor *
468 dw_edma_device_prep_dma_cyclic(struct dma_chan *dchan, dma_addr_t paddr,
469                                size_t len, size_t count,
470                                enum dma_transfer_direction direction,
471                                unsigned long flags)
472 {
473         struct dw_edma_transfer xfer;
474
475         xfer.dchan = dchan;
476         xfer.direction = direction;
477         xfer.xfer.cyclic.paddr = paddr;
478         xfer.xfer.cyclic.len = len;
479         xfer.xfer.cyclic.cnt = count;
480         xfer.flags = flags;
481         xfer.cyclic = true;
482
483         return dw_edma_device_transfer(&xfer);
484 }
485
486 static void dw_edma_done_interrupt(struct dw_edma_chan *chan)
487 {
488         struct dw_edma_desc *desc;
489         struct virt_dma_desc *vd;
490         unsigned long flags;
491
492         dw_edma_v0_core_clear_done_int(chan);
493
494         spin_lock_irqsave(&chan->vc.lock, flags);
495         vd = vchan_next_desc(&chan->vc);
496         if (vd) {
497                 switch (chan->request) {
498                 case EDMA_REQ_NONE:
499                         desc = vd2dw_edma_desc(vd);
500                         if (desc->chunks_alloc) {
501                                 chan->status = EDMA_ST_BUSY;
502                                 dw_edma_start_transfer(chan);
503                         } else {
504                                 list_del(&vd->node);
505                                 vchan_cookie_complete(vd);
506                                 chan->status = EDMA_ST_IDLE;
507                         }
508                         break;
509
510                 case EDMA_REQ_STOP:
511                         list_del(&vd->node);
512                         vchan_cookie_complete(vd);
513                         chan->request = EDMA_REQ_NONE;
514                         chan->status = EDMA_ST_IDLE;
515                         break;
516
517                 case EDMA_REQ_PAUSE:
518                         chan->request = EDMA_REQ_NONE;
519                         chan->status = EDMA_ST_PAUSE;
520                         break;
521
522                 default:
523                         break;
524                 }
525         }
526         spin_unlock_irqrestore(&chan->vc.lock, flags);
527 }
528
529 static void dw_edma_abort_interrupt(struct dw_edma_chan *chan)
530 {
531         struct virt_dma_desc *vd;
532         unsigned long flags;
533
534         dw_edma_v0_core_clear_abort_int(chan);
535
536         spin_lock_irqsave(&chan->vc.lock, flags);
537         vd = vchan_next_desc(&chan->vc);
538         if (vd) {
539                 list_del(&vd->node);
540                 vchan_cookie_complete(vd);
541         }
542         spin_unlock_irqrestore(&chan->vc.lock, flags);
543         chan->request = EDMA_REQ_NONE;
544         chan->status = EDMA_ST_IDLE;
545 }
546
547 static irqreturn_t dw_edma_interrupt(int irq, void *data, bool write)
548 {
549         struct dw_edma_irq *dw_irq = data;
550         struct dw_edma *dw = dw_irq->dw;
551         unsigned long total, pos, val;
552         unsigned long off;
553         u32 mask;
554
555         if (write) {
556                 total = dw->wr_ch_cnt;
557                 off = 0;
558                 mask = dw_irq->wr_mask;
559         } else {
560                 total = dw->rd_ch_cnt;
561                 off = dw->wr_ch_cnt;
562                 mask = dw_irq->rd_mask;
563         }
564
565         val = dw_edma_v0_core_status_done_int(dw, write ?
566                                                           EDMA_DIR_WRITE :
567                                                           EDMA_DIR_READ);
568         val &= mask;
569         for_each_set_bit(pos, &val, total) {
570                 struct dw_edma_chan *chan = &dw->chan[pos + off];
571
572                 dw_edma_done_interrupt(chan);
573         }
574
575         val = dw_edma_v0_core_status_abort_int(dw, write ?
576                                                            EDMA_DIR_WRITE :
577                                                            EDMA_DIR_READ);
578         val &= mask;
579         for_each_set_bit(pos, &val, total) {
580                 struct dw_edma_chan *chan = &dw->chan[pos + off];
581
582                 dw_edma_abort_interrupt(chan);
583         }
584
585         return IRQ_HANDLED;
586 }
587
588 static inline irqreturn_t dw_edma_interrupt_write(int irq, void *data)
589 {
590         return dw_edma_interrupt(irq, data, true);
591 }
592
593 static inline irqreturn_t dw_edma_interrupt_read(int irq, void *data)
594 {
595         return dw_edma_interrupt(irq, data, false);
596 }
597
598 static irqreturn_t dw_edma_interrupt_common(int irq, void *data)
599 {
600         dw_edma_interrupt(irq, data, true);
601         dw_edma_interrupt(irq, data, false);
602
603         return IRQ_HANDLED;
604 }
605
606 static int dw_edma_alloc_chan_resources(struct dma_chan *dchan)
607 {
608         struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
609
610         if (chan->status != EDMA_ST_IDLE)
611                 return -EBUSY;
612
613         pm_runtime_get(chan->chip->dev);
614
615         return 0;
616 }
617
618 static void dw_edma_free_chan_resources(struct dma_chan *dchan)
619 {
620         unsigned long timeout = jiffies + msecs_to_jiffies(5000);
621         struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
622         int ret;
623
624         while (time_before(jiffies, timeout)) {
625                 ret = dw_edma_device_terminate_all(dchan);
626                 if (!ret)
627                         break;
628
629                 if (time_after_eq(jiffies, timeout))
630                         return;
631
632                 cpu_relax();
633         }
634
635         pm_runtime_put(chan->chip->dev);
636 }
637
638 static int dw_edma_channel_setup(struct dw_edma_chip *chip, bool write,
639                                  u32 wr_alloc, u32 rd_alloc)
640 {
641         struct dw_edma_region *dt_region;
642         struct device *dev = chip->dev;
643         struct dw_edma *dw = chip->dw;
644         struct dw_edma_chan *chan;
645         size_t ll_chunk, dt_chunk;
646         struct dw_edma_irq *irq;
647         struct dma_device *dma;
648         u32 i, j, cnt, ch_cnt;
649         u32 alloc, off_alloc;
650         int err = 0;
651         u32 pos;
652
653         ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
654         ll_chunk = dw->ll_region.sz;
655         dt_chunk = dw->dt_region.sz;
656
657         /* Calculate linked list chunk for each channel */
658         ll_chunk /= roundup_pow_of_two(ch_cnt);
659
660         /* Calculate linked list chunk for each channel */
661         dt_chunk /= roundup_pow_of_two(ch_cnt);
662
663         if (write) {
664                 i = 0;
665                 cnt = dw->wr_ch_cnt;
666                 dma = &dw->wr_edma;
667                 alloc = wr_alloc;
668                 off_alloc = 0;
669         } else {
670                 i = dw->wr_ch_cnt;
671                 cnt = dw->rd_ch_cnt;
672                 dma = &dw->rd_edma;
673                 alloc = rd_alloc;
674                 off_alloc = wr_alloc;
675         }
676
677         INIT_LIST_HEAD(&dma->channels);
678         for (j = 0; (alloc || dw->nr_irqs == 1) && j < cnt; j++, i++) {
679                 chan = &dw->chan[i];
680
681                 dt_region = devm_kzalloc(dev, sizeof(*dt_region), GFP_KERNEL);
682                 if (!dt_region)
683                         return -ENOMEM;
684
685                 chan->vc.chan.private = dt_region;
686
687                 chan->chip = chip;
688                 chan->id = j;
689                 chan->dir = write ? EDMA_DIR_WRITE : EDMA_DIR_READ;
690                 chan->configured = false;
691                 chan->request = EDMA_REQ_NONE;
692                 chan->status = EDMA_ST_IDLE;
693
694                 chan->ll_off = (ll_chunk * i);
695                 chan->ll_max = (ll_chunk / EDMA_LL_SZ) - 1;
696
697                 chan->dt_off = (dt_chunk * i);
698
699                 dev_vdbg(dev, "L. List:\tChannel %s[%u] off=0x%.8lx, max_cnt=%u\n",
700                          write ? "write" : "read", j,
701                          chan->ll_off, chan->ll_max);
702
703                 if (dw->nr_irqs == 1)
704                         pos = 0;
705                 else
706                         pos = off_alloc + (j % alloc);
707
708                 irq = &dw->irq[pos];
709
710                 if (write)
711                         irq->wr_mask |= BIT(j);
712                 else
713                         irq->rd_mask |= BIT(j);
714
715                 irq->dw = dw;
716                 memcpy(&chan->msi, &irq->msi, sizeof(chan->msi));
717
718                 dev_vdbg(dev, "MSI:\t\tChannel %s[%u] addr=0x%.8x%.8x, data=0x%.8x\n",
719                          write ? "write" : "read", j,
720                          chan->msi.address_hi, chan->msi.address_lo,
721                          chan->msi.data);
722
723                 chan->vc.desc_free = vchan_free_desc;
724                 vchan_init(&chan->vc, dma);
725
726                 dt_region->paddr = dw->dt_region.paddr + chan->dt_off;
727                 dt_region->vaddr = dw->dt_region.vaddr + chan->dt_off;
728                 dt_region->sz = dt_chunk;
729
730                 dev_vdbg(dev, "Data:\tChannel %s[%u] off=0x%.8lx\n",
731                          write ? "write" : "read", j, chan->dt_off);
732
733                 dw_edma_v0_core_device_config(chan);
734         }
735
736         /* Set DMA channel capabilities */
737         dma_cap_zero(dma->cap_mask);
738         dma_cap_set(DMA_SLAVE, dma->cap_mask);
739         dma_cap_set(DMA_CYCLIC, dma->cap_mask);
740         dma_cap_set(DMA_PRIVATE, dma->cap_mask);
741         dma->directions = BIT(write ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV);
742         dma->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
743         dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
744         dma->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
745         dma->chancnt = cnt;
746
747         /* Set DMA channel callbacks */
748         dma->dev = chip->dev;
749         dma->device_alloc_chan_resources = dw_edma_alloc_chan_resources;
750         dma->device_free_chan_resources = dw_edma_free_chan_resources;
751         dma->device_config = dw_edma_device_config;
752         dma->device_pause = dw_edma_device_pause;
753         dma->device_resume = dw_edma_device_resume;
754         dma->device_terminate_all = dw_edma_device_terminate_all;
755         dma->device_issue_pending = dw_edma_device_issue_pending;
756         dma->device_tx_status = dw_edma_device_tx_status;
757         dma->device_prep_slave_sg = dw_edma_device_prep_slave_sg;
758         dma->device_prep_dma_cyclic = dw_edma_device_prep_dma_cyclic;
759
760         dma_set_max_seg_size(dma->dev, U32_MAX);
761
762         /* Register DMA device */
763         err = dma_async_device_register(dma);
764
765         return err;
766 }
767
768 static inline void dw_edma_dec_irq_alloc(int *nr_irqs, u32 *alloc, u16 cnt)
769 {
770         if (*nr_irqs && *alloc < cnt) {
771                 (*alloc)++;
772                 (*nr_irqs)--;
773         }
774 }
775
776 static inline void dw_edma_add_irq_mask(u32 *mask, u32 alloc, u16 cnt)
777 {
778         while (*mask * alloc < cnt)
779                 (*mask)++;
780 }
781
782 static int dw_edma_irq_request(struct dw_edma_chip *chip,
783                                u32 *wr_alloc, u32 *rd_alloc)
784 {
785         struct device *dev = chip->dev;
786         struct dw_edma *dw = chip->dw;
787         u32 wr_mask = 1;
788         u32 rd_mask = 1;
789         int i, err = 0;
790         u32 ch_cnt;
791         int irq;
792
793         ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
794
795         if (dw->nr_irqs < 1)
796                 return -EINVAL;
797
798         if (dw->nr_irqs == 1) {
799                 /* Common IRQ shared among all channels */
800                 irq = dw->ops->irq_vector(dev, 0);
801                 err = request_irq(irq, dw_edma_interrupt_common,
802                                   IRQF_SHARED, dw->name, &dw->irq[0]);
803                 if (err) {
804                         dw->nr_irqs = 0;
805                         return err;
806                 }
807
808                 if (irq_get_msi_desc(irq))
809                         get_cached_msi_msg(irq, &dw->irq[0].msi);
810         } else {
811                 /* Distribute IRQs equally among all channels */
812                 int tmp = dw->nr_irqs;
813
814                 while (tmp && (*wr_alloc + *rd_alloc) < ch_cnt) {
815                         dw_edma_dec_irq_alloc(&tmp, wr_alloc, dw->wr_ch_cnt);
816                         dw_edma_dec_irq_alloc(&tmp, rd_alloc, dw->rd_ch_cnt);
817                 }
818
819                 dw_edma_add_irq_mask(&wr_mask, *wr_alloc, dw->wr_ch_cnt);
820                 dw_edma_add_irq_mask(&rd_mask, *rd_alloc, dw->rd_ch_cnt);
821
822                 for (i = 0; i < (*wr_alloc + *rd_alloc); i++) {
823                         irq = dw->ops->irq_vector(dev, i);
824                         err = request_irq(irq,
825                                           i < *wr_alloc ?
826                                                 dw_edma_interrupt_write :
827                                                 dw_edma_interrupt_read,
828                                           IRQF_SHARED, dw->name,
829                                           &dw->irq[i]);
830                         if (err) {
831                                 dw->nr_irqs = i;
832                                 return err;
833                         }
834
835                         if (irq_get_msi_desc(irq))
836                                 get_cached_msi_msg(irq, &dw->irq[i].msi);
837                 }
838
839                 dw->nr_irqs = i;
840         }
841
842         return err;
843 }
844
845 int dw_edma_probe(struct dw_edma_chip *chip)
846 {
847         struct device *dev;
848         struct dw_edma *dw;
849         u32 wr_alloc = 0;
850         u32 rd_alloc = 0;
851         int i, err;
852
853         if (!chip)
854                 return -EINVAL;
855
856         dev = chip->dev;
857         if (!dev)
858                 return -EINVAL;
859
860         dw = chip->dw;
861         if (!dw || !dw->irq || !dw->ops || !dw->ops->irq_vector)
862                 return -EINVAL;
863
864         raw_spin_lock_init(&dw->lock);
865
866         /* Find out how many write channels are supported by hardware */
867         dw->wr_ch_cnt = dw_edma_v0_core_ch_count(dw, EDMA_DIR_WRITE);
868         if (!dw->wr_ch_cnt)
869                 return -EINVAL;
870
871         /* Find out how many read channels are supported by hardware */
872         dw->rd_ch_cnt = dw_edma_v0_core_ch_count(dw, EDMA_DIR_READ);
873         if (!dw->rd_ch_cnt)
874                 return -EINVAL;
875
876         dev_vdbg(dev, "Channels:\twrite=%d, read=%d\n",
877                  dw->wr_ch_cnt, dw->rd_ch_cnt);
878
879         /* Allocate channels */
880         dw->chan = devm_kcalloc(dev, dw->wr_ch_cnt + dw->rd_ch_cnt,
881                                 sizeof(*dw->chan), GFP_KERNEL);
882         if (!dw->chan)
883                 return -ENOMEM;
884
885         snprintf(dw->name, sizeof(dw->name), "dw-edma-core:%d", chip->id);
886
887         /* Disable eDMA, only to establish the ideal initial conditions */
888         dw_edma_v0_core_off(dw);
889
890         /* Request IRQs */
891         err = dw_edma_irq_request(chip, &wr_alloc, &rd_alloc);
892         if (err)
893                 return err;
894
895         /* Setup write channels */
896         err = dw_edma_channel_setup(chip, true, wr_alloc, rd_alloc);
897         if (err)
898                 goto err_irq_free;
899
900         /* Setup read channels */
901         err = dw_edma_channel_setup(chip, false, wr_alloc, rd_alloc);
902         if (err)
903                 goto err_irq_free;
904
905         /* Power management */
906         pm_runtime_enable(dev);
907
908         /* Turn debugfs on */
909         dw_edma_v0_core_debugfs_on(chip);
910
911         return 0;
912
913 err_irq_free:
914         for (i = (dw->nr_irqs - 1); i >= 0; i--)
915                 free_irq(dw->ops->irq_vector(dev, i), &dw->irq[i]);
916
917         dw->nr_irqs = 0;
918
919         return err;
920 }
921 EXPORT_SYMBOL_GPL(dw_edma_probe);
922
923 int dw_edma_remove(struct dw_edma_chip *chip)
924 {
925         struct dw_edma_chan *chan, *_chan;
926         struct device *dev = chip->dev;
927         struct dw_edma *dw = chip->dw;
928         int i;
929
930         /* Disable eDMA */
931         dw_edma_v0_core_off(dw);
932
933         /* Free irqs */
934         for (i = (dw->nr_irqs - 1); i >= 0; i--)
935                 free_irq(dw->ops->irq_vector(dev, i), &dw->irq[i]);
936
937         /* Power management */
938         pm_runtime_disable(dev);
939
940         /* Deregister eDMA device */
941         dma_async_device_unregister(&dw->wr_edma);
942         list_for_each_entry_safe(chan, _chan, &dw->wr_edma.channels,
943                                  vc.chan.device_node) {
944                 tasklet_kill(&chan->vc.task);
945                 list_del(&chan->vc.chan.device_node);
946         }
947
948         dma_async_device_unregister(&dw->rd_edma);
949         list_for_each_entry_safe(chan, _chan, &dw->rd_edma.channels,
950                                  vc.chan.device_node) {
951                 tasklet_kill(&chan->vc.task);
952                 list_del(&chan->vc.chan.device_node);
953         }
954
955         /* Turn debugfs off */
956         dw_edma_v0_core_debugfs_off();
957
958         return 0;
959 }
960 EXPORT_SYMBOL_GPL(dw_edma_remove);
961
962 MODULE_LICENSE("GPL v2");
963 MODULE_DESCRIPTION("Synopsys DesignWare eDMA controller core driver");
964 MODULE_AUTHOR("Gustavo Pimentel <gustavo.pimentel@synopsys.com>");