GNU Linux-libre 6.1.24-gnu
[releases.git] / drivers / dma / dw-axi-dmac / dw-axi-dmac-platform.c
1 // SPDX-License-Identifier: GPL-2.0
2 // (C) 2017-2018 Synopsys, Inc. (www.synopsys.com)
3
4 /*
5  * Synopsys DesignWare AXI DMA Controller driver.
6  *
7  * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
8  */
9
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-64-nonatomic-lo-hi.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/property.h>
28 #include <linux/slab.h>
29 #include <linux/types.h>
30
31 #include "dw-axi-dmac.h"
32 #include "../dmaengine.h"
33 #include "../virt-dma.h"
34
35 /*
36  * The set of bus widths supported by the DMA controller. DW AXI DMAC supports
37  * master data bus width up to 512 bits (for both AXI master interfaces), but
38  * it depends on IP block configuration.
39  */
40 #define AXI_DMA_BUSWIDTHS                 \
41         (DMA_SLAVE_BUSWIDTH_1_BYTE      | \
42         DMA_SLAVE_BUSWIDTH_2_BYTES      | \
43         DMA_SLAVE_BUSWIDTH_4_BYTES      | \
44         DMA_SLAVE_BUSWIDTH_8_BYTES      | \
45         DMA_SLAVE_BUSWIDTH_16_BYTES     | \
46         DMA_SLAVE_BUSWIDTH_32_BYTES     | \
47         DMA_SLAVE_BUSWIDTH_64_BYTES)
48
49 static inline void
50 axi_dma_iowrite32(struct axi_dma_chip *chip, u32 reg, u32 val)
51 {
52         iowrite32(val, chip->regs + reg);
53 }
54
55 static inline u32 axi_dma_ioread32(struct axi_dma_chip *chip, u32 reg)
56 {
57         return ioread32(chip->regs + reg);
58 }
59
60 static inline void
61 axi_chan_iowrite32(struct axi_dma_chan *chan, u32 reg, u32 val)
62 {
63         iowrite32(val, chan->chan_regs + reg);
64 }
65
66 static inline u32 axi_chan_ioread32(struct axi_dma_chan *chan, u32 reg)
67 {
68         return ioread32(chan->chan_regs + reg);
69 }
70
71 static inline void
72 axi_chan_iowrite64(struct axi_dma_chan *chan, u32 reg, u64 val)
73 {
74         /*
75          * We split one 64 bit write for two 32 bit write as some HW doesn't
76          * support 64 bit access.
77          */
78         iowrite32(lower_32_bits(val), chan->chan_regs + reg);
79         iowrite32(upper_32_bits(val), chan->chan_regs + reg + 4);
80 }
81
82 static inline void axi_chan_config_write(struct axi_dma_chan *chan,
83                                          struct axi_dma_chan_config *config)
84 {
85         u32 cfg_lo, cfg_hi;
86
87         cfg_lo = (config->dst_multblk_type << CH_CFG_L_DST_MULTBLK_TYPE_POS |
88                   config->src_multblk_type << CH_CFG_L_SRC_MULTBLK_TYPE_POS);
89         if (chan->chip->dw->hdata->reg_map_8_channels) {
90                 cfg_hi = config->tt_fc << CH_CFG_H_TT_FC_POS |
91                          config->hs_sel_src << CH_CFG_H_HS_SEL_SRC_POS |
92                          config->hs_sel_dst << CH_CFG_H_HS_SEL_DST_POS |
93                          config->src_per << CH_CFG_H_SRC_PER_POS |
94                          config->dst_per << CH_CFG_H_DST_PER_POS |
95                          config->prior << CH_CFG_H_PRIORITY_POS;
96         } else {
97                 cfg_lo |= config->src_per << CH_CFG2_L_SRC_PER_POS |
98                           config->dst_per << CH_CFG2_L_DST_PER_POS;
99                 cfg_hi = config->tt_fc << CH_CFG2_H_TT_FC_POS |
100                          config->hs_sel_src << CH_CFG2_H_HS_SEL_SRC_POS |
101                          config->hs_sel_dst << CH_CFG2_H_HS_SEL_DST_POS |
102                          config->prior << CH_CFG2_H_PRIORITY_POS;
103         }
104         axi_chan_iowrite32(chan, CH_CFG_L, cfg_lo);
105         axi_chan_iowrite32(chan, CH_CFG_H, cfg_hi);
106 }
107
108 static inline void axi_dma_disable(struct axi_dma_chip *chip)
109 {
110         u32 val;
111
112         val = axi_dma_ioread32(chip, DMAC_CFG);
113         val &= ~DMAC_EN_MASK;
114         axi_dma_iowrite32(chip, DMAC_CFG, val);
115 }
116
117 static inline void axi_dma_enable(struct axi_dma_chip *chip)
118 {
119         u32 val;
120
121         val = axi_dma_ioread32(chip, DMAC_CFG);
122         val |= DMAC_EN_MASK;
123         axi_dma_iowrite32(chip, DMAC_CFG, val);
124 }
125
126 static inline void axi_dma_irq_disable(struct axi_dma_chip *chip)
127 {
128         u32 val;
129
130         val = axi_dma_ioread32(chip, DMAC_CFG);
131         val &= ~INT_EN_MASK;
132         axi_dma_iowrite32(chip, DMAC_CFG, val);
133 }
134
135 static inline void axi_dma_irq_enable(struct axi_dma_chip *chip)
136 {
137         u32 val;
138
139         val = axi_dma_ioread32(chip, DMAC_CFG);
140         val |= INT_EN_MASK;
141         axi_dma_iowrite32(chip, DMAC_CFG, val);
142 }
143
144 static inline void axi_chan_irq_disable(struct axi_dma_chan *chan, u32 irq_mask)
145 {
146         u32 val;
147
148         if (likely(irq_mask == DWAXIDMAC_IRQ_ALL)) {
149                 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, DWAXIDMAC_IRQ_NONE);
150         } else {
151                 val = axi_chan_ioread32(chan, CH_INTSTATUS_ENA);
152                 val &= ~irq_mask;
153                 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, val);
154         }
155 }
156
157 static inline void axi_chan_irq_set(struct axi_dma_chan *chan, u32 irq_mask)
158 {
159         axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, irq_mask);
160 }
161
162 static inline void axi_chan_irq_sig_set(struct axi_dma_chan *chan, u32 irq_mask)
163 {
164         axi_chan_iowrite32(chan, CH_INTSIGNAL_ENA, irq_mask);
165 }
166
167 static inline void axi_chan_irq_clear(struct axi_dma_chan *chan, u32 irq_mask)
168 {
169         axi_chan_iowrite32(chan, CH_INTCLEAR, irq_mask);
170 }
171
172 static inline u32 axi_chan_irq_read(struct axi_dma_chan *chan)
173 {
174         return axi_chan_ioread32(chan, CH_INTSTATUS);
175 }
176
177 static inline void axi_chan_disable(struct axi_dma_chan *chan)
178 {
179         u32 val;
180
181         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
182         val &= ~(BIT(chan->id) << DMAC_CHAN_EN_SHIFT);
183         if (chan->chip->dw->hdata->reg_map_8_channels)
184                 val |=   BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
185         else
186                 val |=   BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT;
187         axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
188 }
189
190 static inline void axi_chan_enable(struct axi_dma_chan *chan)
191 {
192         u32 val;
193
194         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
195         if (chan->chip->dw->hdata->reg_map_8_channels)
196                 val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
197                         BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
198         else
199                 val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
200                         BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT;
201         axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
202 }
203
204 static inline bool axi_chan_is_hw_enable(struct axi_dma_chan *chan)
205 {
206         u32 val;
207
208         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
209
210         return !!(val & (BIT(chan->id) << DMAC_CHAN_EN_SHIFT));
211 }
212
213 static void axi_dma_hw_init(struct axi_dma_chip *chip)
214 {
215         int ret;
216         u32 i;
217
218         for (i = 0; i < chip->dw->hdata->nr_channels; i++) {
219                 axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
220                 axi_chan_disable(&chip->dw->chan[i]);
221         }
222         ret = dma_set_mask_and_coherent(chip->dev, DMA_BIT_MASK(64));
223         if (ret)
224                 dev_warn(chip->dev, "Unable to set coherent mask\n");
225 }
226
227 static u32 axi_chan_get_xfer_width(struct axi_dma_chan *chan, dma_addr_t src,
228                                    dma_addr_t dst, size_t len)
229 {
230         u32 max_width = chan->chip->dw->hdata->m_data_width;
231
232         return __ffs(src | dst | len | BIT(max_width));
233 }
234
235 static inline const char *axi_chan_name(struct axi_dma_chan *chan)
236 {
237         return dma_chan_name(&chan->vc.chan);
238 }
239
240 static struct axi_dma_desc *axi_desc_alloc(u32 num)
241 {
242         struct axi_dma_desc *desc;
243
244         desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
245         if (!desc)
246                 return NULL;
247
248         desc->hw_desc = kcalloc(num, sizeof(*desc->hw_desc), GFP_NOWAIT);
249         if (!desc->hw_desc) {
250                 kfree(desc);
251                 return NULL;
252         }
253
254         return desc;
255 }
256
257 static struct axi_dma_lli *axi_desc_get(struct axi_dma_chan *chan,
258                                         dma_addr_t *addr)
259 {
260         struct axi_dma_lli *lli;
261         dma_addr_t phys;
262
263         lli = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
264         if (unlikely(!lli)) {
265                 dev_err(chan2dev(chan), "%s: not enough descriptors available\n",
266                         axi_chan_name(chan));
267                 return NULL;
268         }
269
270         atomic_inc(&chan->descs_allocated);
271         *addr = phys;
272
273         return lli;
274 }
275
276 static void axi_desc_put(struct axi_dma_desc *desc)
277 {
278         struct axi_dma_chan *chan = desc->chan;
279         int count = atomic_read(&chan->descs_allocated);
280         struct axi_dma_hw_desc *hw_desc;
281         int descs_put;
282
283         for (descs_put = 0; descs_put < count; descs_put++) {
284                 hw_desc = &desc->hw_desc[descs_put];
285                 dma_pool_free(chan->desc_pool, hw_desc->lli, hw_desc->llp);
286         }
287
288         kfree(desc->hw_desc);
289         kfree(desc);
290         atomic_sub(descs_put, &chan->descs_allocated);
291         dev_vdbg(chan2dev(chan), "%s: %d descs put, %d still allocated\n",
292                 axi_chan_name(chan), descs_put,
293                 atomic_read(&chan->descs_allocated));
294 }
295
296 static void vchan_desc_put(struct virt_dma_desc *vdesc)
297 {
298         axi_desc_put(vd_to_axi_desc(vdesc));
299 }
300
301 static enum dma_status
302 dma_chan_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
303                   struct dma_tx_state *txstate)
304 {
305         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
306         struct virt_dma_desc *vdesc;
307         enum dma_status status;
308         u32 completed_length;
309         unsigned long flags;
310         u32 completed_blocks;
311         size_t bytes = 0;
312         u32 length;
313         u32 len;
314
315         status = dma_cookie_status(dchan, cookie, txstate);
316         if (status == DMA_COMPLETE || !txstate)
317                 return status;
318
319         spin_lock_irqsave(&chan->vc.lock, flags);
320
321         vdesc = vchan_find_desc(&chan->vc, cookie);
322         if (vdesc) {
323                 length = vd_to_axi_desc(vdesc)->length;
324                 completed_blocks = vd_to_axi_desc(vdesc)->completed_blocks;
325                 len = vd_to_axi_desc(vdesc)->hw_desc[0].len;
326                 completed_length = completed_blocks * len;
327                 bytes = length - completed_length;
328         }
329
330         spin_unlock_irqrestore(&chan->vc.lock, flags);
331         dma_set_residue(txstate, bytes);
332
333         return status;
334 }
335
336 static void write_desc_llp(struct axi_dma_hw_desc *desc, dma_addr_t adr)
337 {
338         desc->lli->llp = cpu_to_le64(adr);
339 }
340
341 static void write_chan_llp(struct axi_dma_chan *chan, dma_addr_t adr)
342 {
343         axi_chan_iowrite64(chan, CH_LLP, adr);
344 }
345
346 static void dw_axi_dma_set_byte_halfword(struct axi_dma_chan *chan, bool set)
347 {
348         u32 offset = DMAC_APB_BYTE_WR_CH_EN;
349         u32 reg_width, val;
350
351         if (!chan->chip->apb_regs) {
352                 dev_dbg(chan->chip->dev, "apb_regs not initialized\n");
353                 return;
354         }
355
356         reg_width = __ffs(chan->config.dst_addr_width);
357         if (reg_width == DWAXIDMAC_TRANS_WIDTH_16)
358                 offset = DMAC_APB_HALFWORD_WR_CH_EN;
359
360         val = ioread32(chan->chip->apb_regs + offset);
361
362         if (set)
363                 val |= BIT(chan->id);
364         else
365                 val &= ~BIT(chan->id);
366
367         iowrite32(val, chan->chip->apb_regs + offset);
368 }
369 /* Called in chan locked context */
370 static void axi_chan_block_xfer_start(struct axi_dma_chan *chan,
371                                       struct axi_dma_desc *first)
372 {
373         u32 priority = chan->chip->dw->hdata->priority[chan->id];
374         struct axi_dma_chan_config config = {};
375         u32 irq_mask;
376         u8 lms = 0; /* Select AXI0 master for LLI fetching */
377
378         if (unlikely(axi_chan_is_hw_enable(chan))) {
379                 dev_err(chan2dev(chan), "%s is non-idle!\n",
380                         axi_chan_name(chan));
381
382                 return;
383         }
384
385         axi_dma_enable(chan->chip);
386
387         config.dst_multblk_type = DWAXIDMAC_MBLK_TYPE_LL;
388         config.src_multblk_type = DWAXIDMAC_MBLK_TYPE_LL;
389         config.tt_fc = DWAXIDMAC_TT_FC_MEM_TO_MEM_DMAC;
390         config.prior = priority;
391         config.hs_sel_dst = DWAXIDMAC_HS_SEL_HW;
392         config.hs_sel_src = DWAXIDMAC_HS_SEL_HW;
393         switch (chan->direction) {
394         case DMA_MEM_TO_DEV:
395                 dw_axi_dma_set_byte_halfword(chan, true);
396                 config.tt_fc = chan->config.device_fc ?
397                                 DWAXIDMAC_TT_FC_MEM_TO_PER_DST :
398                                 DWAXIDMAC_TT_FC_MEM_TO_PER_DMAC;
399                 if (chan->chip->apb_regs)
400                         config.dst_per = chan->id;
401                 else
402                         config.dst_per = chan->hw_handshake_num;
403                 break;
404         case DMA_DEV_TO_MEM:
405                 config.tt_fc = chan->config.device_fc ?
406                                 DWAXIDMAC_TT_FC_PER_TO_MEM_SRC :
407                                 DWAXIDMAC_TT_FC_PER_TO_MEM_DMAC;
408                 if (chan->chip->apb_regs)
409                         config.src_per = chan->id;
410                 else
411                         config.src_per = chan->hw_handshake_num;
412                 break;
413         default:
414                 break;
415         }
416         axi_chan_config_write(chan, &config);
417
418         write_chan_llp(chan, first->hw_desc[0].llp | lms);
419
420         irq_mask = DWAXIDMAC_IRQ_DMA_TRF | DWAXIDMAC_IRQ_ALL_ERR;
421         axi_chan_irq_sig_set(chan, irq_mask);
422
423         /* Generate 'suspend' status but don't generate interrupt */
424         irq_mask |= DWAXIDMAC_IRQ_SUSPENDED;
425         axi_chan_irq_set(chan, irq_mask);
426
427         axi_chan_enable(chan);
428 }
429
430 static void axi_chan_start_first_queued(struct axi_dma_chan *chan)
431 {
432         struct axi_dma_desc *desc;
433         struct virt_dma_desc *vd;
434
435         vd = vchan_next_desc(&chan->vc);
436         if (!vd)
437                 return;
438
439         desc = vd_to_axi_desc(vd);
440         dev_vdbg(chan2dev(chan), "%s: started %u\n", axi_chan_name(chan),
441                 vd->tx.cookie);
442         axi_chan_block_xfer_start(chan, desc);
443 }
444
445 static void dma_chan_issue_pending(struct dma_chan *dchan)
446 {
447         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
448         unsigned long flags;
449
450         spin_lock_irqsave(&chan->vc.lock, flags);
451         if (vchan_issue_pending(&chan->vc))
452                 axi_chan_start_first_queued(chan);
453         spin_unlock_irqrestore(&chan->vc.lock, flags);
454 }
455
456 static void dw_axi_dma_synchronize(struct dma_chan *dchan)
457 {
458         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
459
460         vchan_synchronize(&chan->vc);
461 }
462
463 static int dma_chan_alloc_chan_resources(struct dma_chan *dchan)
464 {
465         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
466
467         /* ASSERT: channel is idle */
468         if (axi_chan_is_hw_enable(chan)) {
469                 dev_err(chan2dev(chan), "%s is non-idle!\n",
470                         axi_chan_name(chan));
471                 return -EBUSY;
472         }
473
474         /* LLI address must be aligned to a 64-byte boundary */
475         chan->desc_pool = dma_pool_create(dev_name(chan2dev(chan)),
476                                           chan->chip->dev,
477                                           sizeof(struct axi_dma_lli),
478                                           64, 0);
479         if (!chan->desc_pool) {
480                 dev_err(chan2dev(chan), "No memory for descriptors\n");
481                 return -ENOMEM;
482         }
483         dev_vdbg(dchan2dev(dchan), "%s: allocating\n", axi_chan_name(chan));
484
485         pm_runtime_get(chan->chip->dev);
486
487         return 0;
488 }
489
490 static void dma_chan_free_chan_resources(struct dma_chan *dchan)
491 {
492         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
493
494         /* ASSERT: channel is idle */
495         if (axi_chan_is_hw_enable(chan))
496                 dev_err(dchan2dev(dchan), "%s is non-idle!\n",
497                         axi_chan_name(chan));
498
499         axi_chan_disable(chan);
500         axi_chan_irq_disable(chan, DWAXIDMAC_IRQ_ALL);
501
502         vchan_free_chan_resources(&chan->vc);
503
504         dma_pool_destroy(chan->desc_pool);
505         chan->desc_pool = NULL;
506         dev_vdbg(dchan2dev(dchan),
507                  "%s: free resources, descriptor still allocated: %u\n",
508                  axi_chan_name(chan), atomic_read(&chan->descs_allocated));
509
510         pm_runtime_put(chan->chip->dev);
511 }
512
513 static void dw_axi_dma_set_hw_channel(struct axi_dma_chan *chan, bool set)
514 {
515         struct axi_dma_chip *chip = chan->chip;
516         unsigned long reg_value, val;
517
518         if (!chip->apb_regs) {
519                 dev_err(chip->dev, "apb_regs not initialized\n");
520                 return;
521         }
522
523         /*
524          * An unused DMA channel has a default value of 0x3F.
525          * Lock the DMA channel by assign a handshake number to the channel.
526          * Unlock the DMA channel by assign 0x3F to the channel.
527          */
528         if (set)
529                 val = chan->hw_handshake_num;
530         else
531                 val = UNUSED_CHANNEL;
532
533         reg_value = lo_hi_readq(chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
534
535         /* Channel is already allocated, set handshake as per channel ID */
536         /* 64 bit write should handle for 8 channels */
537
538         reg_value &= ~(DMA_APB_HS_SEL_MASK <<
539                         (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
540         reg_value |= (val << (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
541         lo_hi_writeq(reg_value, chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
542
543         return;
544 }
545
546 /*
547  * If DW_axi_dmac sees CHx_CTL.ShadowReg_Or_LLI_Last bit of the fetched LLI
548  * as 1, it understands that the current block is the final block in the
549  * transfer and completes the DMA transfer operation at the end of current
550  * block transfer.
551  */
552 static void set_desc_last(struct axi_dma_hw_desc *desc)
553 {
554         u32 val;
555
556         val = le32_to_cpu(desc->lli->ctl_hi);
557         val |= CH_CTL_H_LLI_LAST;
558         desc->lli->ctl_hi = cpu_to_le32(val);
559 }
560
561 static void write_desc_sar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
562 {
563         desc->lli->sar = cpu_to_le64(adr);
564 }
565
566 static void write_desc_dar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
567 {
568         desc->lli->dar = cpu_to_le64(adr);
569 }
570
571 static void set_desc_src_master(struct axi_dma_hw_desc *desc)
572 {
573         u32 val;
574
575         /* Select AXI0 for source master */
576         val = le32_to_cpu(desc->lli->ctl_lo);
577         val &= ~CH_CTL_L_SRC_MAST;
578         desc->lli->ctl_lo = cpu_to_le32(val);
579 }
580
581 static void set_desc_dest_master(struct axi_dma_hw_desc *hw_desc,
582                                  struct axi_dma_desc *desc)
583 {
584         u32 val;
585
586         /* Select AXI1 for source master if available */
587         val = le32_to_cpu(hw_desc->lli->ctl_lo);
588         if (desc->chan->chip->dw->hdata->nr_masters > 1)
589                 val |= CH_CTL_L_DST_MAST;
590         else
591                 val &= ~CH_CTL_L_DST_MAST;
592
593         hw_desc->lli->ctl_lo = cpu_to_le32(val);
594 }
595
596 static int dw_axi_dma_set_hw_desc(struct axi_dma_chan *chan,
597                                   struct axi_dma_hw_desc *hw_desc,
598                                   dma_addr_t mem_addr, size_t len)
599 {
600         unsigned int data_width = BIT(chan->chip->dw->hdata->m_data_width);
601         unsigned int reg_width;
602         unsigned int mem_width;
603         dma_addr_t device_addr;
604         size_t axi_block_ts;
605         size_t block_ts;
606         u32 ctllo, ctlhi;
607         u32 burst_len;
608
609         axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
610
611         mem_width = __ffs(data_width | mem_addr | len);
612         if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
613                 mem_width = DWAXIDMAC_TRANS_WIDTH_32;
614
615         if (!IS_ALIGNED(mem_addr, 4)) {
616                 dev_err(chan->chip->dev, "invalid buffer alignment\n");
617                 return -EINVAL;
618         }
619
620         switch (chan->direction) {
621         case DMA_MEM_TO_DEV:
622                 reg_width = __ffs(chan->config.dst_addr_width);
623                 device_addr = chan->config.dst_addr;
624                 ctllo = reg_width << CH_CTL_L_DST_WIDTH_POS |
625                         mem_width << CH_CTL_L_SRC_WIDTH_POS |
626                         DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_DST_INC_POS |
627                         DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS;
628                 block_ts = len >> mem_width;
629                 break;
630         case DMA_DEV_TO_MEM:
631                 reg_width = __ffs(chan->config.src_addr_width);
632                 device_addr = chan->config.src_addr;
633                 ctllo = reg_width << CH_CTL_L_SRC_WIDTH_POS |
634                         mem_width << CH_CTL_L_DST_WIDTH_POS |
635                         DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
636                         DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_SRC_INC_POS;
637                 block_ts = len >> reg_width;
638                 break;
639         default:
640                 return -EINVAL;
641         }
642
643         if (block_ts > axi_block_ts)
644                 return -EINVAL;
645
646         hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
647         if (unlikely(!hw_desc->lli))
648                 return -ENOMEM;
649
650         ctlhi = CH_CTL_H_LLI_VALID;
651
652         if (chan->chip->dw->hdata->restrict_axi_burst_len) {
653                 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
654                 ctlhi |= CH_CTL_H_ARLEN_EN | CH_CTL_H_AWLEN_EN |
655                          burst_len << CH_CTL_H_ARLEN_POS |
656                          burst_len << CH_CTL_H_AWLEN_POS;
657         }
658
659         hw_desc->lli->ctl_hi = cpu_to_le32(ctlhi);
660
661         if (chan->direction == DMA_MEM_TO_DEV) {
662                 write_desc_sar(hw_desc, mem_addr);
663                 write_desc_dar(hw_desc, device_addr);
664         } else {
665                 write_desc_sar(hw_desc, device_addr);
666                 write_desc_dar(hw_desc, mem_addr);
667         }
668
669         hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
670
671         ctllo |= DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
672                  DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS;
673         hw_desc->lli->ctl_lo = cpu_to_le32(ctllo);
674
675         set_desc_src_master(hw_desc);
676
677         hw_desc->len = len;
678         return 0;
679 }
680
681 static size_t calculate_block_len(struct axi_dma_chan *chan,
682                                   dma_addr_t dma_addr, size_t buf_len,
683                                   enum dma_transfer_direction direction)
684 {
685         u32 data_width, reg_width, mem_width;
686         size_t axi_block_ts, block_len;
687
688         axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
689
690         switch (direction) {
691         case DMA_MEM_TO_DEV:
692                 data_width = BIT(chan->chip->dw->hdata->m_data_width);
693                 mem_width = __ffs(data_width | dma_addr | buf_len);
694                 if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
695                         mem_width = DWAXIDMAC_TRANS_WIDTH_32;
696
697                 block_len = axi_block_ts << mem_width;
698                 break;
699         case DMA_DEV_TO_MEM:
700                 reg_width = __ffs(chan->config.src_addr_width);
701                 block_len = axi_block_ts << reg_width;
702                 break;
703         default:
704                 block_len = 0;
705         }
706
707         return block_len;
708 }
709
710 static struct dma_async_tx_descriptor *
711 dw_axi_dma_chan_prep_cyclic(struct dma_chan *dchan, dma_addr_t dma_addr,
712                             size_t buf_len, size_t period_len,
713                             enum dma_transfer_direction direction,
714                             unsigned long flags)
715 {
716         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
717         struct axi_dma_hw_desc *hw_desc = NULL;
718         struct axi_dma_desc *desc = NULL;
719         dma_addr_t src_addr = dma_addr;
720         u32 num_periods, num_segments;
721         size_t axi_block_len;
722         u32 total_segments;
723         u32 segment_len;
724         unsigned int i;
725         int status;
726         u64 llp = 0;
727         u8 lms = 0; /* Select AXI0 master for LLI fetching */
728
729         num_periods = buf_len / period_len;
730
731         axi_block_len = calculate_block_len(chan, dma_addr, buf_len, direction);
732         if (axi_block_len == 0)
733                 return NULL;
734
735         num_segments = DIV_ROUND_UP(period_len, axi_block_len);
736         segment_len = DIV_ROUND_UP(period_len, num_segments);
737
738         total_segments = num_periods * num_segments;
739
740         desc = axi_desc_alloc(total_segments);
741         if (unlikely(!desc))
742                 goto err_desc_get;
743
744         chan->direction = direction;
745         desc->chan = chan;
746         chan->cyclic = true;
747         desc->length = 0;
748         desc->period_len = period_len;
749
750         for (i = 0; i < total_segments; i++) {
751                 hw_desc = &desc->hw_desc[i];
752
753                 status = dw_axi_dma_set_hw_desc(chan, hw_desc, src_addr,
754                                                 segment_len);
755                 if (status < 0)
756                         goto err_desc_get;
757
758                 desc->length += hw_desc->len;
759                 /* Set end-of-link to the linked descriptor, so that cyclic
760                  * callback function can be triggered during interrupt.
761                  */
762                 set_desc_last(hw_desc);
763
764                 src_addr += segment_len;
765         }
766
767         llp = desc->hw_desc[0].llp;
768
769         /* Managed transfer list */
770         do {
771                 hw_desc = &desc->hw_desc[--total_segments];
772                 write_desc_llp(hw_desc, llp | lms);
773                 llp = hw_desc->llp;
774         } while (total_segments);
775
776         dw_axi_dma_set_hw_channel(chan, true);
777
778         return vchan_tx_prep(&chan->vc, &desc->vd, flags);
779
780 err_desc_get:
781         if (desc)
782                 axi_desc_put(desc);
783
784         return NULL;
785 }
786
787 static struct dma_async_tx_descriptor *
788 dw_axi_dma_chan_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
789                               unsigned int sg_len,
790                               enum dma_transfer_direction direction,
791                               unsigned long flags, void *context)
792 {
793         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
794         struct axi_dma_hw_desc *hw_desc = NULL;
795         struct axi_dma_desc *desc = NULL;
796         u32 num_segments, segment_len;
797         unsigned int loop = 0;
798         struct scatterlist *sg;
799         size_t axi_block_len;
800         u32 len, num_sgs = 0;
801         unsigned int i;
802         dma_addr_t mem;
803         int status;
804         u64 llp = 0;
805         u8 lms = 0; /* Select AXI0 master for LLI fetching */
806
807         if (unlikely(!is_slave_direction(direction) || !sg_len))
808                 return NULL;
809
810         mem = sg_dma_address(sgl);
811         len = sg_dma_len(sgl);
812
813         axi_block_len = calculate_block_len(chan, mem, len, direction);
814         if (axi_block_len == 0)
815                 return NULL;
816
817         for_each_sg(sgl, sg, sg_len, i)
818                 num_sgs += DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
819
820         desc = axi_desc_alloc(num_sgs);
821         if (unlikely(!desc))
822                 goto err_desc_get;
823
824         desc->chan = chan;
825         desc->length = 0;
826         chan->direction = direction;
827
828         for_each_sg(sgl, sg, sg_len, i) {
829                 mem = sg_dma_address(sg);
830                 len = sg_dma_len(sg);
831                 num_segments = DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
832                 segment_len = DIV_ROUND_UP(sg_dma_len(sg), num_segments);
833
834                 do {
835                         hw_desc = &desc->hw_desc[loop++];
836                         status = dw_axi_dma_set_hw_desc(chan, hw_desc, mem, segment_len);
837                         if (status < 0)
838                                 goto err_desc_get;
839
840                         desc->length += hw_desc->len;
841                         len -= segment_len;
842                         mem += segment_len;
843                 } while (len >= segment_len);
844         }
845
846         /* Set end-of-link to the last link descriptor of list */
847         set_desc_last(&desc->hw_desc[num_sgs - 1]);
848
849         /* Managed transfer list */
850         do {
851                 hw_desc = &desc->hw_desc[--num_sgs];
852                 write_desc_llp(hw_desc, llp | lms);
853                 llp = hw_desc->llp;
854         } while (num_sgs);
855
856         dw_axi_dma_set_hw_channel(chan, true);
857
858         return vchan_tx_prep(&chan->vc, &desc->vd, flags);
859
860 err_desc_get:
861         if (desc)
862                 axi_desc_put(desc);
863
864         return NULL;
865 }
866
867 static struct dma_async_tx_descriptor *
868 dma_chan_prep_dma_memcpy(struct dma_chan *dchan, dma_addr_t dst_adr,
869                          dma_addr_t src_adr, size_t len, unsigned long flags)
870 {
871         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
872         size_t block_ts, max_block_ts, xfer_len;
873         struct axi_dma_hw_desc *hw_desc = NULL;
874         struct axi_dma_desc *desc = NULL;
875         u32 xfer_width, reg, num;
876         u64 llp = 0;
877         u8 lms = 0; /* Select AXI0 master for LLI fetching */
878
879         dev_dbg(chan2dev(chan), "%s: memcpy: src: %pad dst: %pad length: %zd flags: %#lx",
880                 axi_chan_name(chan), &src_adr, &dst_adr, len, flags);
881
882         max_block_ts = chan->chip->dw->hdata->block_size[chan->id];
883         xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, len);
884         num = DIV_ROUND_UP(len, max_block_ts << xfer_width);
885         desc = axi_desc_alloc(num);
886         if (unlikely(!desc))
887                 goto err_desc_get;
888
889         desc->chan = chan;
890         num = 0;
891         desc->length = 0;
892         while (len) {
893                 xfer_len = len;
894
895                 hw_desc = &desc->hw_desc[num];
896                 /*
897                  * Take care for the alignment.
898                  * Actually source and destination widths can be different, but
899                  * make them same to be simpler.
900                  */
901                 xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, xfer_len);
902
903                 /*
904                  * block_ts indicates the total number of data of width
905                  * to be transferred in a DMA block transfer.
906                  * BLOCK_TS register should be set to block_ts - 1
907                  */
908                 block_ts = xfer_len >> xfer_width;
909                 if (block_ts > max_block_ts) {
910                         block_ts = max_block_ts;
911                         xfer_len = max_block_ts << xfer_width;
912                 }
913
914                 hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
915                 if (unlikely(!hw_desc->lli))
916                         goto err_desc_get;
917
918                 write_desc_sar(hw_desc, src_adr);
919                 write_desc_dar(hw_desc, dst_adr);
920                 hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
921
922                 reg = CH_CTL_H_LLI_VALID;
923                 if (chan->chip->dw->hdata->restrict_axi_burst_len) {
924                         u32 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
925
926                         reg |= (CH_CTL_H_ARLEN_EN |
927                                 burst_len << CH_CTL_H_ARLEN_POS |
928                                 CH_CTL_H_AWLEN_EN |
929                                 burst_len << CH_CTL_H_AWLEN_POS);
930                 }
931                 hw_desc->lli->ctl_hi = cpu_to_le32(reg);
932
933                 reg = (DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
934                        DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS |
935                        xfer_width << CH_CTL_L_DST_WIDTH_POS |
936                        xfer_width << CH_CTL_L_SRC_WIDTH_POS |
937                        DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
938                        DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS);
939                 hw_desc->lli->ctl_lo = cpu_to_le32(reg);
940
941                 set_desc_src_master(hw_desc);
942                 set_desc_dest_master(hw_desc, desc);
943
944                 hw_desc->len = xfer_len;
945                 desc->length += hw_desc->len;
946                 /* update the length and addresses for the next loop cycle */
947                 len -= xfer_len;
948                 dst_adr += xfer_len;
949                 src_adr += xfer_len;
950                 num++;
951         }
952
953         /* Set end-of-link to the last link descriptor of list */
954         set_desc_last(&desc->hw_desc[num - 1]);
955         /* Managed transfer list */
956         do {
957                 hw_desc = &desc->hw_desc[--num];
958                 write_desc_llp(hw_desc, llp | lms);
959                 llp = hw_desc->llp;
960         } while (num);
961
962         return vchan_tx_prep(&chan->vc, &desc->vd, flags);
963
964 err_desc_get:
965         if (desc)
966                 axi_desc_put(desc);
967         return NULL;
968 }
969
970 static int dw_axi_dma_chan_slave_config(struct dma_chan *dchan,
971                                         struct dma_slave_config *config)
972 {
973         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
974
975         memcpy(&chan->config, config, sizeof(*config));
976
977         return 0;
978 }
979
980 static void axi_chan_dump_lli(struct axi_dma_chan *chan,
981                               struct axi_dma_hw_desc *desc)
982 {
983         if (!desc->lli) {
984                 dev_err(dchan2dev(&chan->vc.chan), "NULL LLI\n");
985                 return;
986         }
987
988         dev_err(dchan2dev(&chan->vc.chan),
989                 "SAR: 0x%llx DAR: 0x%llx LLP: 0x%llx BTS 0x%x CTL: 0x%x:%08x",
990                 le64_to_cpu(desc->lli->sar),
991                 le64_to_cpu(desc->lli->dar),
992                 le64_to_cpu(desc->lli->llp),
993                 le32_to_cpu(desc->lli->block_ts_lo),
994                 le32_to_cpu(desc->lli->ctl_hi),
995                 le32_to_cpu(desc->lli->ctl_lo));
996 }
997
998 static void axi_chan_list_dump_lli(struct axi_dma_chan *chan,
999                                    struct axi_dma_desc *desc_head)
1000 {
1001         int count = atomic_read(&chan->descs_allocated);
1002         int i;
1003
1004         for (i = 0; i < count; i++)
1005                 axi_chan_dump_lli(chan, &desc_head->hw_desc[i]);
1006 }
1007
1008 static noinline void axi_chan_handle_err(struct axi_dma_chan *chan, u32 status)
1009 {
1010         struct virt_dma_desc *vd;
1011         unsigned long flags;
1012
1013         spin_lock_irqsave(&chan->vc.lock, flags);
1014
1015         axi_chan_disable(chan);
1016
1017         /* The bad descriptor currently is in the head of vc list */
1018         vd = vchan_next_desc(&chan->vc);
1019         if (!vd) {
1020                 dev_err(chan2dev(chan), "BUG: %s, IRQ with no descriptors\n",
1021                         axi_chan_name(chan));
1022                 goto out;
1023         }
1024         /* Remove the completed descriptor from issued list */
1025         list_del(&vd->node);
1026
1027         /* WARN about bad descriptor */
1028         dev_err(chan2dev(chan),
1029                 "Bad descriptor submitted for %s, cookie: %d, irq: 0x%08x\n",
1030                 axi_chan_name(chan), vd->tx.cookie, status);
1031         axi_chan_list_dump_lli(chan, vd_to_axi_desc(vd));
1032
1033         vchan_cookie_complete(vd);
1034
1035         /* Try to restart the controller */
1036         axi_chan_start_first_queued(chan);
1037
1038 out:
1039         spin_unlock_irqrestore(&chan->vc.lock, flags);
1040 }
1041
1042 static void axi_chan_block_xfer_complete(struct axi_dma_chan *chan)
1043 {
1044         int count = atomic_read(&chan->descs_allocated);
1045         struct axi_dma_hw_desc *hw_desc;
1046         struct axi_dma_desc *desc;
1047         struct virt_dma_desc *vd;
1048         unsigned long flags;
1049         u64 llp;
1050         int i;
1051
1052         spin_lock_irqsave(&chan->vc.lock, flags);
1053         if (unlikely(axi_chan_is_hw_enable(chan))) {
1054                 dev_err(chan2dev(chan), "BUG: %s caught DWAXIDMAC_IRQ_DMA_TRF, but channel not idle!\n",
1055                         axi_chan_name(chan));
1056                 axi_chan_disable(chan);
1057         }
1058
1059         /* The completed descriptor currently is in the head of vc list */
1060         vd = vchan_next_desc(&chan->vc);
1061         if (!vd) {
1062                 dev_err(chan2dev(chan), "BUG: %s, IRQ with no descriptors\n",
1063                         axi_chan_name(chan));
1064                 goto out;
1065         }
1066
1067         if (chan->cyclic) {
1068                 desc = vd_to_axi_desc(vd);
1069                 if (desc) {
1070                         llp = lo_hi_readq(chan->chan_regs + CH_LLP);
1071                         for (i = 0; i < count; i++) {
1072                                 hw_desc = &desc->hw_desc[i];
1073                                 if (hw_desc->llp == llp) {
1074                                         axi_chan_irq_clear(chan, hw_desc->lli->status_lo);
1075                                         hw_desc->lli->ctl_hi |= CH_CTL_H_LLI_VALID;
1076                                         desc->completed_blocks = i;
1077
1078                                         if (((hw_desc->len * (i + 1)) % desc->period_len) == 0)
1079                                                 vchan_cyclic_callback(vd);
1080                                         break;
1081                                 }
1082                         }
1083
1084                         axi_chan_enable(chan);
1085                 }
1086         } else {
1087                 /* Remove the completed descriptor from issued list before completing */
1088                 list_del(&vd->node);
1089                 vchan_cookie_complete(vd);
1090
1091                 /* Submit queued descriptors after processing the completed ones */
1092                 axi_chan_start_first_queued(chan);
1093         }
1094
1095 out:
1096         spin_unlock_irqrestore(&chan->vc.lock, flags);
1097 }
1098
1099 static irqreturn_t dw_axi_dma_interrupt(int irq, void *dev_id)
1100 {
1101         struct axi_dma_chip *chip = dev_id;
1102         struct dw_axi_dma *dw = chip->dw;
1103         struct axi_dma_chan *chan;
1104
1105         u32 status, i;
1106
1107         /* Disable DMAC interrupts. We'll enable them after processing channels */
1108         axi_dma_irq_disable(chip);
1109
1110         /* Poll, clear and process every channel interrupt status */
1111         for (i = 0; i < dw->hdata->nr_channels; i++) {
1112                 chan = &dw->chan[i];
1113                 status = axi_chan_irq_read(chan);
1114                 axi_chan_irq_clear(chan, status);
1115
1116                 dev_vdbg(chip->dev, "%s %u IRQ status: 0x%08x\n",
1117                         axi_chan_name(chan), i, status);
1118
1119                 if (status & DWAXIDMAC_IRQ_ALL_ERR)
1120                         axi_chan_handle_err(chan, status);
1121                 else if (status & DWAXIDMAC_IRQ_DMA_TRF)
1122                         axi_chan_block_xfer_complete(chan);
1123         }
1124
1125         /* Re-enable interrupts */
1126         axi_dma_irq_enable(chip);
1127
1128         return IRQ_HANDLED;
1129 }
1130
1131 static int dma_chan_terminate_all(struct dma_chan *dchan)
1132 {
1133         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1134         u32 chan_active = BIT(chan->id) << DMAC_CHAN_EN_SHIFT;
1135         unsigned long flags;
1136         u32 val;
1137         int ret;
1138         LIST_HEAD(head);
1139
1140         axi_chan_disable(chan);
1141
1142         ret = readl_poll_timeout_atomic(chan->chip->regs + DMAC_CHEN, val,
1143                                         !(val & chan_active), 1000, 10000);
1144         if (ret == -ETIMEDOUT)
1145                 dev_warn(dchan2dev(dchan),
1146                          "%s failed to stop\n", axi_chan_name(chan));
1147
1148         if (chan->direction != DMA_MEM_TO_MEM)
1149                 dw_axi_dma_set_hw_channel(chan, false);
1150         if (chan->direction == DMA_MEM_TO_DEV)
1151                 dw_axi_dma_set_byte_halfword(chan, false);
1152
1153         spin_lock_irqsave(&chan->vc.lock, flags);
1154
1155         vchan_get_all_descriptors(&chan->vc, &head);
1156
1157         chan->cyclic = false;
1158         spin_unlock_irqrestore(&chan->vc.lock, flags);
1159
1160         vchan_dma_desc_free_list(&chan->vc, &head);
1161
1162         dev_vdbg(dchan2dev(dchan), "terminated: %s\n", axi_chan_name(chan));
1163
1164         return 0;
1165 }
1166
1167 static int dma_chan_pause(struct dma_chan *dchan)
1168 {
1169         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1170         unsigned long flags;
1171         unsigned int timeout = 20; /* timeout iterations */
1172         u32 val;
1173
1174         spin_lock_irqsave(&chan->vc.lock, flags);
1175
1176         if (chan->chip->dw->hdata->reg_map_8_channels) {
1177                 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1178                 val |= BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT |
1179                         BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT;
1180                 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1181         } else {
1182                 val = axi_dma_ioread32(chan->chip, DMAC_CHSUSPREG);
1183                 val |= BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT |
1184                         BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT;
1185                 axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, val);
1186         }
1187
1188         do  {
1189                 if (axi_chan_irq_read(chan) & DWAXIDMAC_IRQ_SUSPENDED)
1190                         break;
1191
1192                 udelay(2);
1193         } while (--timeout);
1194
1195         axi_chan_irq_clear(chan, DWAXIDMAC_IRQ_SUSPENDED);
1196
1197         chan->is_paused = true;
1198
1199         spin_unlock_irqrestore(&chan->vc.lock, flags);
1200
1201         return timeout ? 0 : -EAGAIN;
1202 }
1203
1204 /* Called in chan locked context */
1205 static inline void axi_chan_resume(struct axi_dma_chan *chan)
1206 {
1207         u32 val;
1208
1209         if (chan->chip->dw->hdata->reg_map_8_channels) {
1210                 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1211                 val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT);
1212                 val |=  (BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT);
1213                 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1214         } else {
1215                 val = axi_dma_ioread32(chan->chip, DMAC_CHSUSPREG);
1216                 val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT);
1217                 val |=  (BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT);
1218                 axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, val);
1219         }
1220
1221         chan->is_paused = false;
1222 }
1223
1224 static int dma_chan_resume(struct dma_chan *dchan)
1225 {
1226         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1227         unsigned long flags;
1228
1229         spin_lock_irqsave(&chan->vc.lock, flags);
1230
1231         if (chan->is_paused)
1232                 axi_chan_resume(chan);
1233
1234         spin_unlock_irqrestore(&chan->vc.lock, flags);
1235
1236         return 0;
1237 }
1238
1239 static int axi_dma_suspend(struct axi_dma_chip *chip)
1240 {
1241         axi_dma_irq_disable(chip);
1242         axi_dma_disable(chip);
1243
1244         clk_disable_unprepare(chip->core_clk);
1245         clk_disable_unprepare(chip->cfgr_clk);
1246
1247         return 0;
1248 }
1249
1250 static int axi_dma_resume(struct axi_dma_chip *chip)
1251 {
1252         int ret;
1253
1254         ret = clk_prepare_enable(chip->cfgr_clk);
1255         if (ret < 0)
1256                 return ret;
1257
1258         ret = clk_prepare_enable(chip->core_clk);
1259         if (ret < 0)
1260                 return ret;
1261
1262         axi_dma_enable(chip);
1263         axi_dma_irq_enable(chip);
1264
1265         return 0;
1266 }
1267
1268 static int __maybe_unused axi_dma_runtime_suspend(struct device *dev)
1269 {
1270         struct axi_dma_chip *chip = dev_get_drvdata(dev);
1271
1272         return axi_dma_suspend(chip);
1273 }
1274
1275 static int __maybe_unused axi_dma_runtime_resume(struct device *dev)
1276 {
1277         struct axi_dma_chip *chip = dev_get_drvdata(dev);
1278
1279         return axi_dma_resume(chip);
1280 }
1281
1282 static struct dma_chan *dw_axi_dma_of_xlate(struct of_phandle_args *dma_spec,
1283                                             struct of_dma *ofdma)
1284 {
1285         struct dw_axi_dma *dw = ofdma->of_dma_data;
1286         struct axi_dma_chan *chan;
1287         struct dma_chan *dchan;
1288
1289         dchan = dma_get_any_slave_channel(&dw->dma);
1290         if (!dchan)
1291                 return NULL;
1292
1293         chan = dchan_to_axi_dma_chan(dchan);
1294         chan->hw_handshake_num = dma_spec->args[0];
1295         return dchan;
1296 }
1297
1298 static int parse_device_properties(struct axi_dma_chip *chip)
1299 {
1300         struct device *dev = chip->dev;
1301         u32 tmp, carr[DMAC_MAX_CHANNELS];
1302         int ret;
1303
1304         ret = device_property_read_u32(dev, "dma-channels", &tmp);
1305         if (ret)
1306                 return ret;
1307         if (tmp == 0 || tmp > DMAC_MAX_CHANNELS)
1308                 return -EINVAL;
1309
1310         chip->dw->hdata->nr_channels = tmp;
1311         if (tmp <= DMA_REG_MAP_CH_REF)
1312                 chip->dw->hdata->reg_map_8_channels = true;
1313
1314         ret = device_property_read_u32(dev, "snps,dma-masters", &tmp);
1315         if (ret)
1316                 return ret;
1317         if (tmp == 0 || tmp > DMAC_MAX_MASTERS)
1318                 return -EINVAL;
1319
1320         chip->dw->hdata->nr_masters = tmp;
1321
1322         ret = device_property_read_u32(dev, "snps,data-width", &tmp);
1323         if (ret)
1324                 return ret;
1325         if (tmp > DWAXIDMAC_TRANS_WIDTH_MAX)
1326                 return -EINVAL;
1327
1328         chip->dw->hdata->m_data_width = tmp;
1329
1330         ret = device_property_read_u32_array(dev, "snps,block-size", carr,
1331                                              chip->dw->hdata->nr_channels);
1332         if (ret)
1333                 return ret;
1334         for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1335                 if (carr[tmp] == 0 || carr[tmp] > DMAC_MAX_BLK_SIZE)
1336                         return -EINVAL;
1337
1338                 chip->dw->hdata->block_size[tmp] = carr[tmp];
1339         }
1340
1341         ret = device_property_read_u32_array(dev, "snps,priority", carr,
1342                                              chip->dw->hdata->nr_channels);
1343         if (ret)
1344                 return ret;
1345         /* Priority value must be programmed within [0:nr_channels-1] range */
1346         for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1347                 if (carr[tmp] >= chip->dw->hdata->nr_channels)
1348                         return -EINVAL;
1349
1350                 chip->dw->hdata->priority[tmp] = carr[tmp];
1351         }
1352
1353         /* axi-max-burst-len is optional property */
1354         ret = device_property_read_u32(dev, "snps,axi-max-burst-len", &tmp);
1355         if (!ret) {
1356                 if (tmp > DWAXIDMAC_ARWLEN_MAX + 1)
1357                         return -EINVAL;
1358                 if (tmp < DWAXIDMAC_ARWLEN_MIN + 1)
1359                         return -EINVAL;
1360
1361                 chip->dw->hdata->restrict_axi_burst_len = true;
1362                 chip->dw->hdata->axi_rw_burst_len = tmp;
1363         }
1364
1365         return 0;
1366 }
1367
1368 static int dw_probe(struct platform_device *pdev)
1369 {
1370         struct device_node *node = pdev->dev.of_node;
1371         struct axi_dma_chip *chip;
1372         struct resource *mem;
1373         struct dw_axi_dma *dw;
1374         struct dw_axi_dma_hcfg *hdata;
1375         u32 i;
1376         int ret;
1377
1378         chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
1379         if (!chip)
1380                 return -ENOMEM;
1381
1382         dw = devm_kzalloc(&pdev->dev, sizeof(*dw), GFP_KERNEL);
1383         if (!dw)
1384                 return -ENOMEM;
1385
1386         hdata = devm_kzalloc(&pdev->dev, sizeof(*hdata), GFP_KERNEL);
1387         if (!hdata)
1388                 return -ENOMEM;
1389
1390         chip->dw = dw;
1391         chip->dev = &pdev->dev;
1392         chip->dw->hdata = hdata;
1393
1394         chip->irq = platform_get_irq(pdev, 0);
1395         if (chip->irq < 0)
1396                 return chip->irq;
1397
1398         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1399         chip->regs = devm_ioremap_resource(chip->dev, mem);
1400         if (IS_ERR(chip->regs))
1401                 return PTR_ERR(chip->regs);
1402
1403         if (of_device_is_compatible(node, "intel,kmb-axi-dma")) {
1404                 chip->apb_regs = devm_platform_ioremap_resource(pdev, 1);
1405                 if (IS_ERR(chip->apb_regs))
1406                         return PTR_ERR(chip->apb_regs);
1407         }
1408
1409         chip->core_clk = devm_clk_get(chip->dev, "core-clk");
1410         if (IS_ERR(chip->core_clk))
1411                 return PTR_ERR(chip->core_clk);
1412
1413         chip->cfgr_clk = devm_clk_get(chip->dev, "cfgr-clk");
1414         if (IS_ERR(chip->cfgr_clk))
1415                 return PTR_ERR(chip->cfgr_clk);
1416
1417         ret = parse_device_properties(chip);
1418         if (ret)
1419                 return ret;
1420
1421         dw->chan = devm_kcalloc(chip->dev, hdata->nr_channels,
1422                                 sizeof(*dw->chan), GFP_KERNEL);
1423         if (!dw->chan)
1424                 return -ENOMEM;
1425
1426         ret = devm_request_irq(chip->dev, chip->irq, dw_axi_dma_interrupt,
1427                                IRQF_SHARED, KBUILD_MODNAME, chip);
1428         if (ret)
1429                 return ret;
1430
1431         INIT_LIST_HEAD(&dw->dma.channels);
1432         for (i = 0; i < hdata->nr_channels; i++) {
1433                 struct axi_dma_chan *chan = &dw->chan[i];
1434
1435                 chan->chip = chip;
1436                 chan->id = i;
1437                 chan->chan_regs = chip->regs + COMMON_REG_LEN + i * CHAN_REG_LEN;
1438                 atomic_set(&chan->descs_allocated, 0);
1439
1440                 chan->vc.desc_free = vchan_desc_put;
1441                 vchan_init(&chan->vc, &dw->dma);
1442         }
1443
1444         /* Set capabilities */
1445         dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
1446         dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
1447         dma_cap_set(DMA_CYCLIC, dw->dma.cap_mask);
1448
1449         /* DMA capabilities */
1450         dw->dma.chancnt = hdata->nr_channels;
1451         dw->dma.max_burst = hdata->axi_rw_burst_len;
1452         dw->dma.src_addr_widths = AXI_DMA_BUSWIDTHS;
1453         dw->dma.dst_addr_widths = AXI_DMA_BUSWIDTHS;
1454         dw->dma.directions = BIT(DMA_MEM_TO_MEM);
1455         dw->dma.directions |= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1456         dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1457
1458         dw->dma.dev = chip->dev;
1459         dw->dma.device_tx_status = dma_chan_tx_status;
1460         dw->dma.device_issue_pending = dma_chan_issue_pending;
1461         dw->dma.device_terminate_all = dma_chan_terminate_all;
1462         dw->dma.device_pause = dma_chan_pause;
1463         dw->dma.device_resume = dma_chan_resume;
1464
1465         dw->dma.device_alloc_chan_resources = dma_chan_alloc_chan_resources;
1466         dw->dma.device_free_chan_resources = dma_chan_free_chan_resources;
1467
1468         dw->dma.device_prep_dma_memcpy = dma_chan_prep_dma_memcpy;
1469         dw->dma.device_synchronize = dw_axi_dma_synchronize;
1470         dw->dma.device_config = dw_axi_dma_chan_slave_config;
1471         dw->dma.device_prep_slave_sg = dw_axi_dma_chan_prep_slave_sg;
1472         dw->dma.device_prep_dma_cyclic = dw_axi_dma_chan_prep_cyclic;
1473
1474         /*
1475          * Synopsis DesignWare AxiDMA datasheet mentioned Maximum
1476          * supported blocks is 1024. Device register width is 4 bytes.
1477          * Therefore, set constraint to 1024 * 4.
1478          */
1479         dw->dma.dev->dma_parms = &dw->dma_parms;
1480         dma_set_max_seg_size(&pdev->dev, MAX_BLOCK_SIZE);
1481         platform_set_drvdata(pdev, chip);
1482
1483         pm_runtime_enable(chip->dev);
1484
1485         /*
1486          * We can't just call pm_runtime_get here instead of
1487          * pm_runtime_get_noresume + axi_dma_resume because we need
1488          * driver to work also without Runtime PM.
1489          */
1490         pm_runtime_get_noresume(chip->dev);
1491         ret = axi_dma_resume(chip);
1492         if (ret < 0)
1493                 goto err_pm_disable;
1494
1495         axi_dma_hw_init(chip);
1496
1497         pm_runtime_put(chip->dev);
1498
1499         ret = dmaenginem_async_device_register(&dw->dma);
1500         if (ret)
1501                 goto err_pm_disable;
1502
1503         /* Register with OF helpers for DMA lookups */
1504         ret = of_dma_controller_register(pdev->dev.of_node,
1505                                          dw_axi_dma_of_xlate, dw);
1506         if (ret < 0)
1507                 dev_warn(&pdev->dev,
1508                          "Failed to register OF DMA controller, fallback to MEM_TO_MEM mode\n");
1509
1510         dev_info(chip->dev, "DesignWare AXI DMA Controller, %d channels\n",
1511                  dw->hdata->nr_channels);
1512
1513         return 0;
1514
1515 err_pm_disable:
1516         pm_runtime_disable(chip->dev);
1517
1518         return ret;
1519 }
1520
1521 static int dw_remove(struct platform_device *pdev)
1522 {
1523         struct axi_dma_chip *chip = platform_get_drvdata(pdev);
1524         struct dw_axi_dma *dw = chip->dw;
1525         struct axi_dma_chan *chan, *_chan;
1526         u32 i;
1527
1528         /* Enable clk before accessing to registers */
1529         clk_prepare_enable(chip->cfgr_clk);
1530         clk_prepare_enable(chip->core_clk);
1531         axi_dma_irq_disable(chip);
1532         for (i = 0; i < dw->hdata->nr_channels; i++) {
1533                 axi_chan_disable(&chip->dw->chan[i]);
1534                 axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
1535         }
1536         axi_dma_disable(chip);
1537
1538         pm_runtime_disable(chip->dev);
1539         axi_dma_suspend(chip);
1540
1541         devm_free_irq(chip->dev, chip->irq, chip);
1542
1543         of_dma_controller_free(chip->dev->of_node);
1544
1545         list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
1546                         vc.chan.device_node) {
1547                 list_del(&chan->vc.chan.device_node);
1548                 tasklet_kill(&chan->vc.task);
1549         }
1550
1551         return 0;
1552 }
1553
1554 static const struct dev_pm_ops dw_axi_dma_pm_ops = {
1555         SET_RUNTIME_PM_OPS(axi_dma_runtime_suspend, axi_dma_runtime_resume, NULL)
1556 };
1557
1558 static const struct of_device_id dw_dma_of_id_table[] = {
1559         { .compatible = "snps,axi-dma-1.01a" },
1560         { .compatible = "intel,kmb-axi-dma" },
1561         {}
1562 };
1563 MODULE_DEVICE_TABLE(of, dw_dma_of_id_table);
1564
1565 static struct platform_driver dw_driver = {
1566         .probe          = dw_probe,
1567         .remove         = dw_remove,
1568         .driver = {
1569                 .name   = KBUILD_MODNAME,
1570                 .of_match_table = dw_dma_of_id_table,
1571                 .pm = &dw_axi_dma_pm_ops,
1572         },
1573 };
1574 module_platform_driver(dw_driver);
1575
1576 MODULE_LICENSE("GPL v2");
1577 MODULE_DESCRIPTION("Synopsys DesignWare AXI DMA Controller platform driver");
1578 MODULE_AUTHOR("Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>");