GNU Linux-libre 5.16.19-gnu
[releases.git] / drivers / crypto / ux500 / hash / hash_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cryptographic API.
4  * Support for Nomadik hardware crypto engine.
5
6  * Copyright (C) ST-Ericsson SA 2010
7  * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
8  * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
9  * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
10  * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
11  * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
12  */
13
14 #define pr_fmt(fmt) "hashX hashX: " fmt
15
16 #include <linux/clk.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/io.h>
22 #include <linux/klist.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/mod_devicetable.h>
26 #include <linux/platform_device.h>
27 #include <linux/crypto.h>
28
29 #include <linux/regulator/consumer.h>
30 #include <linux/dmaengine.h>
31 #include <linux/bitops.h>
32
33 #include <crypto/internal/hash.h>
34 #include <crypto/sha1.h>
35 #include <crypto/sha2.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38
39 #include <linux/platform_data/crypto-ux500.h>
40
41 #include "hash_alg.h"
42
43 static int hash_mode;
44 module_param(hash_mode, int, 0);
45 MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
46
47 /* HMAC-SHA1, no key */
48 static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
49         0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
50         0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
51         0x70, 0x69, 0x0e, 0x1d
52 };
53
54 /* HMAC-SHA256, no key */
55 static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
56         0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
57         0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
58         0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
59         0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
60 };
61
62 /**
63  * struct hash_driver_data - data specific to the driver.
64  *
65  * @device_list:        A list of registered devices to choose from.
66  * @device_allocation:  A semaphore initialized with number of devices.
67  */
68 struct hash_driver_data {
69         struct klist            device_list;
70         struct semaphore        device_allocation;
71 };
72
73 static struct hash_driver_data  driver_data;
74
75 /* Declaration of functions */
76 /**
77  * hash_messagepad - Pads a message and write the nblw bits.
78  * @device_data:        Structure for the hash device.
79  * @message:            Last word of a message
80  * @index_bytes:        The number of bytes in the last message
81  *
82  * This function manages the final part of the digest calculation, when less
83  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
84  *
85  */
86 static void hash_messagepad(struct hash_device_data *device_data,
87                             const u32 *message, u8 index_bytes);
88
89 /**
90  * release_hash_device - Releases a previously allocated hash device.
91  * @device_data:        Structure for the hash device.
92  *
93  */
94 static void release_hash_device(struct hash_device_data *device_data)
95 {
96         spin_lock(&device_data->ctx_lock);
97         device_data->current_ctx->device = NULL;
98         device_data->current_ctx = NULL;
99         spin_unlock(&device_data->ctx_lock);
100
101         /*
102          * The down_interruptible part for this semaphore is called in
103          * cryp_get_device_data.
104          */
105         up(&driver_data.device_allocation);
106 }
107
108 static void hash_dma_setup_channel(struct hash_device_data *device_data,
109                                    struct device *dev)
110 {
111         struct hash_platform_data *platform_data = dev->platform_data;
112         struct dma_slave_config conf = {
113                 .direction = DMA_MEM_TO_DEV,
114                 .dst_addr = device_data->phybase + HASH_DMA_FIFO,
115                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
116                 .dst_maxburst = 16,
117         };
118
119         dma_cap_zero(device_data->dma.mask);
120         dma_cap_set(DMA_SLAVE, device_data->dma.mask);
121
122         device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
123         device_data->dma.chan_mem2hash =
124                 dma_request_channel(device_data->dma.mask,
125                                     platform_data->dma_filter,
126                                     device_data->dma.cfg_mem2hash);
127
128         dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
129
130         init_completion(&device_data->dma.complete);
131 }
132
133 static void hash_dma_callback(void *data)
134 {
135         struct hash_ctx *ctx = data;
136
137         complete(&ctx->device->dma.complete);
138 }
139
140 static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
141                                  int len, enum dma_data_direction direction)
142 {
143         struct dma_async_tx_descriptor *desc = NULL;
144         struct dma_chan *channel = NULL;
145
146         if (direction != DMA_TO_DEVICE) {
147                 dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
148                         __func__);
149                 return -EFAULT;
150         }
151
152         sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
153
154         channel = ctx->device->dma.chan_mem2hash;
155         ctx->device->dma.sg = sg;
156         ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
157                         ctx->device->dma.sg, ctx->device->dma.nents,
158                         direction);
159
160         if (!ctx->device->dma.sg_len) {
161                 dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
162                         __func__);
163                 return -EFAULT;
164         }
165
166         dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
167                 __func__);
168         desc = dmaengine_prep_slave_sg(channel,
169                         ctx->device->dma.sg, ctx->device->dma.sg_len,
170                         DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
171         if (!desc) {
172                 dev_err(ctx->device->dev,
173                         "%s: dmaengine_prep_slave_sg() failed!\n", __func__);
174                 return -EFAULT;
175         }
176
177         desc->callback = hash_dma_callback;
178         desc->callback_param = ctx;
179
180         dmaengine_submit(desc);
181         dma_async_issue_pending(channel);
182
183         return 0;
184 }
185
186 static void hash_dma_done(struct hash_ctx *ctx)
187 {
188         struct dma_chan *chan;
189
190         chan = ctx->device->dma.chan_mem2hash;
191         dmaengine_terminate_all(chan);
192         dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
193                      ctx->device->dma.nents, DMA_TO_DEVICE);
194 }
195
196 static int hash_dma_write(struct hash_ctx *ctx,
197                           struct scatterlist *sg, int len)
198 {
199         int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
200         if (error) {
201                 dev_dbg(ctx->device->dev,
202                         "%s: hash_set_dma_transfer() failed\n", __func__);
203                 return error;
204         }
205
206         return len;
207 }
208
209 /**
210  * get_empty_message_digest - Returns a pre-calculated digest for
211  * the empty message.
212  * @device_data:        Structure for the hash device.
213  * @zero_hash:          Buffer to return the empty message digest.
214  * @zero_hash_size:     Hash size of the empty message digest.
215  * @zero_digest:        True if zero_digest returned.
216  */
217 static int get_empty_message_digest(
218                 struct hash_device_data *device_data,
219                 u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
220 {
221         int ret = 0;
222         struct hash_ctx *ctx = device_data->current_ctx;
223         *zero_digest = false;
224
225         /**
226          * Caller responsible for ctx != NULL.
227          */
228
229         if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
230                 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
231                         memcpy(zero_hash, &sha1_zero_message_hash[0],
232                                SHA1_DIGEST_SIZE);
233                         *zero_hash_size = SHA1_DIGEST_SIZE;
234                         *zero_digest = true;
235                 } else if (HASH_ALGO_SHA256 ==
236                                 ctx->config.algorithm) {
237                         memcpy(zero_hash, &sha256_zero_message_hash[0],
238                                SHA256_DIGEST_SIZE);
239                         *zero_hash_size = SHA256_DIGEST_SIZE;
240                         *zero_digest = true;
241                 } else {
242                         dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
243                                 __func__);
244                         ret = -EINVAL;
245                         goto out;
246                 }
247         } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
248                 if (!ctx->keylen) {
249                         if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
250                                 memcpy(zero_hash, &zero_message_hmac_sha1[0],
251                                        SHA1_DIGEST_SIZE);
252                                 *zero_hash_size = SHA1_DIGEST_SIZE;
253                                 *zero_digest = true;
254                         } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
255                                 memcpy(zero_hash, &zero_message_hmac_sha256[0],
256                                        SHA256_DIGEST_SIZE);
257                                 *zero_hash_size = SHA256_DIGEST_SIZE;
258                                 *zero_digest = true;
259                         } else {
260                                 dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
261                                         __func__);
262                                 ret = -EINVAL;
263                                 goto out;
264                         }
265                 } else {
266                         dev_dbg(device_data->dev,
267                                 "%s: Continue hash calculation, since hmac key available\n",
268                                 __func__);
269                 }
270         }
271 out:
272
273         return ret;
274 }
275
276 /**
277  * hash_disable_power - Request to disable power and clock.
278  * @device_data:        Structure for the hash device.
279  * @save_device_state:  If true, saves the current hw state.
280  *
281  * This function request for disabling power (regulator) and clock,
282  * and could also save current hw state.
283  */
284 static int hash_disable_power(struct hash_device_data *device_data,
285                               bool save_device_state)
286 {
287         int ret = 0;
288         struct device *dev = device_data->dev;
289
290         spin_lock(&device_data->power_state_lock);
291         if (!device_data->power_state)
292                 goto out;
293
294         if (save_device_state) {
295                 hash_save_state(device_data,
296                                 &device_data->state);
297                 device_data->restore_dev_state = true;
298         }
299
300         clk_disable(device_data->clk);
301         ret = regulator_disable(device_data->regulator);
302         if (ret)
303                 dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
304
305         device_data->power_state = false;
306
307 out:
308         spin_unlock(&device_data->power_state_lock);
309
310         return ret;
311 }
312
313 /**
314  * hash_enable_power - Request to enable power and clock.
315  * @device_data:                Structure for the hash device.
316  * @restore_device_state:       If true, restores a previous saved hw state.
317  *
318  * This function request for enabling power (regulator) and clock,
319  * and could also restore a previously saved hw state.
320  */
321 static int hash_enable_power(struct hash_device_data *device_data,
322                              bool restore_device_state)
323 {
324         int ret = 0;
325         struct device *dev = device_data->dev;
326
327         spin_lock(&device_data->power_state_lock);
328         if (!device_data->power_state) {
329                 ret = regulator_enable(device_data->regulator);
330                 if (ret) {
331                         dev_err(dev, "%s: regulator_enable() failed!\n",
332                                 __func__);
333                         goto out;
334                 }
335                 ret = clk_enable(device_data->clk);
336                 if (ret) {
337                         dev_err(dev, "%s: clk_enable() failed!\n", __func__);
338                         ret = regulator_disable(
339                                         device_data->regulator);
340                         goto out;
341                 }
342                 device_data->power_state = true;
343         }
344
345         if (device_data->restore_dev_state) {
346                 if (restore_device_state) {
347                         device_data->restore_dev_state = false;
348                         hash_resume_state(device_data, &device_data->state);
349                 }
350         }
351 out:
352         spin_unlock(&device_data->power_state_lock);
353
354         return ret;
355 }
356
357 /**
358  * hash_get_device_data - Checks for an available hash device and return it.
359  * @ctx:                Structure for the hash context.
360  * @device_data:        Structure for the hash device.
361  *
362  * This function check for an available hash device and return it to
363  * the caller.
364  * Note! Caller need to release the device, calling up().
365  */
366 static int hash_get_device_data(struct hash_ctx *ctx,
367                                 struct hash_device_data **device_data)
368 {
369         int                     ret;
370         struct klist_iter       device_iterator;
371         struct klist_node       *device_node;
372         struct hash_device_data *local_device_data = NULL;
373
374         /* Wait until a device is available */
375         ret = down_interruptible(&driver_data.device_allocation);
376         if (ret)
377                 return ret;  /* Interrupted */
378
379         /* Select a device */
380         klist_iter_init(&driver_data.device_list, &device_iterator);
381         device_node = klist_next(&device_iterator);
382         while (device_node) {
383                 local_device_data = container_of(device_node,
384                                            struct hash_device_data, list_node);
385                 spin_lock(&local_device_data->ctx_lock);
386                 /* current_ctx allocates a device, NULL = unallocated */
387                 if (local_device_data->current_ctx) {
388                         device_node = klist_next(&device_iterator);
389                 } else {
390                         local_device_data->current_ctx = ctx;
391                         ctx->device = local_device_data;
392                         spin_unlock(&local_device_data->ctx_lock);
393                         break;
394                 }
395                 spin_unlock(&local_device_data->ctx_lock);
396         }
397         klist_iter_exit(&device_iterator);
398
399         if (!device_node) {
400                 /**
401                  * No free device found.
402                  * Since we allocated a device with down_interruptible, this
403                  * should not be able to happen.
404                  * Number of available devices, which are contained in
405                  * device_allocation, is therefore decremented by not doing
406                  * an up(device_allocation).
407                  */
408                 return -EBUSY;
409         }
410
411         *device_data = local_device_data;
412
413         return 0;
414 }
415
416 /**
417  * hash_hw_write_key - Writes the key to the hardware registries.
418  *
419  * @device_data:        Structure for the hash device.
420  * @key:                Key to be written.
421  * @keylen:             The lengt of the key.
422  *
423  * Note! This function DOES NOT write to the NBLW registry, even though
424  * specified in the the hw design spec. Either due to incorrect info in the
425  * spec or due to a bug in the hw.
426  */
427 static void hash_hw_write_key(struct hash_device_data *device_data,
428                               const u8 *key, unsigned int keylen)
429 {
430         u32 word = 0;
431         int nwords = 1;
432
433         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
434
435         while (keylen >= 4) {
436                 u32 *key_word = (u32 *)key;
437
438                 HASH_SET_DIN(key_word, nwords);
439                 keylen -= 4;
440                 key += 4;
441         }
442
443         /* Take care of the remaining bytes in the last word */
444         if (keylen) {
445                 word = 0;
446                 while (keylen) {
447                         word |= (key[keylen - 1] << (8 * (keylen - 1)));
448                         keylen--;
449                 }
450
451                 HASH_SET_DIN(&word, nwords);
452         }
453
454         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
455                 cpu_relax();
456
457         HASH_SET_DCAL;
458
459         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
460                 cpu_relax();
461 }
462
463 /**
464  * init_hash_hw - Initialise the hash hardware for a new calculation.
465  * @device_data:        Structure for the hash device.
466  * @ctx:                The hash context.
467  *
468  * This function will enable the bits needed to clear and start a new
469  * calculation.
470  */
471 static int init_hash_hw(struct hash_device_data *device_data,
472                         struct hash_ctx *ctx)
473 {
474         int ret = 0;
475
476         ret = hash_setconfiguration(device_data, &ctx->config);
477         if (ret) {
478                 dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
479                         __func__);
480                 return ret;
481         }
482
483         hash_begin(device_data, ctx);
484
485         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
486                 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
487
488         return ret;
489 }
490
491 /**
492  * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
493  *
494  * @sg:         Scatterlist.
495  * @size:       Size in bytes.
496  * @aligned:    True if sg data aligned to work in DMA mode.
497  *
498  */
499 static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
500 {
501         int nents = 0;
502         bool aligned_data = true;
503
504         while (size > 0 && sg) {
505                 nents++;
506                 size -= sg->length;
507
508                 /* hash_set_dma_transfer will align last nent */
509                 if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
510                     (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
511                         aligned_data = false;
512
513                 sg = sg_next(sg);
514         }
515
516         if (aligned)
517                 *aligned = aligned_data;
518
519         if (size != 0)
520                 return -EFAULT;
521
522         return nents;
523 }
524
525 /**
526  * hash_dma_valid_data - checks for dma valid sg data.
527  * @sg:         Scatterlist.
528  * @datasize:   Datasize in bytes.
529  *
530  * NOTE! This function checks for dma valid sg data, since dma
531  * only accept datasizes of even wordsize.
532  */
533 static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
534 {
535         bool aligned;
536
537         /* Need to include at least one nent, else error */
538         if (hash_get_nents(sg, datasize, &aligned) < 1)
539                 return false;
540
541         return aligned;
542 }
543
544 /**
545  * ux500_hash_init - Common hash init function for SHA1/SHA2 (SHA256).
546  * @req: The hash request for the job.
547  *
548  * Initialize structures.
549  */
550 static int ux500_hash_init(struct ahash_request *req)
551 {
552         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
553         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
554         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
555
556         if (!ctx->key)
557                 ctx->keylen = 0;
558
559         memset(&req_ctx->state, 0, sizeof(struct hash_state));
560         req_ctx->updated = 0;
561         if (hash_mode == HASH_MODE_DMA) {
562                 if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
563                         req_ctx->dma_mode = false; /* Don't use DMA */
564
565                         pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
566                                  __func__, HASH_DMA_ALIGN_SIZE);
567                 } else {
568                         if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
569                             hash_dma_valid_data(req->src, req->nbytes)) {
570                                 req_ctx->dma_mode = true;
571                         } else {
572                                 req_ctx->dma_mode = false;
573                                 pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
574                                          __func__,
575                                          HASH_DMA_PERFORMANCE_MIN_SIZE);
576                         }
577                 }
578         }
579         return 0;
580 }
581
582 /**
583  * hash_processblock - This function processes a single block of 512 bits (64
584  *                     bytes), word aligned, starting at message.
585  * @device_data:        Structure for the hash device.
586  * @message:            Block (512 bits) of message to be written to
587  *                      the HASH hardware.
588  * @length:             Message length
589  *
590  */
591 static void hash_processblock(struct hash_device_data *device_data,
592                               const u32 *message, int length)
593 {
594         int len = length / HASH_BYTES_PER_WORD;
595         /*
596          * NBLW bits. Reset the number of bits in last word (NBLW).
597          */
598         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
599
600         /*
601          * Write message data to the HASH_DIN register.
602          */
603         HASH_SET_DIN(message, len);
604 }
605
606 /**
607  * hash_messagepad - Pads a message and write the nblw bits.
608  * @device_data:        Structure for the hash device.
609  * @message:            Last word of a message.
610  * @index_bytes:        The number of bytes in the last message.
611  *
612  * This function manages the final part of the digest calculation, when less
613  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
614  *
615  */
616 static void hash_messagepad(struct hash_device_data *device_data,
617                             const u32 *message, u8 index_bytes)
618 {
619         int nwords = 1;
620
621         /*
622          * Clear hash str register, only clear NBLW
623          * since DCAL will be reset by hardware.
624          */
625         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
626
627         /* Main loop */
628         while (index_bytes >= 4) {
629                 HASH_SET_DIN(message, nwords);
630                 index_bytes -= 4;
631                 message++;
632         }
633
634         if (index_bytes)
635                 HASH_SET_DIN(message, nwords);
636
637         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
638                 cpu_relax();
639
640         /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
641         HASH_SET_NBLW(index_bytes * 8);
642         dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
643                 __func__, readl_relaxed(&device_data->base->din),
644                 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
645         HASH_SET_DCAL;
646         dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
647                 __func__, readl_relaxed(&device_data->base->din),
648                 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
649
650         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
651                 cpu_relax();
652 }
653
654 /**
655  * hash_incrementlength - Increments the length of the current message.
656  * @ctx: Hash context
657  * @incr: Length of message processed already
658  *
659  * Overflow cannot occur, because conditions for overflow are checked in
660  * hash_hw_update.
661  */
662 static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
663 {
664         ctx->state.length.low_word += incr;
665
666         /* Check for wrap-around */
667         if (ctx->state.length.low_word < incr)
668                 ctx->state.length.high_word++;
669 }
670
671 /**
672  * hash_setconfiguration - Sets the required configuration for the hash
673  *                         hardware.
674  * @device_data:        Structure for the hash device.
675  * @config:             Pointer to a configuration structure.
676  */
677 int hash_setconfiguration(struct hash_device_data *device_data,
678                           struct hash_config *config)
679 {
680         int ret = 0;
681
682         if (config->algorithm != HASH_ALGO_SHA1 &&
683             config->algorithm != HASH_ALGO_SHA256)
684                 return -EPERM;
685
686         /*
687          * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
688          * to be written to HASH_DIN is considered as 32 bits.
689          */
690         HASH_SET_DATA_FORMAT(config->data_format);
691
692         /*
693          * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
694          */
695         switch (config->algorithm) {
696         case HASH_ALGO_SHA1:
697                 HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
698                 break;
699
700         case HASH_ALGO_SHA256:
701                 HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
702                 break;
703
704         default:
705                 dev_err(device_data->dev, "%s: Incorrect algorithm\n",
706                         __func__);
707                 return -EPERM;
708         }
709
710         /*
711          * MODE bit. This bit selects between HASH or HMAC mode for the
712          * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
713          */
714         if (HASH_OPER_MODE_HASH == config->oper_mode)
715                 HASH_CLEAR_BITS(&device_data->base->cr,
716                                 HASH_CR_MODE_MASK);
717         else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
718                 HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
719                 if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
720                         /* Truncate key to blocksize */
721                         dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
722                         HASH_SET_BITS(&device_data->base->cr,
723                                       HASH_CR_LKEY_MASK);
724                 } else {
725                         dev_dbg(device_data->dev, "%s: LKEY cleared\n",
726                                 __func__);
727                         HASH_CLEAR_BITS(&device_data->base->cr,
728                                         HASH_CR_LKEY_MASK);
729                 }
730         } else {        /* Wrong hash mode */
731                 ret = -EPERM;
732                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
733                         __func__);
734         }
735         return ret;
736 }
737
738 /**
739  * hash_begin - This routine resets some globals and initializes the hash
740  *              hardware.
741  * @device_data:        Structure for the hash device.
742  * @ctx:                Hash context.
743  */
744 void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
745 {
746         /* HW and SW initializations */
747         /* Note: there is no need to initialize buffer and digest members */
748
749         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
750                 cpu_relax();
751
752         /*
753          * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
754          * prepare the initialize the HASH accelerator to compute the message
755          * digest of a new message.
756          */
757         HASH_INITIALIZE;
758
759         /*
760          * NBLW bits. Reset the number of bits in last word (NBLW).
761          */
762         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
763 }
764
765 static int hash_process_data(struct hash_device_data *device_data,
766                              struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
767                              int msg_length, u8 *data_buffer, u8 *buffer,
768                              u8 *index)
769 {
770         int ret = 0;
771         u32 count;
772
773         do {
774                 if ((*index + msg_length) < HASH_BLOCK_SIZE) {
775                         for (count = 0; count < msg_length; count++) {
776                                 buffer[*index + count] =
777                                         *(data_buffer + count);
778                         }
779                         *index += msg_length;
780                         msg_length = 0;
781                 } else {
782                         if (req_ctx->updated) {
783                                 ret = hash_resume_state(device_data,
784                                                 &device_data->state);
785                                 memmove(req_ctx->state.buffer,
786                                         device_data->state.buffer,
787                                         HASH_BLOCK_SIZE);
788                                 if (ret) {
789                                         dev_err(device_data->dev,
790                                                 "%s: hash_resume_state() failed!\n",
791                                                 __func__);
792                                         goto out;
793                                 }
794                         } else {
795                                 ret = init_hash_hw(device_data, ctx);
796                                 if (ret) {
797                                         dev_err(device_data->dev,
798                                                 "%s: init_hash_hw() failed!\n",
799                                                 __func__);
800                                         goto out;
801                                 }
802                                 req_ctx->updated = 1;
803                         }
804                         /*
805                          * If 'data_buffer' is four byte aligned and
806                          * local buffer does not have any data, we can
807                          * write data directly from 'data_buffer' to
808                          * HW peripheral, otherwise we first copy data
809                          * to a local buffer
810                          */
811                         if (IS_ALIGNED((unsigned long)data_buffer, 4) &&
812                             (0 == *index))
813                                 hash_processblock(device_data,
814                                                   (const u32 *)data_buffer,
815                                                   HASH_BLOCK_SIZE);
816                         else {
817                                 for (count = 0;
818                                      count < (u32)(HASH_BLOCK_SIZE - *index);
819                                      count++) {
820                                         buffer[*index + count] =
821                                                 *(data_buffer + count);
822                                 }
823                                 hash_processblock(device_data,
824                                                   (const u32 *)buffer,
825                                                   HASH_BLOCK_SIZE);
826                         }
827                         hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
828                         data_buffer += (HASH_BLOCK_SIZE - *index);
829
830                         msg_length -= (HASH_BLOCK_SIZE - *index);
831                         *index = 0;
832
833                         ret = hash_save_state(device_data,
834                                         &device_data->state);
835
836                         memmove(device_data->state.buffer,
837                                 req_ctx->state.buffer,
838                                 HASH_BLOCK_SIZE);
839                         if (ret) {
840                                 dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
841                                         __func__);
842                                 goto out;
843                         }
844                 }
845         } while (msg_length != 0);
846 out:
847
848         return ret;
849 }
850
851 /**
852  * hash_dma_final - The hash dma final function for SHA1/SHA256.
853  * @req:        The hash request for the job.
854  */
855 static int hash_dma_final(struct ahash_request *req)
856 {
857         int ret = 0;
858         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
859         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
860         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
861         struct hash_device_data *device_data;
862         u8 digest[SHA256_DIGEST_SIZE];
863         int bytes_written = 0;
864
865         ret = hash_get_device_data(ctx, &device_data);
866         if (ret)
867                 return ret;
868
869         dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
870                 (unsigned long)ctx);
871
872         if (req_ctx->updated) {
873                 ret = hash_resume_state(device_data, &device_data->state);
874
875                 if (ret) {
876                         dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
877                                 __func__);
878                         goto out;
879                 }
880         }
881
882         if (!req_ctx->updated) {
883                 ret = hash_setconfiguration(device_data, &ctx->config);
884                 if (ret) {
885                         dev_err(device_data->dev,
886                                 "%s: hash_setconfiguration() failed!\n",
887                                 __func__);
888                         goto out;
889                 }
890
891                 /* Enable DMA input */
892                 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
893                         HASH_CLEAR_BITS(&device_data->base->cr,
894                                         HASH_CR_DMAE_MASK);
895                 } else {
896                         HASH_SET_BITS(&device_data->base->cr,
897                                       HASH_CR_DMAE_MASK);
898                         HASH_SET_BITS(&device_data->base->cr,
899                                       HASH_CR_PRIVN_MASK);
900                 }
901
902                 HASH_INITIALIZE;
903
904                 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
905                         hash_hw_write_key(device_data, ctx->key, ctx->keylen);
906
907                 /* Number of bits in last word = (nbytes * 8) % 32 */
908                 HASH_SET_NBLW((req->nbytes * 8) % 32);
909                 req_ctx->updated = 1;
910         }
911
912         /* Store the nents in the dma struct. */
913         ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
914         if (!ctx->device->dma.nents) {
915                 dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
916                         __func__);
917                 ret = ctx->device->dma.nents;
918                 goto out;
919         }
920
921         bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
922         if (bytes_written != req->nbytes) {
923                 dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
924                         __func__);
925                 ret = bytes_written;
926                 goto out;
927         }
928
929         wait_for_completion(&ctx->device->dma.complete);
930         hash_dma_done(ctx);
931
932         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
933                 cpu_relax();
934
935         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
936                 unsigned int keylen = ctx->keylen;
937                 u8 *key = ctx->key;
938
939                 dev_dbg(device_data->dev, "%s: keylen: %d\n",
940                         __func__, ctx->keylen);
941                 hash_hw_write_key(device_data, key, keylen);
942         }
943
944         hash_get_digest(device_data, digest, ctx->config.algorithm);
945         memcpy(req->result, digest, ctx->digestsize);
946
947 out:
948         release_hash_device(device_data);
949
950         /**
951          * Allocated in setkey, and only used in HMAC.
952          */
953         kfree(ctx->key);
954
955         return ret;
956 }
957
958 /**
959  * hash_hw_final - The final hash calculation function
960  * @req:        The hash request for the job.
961  */
962 static int hash_hw_final(struct ahash_request *req)
963 {
964         int ret = 0;
965         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
966         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
967         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
968         struct hash_device_data *device_data;
969         u8 digest[SHA256_DIGEST_SIZE];
970
971         ret = hash_get_device_data(ctx, &device_data);
972         if (ret)
973                 return ret;
974
975         dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
976                 (unsigned long)ctx);
977
978         if (req_ctx->updated) {
979                 ret = hash_resume_state(device_data, &device_data->state);
980
981                 if (ret) {
982                         dev_err(device_data->dev,
983                                 "%s: hash_resume_state() failed!\n", __func__);
984                         goto out;
985                 }
986         } else if (req->nbytes == 0 && ctx->keylen == 0) {
987                 u8 zero_hash[SHA256_DIGEST_SIZE];
988                 u32 zero_hash_size = 0;
989                 bool zero_digest = false;
990                 /**
991                  * Use a pre-calculated empty message digest
992                  * (workaround since hw return zeroes, hw bug!?)
993                  */
994                 ret = get_empty_message_digest(device_data, &zero_hash[0],
995                                 &zero_hash_size, &zero_digest);
996                 if (!ret && likely(zero_hash_size == ctx->digestsize) &&
997                     zero_digest) {
998                         memcpy(req->result, &zero_hash[0], ctx->digestsize);
999                         goto out;
1000                 } else if (!ret && !zero_digest) {
1001                         dev_dbg(device_data->dev,
1002                                 "%s: HMAC zero msg with key, continue...\n",
1003                                 __func__);
1004                 } else {
1005                         dev_err(device_data->dev,
1006                                 "%s: ret=%d, or wrong digest size? %s\n",
1007                                 __func__, ret,
1008                                 zero_hash_size == ctx->digestsize ?
1009                                 "true" : "false");
1010                         /* Return error */
1011                         goto out;
1012                 }
1013         } else if (req->nbytes == 0 && ctx->keylen > 0) {
1014                 ret = -EPERM;
1015                 dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
1016                         __func__);
1017                 goto out;
1018         }
1019
1020         if (!req_ctx->updated) {
1021                 ret = init_hash_hw(device_data, ctx);
1022                 if (ret) {
1023                         dev_err(device_data->dev,
1024                                 "%s: init_hash_hw() failed!\n", __func__);
1025                         goto out;
1026                 }
1027         }
1028
1029         if (req_ctx->state.index) {
1030                 hash_messagepad(device_data, req_ctx->state.buffer,
1031                                 req_ctx->state.index);
1032         } else {
1033                 HASH_SET_DCAL;
1034                 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1035                         cpu_relax();
1036         }
1037
1038         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1039                 unsigned int keylen = ctx->keylen;
1040                 u8 *key = ctx->key;
1041
1042                 dev_dbg(device_data->dev, "%s: keylen: %d\n",
1043                         __func__, ctx->keylen);
1044                 hash_hw_write_key(device_data, key, keylen);
1045         }
1046
1047         hash_get_digest(device_data, digest, ctx->config.algorithm);
1048         memcpy(req->result, digest, ctx->digestsize);
1049
1050 out:
1051         release_hash_device(device_data);
1052
1053         /**
1054          * Allocated in setkey, and only used in HMAC.
1055          */
1056         kfree(ctx->key);
1057
1058         return ret;
1059 }
1060
1061 /**
1062  * hash_hw_update - Updates current HASH computation hashing another part of
1063  *                  the message.
1064  * @req:        Byte array containing the message to be hashed (caller
1065  *              allocated).
1066  */
1067 int hash_hw_update(struct ahash_request *req)
1068 {
1069         int ret = 0;
1070         u8 index = 0;
1071         u8 *buffer;
1072         struct hash_device_data *device_data;
1073         u8 *data_buffer;
1074         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1075         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1076         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1077         struct crypto_hash_walk walk;
1078         int msg_length;
1079
1080         index = req_ctx->state.index;
1081         buffer = (u8 *)req_ctx->state.buffer;
1082
1083         ret = hash_get_device_data(ctx, &device_data);
1084         if (ret)
1085                 return ret;
1086
1087         msg_length = crypto_hash_walk_first(req, &walk);
1088
1089         /* Empty message ("") is correct indata */
1090         if (msg_length == 0) {
1091                 ret = 0;
1092                 goto release_dev;
1093         }
1094
1095         /* Check if ctx->state.length + msg_length
1096            overflows */
1097         if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1098             HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
1099                 pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
1100                 ret = crypto_hash_walk_done(&walk, -EPERM);
1101                 goto release_dev;
1102         }
1103
1104         /* Main loop */
1105         while (0 != msg_length) {
1106                 data_buffer = walk.data;
1107                 ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1108                                 data_buffer, buffer, &index);
1109
1110                 if (ret) {
1111                         dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
1112                                 __func__);
1113                         crypto_hash_walk_done(&walk, ret);
1114                         goto release_dev;
1115                 }
1116
1117                 msg_length = crypto_hash_walk_done(&walk, 0);
1118         }
1119
1120         req_ctx->state.index = index;
1121         dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
1122                 __func__, req_ctx->state.index, req_ctx->state.bit_index);
1123
1124 release_dev:
1125         release_hash_device(device_data);
1126
1127         return ret;
1128 }
1129
1130 /**
1131  * hash_resume_state - Function that resumes the state of an calculation.
1132  * @device_data:        Pointer to the device structure.
1133  * @device_state:       The state to be restored in the hash hardware
1134  */
1135 int hash_resume_state(struct hash_device_data *device_data,
1136                       const struct hash_state *device_state)
1137 {
1138         u32 temp_cr;
1139         s32 count;
1140         int hash_mode = HASH_OPER_MODE_HASH;
1141
1142         if (NULL == device_state) {
1143                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1144                         __func__);
1145                 return -EPERM;
1146         }
1147
1148         /* Check correctness of index and length members */
1149         if (device_state->index > HASH_BLOCK_SIZE ||
1150             (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1151                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1152                         __func__);
1153                 return -EPERM;
1154         }
1155
1156         /*
1157          * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1158          * prepare the initialize the HASH accelerator to compute the message
1159          * digest of a new message.
1160          */
1161         HASH_INITIALIZE;
1162
1163         temp_cr = device_state->temp_cr;
1164         writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1165
1166         if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1167                 hash_mode = HASH_OPER_MODE_HMAC;
1168         else
1169                 hash_mode = HASH_OPER_MODE_HASH;
1170
1171         for (count = 0; count < HASH_CSR_COUNT; count++) {
1172                 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1173                         break;
1174
1175                 writel_relaxed(device_state->csr[count],
1176                                &device_data->base->csrx[count]);
1177         }
1178
1179         writel_relaxed(device_state->csfull, &device_data->base->csfull);
1180         writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1181
1182         writel_relaxed(device_state->str_reg, &device_data->base->str);
1183         writel_relaxed(temp_cr, &device_data->base->cr);
1184
1185         return 0;
1186 }
1187
1188 /**
1189  * hash_save_state - Function that saves the state of hardware.
1190  * @device_data:        Pointer to the device structure.
1191  * @device_state:       The strucure where the hardware state should be saved.
1192  */
1193 int hash_save_state(struct hash_device_data *device_data,
1194                     struct hash_state *device_state)
1195 {
1196         u32 temp_cr;
1197         u32 count;
1198         int hash_mode = HASH_OPER_MODE_HASH;
1199
1200         if (NULL == device_state) {
1201                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1202                         __func__);
1203                 return -ENOTSUPP;
1204         }
1205
1206         /* Write dummy value to force digest intermediate calculation. This
1207          * actually makes sure that there isn't any ongoing calculation in the
1208          * hardware.
1209          */
1210         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1211                 cpu_relax();
1212
1213         temp_cr = readl_relaxed(&device_data->base->cr);
1214
1215         device_state->str_reg = readl_relaxed(&device_data->base->str);
1216
1217         device_state->din_reg = readl_relaxed(&device_data->base->din);
1218
1219         if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1220                 hash_mode = HASH_OPER_MODE_HMAC;
1221         else
1222                 hash_mode = HASH_OPER_MODE_HASH;
1223
1224         for (count = 0; count < HASH_CSR_COUNT; count++) {
1225                 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1226                         break;
1227
1228                 device_state->csr[count] =
1229                         readl_relaxed(&device_data->base->csrx[count]);
1230         }
1231
1232         device_state->csfull = readl_relaxed(&device_data->base->csfull);
1233         device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1234
1235         device_state->temp_cr = temp_cr;
1236
1237         return 0;
1238 }
1239
1240 /**
1241  * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1242  * @device_data:
1243  *
1244  */
1245 int hash_check_hw(struct hash_device_data *device_data)
1246 {
1247         /* Checking Peripheral Ids  */
1248         if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
1249             HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
1250             HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
1251             HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
1252             HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
1253             HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
1254             HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
1255             HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
1256                 return 0;
1257         }
1258
1259         dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
1260         return -ENOTSUPP;
1261 }
1262
1263 /**
1264  * hash_get_digest - Gets the digest.
1265  * @device_data:        Pointer to the device structure.
1266  * @digest:             User allocated byte array for the calculated digest.
1267  * @algorithm:          The algorithm in use.
1268  */
1269 void hash_get_digest(struct hash_device_data *device_data,
1270                      u8 *digest, int algorithm)
1271 {
1272         u32 temp_hx_val, count;
1273         int loop_ctr;
1274
1275         if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1276                 dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
1277                         __func__, algorithm);
1278                 return;
1279         }
1280
1281         if (algorithm == HASH_ALGO_SHA1)
1282                 loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1283         else
1284                 loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1285
1286         dev_dbg(device_data->dev, "%s: digest array:(0x%lx)\n",
1287                 __func__, (unsigned long)digest);
1288
1289         /* Copy result into digest array */
1290         for (count = 0; count < loop_ctr; count++) {
1291                 temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1292                 digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1293                 digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1294                 digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1295                 digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1296         }
1297 }
1298
1299 /**
1300  * ahash_update - The hash update function for SHA1/SHA2 (SHA256).
1301  * @req: The hash request for the job.
1302  */
1303 static int ahash_update(struct ahash_request *req)
1304 {
1305         int ret = 0;
1306         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1307
1308         if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1309                 ret = hash_hw_update(req);
1310         /* Skip update for DMA, all data will be passed to DMA in final */
1311
1312         if (ret) {
1313                 pr_err("%s: hash_hw_update() failed!\n", __func__);
1314         }
1315
1316         return ret;
1317 }
1318
1319 /**
1320  * ahash_final - The hash final function for SHA1/SHA2 (SHA256).
1321  * @req:        The hash request for the job.
1322  */
1323 static int ahash_final(struct ahash_request *req)
1324 {
1325         int ret = 0;
1326         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1327
1328         pr_debug("%s: data size: %d\n", __func__, req->nbytes);
1329
1330         if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1331                 ret = hash_dma_final(req);
1332         else
1333                 ret = hash_hw_final(req);
1334
1335         if (ret) {
1336                 pr_err("%s: hash_hw/dma_final() failed\n", __func__);
1337         }
1338
1339         return ret;
1340 }
1341
1342 static int hash_setkey(struct crypto_ahash *tfm,
1343                        const u8 *key, unsigned int keylen, int alg)
1344 {
1345         int ret = 0;
1346         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1347
1348         /**
1349          * Freed in final.
1350          */
1351         ctx->key = kmemdup(key, keylen, GFP_KERNEL);
1352         if (!ctx->key) {
1353                 pr_err("%s: Failed to allocate ctx->key for %d\n",
1354                        __func__, alg);
1355                 return -ENOMEM;
1356         }
1357         ctx->keylen = keylen;
1358
1359         return ret;
1360 }
1361
1362 static int ahash_sha1_init(struct ahash_request *req)
1363 {
1364         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1365         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1366
1367         ctx->config.data_format = HASH_DATA_8_BITS;
1368         ctx->config.algorithm = HASH_ALGO_SHA1;
1369         ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1370         ctx->digestsize = SHA1_DIGEST_SIZE;
1371
1372         return ux500_hash_init(req);
1373 }
1374
1375 static int ahash_sha256_init(struct ahash_request *req)
1376 {
1377         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1378         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1379
1380         ctx->config.data_format = HASH_DATA_8_BITS;
1381         ctx->config.algorithm = HASH_ALGO_SHA256;
1382         ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1383         ctx->digestsize = SHA256_DIGEST_SIZE;
1384
1385         return ux500_hash_init(req);
1386 }
1387
1388 static int ahash_sha1_digest(struct ahash_request *req)
1389 {
1390         int ret2, ret1;
1391
1392         ret1 = ahash_sha1_init(req);
1393         if (ret1)
1394                 goto out;
1395
1396         ret1 = ahash_update(req);
1397         ret2 = ahash_final(req);
1398
1399 out:
1400         return ret1 ? ret1 : ret2;
1401 }
1402
1403 static int ahash_sha256_digest(struct ahash_request *req)
1404 {
1405         int ret2, ret1;
1406
1407         ret1 = ahash_sha256_init(req);
1408         if (ret1)
1409                 goto out;
1410
1411         ret1 = ahash_update(req);
1412         ret2 = ahash_final(req);
1413
1414 out:
1415         return ret1 ? ret1 : ret2;
1416 }
1417
1418 static int ahash_noimport(struct ahash_request *req, const void *in)
1419 {
1420         return -ENOSYS;
1421 }
1422
1423 static int ahash_noexport(struct ahash_request *req, void *out)
1424 {
1425         return -ENOSYS;
1426 }
1427
1428 static int hmac_sha1_init(struct ahash_request *req)
1429 {
1430         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1431         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1432
1433         ctx->config.data_format = HASH_DATA_8_BITS;
1434         ctx->config.algorithm   = HASH_ALGO_SHA1;
1435         ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1436         ctx->digestsize         = SHA1_DIGEST_SIZE;
1437
1438         return ux500_hash_init(req);
1439 }
1440
1441 static int hmac_sha256_init(struct ahash_request *req)
1442 {
1443         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1444         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1445
1446         ctx->config.data_format = HASH_DATA_8_BITS;
1447         ctx->config.algorithm   = HASH_ALGO_SHA256;
1448         ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1449         ctx->digestsize         = SHA256_DIGEST_SIZE;
1450
1451         return ux500_hash_init(req);
1452 }
1453
1454 static int hmac_sha1_digest(struct ahash_request *req)
1455 {
1456         int ret2, ret1;
1457
1458         ret1 = hmac_sha1_init(req);
1459         if (ret1)
1460                 goto out;
1461
1462         ret1 = ahash_update(req);
1463         ret2 = ahash_final(req);
1464
1465 out:
1466         return ret1 ? ret1 : ret2;
1467 }
1468
1469 static int hmac_sha256_digest(struct ahash_request *req)
1470 {
1471         int ret2, ret1;
1472
1473         ret1 = hmac_sha256_init(req);
1474         if (ret1)
1475                 goto out;
1476
1477         ret1 = ahash_update(req);
1478         ret2 = ahash_final(req);
1479
1480 out:
1481         return ret1 ? ret1 : ret2;
1482 }
1483
1484 static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1485                             const u8 *key, unsigned int keylen)
1486 {
1487         return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1488 }
1489
1490 static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1491                               const u8 *key, unsigned int keylen)
1492 {
1493         return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1494 }
1495
1496 struct hash_algo_template {
1497         struct hash_config conf;
1498         struct ahash_alg hash;
1499 };
1500
1501 static int hash_cra_init(struct crypto_tfm *tfm)
1502 {
1503         struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1504         struct crypto_alg *alg = tfm->__crt_alg;
1505         struct hash_algo_template *hash_alg;
1506
1507         hash_alg = container_of(__crypto_ahash_alg(alg),
1508                         struct hash_algo_template,
1509                         hash);
1510
1511         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1512                                  sizeof(struct hash_req_ctx));
1513
1514         ctx->config.data_format = HASH_DATA_8_BITS;
1515         ctx->config.algorithm = hash_alg->conf.algorithm;
1516         ctx->config.oper_mode = hash_alg->conf.oper_mode;
1517
1518         ctx->digestsize = hash_alg->hash.halg.digestsize;
1519
1520         return 0;
1521 }
1522
1523 static struct hash_algo_template hash_algs[] = {
1524         {
1525                 .conf.algorithm = HASH_ALGO_SHA1,
1526                 .conf.oper_mode = HASH_OPER_MODE_HASH,
1527                 .hash = {
1528                         .init = ux500_hash_init,
1529                         .update = ahash_update,
1530                         .final = ahash_final,
1531                         .digest = ahash_sha1_digest,
1532                         .export = ahash_noexport,
1533                         .import = ahash_noimport,
1534                         .halg.digestsize = SHA1_DIGEST_SIZE,
1535                         .halg.statesize = sizeof(struct hash_ctx),
1536                         .halg.base = {
1537                                 .cra_name = "sha1",
1538                                 .cra_driver_name = "sha1-ux500",
1539                                 .cra_flags = CRYPTO_ALG_ASYNC,
1540                                 .cra_blocksize = SHA1_BLOCK_SIZE,
1541                                 .cra_ctxsize = sizeof(struct hash_ctx),
1542                                 .cra_init = hash_cra_init,
1543                                 .cra_module = THIS_MODULE,
1544                         }
1545                 }
1546         },
1547         {
1548                 .conf.algorithm = HASH_ALGO_SHA256,
1549                 .conf.oper_mode = HASH_OPER_MODE_HASH,
1550                 .hash = {
1551                         .init = ux500_hash_init,
1552                         .update = ahash_update,
1553                         .final = ahash_final,
1554                         .digest = ahash_sha256_digest,
1555                         .export = ahash_noexport,
1556                         .import = ahash_noimport,
1557                         .halg.digestsize = SHA256_DIGEST_SIZE,
1558                         .halg.statesize = sizeof(struct hash_ctx),
1559                         .halg.base = {
1560                                 .cra_name = "sha256",
1561                                 .cra_driver_name = "sha256-ux500",
1562                                 .cra_flags = CRYPTO_ALG_ASYNC,
1563                                 .cra_blocksize = SHA256_BLOCK_SIZE,
1564                                 .cra_ctxsize = sizeof(struct hash_ctx),
1565                                 .cra_init = hash_cra_init,
1566                                 .cra_module = THIS_MODULE,
1567                         }
1568                 }
1569         },
1570         {
1571                 .conf.algorithm = HASH_ALGO_SHA1,
1572                 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1573                         .hash = {
1574                         .init = ux500_hash_init,
1575                         .update = ahash_update,
1576                         .final = ahash_final,
1577                         .digest = hmac_sha1_digest,
1578                         .setkey = hmac_sha1_setkey,
1579                         .export = ahash_noexport,
1580                         .import = ahash_noimport,
1581                         .halg.digestsize = SHA1_DIGEST_SIZE,
1582                         .halg.statesize = sizeof(struct hash_ctx),
1583                         .halg.base = {
1584                                 .cra_name = "hmac(sha1)",
1585                                 .cra_driver_name = "hmac-sha1-ux500",
1586                                 .cra_flags = CRYPTO_ALG_ASYNC,
1587                                 .cra_blocksize = SHA1_BLOCK_SIZE,
1588                                 .cra_ctxsize = sizeof(struct hash_ctx),
1589                                 .cra_init = hash_cra_init,
1590                                 .cra_module = THIS_MODULE,
1591                         }
1592                 }
1593         },
1594         {
1595                 .conf.algorithm = HASH_ALGO_SHA256,
1596                 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1597                 .hash = {
1598                         .init = ux500_hash_init,
1599                         .update = ahash_update,
1600                         .final = ahash_final,
1601                         .digest = hmac_sha256_digest,
1602                         .setkey = hmac_sha256_setkey,
1603                         .export = ahash_noexport,
1604                         .import = ahash_noimport,
1605                         .halg.digestsize = SHA256_DIGEST_SIZE,
1606                         .halg.statesize = sizeof(struct hash_ctx),
1607                         .halg.base = {
1608                                 .cra_name = "hmac(sha256)",
1609                                 .cra_driver_name = "hmac-sha256-ux500",
1610                                 .cra_flags = CRYPTO_ALG_ASYNC,
1611                                 .cra_blocksize = SHA256_BLOCK_SIZE,
1612                                 .cra_ctxsize = sizeof(struct hash_ctx),
1613                                 .cra_init = hash_cra_init,
1614                                 .cra_module = THIS_MODULE,
1615                         }
1616                 }
1617         }
1618 };
1619
1620 static int ahash_algs_register_all(struct hash_device_data *device_data)
1621 {
1622         int ret;
1623         int i;
1624         int count;
1625
1626         for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1627                 ret = crypto_register_ahash(&hash_algs[i].hash);
1628                 if (ret) {
1629                         count = i;
1630                         dev_err(device_data->dev, "%s: alg registration failed\n",
1631                                 hash_algs[i].hash.halg.base.cra_driver_name);
1632                         goto unreg;
1633                 }
1634         }
1635         return 0;
1636 unreg:
1637         for (i = 0; i < count; i++)
1638                 crypto_unregister_ahash(&hash_algs[i].hash);
1639         return ret;
1640 }
1641
1642 static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1643 {
1644         int i;
1645
1646         for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1647                 crypto_unregister_ahash(&hash_algs[i].hash);
1648 }
1649
1650 /**
1651  * ux500_hash_probe - Function that probes the hash hardware.
1652  * @pdev: The platform device.
1653  */
1654 static int ux500_hash_probe(struct platform_device *pdev)
1655 {
1656         int                     ret = 0;
1657         struct resource         *res = NULL;
1658         struct hash_device_data *device_data;
1659         struct device           *dev = &pdev->dev;
1660
1661         device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1662         if (!device_data) {
1663                 ret = -ENOMEM;
1664                 goto out;
1665         }
1666
1667         device_data->dev = dev;
1668         device_data->current_ctx = NULL;
1669
1670         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1671         if (!res) {
1672                 dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
1673                 ret = -ENODEV;
1674                 goto out;
1675         }
1676
1677         device_data->phybase = res->start;
1678         device_data->base = devm_ioremap_resource(dev, res);
1679         if (IS_ERR(device_data->base)) {
1680                 ret = PTR_ERR(device_data->base);
1681                 goto out;
1682         }
1683         spin_lock_init(&device_data->ctx_lock);
1684         spin_lock_init(&device_data->power_state_lock);
1685
1686         /* Enable power for HASH1 hardware block */
1687         device_data->regulator = regulator_get(dev, "v-ape");
1688         if (IS_ERR(device_data->regulator)) {
1689                 dev_err(dev, "%s: regulator_get() failed!\n", __func__);
1690                 ret = PTR_ERR(device_data->regulator);
1691                 device_data->regulator = NULL;
1692                 goto out;
1693         }
1694
1695         /* Enable the clock for HASH1 hardware block */
1696         device_data->clk = devm_clk_get(dev, NULL);
1697         if (IS_ERR(device_data->clk)) {
1698                 dev_err(dev, "%s: clk_get() failed!\n", __func__);
1699                 ret = PTR_ERR(device_data->clk);
1700                 goto out_regulator;
1701         }
1702
1703         ret = clk_prepare(device_data->clk);
1704         if (ret) {
1705                 dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
1706                 goto out_regulator;
1707         }
1708
1709         /* Enable device power (and clock) */
1710         ret = hash_enable_power(device_data, false);
1711         if (ret) {
1712                 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1713                 goto out_clk_unprepare;
1714         }
1715
1716         ret = hash_check_hw(device_data);
1717         if (ret) {
1718                 dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
1719                 goto out_power;
1720         }
1721
1722         if (hash_mode == HASH_MODE_DMA)
1723                 hash_dma_setup_channel(device_data, dev);
1724
1725         platform_set_drvdata(pdev, device_data);
1726
1727         /* Put the new device into the device list... */
1728         klist_add_tail(&device_data->list_node, &driver_data.device_list);
1729         /* ... and signal that a new device is available. */
1730         up(&driver_data.device_allocation);
1731
1732         ret = ahash_algs_register_all(device_data);
1733         if (ret) {
1734                 dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
1735                         __func__);
1736                 goto out_power;
1737         }
1738
1739         dev_info(dev, "successfully registered\n");
1740         return 0;
1741
1742 out_power:
1743         hash_disable_power(device_data, false);
1744
1745 out_clk_unprepare:
1746         clk_unprepare(device_data->clk);
1747
1748 out_regulator:
1749         regulator_put(device_data->regulator);
1750
1751 out:
1752         return ret;
1753 }
1754
1755 /**
1756  * ux500_hash_remove - Function that removes the hash device from the platform.
1757  * @pdev: The platform device.
1758  */
1759 static int ux500_hash_remove(struct platform_device *pdev)
1760 {
1761         struct hash_device_data *device_data;
1762         struct device           *dev = &pdev->dev;
1763
1764         device_data = platform_get_drvdata(pdev);
1765         if (!device_data) {
1766                 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1767                 return -ENOMEM;
1768         }
1769
1770         /* Try to decrease the number of available devices. */
1771         if (down_trylock(&driver_data.device_allocation))
1772                 return -EBUSY;
1773
1774         /* Check that the device is free */
1775         spin_lock(&device_data->ctx_lock);
1776         /* current_ctx allocates a device, NULL = unallocated */
1777         if (device_data->current_ctx) {
1778                 /* The device is busy */
1779                 spin_unlock(&device_data->ctx_lock);
1780                 /* Return the device to the pool. */
1781                 up(&driver_data.device_allocation);
1782                 return -EBUSY;
1783         }
1784
1785         spin_unlock(&device_data->ctx_lock);
1786
1787         /* Remove the device from the list */
1788         if (klist_node_attached(&device_data->list_node))
1789                 klist_remove(&device_data->list_node);
1790
1791         /* If this was the last device, remove the services */
1792         if (list_empty(&driver_data.device_list.k_list))
1793                 ahash_algs_unregister_all(device_data);
1794
1795         if (hash_disable_power(device_data, false))
1796                 dev_err(dev, "%s: hash_disable_power() failed\n",
1797                         __func__);
1798
1799         clk_unprepare(device_data->clk);
1800         regulator_put(device_data->regulator);
1801
1802         return 0;
1803 }
1804
1805 /**
1806  * ux500_hash_shutdown - Function that shutdown the hash device.
1807  * @pdev: The platform device
1808  */
1809 static void ux500_hash_shutdown(struct platform_device *pdev)
1810 {
1811         struct hash_device_data *device_data;
1812
1813         device_data = platform_get_drvdata(pdev);
1814         if (!device_data) {
1815                 dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
1816                         __func__);
1817                 return;
1818         }
1819
1820         /* Check that the device is free */
1821         spin_lock(&device_data->ctx_lock);
1822         /* current_ctx allocates a device, NULL = unallocated */
1823         if (!device_data->current_ctx) {
1824                 if (down_trylock(&driver_data.device_allocation))
1825                         dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
1826                                 __func__);
1827                 /**
1828                  * (Allocate the device)
1829                  * Need to set this to non-null (dummy) value,
1830                  * to avoid usage if context switching.
1831                  */
1832                 device_data->current_ctx++;
1833         }
1834         spin_unlock(&device_data->ctx_lock);
1835
1836         /* Remove the device from the list */
1837         if (klist_node_attached(&device_data->list_node))
1838                 klist_remove(&device_data->list_node);
1839
1840         /* If this was the last device, remove the services */
1841         if (list_empty(&driver_data.device_list.k_list))
1842                 ahash_algs_unregister_all(device_data);
1843
1844         if (hash_disable_power(device_data, false))
1845                 dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
1846                         __func__);
1847 }
1848
1849 #ifdef CONFIG_PM_SLEEP
1850 /**
1851  * ux500_hash_suspend - Function that suspends the hash device.
1852  * @dev:        Device to suspend.
1853  */
1854 static int ux500_hash_suspend(struct device *dev)
1855 {
1856         int ret;
1857         struct hash_device_data *device_data;
1858         struct hash_ctx *temp_ctx = NULL;
1859
1860         device_data = dev_get_drvdata(dev);
1861         if (!device_data) {
1862                 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1863                 return -ENOMEM;
1864         }
1865
1866         spin_lock(&device_data->ctx_lock);
1867         if (!device_data->current_ctx)
1868                 device_data->current_ctx++;
1869         spin_unlock(&device_data->ctx_lock);
1870
1871         if (device_data->current_ctx == ++temp_ctx) {
1872                 if (down_interruptible(&driver_data.device_allocation))
1873                         dev_dbg(dev, "%s: down_interruptible() failed\n",
1874                                 __func__);
1875                 ret = hash_disable_power(device_data, false);
1876
1877         } else {
1878                 ret = hash_disable_power(device_data, true);
1879         }
1880
1881         if (ret)
1882                 dev_err(dev, "%s: hash_disable_power()\n", __func__);
1883
1884         return ret;
1885 }
1886
1887 /**
1888  * ux500_hash_resume - Function that resume the hash device.
1889  * @dev:        Device to resume.
1890  */
1891 static int ux500_hash_resume(struct device *dev)
1892 {
1893         int ret = 0;
1894         struct hash_device_data *device_data;
1895         struct hash_ctx *temp_ctx = NULL;
1896
1897         device_data = dev_get_drvdata(dev);
1898         if (!device_data) {
1899                 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1900                 return -ENOMEM;
1901         }
1902
1903         spin_lock(&device_data->ctx_lock);
1904         if (device_data->current_ctx == ++temp_ctx)
1905                 device_data->current_ctx = NULL;
1906         spin_unlock(&device_data->ctx_lock);
1907
1908         if (!device_data->current_ctx)
1909                 up(&driver_data.device_allocation);
1910         else
1911                 ret = hash_enable_power(device_data, true);
1912
1913         if (ret)
1914                 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1915
1916         return ret;
1917 }
1918 #endif
1919
1920 static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1921
1922 static const struct of_device_id ux500_hash_match[] = {
1923         { .compatible = "stericsson,ux500-hash" },
1924         { },
1925 };
1926 MODULE_DEVICE_TABLE(of, ux500_hash_match);
1927
1928 static struct platform_driver hash_driver = {
1929         .probe  = ux500_hash_probe,
1930         .remove = ux500_hash_remove,
1931         .shutdown = ux500_hash_shutdown,
1932         .driver = {
1933                 .name  = "hash1",
1934                 .of_match_table = ux500_hash_match,
1935                 .pm    = &ux500_hash_pm,
1936         }
1937 };
1938
1939 /**
1940  * ux500_hash_mod_init - The kernel module init function.
1941  */
1942 static int __init ux500_hash_mod_init(void)
1943 {
1944         klist_init(&driver_data.device_list, NULL, NULL);
1945         /* Initialize the semaphore to 0 devices (locked state) */
1946         sema_init(&driver_data.device_allocation, 0);
1947
1948         return platform_driver_register(&hash_driver);
1949 }
1950
1951 /**
1952  * ux500_hash_mod_fini - The kernel module exit function.
1953  */
1954 static void __exit ux500_hash_mod_fini(void)
1955 {
1956         platform_driver_unregister(&hash_driver);
1957 }
1958
1959 module_init(ux500_hash_mod_init);
1960 module_exit(ux500_hash_mod_fini);
1961
1962 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1963 MODULE_LICENSE("GPL");
1964
1965 MODULE_ALIAS_CRYPTO("sha1-all");
1966 MODULE_ALIAS_CRYPTO("sha256-all");
1967 MODULE_ALIAS_CRYPTO("hmac-sha1-all");
1968 MODULE_ALIAS_CRYPTO("hmac-sha256-all");