GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / crypto / qce / sha.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
4  */
5
6 #include <linux/device.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/interrupt.h>
9 #include <crypto/internal/hash.h>
10
11 #include "common.h"
12 #include "core.h"
13 #include "sha.h"
14
15 /* crypto hw padding constant for first operation */
16 #define SHA_PADDING             64
17 #define SHA_PADDING_MASK        (SHA_PADDING - 1)
18
19 static LIST_HEAD(ahash_algs);
20
21 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
22         SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
23 };
24
25 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
26         SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
27         SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
28 };
29
30 static void qce_ahash_done(void *data)
31 {
32         struct crypto_async_request *async_req = data;
33         struct ahash_request *req = ahash_request_cast(async_req);
34         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
35         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
36         struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
37         struct qce_device *qce = tmpl->qce;
38         struct qce_result_dump *result = qce->dma.result_buf;
39         unsigned int digestsize = crypto_ahash_digestsize(ahash);
40         int error;
41         u32 status;
42
43         error = qce_dma_terminate_all(&qce->dma);
44         if (error)
45                 dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
46
47         dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
48         dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
49
50         memcpy(rctx->digest, result->auth_iv, digestsize);
51         if (req->result)
52                 memcpy(req->result, result->auth_iv, digestsize);
53
54         rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
55         rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
56
57         error = qce_check_status(qce, &status);
58         if (error < 0)
59                 dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
60
61         req->src = rctx->src_orig;
62         req->nbytes = rctx->nbytes_orig;
63         rctx->last_blk = false;
64         rctx->first_blk = false;
65
66         qce->async_req_done(tmpl->qce, error);
67 }
68
69 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
70 {
71         struct ahash_request *req = ahash_request_cast(async_req);
72         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
73         struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
74         struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
75         struct qce_device *qce = tmpl->qce;
76         unsigned long flags = rctx->flags;
77         int ret;
78
79         if (IS_SHA_HMAC(flags)) {
80                 rctx->authkey = ctx->authkey;
81                 rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
82         } else if (IS_CMAC(flags)) {
83                 rctx->authkey = ctx->authkey;
84                 rctx->authklen = AES_KEYSIZE_128;
85         }
86
87         rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
88         if (rctx->src_nents < 0) {
89                 dev_err(qce->dev, "Invalid numbers of src SG.\n");
90                 return rctx->src_nents;
91         }
92
93         ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
94         if (ret < 0)
95                 return ret;
96
97         sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
98
99         ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
100         if (ret < 0)
101                 goto error_unmap_src;
102
103         ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
104                                &rctx->result_sg, 1, qce_ahash_done, async_req);
105         if (ret)
106                 goto error_unmap_dst;
107
108         qce_dma_issue_pending(&qce->dma);
109
110         ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
111         if (ret)
112                 goto error_terminate;
113
114         return 0;
115
116 error_terminate:
117         qce_dma_terminate_all(&qce->dma);
118 error_unmap_dst:
119         dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
120 error_unmap_src:
121         dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
122         return ret;
123 }
124
125 static int qce_ahash_init(struct ahash_request *req)
126 {
127         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
128         struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
129         const u32 *std_iv = tmpl->std_iv;
130
131         memset(rctx, 0, sizeof(*rctx));
132         rctx->first_blk = true;
133         rctx->last_blk = false;
134         rctx->flags = tmpl->alg_flags;
135         memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
136
137         return 0;
138 }
139
140 static int qce_ahash_export(struct ahash_request *req, void *out)
141 {
142         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
143         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
144         unsigned long flags = rctx->flags;
145         unsigned int digestsize = crypto_ahash_digestsize(ahash);
146         unsigned int blocksize =
147                         crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
148
149         if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
150                 struct sha1_state *out_state = out;
151
152                 out_state->count = rctx->count;
153                 qce_cpu_to_be32p_array((__be32 *)out_state->state,
154                                        rctx->digest, digestsize);
155                 memcpy(out_state->buffer, rctx->buf, blocksize);
156         } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
157                 struct sha256_state *out_state = out;
158
159                 out_state->count = rctx->count;
160                 qce_cpu_to_be32p_array((__be32 *)out_state->state,
161                                        rctx->digest, digestsize);
162                 memcpy(out_state->buf, rctx->buf, blocksize);
163         } else {
164                 return -EINVAL;
165         }
166
167         return 0;
168 }
169
170 static int qce_import_common(struct ahash_request *req, u64 in_count,
171                              const u32 *state, const u8 *buffer, bool hmac)
172 {
173         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
174         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
175         unsigned int digestsize = crypto_ahash_digestsize(ahash);
176         unsigned int blocksize;
177         u64 count = in_count;
178
179         blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
180         rctx->count = in_count;
181         memcpy(rctx->buf, buffer, blocksize);
182
183         if (in_count <= blocksize) {
184                 rctx->first_blk = 1;
185         } else {
186                 rctx->first_blk = 0;
187                 /*
188                  * For HMAC, there is a hardware padding done when first block
189                  * is set. Therefore the byte_count must be incremened by 64
190                  * after the first block operation.
191                  */
192                 if (hmac)
193                         count += SHA_PADDING;
194         }
195
196         rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
197         rctx->byte_count[1] = (__force __be32)(count >> 32);
198         qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
199                                digestsize);
200         rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
201
202         return 0;
203 }
204
205 static int qce_ahash_import(struct ahash_request *req, const void *in)
206 {
207         struct qce_sha_reqctx *rctx;
208         unsigned long flags;
209         bool hmac;
210         int ret;
211
212         ret = qce_ahash_init(req);
213         if (ret)
214                 return ret;
215
216         rctx = ahash_request_ctx(req);
217         flags = rctx->flags;
218         hmac = IS_SHA_HMAC(flags);
219
220         if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
221                 const struct sha1_state *state = in;
222
223                 ret = qce_import_common(req, state->count, state->state,
224                                         state->buffer, hmac);
225         } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
226                 const struct sha256_state *state = in;
227
228                 ret = qce_import_common(req, state->count, state->state,
229                                         state->buf, hmac);
230         }
231
232         return ret;
233 }
234
235 static int qce_ahash_update(struct ahash_request *req)
236 {
237         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
238         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
239         struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
240         struct qce_device *qce = tmpl->qce;
241         struct scatterlist *sg_last, *sg;
242         unsigned int total, len;
243         unsigned int hash_later;
244         unsigned int nbytes;
245         unsigned int blocksize;
246
247         blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
248         rctx->count += req->nbytes;
249
250         /* check for buffer from previous updates and append it */
251         total = req->nbytes + rctx->buflen;
252
253         if (total <= blocksize) {
254                 scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
255                                          0, req->nbytes, 0);
256                 rctx->buflen += req->nbytes;
257                 return 0;
258         }
259
260         /* save the original req structure fields */
261         rctx->src_orig = req->src;
262         rctx->nbytes_orig = req->nbytes;
263
264         /*
265          * if we have data from previous update copy them on buffer. The old
266          * data will be combined with current request bytes.
267          */
268         if (rctx->buflen)
269                 memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
270
271         /* calculate how many bytes will be hashed later */
272         hash_later = total % blocksize;
273         if (hash_later) {
274                 unsigned int src_offset = req->nbytes - hash_later;
275                 scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
276                                          hash_later, 0);
277         }
278
279         /* here nbytes is multiple of blocksize */
280         nbytes = total - hash_later;
281
282         len = rctx->buflen;
283         sg = sg_last = req->src;
284
285         while (len < nbytes && sg) {
286                 if (len + sg_dma_len(sg) > nbytes)
287                         break;
288                 len += sg_dma_len(sg);
289                 sg_last = sg;
290                 sg = sg_next(sg);
291         }
292
293         if (!sg_last)
294                 return -EINVAL;
295
296         if (rctx->buflen) {
297                 sg_init_table(rctx->sg, 2);
298                 sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
299                 sg_chain(rctx->sg, 2, req->src);
300                 req->src = rctx->sg;
301         }
302
303         req->nbytes = nbytes;
304         rctx->buflen = hash_later;
305
306         return qce->async_req_enqueue(tmpl->qce, &req->base);
307 }
308
309 static int qce_ahash_final(struct ahash_request *req)
310 {
311         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
312         struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
313         struct qce_device *qce = tmpl->qce;
314
315         if (!rctx->buflen) {
316                 if (tmpl->hash_zero)
317                         memcpy(req->result, tmpl->hash_zero,
318                                         tmpl->alg.ahash.halg.digestsize);
319                 return 0;
320         }
321
322         rctx->last_blk = true;
323
324         rctx->src_orig = req->src;
325         rctx->nbytes_orig = req->nbytes;
326
327         memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
328         sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
329
330         req->src = rctx->sg;
331         req->nbytes = rctx->buflen;
332
333         return qce->async_req_enqueue(tmpl->qce, &req->base);
334 }
335
336 static int qce_ahash_digest(struct ahash_request *req)
337 {
338         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
339         struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
340         struct qce_device *qce = tmpl->qce;
341         int ret;
342
343         ret = qce_ahash_init(req);
344         if (ret)
345                 return ret;
346
347         rctx->src_orig = req->src;
348         rctx->nbytes_orig = req->nbytes;
349         rctx->first_blk = true;
350         rctx->last_blk = true;
351
352         if (!rctx->nbytes_orig) {
353                 if (tmpl->hash_zero)
354                         memcpy(req->result, tmpl->hash_zero,
355                                         tmpl->alg.ahash.halg.digestsize);
356                 return 0;
357         }
358
359         return qce->async_req_enqueue(tmpl->qce, &req->base);
360 }
361
362 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
363                                  unsigned int keylen)
364 {
365         unsigned int digestsize = crypto_ahash_digestsize(tfm);
366         struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
367         struct crypto_wait wait;
368         struct ahash_request *req;
369         struct scatterlist sg;
370         unsigned int blocksize;
371         struct crypto_ahash *ahash_tfm;
372         u8 *buf;
373         int ret;
374         const char *alg_name;
375
376         blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
377         memset(ctx->authkey, 0, sizeof(ctx->authkey));
378
379         if (keylen <= blocksize) {
380                 memcpy(ctx->authkey, key, keylen);
381                 return 0;
382         }
383
384         if (digestsize == SHA1_DIGEST_SIZE)
385                 alg_name = "sha1-qce";
386         else if (digestsize == SHA256_DIGEST_SIZE)
387                 alg_name = "sha256-qce";
388         else
389                 return -EINVAL;
390
391         ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
392         if (IS_ERR(ahash_tfm))
393                 return PTR_ERR(ahash_tfm);
394
395         req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
396         if (!req) {
397                 ret = -ENOMEM;
398                 goto err_free_ahash;
399         }
400
401         crypto_init_wait(&wait);
402         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
403                                    crypto_req_done, &wait);
404         crypto_ahash_clear_flags(ahash_tfm, ~0);
405
406         buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
407         if (!buf) {
408                 ret = -ENOMEM;
409                 goto err_free_req;
410         }
411
412         memcpy(buf, key, keylen);
413         sg_init_one(&sg, buf, keylen);
414         ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
415
416         ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
417
418         kfree(buf);
419 err_free_req:
420         ahash_request_free(req);
421 err_free_ahash:
422         crypto_free_ahash(ahash_tfm);
423         return ret;
424 }
425
426 static int qce_ahash_cra_init(struct crypto_tfm *tfm)
427 {
428         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
429         struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
430
431         crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
432         memset(ctx, 0, sizeof(*ctx));
433         return 0;
434 }
435
436 struct qce_ahash_def {
437         unsigned long flags;
438         const char *name;
439         const char *drv_name;
440         unsigned int digestsize;
441         unsigned int blocksize;
442         unsigned int statesize;
443         const u32 *std_iv;
444 };
445
446 static const struct qce_ahash_def ahash_def[] = {
447         {
448                 .flags          = QCE_HASH_SHA1,
449                 .name           = "sha1",
450                 .drv_name       = "sha1-qce",
451                 .digestsize     = SHA1_DIGEST_SIZE,
452                 .blocksize      = SHA1_BLOCK_SIZE,
453                 .statesize      = sizeof(struct sha1_state),
454                 .std_iv         = std_iv_sha1,
455         },
456         {
457                 .flags          = QCE_HASH_SHA256,
458                 .name           = "sha256",
459                 .drv_name       = "sha256-qce",
460                 .digestsize     = SHA256_DIGEST_SIZE,
461                 .blocksize      = SHA256_BLOCK_SIZE,
462                 .statesize      = sizeof(struct sha256_state),
463                 .std_iv         = std_iv_sha256,
464         },
465         {
466                 .flags          = QCE_HASH_SHA1_HMAC,
467                 .name           = "hmac(sha1)",
468                 .drv_name       = "hmac-sha1-qce",
469                 .digestsize     = SHA1_DIGEST_SIZE,
470                 .blocksize      = SHA1_BLOCK_SIZE,
471                 .statesize      = sizeof(struct sha1_state),
472                 .std_iv         = std_iv_sha1,
473         },
474         {
475                 .flags          = QCE_HASH_SHA256_HMAC,
476                 .name           = "hmac(sha256)",
477                 .drv_name       = "hmac-sha256-qce",
478                 .digestsize     = SHA256_DIGEST_SIZE,
479                 .blocksize      = SHA256_BLOCK_SIZE,
480                 .statesize      = sizeof(struct sha256_state),
481                 .std_iv         = std_iv_sha256,
482         },
483 };
484
485 static int qce_ahash_register_one(const struct qce_ahash_def *def,
486                                   struct qce_device *qce)
487 {
488         struct qce_alg_template *tmpl;
489         struct ahash_alg *alg;
490         struct crypto_alg *base;
491         int ret;
492
493         tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
494         if (!tmpl)
495                 return -ENOMEM;
496
497         tmpl->std_iv = def->std_iv;
498
499         alg = &tmpl->alg.ahash;
500         alg->init = qce_ahash_init;
501         alg->update = qce_ahash_update;
502         alg->final = qce_ahash_final;
503         alg->digest = qce_ahash_digest;
504         alg->export = qce_ahash_export;
505         alg->import = qce_ahash_import;
506         if (IS_SHA_HMAC(def->flags))
507                 alg->setkey = qce_ahash_hmac_setkey;
508         alg->halg.digestsize = def->digestsize;
509         alg->halg.statesize = def->statesize;
510
511         if (IS_SHA1(def->flags))
512                 tmpl->hash_zero = sha1_zero_message_hash;
513         else if (IS_SHA256(def->flags))
514                 tmpl->hash_zero = sha256_zero_message_hash;
515
516         base = &alg->halg.base;
517         base->cra_blocksize = def->blocksize;
518         base->cra_priority = 300;
519         base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
520         base->cra_ctxsize = sizeof(struct qce_sha_ctx);
521         base->cra_alignmask = 0;
522         base->cra_module = THIS_MODULE;
523         base->cra_init = qce_ahash_cra_init;
524
525         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
526         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
527                  def->drv_name);
528
529         INIT_LIST_HEAD(&tmpl->entry);
530         tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
531         tmpl->alg_flags = def->flags;
532         tmpl->qce = qce;
533
534         ret = crypto_register_ahash(alg);
535         if (ret) {
536                 dev_err(qce->dev, "%s registration failed\n", base->cra_name);
537                 kfree(tmpl);
538                 return ret;
539         }
540
541         list_add_tail(&tmpl->entry, &ahash_algs);
542         dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
543         return 0;
544 }
545
546 static void qce_ahash_unregister(struct qce_device *qce)
547 {
548         struct qce_alg_template *tmpl, *n;
549
550         list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
551                 crypto_unregister_ahash(&tmpl->alg.ahash);
552                 list_del(&tmpl->entry);
553                 kfree(tmpl);
554         }
555 }
556
557 static int qce_ahash_register(struct qce_device *qce)
558 {
559         int ret, i;
560
561         for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
562                 ret = qce_ahash_register_one(&ahash_def[i], qce);
563                 if (ret)
564                         goto err;
565         }
566
567         return 0;
568 err:
569         qce_ahash_unregister(qce);
570         return ret;
571 }
572
573 const struct qce_algo_ops ahash_ops = {
574         .type = CRYPTO_ALG_TYPE_AHASH,
575         .register_algs = qce_ahash_register,
576         .unregister_algs = qce_ahash_unregister,
577         .async_req_handle = qce_ahash_async_req_handle,
578 };