GNU Linux-libre 6.9.1-gnu
[releases.git] / drivers / dma / dma-axi-dmac.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Analog Devices AXI-DMAC core
4  *
5  * Copyright 2013-2019 Analog Devices Inc.
6  *  Author: Lars-Peter Clausen <lars@metafoo.de>
7  */
8
9 #include <linux/bitfield.h>
10 #include <linux/clk.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_address.h>
22 #include <linux/platform_device.h>
23 #include <linux/regmap.h>
24 #include <linux/slab.h>
25 #include <linux/fpga/adi-axi-common.h>
26
27 #include <dt-bindings/dma/axi-dmac.h>
28
29 #include "dmaengine.h"
30 #include "virt-dma.h"
31
32 /*
33  * The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
34  * various instantiation parameters which decided the exact feature set support
35  * by the core.
36  *
37  * Each channel of the core has a source interface and a destination interface.
38  * The number of channels and the type of the channel interfaces is selected at
39  * configuration time. A interface can either be a connected to a central memory
40  * interconnect, which allows access to system memory, or it can be connected to
41  * a dedicated bus which is directly connected to a data port on a peripheral.
42  * Given that those are configuration options of the core that are selected when
43  * it is instantiated this means that they can not be changed by software at
44  * runtime. By extension this means that each channel is uni-directional. It can
45  * either be device to memory or memory to device, but not both. Also since the
46  * device side is a dedicated data bus only connected to a single peripheral
47  * there is no address than can or needs to be configured for the device side.
48  */
49
50 #define AXI_DMAC_REG_INTERFACE_DESC     0x10
51 #define   AXI_DMAC_DMA_SRC_TYPE_MSK     GENMASK(13, 12)
52 #define   AXI_DMAC_DMA_SRC_TYPE_GET(x)  FIELD_GET(AXI_DMAC_DMA_SRC_TYPE_MSK, x)
53 #define   AXI_DMAC_DMA_SRC_WIDTH_MSK    GENMASK(11, 8)
54 #define   AXI_DMAC_DMA_SRC_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_SRC_WIDTH_MSK, x)
55 #define   AXI_DMAC_DMA_DST_TYPE_MSK     GENMASK(5, 4)
56 #define   AXI_DMAC_DMA_DST_TYPE_GET(x)  FIELD_GET(AXI_DMAC_DMA_DST_TYPE_MSK, x)
57 #define   AXI_DMAC_DMA_DST_WIDTH_MSK    GENMASK(3, 0)
58 #define   AXI_DMAC_DMA_DST_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_DST_WIDTH_MSK, x)
59 #define AXI_DMAC_REG_COHERENCY_DESC     0x14
60 #define   AXI_DMAC_DST_COHERENT_MSK     BIT(0)
61 #define   AXI_DMAC_DST_COHERENT_GET(x)  FIELD_GET(AXI_DMAC_DST_COHERENT_MSK, x)
62
63 #define AXI_DMAC_REG_IRQ_MASK           0x80
64 #define AXI_DMAC_REG_IRQ_PENDING        0x84
65 #define AXI_DMAC_REG_IRQ_SOURCE         0x88
66
67 #define AXI_DMAC_REG_CTRL               0x400
68 #define AXI_DMAC_REG_TRANSFER_ID        0x404
69 #define AXI_DMAC_REG_START_TRANSFER     0x408
70 #define AXI_DMAC_REG_FLAGS              0x40c
71 #define AXI_DMAC_REG_DEST_ADDRESS       0x410
72 #define AXI_DMAC_REG_SRC_ADDRESS        0x414
73 #define AXI_DMAC_REG_X_LENGTH           0x418
74 #define AXI_DMAC_REG_Y_LENGTH           0x41c
75 #define AXI_DMAC_REG_DEST_STRIDE        0x420
76 #define AXI_DMAC_REG_SRC_STRIDE         0x424
77 #define AXI_DMAC_REG_TRANSFER_DONE      0x428
78 #define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
79 #define AXI_DMAC_REG_STATUS             0x430
80 #define AXI_DMAC_REG_CURRENT_SRC_ADDR   0x434
81 #define AXI_DMAC_REG_CURRENT_DEST_ADDR  0x438
82 #define AXI_DMAC_REG_PARTIAL_XFER_LEN   0x44c
83 #define AXI_DMAC_REG_PARTIAL_XFER_ID    0x450
84 #define AXI_DMAC_REG_CURRENT_SG_ID      0x454
85 #define AXI_DMAC_REG_SG_ADDRESS         0x47c
86 #define AXI_DMAC_REG_SG_ADDRESS_HIGH    0x4bc
87
88 #define AXI_DMAC_CTRL_ENABLE            BIT(0)
89 #define AXI_DMAC_CTRL_PAUSE             BIT(1)
90 #define AXI_DMAC_CTRL_ENABLE_SG         BIT(2)
91
92 #define AXI_DMAC_IRQ_SOT                BIT(0)
93 #define AXI_DMAC_IRQ_EOT                BIT(1)
94
95 #define AXI_DMAC_FLAG_CYCLIC            BIT(0)
96 #define AXI_DMAC_FLAG_LAST              BIT(1)
97 #define AXI_DMAC_FLAG_PARTIAL_REPORT    BIT(2)
98
99 #define AXI_DMAC_FLAG_PARTIAL_XFER_DONE BIT(31)
100
101 /* The maximum ID allocated by the hardware is 31 */
102 #define AXI_DMAC_SG_UNUSED 32U
103
104 /* Flags for axi_dmac_hw_desc.flags */
105 #define AXI_DMAC_HW_FLAG_LAST           BIT(0)
106 #define AXI_DMAC_HW_FLAG_IRQ            BIT(1)
107
108 struct axi_dmac_hw_desc {
109         u32 flags;
110         u32 id;
111         u64 dest_addr;
112         u64 src_addr;
113         u64 next_sg_addr;
114         u32 y_len;
115         u32 x_len;
116         u32 src_stride;
117         u32 dst_stride;
118         u64 __pad[2];
119 };
120
121 struct axi_dmac_sg {
122         unsigned int partial_len;
123         bool schedule_when_free;
124
125         struct axi_dmac_hw_desc *hw;
126         dma_addr_t hw_phys;
127 };
128
129 struct axi_dmac_desc {
130         struct virt_dma_desc vdesc;
131         struct axi_dmac_chan *chan;
132
133         bool cyclic;
134         bool have_partial_xfer;
135
136         unsigned int num_submitted;
137         unsigned int num_completed;
138         unsigned int num_sgs;
139         struct axi_dmac_sg sg[] __counted_by(num_sgs);
140 };
141
142 struct axi_dmac_chan {
143         struct virt_dma_chan vchan;
144
145         struct axi_dmac_desc *next_desc;
146         struct list_head active_descs;
147         enum dma_transfer_direction direction;
148
149         unsigned int src_width;
150         unsigned int dest_width;
151         unsigned int src_type;
152         unsigned int dest_type;
153
154         unsigned int max_length;
155         unsigned int address_align_mask;
156         unsigned int length_align_mask;
157
158         bool hw_partial_xfer;
159         bool hw_cyclic;
160         bool hw_2d;
161         bool hw_sg;
162 };
163
164 struct axi_dmac {
165         void __iomem *base;
166         int irq;
167
168         struct clk *clk;
169
170         struct dma_device dma_dev;
171         struct axi_dmac_chan chan;
172 };
173
174 static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
175 {
176         return container_of(chan->vchan.chan.device, struct axi_dmac,
177                 dma_dev);
178 }
179
180 static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
181 {
182         return container_of(c, struct axi_dmac_chan, vchan.chan);
183 }
184
185 static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
186 {
187         return container_of(vdesc, struct axi_dmac_desc, vdesc);
188 }
189
190 static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
191         unsigned int val)
192 {
193         writel(val, axi_dmac->base + reg);
194 }
195
196 static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
197 {
198         return readl(axi_dmac->base + reg);
199 }
200
201 static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
202 {
203         return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
204 }
205
206 static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
207 {
208         return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
209 }
210
211 static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
212 {
213         if (len == 0)
214                 return false;
215         if ((len & chan->length_align_mask) != 0) /* Not aligned */
216                 return false;
217         return true;
218 }
219
220 static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
221 {
222         if ((addr & chan->address_align_mask) != 0) /* Not aligned */
223                 return false;
224         return true;
225 }
226
227 static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
228 {
229         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
230         struct virt_dma_desc *vdesc;
231         struct axi_dmac_desc *desc;
232         struct axi_dmac_sg *sg;
233         unsigned int flags = 0;
234         unsigned int val;
235
236         if (!chan->hw_sg) {
237                 val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
238                 if (val) /* Queue is full, wait for the next SOT IRQ */
239                         return;
240         }
241
242         desc = chan->next_desc;
243
244         if (!desc) {
245                 vdesc = vchan_next_desc(&chan->vchan);
246                 if (!vdesc)
247                         return;
248                 list_move_tail(&vdesc->node, &chan->active_descs);
249                 desc = to_axi_dmac_desc(vdesc);
250         }
251         sg = &desc->sg[desc->num_submitted];
252
253         /* Already queued in cyclic mode. Wait for it to finish */
254         if (sg->hw->id != AXI_DMAC_SG_UNUSED) {
255                 sg->schedule_when_free = true;
256                 return;
257         }
258
259         if (chan->hw_sg) {
260                 chan->next_desc = NULL;
261         } else if (++desc->num_submitted == desc->num_sgs ||
262                    desc->have_partial_xfer) {
263                 if (desc->cyclic)
264                         desc->num_submitted = 0; /* Start again */
265                 else
266                         chan->next_desc = NULL;
267                 flags |= AXI_DMAC_FLAG_LAST;
268         } else {
269                 chan->next_desc = desc;
270         }
271
272         sg->hw->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
273
274         if (!chan->hw_sg) {
275                 if (axi_dmac_dest_is_mem(chan)) {
276                         axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->hw->dest_addr);
277                         axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->hw->dst_stride);
278                 }
279
280                 if (axi_dmac_src_is_mem(chan)) {
281                         axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->hw->src_addr);
282                         axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->hw->src_stride);
283                 }
284         }
285
286         /*
287          * If the hardware supports cyclic transfers and there is no callback to
288          * call, enable hw cyclic mode to avoid unnecessary interrupts.
289          */
290         if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback) {
291                 if (chan->hw_sg)
292                         desc->sg[desc->num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_IRQ;
293                 else if (desc->num_sgs == 1)
294                         flags |= AXI_DMAC_FLAG_CYCLIC;
295         }
296
297         if (chan->hw_partial_xfer)
298                 flags |= AXI_DMAC_FLAG_PARTIAL_REPORT;
299
300         if (chan->hw_sg) {
301                 axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS, (u32)sg->hw_phys);
302                 axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS_HIGH,
303                                (u64)sg->hw_phys >> 32);
304         } else {
305                 axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->hw->x_len);
306                 axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->hw->y_len);
307         }
308         axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
309         axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
310 }
311
312 static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
313 {
314         return list_first_entry_or_null(&chan->active_descs,
315                 struct axi_dmac_desc, vdesc.node);
316 }
317
318 static inline unsigned int axi_dmac_total_sg_bytes(struct axi_dmac_chan *chan,
319         struct axi_dmac_sg *sg)
320 {
321         if (chan->hw_2d)
322                 return (sg->hw->x_len + 1) * (sg->hw->y_len + 1);
323         else
324                 return (sg->hw->x_len + 1);
325 }
326
327 static void axi_dmac_dequeue_partial_xfers(struct axi_dmac_chan *chan)
328 {
329         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
330         struct axi_dmac_desc *desc;
331         struct axi_dmac_sg *sg;
332         u32 xfer_done, len, id, i;
333         bool found_sg;
334
335         do {
336                 len = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_LEN);
337                 id  = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_ID);
338
339                 found_sg = false;
340                 list_for_each_entry(desc, &chan->active_descs, vdesc.node) {
341                         for (i = 0; i < desc->num_sgs; i++) {
342                                 sg = &desc->sg[i];
343                                 if (sg->hw->id == AXI_DMAC_SG_UNUSED)
344                                         continue;
345                                 if (sg->hw->id == id) {
346                                         desc->have_partial_xfer = true;
347                                         sg->partial_len = len;
348                                         found_sg = true;
349                                         break;
350                                 }
351                         }
352                         if (found_sg)
353                                 break;
354                 }
355
356                 if (found_sg) {
357                         dev_dbg(dmac->dma_dev.dev,
358                                 "Found partial segment id=%u, len=%u\n",
359                                 id, len);
360                 } else {
361                         dev_warn(dmac->dma_dev.dev,
362                                  "Not found partial segment id=%u, len=%u\n",
363                                  id, len);
364                 }
365
366                 /* Check if we have any more partial transfers */
367                 xfer_done = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
368                 xfer_done = !(xfer_done & AXI_DMAC_FLAG_PARTIAL_XFER_DONE);
369
370         } while (!xfer_done);
371 }
372
373 static void axi_dmac_compute_residue(struct axi_dmac_chan *chan,
374         struct axi_dmac_desc *active)
375 {
376         struct dmaengine_result *rslt = &active->vdesc.tx_result;
377         unsigned int start = active->num_completed - 1;
378         struct axi_dmac_sg *sg;
379         unsigned int i, total;
380
381         rslt->result = DMA_TRANS_NOERROR;
382         rslt->residue = 0;
383
384         if (chan->hw_sg)
385                 return;
386
387         /*
388          * We get here if the last completed segment is partial, which
389          * means we can compute the residue from that segment onwards
390          */
391         for (i = start; i < active->num_sgs; i++) {
392                 sg = &active->sg[i];
393                 total = axi_dmac_total_sg_bytes(chan, sg);
394                 rslt->residue += (total - sg->partial_len);
395         }
396 }
397
398 static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
399         unsigned int completed_transfers)
400 {
401         struct axi_dmac_desc *active;
402         struct axi_dmac_sg *sg;
403         bool start_next = false;
404
405         active = axi_dmac_active_desc(chan);
406         if (!active)
407                 return false;
408
409         if (chan->hw_partial_xfer &&
410             (completed_transfers & AXI_DMAC_FLAG_PARTIAL_XFER_DONE))
411                 axi_dmac_dequeue_partial_xfers(chan);
412
413         if (chan->hw_sg) {
414                 if (active->cyclic) {
415                         vchan_cyclic_callback(&active->vdesc);
416                 } else {
417                         list_del(&active->vdesc.node);
418                         vchan_cookie_complete(&active->vdesc);
419                         active = axi_dmac_active_desc(chan);
420                         start_next = !!active;
421                 }
422         } else {
423                 do {
424                         sg = &active->sg[active->num_completed];
425                         if (sg->hw->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
426                                 break;
427                         if (!(BIT(sg->hw->id) & completed_transfers))
428                                 break;
429                         active->num_completed++;
430                         sg->hw->id = AXI_DMAC_SG_UNUSED;
431                         if (sg->schedule_when_free) {
432                                 sg->schedule_when_free = false;
433                                 start_next = true;
434                         }
435
436                         if (sg->partial_len)
437                                 axi_dmac_compute_residue(chan, active);
438
439                         if (active->cyclic)
440                                 vchan_cyclic_callback(&active->vdesc);
441
442                         if (active->num_completed == active->num_sgs ||
443                             sg->partial_len) {
444                                 if (active->cyclic) {
445                                         active->num_completed = 0; /* wrap around */
446                                 } else {
447                                         list_del(&active->vdesc.node);
448                                         vchan_cookie_complete(&active->vdesc);
449                                         active = axi_dmac_active_desc(chan);
450                                 }
451                         }
452                 } while (active);
453         }
454
455         return start_next;
456 }
457
458 static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
459 {
460         struct axi_dmac *dmac = devid;
461         unsigned int pending;
462         bool start_next = false;
463
464         pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
465         if (!pending)
466                 return IRQ_NONE;
467
468         axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);
469
470         spin_lock(&dmac->chan.vchan.lock);
471         /* One or more transfers have finished */
472         if (pending & AXI_DMAC_IRQ_EOT) {
473                 unsigned int completed;
474
475                 completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
476                 start_next = axi_dmac_transfer_done(&dmac->chan, completed);
477         }
478         /* Space has become available in the descriptor queue */
479         if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
480                 axi_dmac_start_transfer(&dmac->chan);
481         spin_unlock(&dmac->chan.vchan.lock);
482
483         return IRQ_HANDLED;
484 }
485
486 static int axi_dmac_terminate_all(struct dma_chan *c)
487 {
488         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
489         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
490         unsigned long flags;
491         LIST_HEAD(head);
492
493         spin_lock_irqsave(&chan->vchan.lock, flags);
494         axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
495         chan->next_desc = NULL;
496         vchan_get_all_descriptors(&chan->vchan, &head);
497         list_splice_tail_init(&chan->active_descs, &head);
498         spin_unlock_irqrestore(&chan->vchan.lock, flags);
499
500         vchan_dma_desc_free_list(&chan->vchan, &head);
501
502         return 0;
503 }
504
505 static void axi_dmac_synchronize(struct dma_chan *c)
506 {
507         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
508
509         vchan_synchronize(&chan->vchan);
510 }
511
512 static void axi_dmac_issue_pending(struct dma_chan *c)
513 {
514         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
515         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
516         unsigned long flags;
517         u32 ctrl = AXI_DMAC_CTRL_ENABLE;
518
519         if (chan->hw_sg)
520                 ctrl |= AXI_DMAC_CTRL_ENABLE_SG;
521
522         axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, ctrl);
523
524         spin_lock_irqsave(&chan->vchan.lock, flags);
525         if (vchan_issue_pending(&chan->vchan))
526                 axi_dmac_start_transfer(chan);
527         spin_unlock_irqrestore(&chan->vchan.lock, flags);
528 }
529
530 static struct axi_dmac_desc *
531 axi_dmac_alloc_desc(struct axi_dmac_chan *chan, unsigned int num_sgs)
532 {
533         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
534         struct device *dev = dmac->dma_dev.dev;
535         struct axi_dmac_hw_desc *hws;
536         struct axi_dmac_desc *desc;
537         dma_addr_t hw_phys;
538         unsigned int i;
539
540         desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT);
541         if (!desc)
542                 return NULL;
543         desc->num_sgs = num_sgs;
544         desc->chan = chan;
545
546         hws = dma_alloc_coherent(dev, PAGE_ALIGN(num_sgs * sizeof(*hws)),
547                                 &hw_phys, GFP_ATOMIC);
548         if (!hws) {
549                 kfree(desc);
550                 return NULL;
551         }
552
553         for (i = 0; i < num_sgs; i++) {
554                 desc->sg[i].hw = &hws[i];
555                 desc->sg[i].hw_phys = hw_phys + i * sizeof(*hws);
556
557                 hws[i].id = AXI_DMAC_SG_UNUSED;
558                 hws[i].flags = 0;
559
560                 /* Link hardware descriptors */
561                 hws[i].next_sg_addr = hw_phys + (i + 1) * sizeof(*hws);
562         }
563
564         /* The last hardware descriptor will trigger an interrupt */
565         desc->sg[num_sgs - 1].hw->flags = AXI_DMAC_HW_FLAG_LAST | AXI_DMAC_HW_FLAG_IRQ;
566
567         return desc;
568 }
569
570 static void axi_dmac_free_desc(struct axi_dmac_desc *desc)
571 {
572         struct axi_dmac *dmac = chan_to_axi_dmac(desc->chan);
573         struct device *dev = dmac->dma_dev.dev;
574         struct axi_dmac_hw_desc *hw = desc->sg[0].hw;
575         dma_addr_t hw_phys = desc->sg[0].hw_phys;
576
577         dma_free_coherent(dev, PAGE_ALIGN(desc->num_sgs * sizeof(*hw)),
578                           hw, hw_phys);
579         kfree(desc);
580 }
581
582 static struct axi_dmac_sg *axi_dmac_fill_linear_sg(struct axi_dmac_chan *chan,
583         enum dma_transfer_direction direction, dma_addr_t addr,
584         unsigned int num_periods, unsigned int period_len,
585         struct axi_dmac_sg *sg)
586 {
587         unsigned int num_segments, i;
588         unsigned int segment_size;
589         unsigned int len;
590
591         /* Split into multiple equally sized segments if necessary */
592         num_segments = DIV_ROUND_UP(period_len, chan->max_length);
593         segment_size = DIV_ROUND_UP(period_len, num_segments);
594         /* Take care of alignment */
595         segment_size = ((segment_size - 1) | chan->length_align_mask) + 1;
596
597         for (i = 0; i < num_periods; i++) {
598                 for (len = period_len; len > segment_size; sg++) {
599                         if (direction == DMA_DEV_TO_MEM)
600                                 sg->hw->dest_addr = addr;
601                         else
602                                 sg->hw->src_addr = addr;
603                         sg->hw->x_len = segment_size - 1;
604                         sg->hw->y_len = 0;
605                         sg->hw->flags = 0;
606                         addr += segment_size;
607                         len -= segment_size;
608                 }
609
610                 if (direction == DMA_DEV_TO_MEM)
611                         sg->hw->dest_addr = addr;
612                 else
613                         sg->hw->src_addr = addr;
614                 sg->hw->x_len = len - 1;
615                 sg->hw->y_len = 0;
616                 sg++;
617                 addr += len;
618         }
619
620         return sg;
621 }
622
623 static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
624         struct dma_chan *c, struct scatterlist *sgl,
625         unsigned int sg_len, enum dma_transfer_direction direction,
626         unsigned long flags, void *context)
627 {
628         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
629         struct axi_dmac_desc *desc;
630         struct axi_dmac_sg *dsg;
631         struct scatterlist *sg;
632         unsigned int num_sgs;
633         unsigned int i;
634
635         if (direction != chan->direction)
636                 return NULL;
637
638         num_sgs = 0;
639         for_each_sg(sgl, sg, sg_len, i)
640                 num_sgs += DIV_ROUND_UP(sg_dma_len(sg), chan->max_length);
641
642         desc = axi_dmac_alloc_desc(chan, num_sgs);
643         if (!desc)
644                 return NULL;
645
646         dsg = desc->sg;
647
648         for_each_sg(sgl, sg, sg_len, i) {
649                 if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
650                     !axi_dmac_check_len(chan, sg_dma_len(sg))) {
651                         axi_dmac_free_desc(desc);
652                         return NULL;
653                 }
654
655                 dsg = axi_dmac_fill_linear_sg(chan, direction, sg_dma_address(sg), 1,
656                         sg_dma_len(sg), dsg);
657         }
658
659         desc->cyclic = false;
660
661         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
662 }
663
664 static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
665         struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
666         size_t period_len, enum dma_transfer_direction direction,
667         unsigned long flags)
668 {
669         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
670         struct axi_dmac_desc *desc;
671         unsigned int num_periods, num_segments, num_sgs;
672
673         if (direction != chan->direction)
674                 return NULL;
675
676         if (!axi_dmac_check_len(chan, buf_len) ||
677             !axi_dmac_check_addr(chan, buf_addr))
678                 return NULL;
679
680         if (period_len == 0 || buf_len % period_len)
681                 return NULL;
682
683         num_periods = buf_len / period_len;
684         num_segments = DIV_ROUND_UP(period_len, chan->max_length);
685         num_sgs = num_periods * num_segments;
686
687         desc = axi_dmac_alloc_desc(chan, num_sgs);
688         if (!desc)
689                 return NULL;
690
691         /* Chain the last descriptor to the first, and remove its "last" flag */
692         desc->sg[num_sgs - 1].hw->next_sg_addr = desc->sg[0].hw_phys;
693         desc->sg[num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_LAST;
694
695         axi_dmac_fill_linear_sg(chan, direction, buf_addr, num_periods,
696                 period_len, desc->sg);
697
698         desc->cyclic = true;
699
700         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
701 }
702
703 static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
704         struct dma_chan *c, struct dma_interleaved_template *xt,
705         unsigned long flags)
706 {
707         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
708         struct axi_dmac_desc *desc;
709         size_t dst_icg, src_icg;
710
711         if (xt->frame_size != 1)
712                 return NULL;
713
714         if (xt->dir != chan->direction)
715                 return NULL;
716
717         if (axi_dmac_src_is_mem(chan)) {
718                 if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
719                         return NULL;
720         }
721
722         if (axi_dmac_dest_is_mem(chan)) {
723                 if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
724                         return NULL;
725         }
726
727         dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
728         src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
729
730         if (chan->hw_2d) {
731                 if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
732                     xt->numf == 0)
733                         return NULL;
734                 if (xt->sgl[0].size + dst_icg > chan->max_length ||
735                     xt->sgl[0].size + src_icg > chan->max_length)
736                         return NULL;
737         } else {
738                 if (dst_icg != 0 || src_icg != 0)
739                         return NULL;
740                 if (chan->max_length / xt->sgl[0].size < xt->numf)
741                         return NULL;
742                 if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
743                         return NULL;
744         }
745
746         desc = axi_dmac_alloc_desc(chan, 1);
747         if (!desc)
748                 return NULL;
749
750         if (axi_dmac_src_is_mem(chan)) {
751                 desc->sg[0].hw->src_addr = xt->src_start;
752                 desc->sg[0].hw->src_stride = xt->sgl[0].size + src_icg;
753         }
754
755         if (axi_dmac_dest_is_mem(chan)) {
756                 desc->sg[0].hw->dest_addr = xt->dst_start;
757                 desc->sg[0].hw->dst_stride = xt->sgl[0].size + dst_icg;
758         }
759
760         if (chan->hw_2d) {
761                 desc->sg[0].hw->x_len = xt->sgl[0].size - 1;
762                 desc->sg[0].hw->y_len = xt->numf - 1;
763         } else {
764                 desc->sg[0].hw->x_len = xt->sgl[0].size * xt->numf - 1;
765                 desc->sg[0].hw->y_len = 0;
766         }
767
768         if (flags & DMA_CYCLIC)
769                 desc->cyclic = true;
770
771         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
772 }
773
774 static void axi_dmac_free_chan_resources(struct dma_chan *c)
775 {
776         vchan_free_chan_resources(to_virt_chan(c));
777 }
778
779 static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
780 {
781         axi_dmac_free_desc(to_axi_dmac_desc(vdesc));
782 }
783
784 static bool axi_dmac_regmap_rdwr(struct device *dev, unsigned int reg)
785 {
786         switch (reg) {
787         case AXI_DMAC_REG_IRQ_MASK:
788         case AXI_DMAC_REG_IRQ_SOURCE:
789         case AXI_DMAC_REG_IRQ_PENDING:
790         case AXI_DMAC_REG_CTRL:
791         case AXI_DMAC_REG_TRANSFER_ID:
792         case AXI_DMAC_REG_START_TRANSFER:
793         case AXI_DMAC_REG_FLAGS:
794         case AXI_DMAC_REG_DEST_ADDRESS:
795         case AXI_DMAC_REG_SRC_ADDRESS:
796         case AXI_DMAC_REG_X_LENGTH:
797         case AXI_DMAC_REG_Y_LENGTH:
798         case AXI_DMAC_REG_DEST_STRIDE:
799         case AXI_DMAC_REG_SRC_STRIDE:
800         case AXI_DMAC_REG_TRANSFER_DONE:
801         case AXI_DMAC_REG_ACTIVE_TRANSFER_ID:
802         case AXI_DMAC_REG_STATUS:
803         case AXI_DMAC_REG_CURRENT_SRC_ADDR:
804         case AXI_DMAC_REG_CURRENT_DEST_ADDR:
805         case AXI_DMAC_REG_PARTIAL_XFER_LEN:
806         case AXI_DMAC_REG_PARTIAL_XFER_ID:
807         case AXI_DMAC_REG_CURRENT_SG_ID:
808         case AXI_DMAC_REG_SG_ADDRESS:
809         case AXI_DMAC_REG_SG_ADDRESS_HIGH:
810                 return true;
811         default:
812                 return false;
813         }
814 }
815
816 static const struct regmap_config axi_dmac_regmap_config = {
817         .reg_bits = 32,
818         .val_bits = 32,
819         .reg_stride = 4,
820         .max_register = AXI_DMAC_REG_PARTIAL_XFER_ID,
821         .readable_reg = axi_dmac_regmap_rdwr,
822         .writeable_reg = axi_dmac_regmap_rdwr,
823 };
824
825 static void axi_dmac_adjust_chan_params(struct axi_dmac_chan *chan)
826 {
827         chan->address_align_mask = max(chan->dest_width, chan->src_width) - 1;
828
829         if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
830                 chan->direction = DMA_MEM_TO_MEM;
831         else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
832                 chan->direction = DMA_MEM_TO_DEV;
833         else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
834                 chan->direction = DMA_DEV_TO_MEM;
835         else
836                 chan->direction = DMA_DEV_TO_DEV;
837 }
838
839 /*
840  * The configuration stored in the devicetree matches the configuration
841  * parameters of the peripheral instance and allows the driver to know which
842  * features are implemented and how it should behave.
843  */
844 static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
845         struct axi_dmac_chan *chan)
846 {
847         u32 val;
848         int ret;
849
850         ret = of_property_read_u32(of_chan, "reg", &val);
851         if (ret)
852                 return ret;
853
854         /* We only support 1 channel for now */
855         if (val != 0)
856                 return -EINVAL;
857
858         ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
859         if (ret)
860                 return ret;
861         if (val > AXI_DMAC_BUS_TYPE_FIFO)
862                 return -EINVAL;
863         chan->src_type = val;
864
865         ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
866         if (ret)
867                 return ret;
868         if (val > AXI_DMAC_BUS_TYPE_FIFO)
869                 return -EINVAL;
870         chan->dest_type = val;
871
872         ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
873         if (ret)
874                 return ret;
875         chan->src_width = val / 8;
876
877         ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
878         if (ret)
879                 return ret;
880         chan->dest_width = val / 8;
881
882         axi_dmac_adjust_chan_params(chan);
883
884         return 0;
885 }
886
887 static int axi_dmac_parse_dt(struct device *dev, struct axi_dmac *dmac)
888 {
889         struct device_node *of_channels, *of_chan;
890         int ret;
891
892         of_channels = of_get_child_by_name(dev->of_node, "adi,channels");
893         if (of_channels == NULL)
894                 return -ENODEV;
895
896         for_each_child_of_node(of_channels, of_chan) {
897                 ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
898                 if (ret) {
899                         of_node_put(of_chan);
900                         of_node_put(of_channels);
901                         return -EINVAL;
902                 }
903         }
904         of_node_put(of_channels);
905
906         return 0;
907 }
908
909 static int axi_dmac_read_chan_config(struct device *dev, struct axi_dmac *dmac)
910 {
911         struct axi_dmac_chan *chan = &dmac->chan;
912         unsigned int val, desc;
913
914         desc = axi_dmac_read(dmac, AXI_DMAC_REG_INTERFACE_DESC);
915         if (desc == 0) {
916                 dev_err(dev, "DMA interface register reads zero\n");
917                 return -EFAULT;
918         }
919
920         val = AXI_DMAC_DMA_SRC_TYPE_GET(desc);
921         if (val > AXI_DMAC_BUS_TYPE_FIFO) {
922                 dev_err(dev, "Invalid source bus type read: %d\n", val);
923                 return -EINVAL;
924         }
925         chan->src_type = val;
926
927         val = AXI_DMAC_DMA_DST_TYPE_GET(desc);
928         if (val > AXI_DMAC_BUS_TYPE_FIFO) {
929                 dev_err(dev, "Invalid destination bus type read: %d\n", val);
930                 return -EINVAL;
931         }
932         chan->dest_type = val;
933
934         val = AXI_DMAC_DMA_SRC_WIDTH_GET(desc);
935         if (val == 0) {
936                 dev_err(dev, "Source bus width is zero\n");
937                 return -EINVAL;
938         }
939         /* widths are stored in log2 */
940         chan->src_width = 1 << val;
941
942         val = AXI_DMAC_DMA_DST_WIDTH_GET(desc);
943         if (val == 0) {
944                 dev_err(dev, "Destination bus width is zero\n");
945                 return -EINVAL;
946         }
947         chan->dest_width = 1 << val;
948
949         axi_dmac_adjust_chan_params(chan);
950
951         return 0;
952 }
953
954 static int axi_dmac_detect_caps(struct axi_dmac *dmac, unsigned int version)
955 {
956         struct axi_dmac_chan *chan = &dmac->chan;
957
958         axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, AXI_DMAC_FLAG_CYCLIC);
959         if (axi_dmac_read(dmac, AXI_DMAC_REG_FLAGS) == AXI_DMAC_FLAG_CYCLIC)
960                 chan->hw_cyclic = true;
961
962         axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS, 0xffffffff);
963         if (axi_dmac_read(dmac, AXI_DMAC_REG_SG_ADDRESS))
964                 chan->hw_sg = true;
965
966         axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, 1);
967         if (axi_dmac_read(dmac, AXI_DMAC_REG_Y_LENGTH) == 1)
968                 chan->hw_2d = true;
969
970         axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0xffffffff);
971         chan->max_length = axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
972         if (chan->max_length != UINT_MAX)
973                 chan->max_length++;
974
975         axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, 0xffffffff);
976         if (axi_dmac_read(dmac, AXI_DMAC_REG_DEST_ADDRESS) == 0 &&
977             chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
978                 dev_err(dmac->dma_dev.dev,
979                         "Destination memory-mapped interface not supported.");
980                 return -ENODEV;
981         }
982
983         axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, 0xffffffff);
984         if (axi_dmac_read(dmac, AXI_DMAC_REG_SRC_ADDRESS) == 0 &&
985             chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
986                 dev_err(dmac->dma_dev.dev,
987                         "Source memory-mapped interface not supported.");
988                 return -ENODEV;
989         }
990
991         if (version >= ADI_AXI_PCORE_VER(4, 2, 'a'))
992                 chan->hw_partial_xfer = true;
993
994         if (version >= ADI_AXI_PCORE_VER(4, 1, 'a')) {
995                 axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0x00);
996                 chan->length_align_mask =
997                         axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
998         } else {
999                 chan->length_align_mask = chan->address_align_mask;
1000         }
1001
1002         return 0;
1003 }
1004
1005 static int axi_dmac_probe(struct platform_device *pdev)
1006 {
1007         struct dma_device *dma_dev;
1008         struct axi_dmac *dmac;
1009         struct regmap *regmap;
1010         unsigned int version;
1011         u32 irq_mask = 0;
1012         int ret;
1013
1014         dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1015         if (!dmac)
1016                 return -ENOMEM;
1017
1018         dmac->irq = platform_get_irq(pdev, 0);
1019         if (dmac->irq < 0)
1020                 return dmac->irq;
1021         if (dmac->irq == 0)
1022                 return -EINVAL;
1023
1024         dmac->base = devm_platform_ioremap_resource(pdev, 0);
1025         if (IS_ERR(dmac->base))
1026                 return PTR_ERR(dmac->base);
1027
1028         dmac->clk = devm_clk_get(&pdev->dev, NULL);
1029         if (IS_ERR(dmac->clk))
1030                 return PTR_ERR(dmac->clk);
1031
1032         ret = clk_prepare_enable(dmac->clk);
1033         if (ret < 0)
1034                 return ret;
1035
1036         version = axi_dmac_read(dmac, ADI_AXI_REG_VERSION);
1037
1038         if (version >= ADI_AXI_PCORE_VER(4, 3, 'a'))
1039                 ret = axi_dmac_read_chan_config(&pdev->dev, dmac);
1040         else
1041                 ret = axi_dmac_parse_dt(&pdev->dev, dmac);
1042
1043         if (ret < 0)
1044                 goto err_clk_disable;
1045
1046         INIT_LIST_HEAD(&dmac->chan.active_descs);
1047
1048         dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1049
1050         dma_dev = &dmac->dma_dev;
1051         dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1052         dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1053         dma_cap_set(DMA_INTERLEAVE, dma_dev->cap_mask);
1054         dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
1055         dma_dev->device_tx_status = dma_cookie_status;
1056         dma_dev->device_issue_pending = axi_dmac_issue_pending;
1057         dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
1058         dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
1059         dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
1060         dma_dev->device_terminate_all = axi_dmac_terminate_all;
1061         dma_dev->device_synchronize = axi_dmac_synchronize;
1062         dma_dev->dev = &pdev->dev;
1063         dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
1064         dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
1065         dma_dev->directions = BIT(dmac->chan.direction);
1066         dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1067         dma_dev->max_sg_burst = 31; /* 31 SGs maximum in one burst */
1068         INIT_LIST_HEAD(&dma_dev->channels);
1069
1070         dmac->chan.vchan.desc_free = axi_dmac_desc_free;
1071         vchan_init(&dmac->chan.vchan, dma_dev);
1072
1073         ret = axi_dmac_detect_caps(dmac, version);
1074         if (ret)
1075                 goto err_clk_disable;
1076
1077         dma_dev->copy_align = (dmac->chan.address_align_mask + 1);
1078
1079         if (dmac->chan.hw_sg)
1080                 irq_mask |= AXI_DMAC_IRQ_SOT;
1081
1082         axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, irq_mask);
1083
1084         if (of_dma_is_coherent(pdev->dev.of_node)) {
1085                 ret = axi_dmac_read(dmac, AXI_DMAC_REG_COHERENCY_DESC);
1086
1087                 if (version < ADI_AXI_PCORE_VER(4, 4, 'a') ||
1088                     !AXI_DMAC_DST_COHERENT_GET(ret)) {
1089                         dev_err(dmac->dma_dev.dev,
1090                                 "Coherent DMA not supported in hardware");
1091                         ret = -EINVAL;
1092                         goto err_clk_disable;
1093                 }
1094         }
1095
1096         ret = dma_async_device_register(dma_dev);
1097         if (ret)
1098                 goto err_clk_disable;
1099
1100         ret = of_dma_controller_register(pdev->dev.of_node,
1101                 of_dma_xlate_by_chan_id, dma_dev);
1102         if (ret)
1103                 goto err_unregister_device;
1104
1105         ret = request_irq(dmac->irq, axi_dmac_interrupt_handler, IRQF_SHARED,
1106                 dev_name(&pdev->dev), dmac);
1107         if (ret)
1108                 goto err_unregister_of;
1109
1110         platform_set_drvdata(pdev, dmac);
1111
1112         regmap = devm_regmap_init_mmio(&pdev->dev, dmac->base,
1113                  &axi_dmac_regmap_config);
1114         if (IS_ERR(regmap)) {
1115                 ret = PTR_ERR(regmap);
1116                 goto err_free_irq;
1117         }
1118
1119         return 0;
1120
1121 err_free_irq:
1122         free_irq(dmac->irq, dmac);
1123 err_unregister_of:
1124         of_dma_controller_free(pdev->dev.of_node);
1125 err_unregister_device:
1126         dma_async_device_unregister(&dmac->dma_dev);
1127 err_clk_disable:
1128         clk_disable_unprepare(dmac->clk);
1129
1130         return ret;
1131 }
1132
1133 static void axi_dmac_remove(struct platform_device *pdev)
1134 {
1135         struct axi_dmac *dmac = platform_get_drvdata(pdev);
1136
1137         of_dma_controller_free(pdev->dev.of_node);
1138         free_irq(dmac->irq, dmac);
1139         tasklet_kill(&dmac->chan.vchan.task);
1140         dma_async_device_unregister(&dmac->dma_dev);
1141         clk_disable_unprepare(dmac->clk);
1142 }
1143
1144 static const struct of_device_id axi_dmac_of_match_table[] = {
1145         { .compatible = "adi,axi-dmac-1.00.a" },
1146         { },
1147 };
1148 MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);
1149
1150 static struct platform_driver axi_dmac_driver = {
1151         .driver = {
1152                 .name = "dma-axi-dmac",
1153                 .of_match_table = axi_dmac_of_match_table,
1154         },
1155         .probe = axi_dmac_probe,
1156         .remove_new = axi_dmac_remove,
1157 };
1158 module_platform_driver(axi_dmac_driver);
1159
1160 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1161 MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
1162 MODULE_LICENSE("GPL v2");