GNU Linux-libre 6.7.9-gnu
[releases.git] / drivers / crypto / n2_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3  *
4  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5  */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/platform_device.h>
14 #include <linux/cpumask.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/crypto.h>
18 #include <crypto/md5.h>
19 #include <crypto/sha1.h>
20 #include <crypto/sha2.h>
21 #include <crypto/aes.h>
22 #include <crypto/internal/des.h>
23 #include <linux/mutex.h>
24 #include <linux/delay.h>
25 #include <linux/sched.h>
26
27 #include <crypto/internal/hash.h>
28 #include <crypto/internal/skcipher.h>
29 #include <crypto/scatterwalk.h>
30 #include <crypto/algapi.h>
31
32 #include <asm/hypervisor.h>
33 #include <asm/mdesc.h>
34
35 #include "n2_core.h"
36
37 #define DRV_MODULE_NAME         "n2_crypto"
38 #define DRV_MODULE_VERSION      "0.2"
39 #define DRV_MODULE_RELDATE      "July 28, 2011"
40
41 static const char version[] =
42         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
43
44 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
45 MODULE_DESCRIPTION("Niagara2 Crypto driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
48
49 #define N2_CRA_PRIORITY         200
50
51 static DEFINE_MUTEX(spu_lock);
52
53 struct spu_queue {
54         cpumask_t               sharing;
55         unsigned long           qhandle;
56
57         spinlock_t              lock;
58         u8                      q_type;
59         void                    *q;
60         unsigned long           head;
61         unsigned long           tail;
62         struct list_head        jobs;
63
64         unsigned long           devino;
65
66         char                    irq_name[32];
67         unsigned int            irq;
68
69         struct list_head        list;
70 };
71
72 struct spu_qreg {
73         struct spu_queue        *queue;
74         unsigned long           type;
75 };
76
77 static struct spu_queue **cpu_to_cwq;
78 static struct spu_queue **cpu_to_mau;
79
80 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
81 {
82         if (q->q_type == HV_NCS_QTYPE_MAU) {
83                 off += MAU_ENTRY_SIZE;
84                 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
85                         off = 0;
86         } else {
87                 off += CWQ_ENTRY_SIZE;
88                 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
89                         off = 0;
90         }
91         return off;
92 }
93
94 struct n2_request_common {
95         struct list_head        entry;
96         unsigned int            offset;
97 };
98 #define OFFSET_NOT_RUNNING      (~(unsigned int)0)
99
100 /* An async job request records the final tail value it used in
101  * n2_request_common->offset, test to see if that offset is in
102  * the range old_head, new_head, inclusive.
103  */
104 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
105                                 unsigned long old_head, unsigned long new_head)
106 {
107         if (old_head <= new_head) {
108                 if (offset > old_head && offset <= new_head)
109                         return true;
110         } else {
111                 if (offset > old_head || offset <= new_head)
112                         return true;
113         }
114         return false;
115 }
116
117 /* When the HEAD marker is unequal to the actual HEAD, we get
118  * a virtual device INO interrupt.  We should process the
119  * completed CWQ entries and adjust the HEAD marker to clear
120  * the IRQ.
121  */
122 static irqreturn_t cwq_intr(int irq, void *dev_id)
123 {
124         unsigned long off, new_head, hv_ret;
125         struct spu_queue *q = dev_id;
126
127         pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
128                smp_processor_id(), q->qhandle);
129
130         spin_lock(&q->lock);
131
132         hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
133
134         pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
135                smp_processor_id(), new_head, hv_ret);
136
137         for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
138                 /* XXX ... XXX */
139         }
140
141         hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
142         if (hv_ret == HV_EOK)
143                 q->head = new_head;
144
145         spin_unlock(&q->lock);
146
147         return IRQ_HANDLED;
148 }
149
150 static irqreturn_t mau_intr(int irq, void *dev_id)
151 {
152         struct spu_queue *q = dev_id;
153         unsigned long head, hv_ret;
154
155         spin_lock(&q->lock);
156
157         pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
158                smp_processor_id(), q->qhandle);
159
160         hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
161
162         pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
163                smp_processor_id(), head, hv_ret);
164
165         sun4v_ncs_sethead_marker(q->qhandle, head);
166
167         spin_unlock(&q->lock);
168
169         return IRQ_HANDLED;
170 }
171
172 static void *spu_queue_next(struct spu_queue *q, void *cur)
173 {
174         return q->q + spu_next_offset(q, cur - q->q);
175 }
176
177 static int spu_queue_num_free(struct spu_queue *q)
178 {
179         unsigned long head = q->head;
180         unsigned long tail = q->tail;
181         unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
182         unsigned long diff;
183
184         if (head > tail)
185                 diff = head - tail;
186         else
187                 diff = (end - tail) + head;
188
189         return (diff / CWQ_ENTRY_SIZE) - 1;
190 }
191
192 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
193 {
194         int avail = spu_queue_num_free(q);
195
196         if (avail >= num_entries)
197                 return q->q + q->tail;
198
199         return NULL;
200 }
201
202 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
203 {
204         unsigned long hv_ret, new_tail;
205
206         new_tail = spu_next_offset(q, last - q->q);
207
208         hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
209         if (hv_ret == HV_EOK)
210                 q->tail = new_tail;
211         return hv_ret;
212 }
213
214 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
215                              int enc_type, int auth_type,
216                              unsigned int hash_len,
217                              bool sfas, bool sob, bool eob, bool encrypt,
218                              int opcode)
219 {
220         u64 word = (len - 1) & CONTROL_LEN;
221
222         word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
223         word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
224         word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
225         if (sfas)
226                 word |= CONTROL_STORE_FINAL_AUTH_STATE;
227         if (sob)
228                 word |= CONTROL_START_OF_BLOCK;
229         if (eob)
230                 word |= CONTROL_END_OF_BLOCK;
231         if (encrypt)
232                 word |= CONTROL_ENCRYPT;
233         if (hmac_key_len)
234                 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
235         if (hash_len)
236                 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
237
238         return word;
239 }
240
241 #if 0
242 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
243 {
244         if (this_len >= 64 ||
245             qp->head != qp->tail)
246                 return true;
247         return false;
248 }
249 #endif
250
251 struct n2_ahash_alg {
252         struct list_head        entry;
253         const u8                *hash_zero;
254         const u8                *hash_init;
255         u8                      hw_op_hashsz;
256         u8                      digest_size;
257         u8                      auth_type;
258         u8                      hmac_type;
259         struct ahash_alg        alg;
260 };
261
262 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
263 {
264         struct crypto_alg *alg = tfm->__crt_alg;
265         struct ahash_alg *ahash_alg;
266
267         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
268
269         return container_of(ahash_alg, struct n2_ahash_alg, alg);
270 }
271
272 struct n2_hmac_alg {
273         const char              *child_alg;
274         struct n2_ahash_alg     derived;
275 };
276
277 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
278 {
279         struct crypto_alg *alg = tfm->__crt_alg;
280         struct ahash_alg *ahash_alg;
281
282         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
283
284         return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
285 }
286
287 struct n2_hash_ctx {
288         struct crypto_ahash             *fallback_tfm;
289 };
290
291 #define N2_HASH_KEY_MAX                 32 /* HW limit for all HMAC requests */
292
293 struct n2_hmac_ctx {
294         struct n2_hash_ctx              base;
295
296         struct crypto_shash             *child_shash;
297
298         int                             hash_key_len;
299         unsigned char                   hash_key[N2_HASH_KEY_MAX];
300 };
301
302 struct n2_hash_req_ctx {
303         union {
304                 struct md5_state        md5;
305                 struct sha1_state       sha1;
306                 struct sha256_state     sha256;
307         } u;
308
309         struct ahash_request            fallback_req;
310 };
311
312 static int n2_hash_async_init(struct ahash_request *req)
313 {
314         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
315         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
316         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
317
318         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
319         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
320
321         return crypto_ahash_init(&rctx->fallback_req);
322 }
323
324 static int n2_hash_async_update(struct ahash_request *req)
325 {
326         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
327         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
328         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
329
330         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
331         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
332         rctx->fallback_req.nbytes = req->nbytes;
333         rctx->fallback_req.src = req->src;
334
335         return crypto_ahash_update(&rctx->fallback_req);
336 }
337
338 static int n2_hash_async_final(struct ahash_request *req)
339 {
340         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
341         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
342         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
343
344         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
345         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
346         rctx->fallback_req.result = req->result;
347
348         return crypto_ahash_final(&rctx->fallback_req);
349 }
350
351 static int n2_hash_async_finup(struct ahash_request *req)
352 {
353         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
354         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
355         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
356
357         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
358         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
359         rctx->fallback_req.nbytes = req->nbytes;
360         rctx->fallback_req.src = req->src;
361         rctx->fallback_req.result = req->result;
362
363         return crypto_ahash_finup(&rctx->fallback_req);
364 }
365
366 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
367 {
368         return -ENOSYS;
369 }
370
371 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
372 {
373         return -ENOSYS;
374 }
375
376 static int n2_hash_cra_init(struct crypto_tfm *tfm)
377 {
378         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
379         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
380         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
381         struct crypto_ahash *fallback_tfm;
382         int err;
383
384         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
385                                           CRYPTO_ALG_NEED_FALLBACK);
386         if (IS_ERR(fallback_tfm)) {
387                 pr_warn("Fallback driver '%s' could not be loaded!\n",
388                         fallback_driver_name);
389                 err = PTR_ERR(fallback_tfm);
390                 goto out;
391         }
392
393         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
394                                          crypto_ahash_reqsize(fallback_tfm)));
395
396         ctx->fallback_tfm = fallback_tfm;
397         return 0;
398
399 out:
400         return err;
401 }
402
403 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
404 {
405         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
406         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
407
408         crypto_free_ahash(ctx->fallback_tfm);
409 }
410
411 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
412 {
413         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
414         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
415         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
416         struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
417         struct crypto_ahash *fallback_tfm;
418         struct crypto_shash *child_shash;
419         int err;
420
421         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
422                                           CRYPTO_ALG_NEED_FALLBACK);
423         if (IS_ERR(fallback_tfm)) {
424                 pr_warn("Fallback driver '%s' could not be loaded!\n",
425                         fallback_driver_name);
426                 err = PTR_ERR(fallback_tfm);
427                 goto out;
428         }
429
430         child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
431         if (IS_ERR(child_shash)) {
432                 pr_warn("Child shash '%s' could not be loaded!\n",
433                         n2alg->child_alg);
434                 err = PTR_ERR(child_shash);
435                 goto out_free_fallback;
436         }
437
438         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
439                                          crypto_ahash_reqsize(fallback_tfm)));
440
441         ctx->child_shash = child_shash;
442         ctx->base.fallback_tfm = fallback_tfm;
443         return 0;
444
445 out_free_fallback:
446         crypto_free_ahash(fallback_tfm);
447
448 out:
449         return err;
450 }
451
452 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
453 {
454         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
455         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
456
457         crypto_free_ahash(ctx->base.fallback_tfm);
458         crypto_free_shash(ctx->child_shash);
459 }
460
461 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
462                                 unsigned int keylen)
463 {
464         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
465         struct crypto_shash *child_shash = ctx->child_shash;
466         struct crypto_ahash *fallback_tfm;
467         int err, bs, ds;
468
469         fallback_tfm = ctx->base.fallback_tfm;
470         err = crypto_ahash_setkey(fallback_tfm, key, keylen);
471         if (err)
472                 return err;
473
474         bs = crypto_shash_blocksize(child_shash);
475         ds = crypto_shash_digestsize(child_shash);
476         BUG_ON(ds > N2_HASH_KEY_MAX);
477         if (keylen > bs) {
478                 err = crypto_shash_tfm_digest(child_shash, key, keylen,
479                                               ctx->hash_key);
480                 if (err)
481                         return err;
482                 keylen = ds;
483         } else if (keylen <= N2_HASH_KEY_MAX)
484                 memcpy(ctx->hash_key, key, keylen);
485
486         ctx->hash_key_len = keylen;
487
488         return err;
489 }
490
491 static unsigned long wait_for_tail(struct spu_queue *qp)
492 {
493         unsigned long head, hv_ret;
494
495         do {
496                 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
497                 if (hv_ret != HV_EOK) {
498                         pr_err("Hypervisor error on gethead\n");
499                         break;
500                 }
501                 if (head == qp->tail) {
502                         qp->head = head;
503                         break;
504                 }
505         } while (1);
506         return hv_ret;
507 }
508
509 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
510                                               struct cwq_initial_entry *ent)
511 {
512         unsigned long hv_ret = spu_queue_submit(qp, ent);
513
514         if (hv_ret == HV_EOK)
515                 hv_ret = wait_for_tail(qp);
516
517         return hv_ret;
518 }
519
520 static int n2_do_async_digest(struct ahash_request *req,
521                               unsigned int auth_type, unsigned int digest_size,
522                               unsigned int result_size, void *hash_loc,
523                               unsigned long auth_key, unsigned int auth_key_len)
524 {
525         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
526         struct cwq_initial_entry *ent;
527         struct crypto_hash_walk walk;
528         struct spu_queue *qp;
529         unsigned long flags;
530         int err = -ENODEV;
531         int nbytes, cpu;
532
533         /* The total effective length of the operation may not
534          * exceed 2^16.
535          */
536         if (unlikely(req->nbytes > (1 << 16))) {
537                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
538                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
539
540                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
541                 rctx->fallback_req.base.flags =
542                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
543                 rctx->fallback_req.nbytes = req->nbytes;
544                 rctx->fallback_req.src = req->src;
545                 rctx->fallback_req.result = req->result;
546
547                 return crypto_ahash_digest(&rctx->fallback_req);
548         }
549
550         nbytes = crypto_hash_walk_first(req, &walk);
551
552         cpu = get_cpu();
553         qp = cpu_to_cwq[cpu];
554         if (!qp)
555                 goto out;
556
557         spin_lock_irqsave(&qp->lock, flags);
558
559         /* XXX can do better, improve this later by doing a by-hand scatterlist
560          * XXX walk, etc.
561          */
562         ent = qp->q + qp->tail;
563
564         ent->control = control_word_base(nbytes, auth_key_len, 0,
565                                          auth_type, digest_size,
566                                          false, true, false, false,
567                                          OPCODE_INPLACE_BIT |
568                                          OPCODE_AUTH_MAC);
569         ent->src_addr = __pa(walk.data);
570         ent->auth_key_addr = auth_key;
571         ent->auth_iv_addr = __pa(hash_loc);
572         ent->final_auth_state_addr = 0UL;
573         ent->enc_key_addr = 0UL;
574         ent->enc_iv_addr = 0UL;
575         ent->dest_addr = __pa(hash_loc);
576
577         nbytes = crypto_hash_walk_done(&walk, 0);
578         while (nbytes > 0) {
579                 ent = spu_queue_next(qp, ent);
580
581                 ent->control = (nbytes - 1);
582                 ent->src_addr = __pa(walk.data);
583                 ent->auth_key_addr = 0UL;
584                 ent->auth_iv_addr = 0UL;
585                 ent->final_auth_state_addr = 0UL;
586                 ent->enc_key_addr = 0UL;
587                 ent->enc_iv_addr = 0UL;
588                 ent->dest_addr = 0UL;
589
590                 nbytes = crypto_hash_walk_done(&walk, 0);
591         }
592         ent->control |= CONTROL_END_OF_BLOCK;
593
594         if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
595                 err = -EINVAL;
596         else
597                 err = 0;
598
599         spin_unlock_irqrestore(&qp->lock, flags);
600
601         if (!err)
602                 memcpy(req->result, hash_loc, result_size);
603 out:
604         put_cpu();
605
606         return err;
607 }
608
609 static int n2_hash_async_digest(struct ahash_request *req)
610 {
611         struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
612         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
613         int ds;
614
615         ds = n2alg->digest_size;
616         if (unlikely(req->nbytes == 0)) {
617                 memcpy(req->result, n2alg->hash_zero, ds);
618                 return 0;
619         }
620         memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
621
622         return n2_do_async_digest(req, n2alg->auth_type,
623                                   n2alg->hw_op_hashsz, ds,
624                                   &rctx->u, 0UL, 0);
625 }
626
627 static int n2_hmac_async_digest(struct ahash_request *req)
628 {
629         struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
630         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
631         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
632         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
633         int ds;
634
635         ds = n2alg->derived.digest_size;
636         if (unlikely(req->nbytes == 0) ||
637             unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
638                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
639                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
640
641                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
642                 rctx->fallback_req.base.flags =
643                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
644                 rctx->fallback_req.nbytes = req->nbytes;
645                 rctx->fallback_req.src = req->src;
646                 rctx->fallback_req.result = req->result;
647
648                 return crypto_ahash_digest(&rctx->fallback_req);
649         }
650         memcpy(&rctx->u, n2alg->derived.hash_init,
651                n2alg->derived.hw_op_hashsz);
652
653         return n2_do_async_digest(req, n2alg->derived.hmac_type,
654                                   n2alg->derived.hw_op_hashsz, ds,
655                                   &rctx->u,
656                                   __pa(&ctx->hash_key),
657                                   ctx->hash_key_len);
658 }
659
660 struct n2_skcipher_context {
661         int                     key_len;
662         int                     enc_type;
663         union {
664                 u8              aes[AES_MAX_KEY_SIZE];
665                 u8              des[DES_KEY_SIZE];
666                 u8              des3[3 * DES_KEY_SIZE];
667         } key;
668 };
669
670 #define N2_CHUNK_ARR_LEN        16
671
672 struct n2_crypto_chunk {
673         struct list_head        entry;
674         unsigned long           iv_paddr : 44;
675         unsigned long           arr_len : 20;
676         unsigned long           dest_paddr;
677         unsigned long           dest_final;
678         struct {
679                 unsigned long   src_paddr : 44;
680                 unsigned long   src_len : 20;
681         } arr[N2_CHUNK_ARR_LEN];
682 };
683
684 struct n2_request_context {
685         struct skcipher_walk    walk;
686         struct list_head        chunk_list;
687         struct n2_crypto_chunk  chunk;
688         u8                      temp_iv[16];
689 };
690
691 /* The SPU allows some level of flexibility for partial cipher blocks
692  * being specified in a descriptor.
693  *
694  * It merely requires that every descriptor's length field is at least
695  * as large as the cipher block size.  This means that a cipher block
696  * can span at most 2 descriptors.  However, this does not allow a
697  * partial block to span into the final descriptor as that would
698  * violate the rule (since every descriptor's length must be at lest
699  * the block size).  So, for example, assuming an 8 byte block size:
700  *
701  *      0xe --> 0xa --> 0x8
702  *
703  * is a valid length sequence, whereas:
704  *
705  *      0xe --> 0xb --> 0x7
706  *
707  * is not a valid sequence.
708  */
709
710 struct n2_skcipher_alg {
711         struct list_head        entry;
712         u8                      enc_type;
713         struct skcipher_alg     skcipher;
714 };
715
716 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
717 {
718         struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
719
720         return container_of(alg, struct n2_skcipher_alg, skcipher);
721 }
722
723 struct n2_skcipher_request_context {
724         struct skcipher_walk    walk;
725 };
726
727 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
728                          unsigned int keylen)
729 {
730         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
731         struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
732         struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
733
734         ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
735
736         switch (keylen) {
737         case AES_KEYSIZE_128:
738                 ctx->enc_type |= ENC_TYPE_ALG_AES128;
739                 break;
740         case AES_KEYSIZE_192:
741                 ctx->enc_type |= ENC_TYPE_ALG_AES192;
742                 break;
743         case AES_KEYSIZE_256:
744                 ctx->enc_type |= ENC_TYPE_ALG_AES256;
745                 break;
746         default:
747                 return -EINVAL;
748         }
749
750         ctx->key_len = keylen;
751         memcpy(ctx->key.aes, key, keylen);
752         return 0;
753 }
754
755 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
756                          unsigned int keylen)
757 {
758         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
759         struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
760         struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
761         int err;
762
763         err = verify_skcipher_des_key(skcipher, key);
764         if (err)
765                 return err;
766
767         ctx->enc_type = n2alg->enc_type;
768
769         ctx->key_len = keylen;
770         memcpy(ctx->key.des, key, keylen);
771         return 0;
772 }
773
774 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
775                           unsigned int keylen)
776 {
777         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
778         struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
779         struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
780         int err;
781
782         err = verify_skcipher_des3_key(skcipher, key);
783         if (err)
784                 return err;
785
786         ctx->enc_type = n2alg->enc_type;
787
788         ctx->key_len = keylen;
789         memcpy(ctx->key.des3, key, keylen);
790         return 0;
791 }
792
793 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
794 {
795         int this_len = nbytes;
796
797         this_len -= (nbytes & (block_size - 1));
798         return this_len > (1 << 16) ? (1 << 16) : this_len;
799 }
800
801 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
802                             struct n2_crypto_chunk *cp,
803                             struct spu_queue *qp, bool encrypt)
804 {
805         struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
806         struct cwq_initial_entry *ent;
807         bool in_place;
808         int i;
809
810         ent = spu_queue_alloc(qp, cp->arr_len);
811         if (!ent) {
812                 pr_info("queue_alloc() of %d fails\n",
813                         cp->arr_len);
814                 return -EBUSY;
815         }
816
817         in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
818
819         ent->control = control_word_base(cp->arr[0].src_len,
820                                          0, ctx->enc_type, 0, 0,
821                                          false, true, false, encrypt,
822                                          OPCODE_ENCRYPT |
823                                          (in_place ? OPCODE_INPLACE_BIT : 0));
824         ent->src_addr = cp->arr[0].src_paddr;
825         ent->auth_key_addr = 0UL;
826         ent->auth_iv_addr = 0UL;
827         ent->final_auth_state_addr = 0UL;
828         ent->enc_key_addr = __pa(&ctx->key);
829         ent->enc_iv_addr = cp->iv_paddr;
830         ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
831
832         for (i = 1; i < cp->arr_len; i++) {
833                 ent = spu_queue_next(qp, ent);
834
835                 ent->control = cp->arr[i].src_len - 1;
836                 ent->src_addr = cp->arr[i].src_paddr;
837                 ent->auth_key_addr = 0UL;
838                 ent->auth_iv_addr = 0UL;
839                 ent->final_auth_state_addr = 0UL;
840                 ent->enc_key_addr = 0UL;
841                 ent->enc_iv_addr = 0UL;
842                 ent->dest_addr = 0UL;
843         }
844         ent->control |= CONTROL_END_OF_BLOCK;
845
846         return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
847 }
848
849 static int n2_compute_chunks(struct skcipher_request *req)
850 {
851         struct n2_request_context *rctx = skcipher_request_ctx(req);
852         struct skcipher_walk *walk = &rctx->walk;
853         struct n2_crypto_chunk *chunk;
854         unsigned long dest_prev;
855         unsigned int tot_len;
856         bool prev_in_place;
857         int err, nbytes;
858
859         err = skcipher_walk_async(walk, req);
860         if (err)
861                 return err;
862
863         INIT_LIST_HEAD(&rctx->chunk_list);
864
865         chunk = &rctx->chunk;
866         INIT_LIST_HEAD(&chunk->entry);
867
868         chunk->iv_paddr = 0UL;
869         chunk->arr_len = 0;
870         chunk->dest_paddr = 0UL;
871
872         prev_in_place = false;
873         dest_prev = ~0UL;
874         tot_len = 0;
875
876         while ((nbytes = walk->nbytes) != 0) {
877                 unsigned long dest_paddr, src_paddr;
878                 bool in_place;
879                 int this_len;
880
881                 src_paddr = (page_to_phys(walk->src.phys.page) +
882                              walk->src.phys.offset);
883                 dest_paddr = (page_to_phys(walk->dst.phys.page) +
884                               walk->dst.phys.offset);
885                 in_place = (src_paddr == dest_paddr);
886                 this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
887
888                 if (chunk->arr_len != 0) {
889                         if (in_place != prev_in_place ||
890                             (!prev_in_place &&
891                              dest_paddr != dest_prev) ||
892                             chunk->arr_len == N2_CHUNK_ARR_LEN ||
893                             tot_len + this_len > (1 << 16)) {
894                                 chunk->dest_final = dest_prev;
895                                 list_add_tail(&chunk->entry,
896                                               &rctx->chunk_list);
897                                 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
898                                 if (!chunk) {
899                                         err = -ENOMEM;
900                                         break;
901                                 }
902                                 INIT_LIST_HEAD(&chunk->entry);
903                         }
904                 }
905                 if (chunk->arr_len == 0) {
906                         chunk->dest_paddr = dest_paddr;
907                         tot_len = 0;
908                 }
909                 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
910                 chunk->arr[chunk->arr_len].src_len = this_len;
911                 chunk->arr_len++;
912
913                 dest_prev = dest_paddr + this_len;
914                 prev_in_place = in_place;
915                 tot_len += this_len;
916
917                 err = skcipher_walk_done(walk, nbytes - this_len);
918                 if (err)
919                         break;
920         }
921         if (!err && chunk->arr_len != 0) {
922                 chunk->dest_final = dest_prev;
923                 list_add_tail(&chunk->entry, &rctx->chunk_list);
924         }
925
926         return err;
927 }
928
929 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
930 {
931         struct n2_request_context *rctx = skcipher_request_ctx(req);
932         struct n2_crypto_chunk *c, *tmp;
933
934         if (final_iv)
935                 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
936
937         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
938                 list_del(&c->entry);
939                 if (unlikely(c != &rctx->chunk))
940                         kfree(c);
941         }
942
943 }
944
945 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
946 {
947         struct n2_request_context *rctx = skcipher_request_ctx(req);
948         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
949         int err = n2_compute_chunks(req);
950         struct n2_crypto_chunk *c, *tmp;
951         unsigned long flags, hv_ret;
952         struct spu_queue *qp;
953
954         if (err)
955                 return err;
956
957         qp = cpu_to_cwq[get_cpu()];
958         err = -ENODEV;
959         if (!qp)
960                 goto out;
961
962         spin_lock_irqsave(&qp->lock, flags);
963
964         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
965                 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
966                 if (err)
967                         break;
968                 list_del(&c->entry);
969                 if (unlikely(c != &rctx->chunk))
970                         kfree(c);
971         }
972         if (!err) {
973                 hv_ret = wait_for_tail(qp);
974                 if (hv_ret != HV_EOK)
975                         err = -EINVAL;
976         }
977
978         spin_unlock_irqrestore(&qp->lock, flags);
979
980 out:
981         put_cpu();
982
983         n2_chunk_complete(req, NULL);
984         return err;
985 }
986
987 static int n2_encrypt_ecb(struct skcipher_request *req)
988 {
989         return n2_do_ecb(req, true);
990 }
991
992 static int n2_decrypt_ecb(struct skcipher_request *req)
993 {
994         return n2_do_ecb(req, false);
995 }
996
997 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
998 {
999         struct n2_request_context *rctx = skcipher_request_ctx(req);
1000         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1001         unsigned long flags, hv_ret, iv_paddr;
1002         int err = n2_compute_chunks(req);
1003         struct n2_crypto_chunk *c, *tmp;
1004         struct spu_queue *qp;
1005         void *final_iv_addr;
1006
1007         final_iv_addr = NULL;
1008
1009         if (err)
1010                 return err;
1011
1012         qp = cpu_to_cwq[get_cpu()];
1013         err = -ENODEV;
1014         if (!qp)
1015                 goto out;
1016
1017         spin_lock_irqsave(&qp->lock, flags);
1018
1019         if (encrypt) {
1020                 iv_paddr = __pa(rctx->walk.iv);
1021                 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1022                                          entry) {
1023                         c->iv_paddr = iv_paddr;
1024                         err = __n2_crypt_chunk(tfm, c, qp, true);
1025                         if (err)
1026                                 break;
1027                         iv_paddr = c->dest_final - rctx->walk.blocksize;
1028                         list_del(&c->entry);
1029                         if (unlikely(c != &rctx->chunk))
1030                                 kfree(c);
1031                 }
1032                 final_iv_addr = __va(iv_paddr);
1033         } else {
1034                 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1035                                                  entry) {
1036                         if (c == &rctx->chunk) {
1037                                 iv_paddr = __pa(rctx->walk.iv);
1038                         } else {
1039                                 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1040                                             tmp->arr[tmp->arr_len-1].src_len -
1041                                             rctx->walk.blocksize);
1042                         }
1043                         if (!final_iv_addr) {
1044                                 unsigned long pa;
1045
1046                                 pa = (c->arr[c->arr_len-1].src_paddr +
1047                                       c->arr[c->arr_len-1].src_len -
1048                                       rctx->walk.blocksize);
1049                                 final_iv_addr = rctx->temp_iv;
1050                                 memcpy(rctx->temp_iv, __va(pa),
1051                                        rctx->walk.blocksize);
1052                         }
1053                         c->iv_paddr = iv_paddr;
1054                         err = __n2_crypt_chunk(tfm, c, qp, false);
1055                         if (err)
1056                                 break;
1057                         list_del(&c->entry);
1058                         if (unlikely(c != &rctx->chunk))
1059                                 kfree(c);
1060                 }
1061         }
1062         if (!err) {
1063                 hv_ret = wait_for_tail(qp);
1064                 if (hv_ret != HV_EOK)
1065                         err = -EINVAL;
1066         }
1067
1068         spin_unlock_irqrestore(&qp->lock, flags);
1069
1070 out:
1071         put_cpu();
1072
1073         n2_chunk_complete(req, err ? NULL : final_iv_addr);
1074         return err;
1075 }
1076
1077 static int n2_encrypt_chaining(struct skcipher_request *req)
1078 {
1079         return n2_do_chaining(req, true);
1080 }
1081
1082 static int n2_decrypt_chaining(struct skcipher_request *req)
1083 {
1084         return n2_do_chaining(req, false);
1085 }
1086
1087 struct n2_skcipher_tmpl {
1088         const char              *name;
1089         const char              *drv_name;
1090         u8                      block_size;
1091         u8                      enc_type;
1092         struct skcipher_alg     skcipher;
1093 };
1094
1095 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1096         /* DES: ECB CBC and CFB are supported */
1097         {       .name           = "ecb(des)",
1098                 .drv_name       = "ecb-des",
1099                 .block_size     = DES_BLOCK_SIZE,
1100                 .enc_type       = (ENC_TYPE_ALG_DES |
1101                                    ENC_TYPE_CHAINING_ECB),
1102                 .skcipher       = {
1103                         .min_keysize    = DES_KEY_SIZE,
1104                         .max_keysize    = DES_KEY_SIZE,
1105                         .setkey         = n2_des_setkey,
1106                         .encrypt        = n2_encrypt_ecb,
1107                         .decrypt        = n2_decrypt_ecb,
1108                 },
1109         },
1110         {       .name           = "cbc(des)",
1111                 .drv_name       = "cbc-des",
1112                 .block_size     = DES_BLOCK_SIZE,
1113                 .enc_type       = (ENC_TYPE_ALG_DES |
1114                                    ENC_TYPE_CHAINING_CBC),
1115                 .skcipher       = {
1116                         .ivsize         = DES_BLOCK_SIZE,
1117                         .min_keysize    = DES_KEY_SIZE,
1118                         .max_keysize    = DES_KEY_SIZE,
1119                         .setkey         = n2_des_setkey,
1120                         .encrypt        = n2_encrypt_chaining,
1121                         .decrypt        = n2_decrypt_chaining,
1122                 },
1123         },
1124         {       .name           = "cfb(des)",
1125                 .drv_name       = "cfb-des",
1126                 .block_size     = DES_BLOCK_SIZE,
1127                 .enc_type       = (ENC_TYPE_ALG_DES |
1128                                    ENC_TYPE_CHAINING_CFB),
1129                 .skcipher       = {
1130                         .min_keysize    = DES_KEY_SIZE,
1131                         .max_keysize    = DES_KEY_SIZE,
1132                         .setkey         = n2_des_setkey,
1133                         .encrypt        = n2_encrypt_chaining,
1134                         .decrypt        = n2_decrypt_chaining,
1135                 },
1136         },
1137
1138         /* 3DES: ECB CBC and CFB are supported */
1139         {       .name           = "ecb(des3_ede)",
1140                 .drv_name       = "ecb-3des",
1141                 .block_size     = DES_BLOCK_SIZE,
1142                 .enc_type       = (ENC_TYPE_ALG_3DES |
1143                                    ENC_TYPE_CHAINING_ECB),
1144                 .skcipher       = {
1145                         .min_keysize    = 3 * DES_KEY_SIZE,
1146                         .max_keysize    = 3 * DES_KEY_SIZE,
1147                         .setkey         = n2_3des_setkey,
1148                         .encrypt        = n2_encrypt_ecb,
1149                         .decrypt        = n2_decrypt_ecb,
1150                 },
1151         },
1152         {       .name           = "cbc(des3_ede)",
1153                 .drv_name       = "cbc-3des",
1154                 .block_size     = DES_BLOCK_SIZE,
1155                 .enc_type       = (ENC_TYPE_ALG_3DES |
1156                                    ENC_TYPE_CHAINING_CBC),
1157                 .skcipher       = {
1158                         .ivsize         = DES_BLOCK_SIZE,
1159                         .min_keysize    = 3 * DES_KEY_SIZE,
1160                         .max_keysize    = 3 * DES_KEY_SIZE,
1161                         .setkey         = n2_3des_setkey,
1162                         .encrypt        = n2_encrypt_chaining,
1163                         .decrypt        = n2_decrypt_chaining,
1164                 },
1165         },
1166         {       .name           = "cfb(des3_ede)",
1167                 .drv_name       = "cfb-3des",
1168                 .block_size     = DES_BLOCK_SIZE,
1169                 .enc_type       = (ENC_TYPE_ALG_3DES |
1170                                    ENC_TYPE_CHAINING_CFB),
1171                 .skcipher       = {
1172                         .min_keysize    = 3 * DES_KEY_SIZE,
1173                         .max_keysize    = 3 * DES_KEY_SIZE,
1174                         .setkey         = n2_3des_setkey,
1175                         .encrypt        = n2_encrypt_chaining,
1176                         .decrypt        = n2_decrypt_chaining,
1177                 },
1178         },
1179         /* AES: ECB CBC and CTR are supported */
1180         {       .name           = "ecb(aes)",
1181                 .drv_name       = "ecb-aes",
1182                 .block_size     = AES_BLOCK_SIZE,
1183                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1184                                    ENC_TYPE_CHAINING_ECB),
1185                 .skcipher       = {
1186                         .min_keysize    = AES_MIN_KEY_SIZE,
1187                         .max_keysize    = AES_MAX_KEY_SIZE,
1188                         .setkey         = n2_aes_setkey,
1189                         .encrypt        = n2_encrypt_ecb,
1190                         .decrypt        = n2_decrypt_ecb,
1191                 },
1192         },
1193         {       .name           = "cbc(aes)",
1194                 .drv_name       = "cbc-aes",
1195                 .block_size     = AES_BLOCK_SIZE,
1196                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1197                                    ENC_TYPE_CHAINING_CBC),
1198                 .skcipher       = {
1199                         .ivsize         = AES_BLOCK_SIZE,
1200                         .min_keysize    = AES_MIN_KEY_SIZE,
1201                         .max_keysize    = AES_MAX_KEY_SIZE,
1202                         .setkey         = n2_aes_setkey,
1203                         .encrypt        = n2_encrypt_chaining,
1204                         .decrypt        = n2_decrypt_chaining,
1205                 },
1206         },
1207         {       .name           = "ctr(aes)",
1208                 .drv_name       = "ctr-aes",
1209                 .block_size     = AES_BLOCK_SIZE,
1210                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1211                                    ENC_TYPE_CHAINING_COUNTER),
1212                 .skcipher       = {
1213                         .ivsize         = AES_BLOCK_SIZE,
1214                         .min_keysize    = AES_MIN_KEY_SIZE,
1215                         .max_keysize    = AES_MAX_KEY_SIZE,
1216                         .setkey         = n2_aes_setkey,
1217                         .encrypt        = n2_encrypt_chaining,
1218                         .decrypt        = n2_encrypt_chaining,
1219                 },
1220         },
1221
1222 };
1223 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1224
1225 static LIST_HEAD(skcipher_algs);
1226
1227 struct n2_hash_tmpl {
1228         const char      *name;
1229         const u8        *hash_zero;
1230         const u8        *hash_init;
1231         u8              hw_op_hashsz;
1232         u8              digest_size;
1233         u8              statesize;
1234         u8              block_size;
1235         u8              auth_type;
1236         u8              hmac_type;
1237 };
1238
1239 static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1240         cpu_to_le32(MD5_H0),
1241         cpu_to_le32(MD5_H1),
1242         cpu_to_le32(MD5_H2),
1243         cpu_to_le32(MD5_H3),
1244 };
1245 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1246         SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1247 };
1248 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1249         SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1250         SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1251 };
1252 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1253         SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1254         SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1255 };
1256
1257 static const struct n2_hash_tmpl hash_tmpls[] = {
1258         { .name         = "md5",
1259           .hash_zero    = md5_zero_message_hash,
1260           .hash_init    = (u8 *)n2_md5_init,
1261           .auth_type    = AUTH_TYPE_MD5,
1262           .hmac_type    = AUTH_TYPE_HMAC_MD5,
1263           .hw_op_hashsz = MD5_DIGEST_SIZE,
1264           .digest_size  = MD5_DIGEST_SIZE,
1265           .statesize    = sizeof(struct md5_state),
1266           .block_size   = MD5_HMAC_BLOCK_SIZE },
1267         { .name         = "sha1",
1268           .hash_zero    = sha1_zero_message_hash,
1269           .hash_init    = (u8 *)n2_sha1_init,
1270           .auth_type    = AUTH_TYPE_SHA1,
1271           .hmac_type    = AUTH_TYPE_HMAC_SHA1,
1272           .hw_op_hashsz = SHA1_DIGEST_SIZE,
1273           .digest_size  = SHA1_DIGEST_SIZE,
1274           .statesize    = sizeof(struct sha1_state),
1275           .block_size   = SHA1_BLOCK_SIZE },
1276         { .name         = "sha256",
1277           .hash_zero    = sha256_zero_message_hash,
1278           .hash_init    = (u8 *)n2_sha256_init,
1279           .auth_type    = AUTH_TYPE_SHA256,
1280           .hmac_type    = AUTH_TYPE_HMAC_SHA256,
1281           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1282           .digest_size  = SHA256_DIGEST_SIZE,
1283           .statesize    = sizeof(struct sha256_state),
1284           .block_size   = SHA256_BLOCK_SIZE },
1285         { .name         = "sha224",
1286           .hash_zero    = sha224_zero_message_hash,
1287           .hash_init    = (u8 *)n2_sha224_init,
1288           .auth_type    = AUTH_TYPE_SHA256,
1289           .hmac_type    = AUTH_TYPE_RESERVED,
1290           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1291           .digest_size  = SHA224_DIGEST_SIZE,
1292           .statesize    = sizeof(struct sha256_state),
1293           .block_size   = SHA224_BLOCK_SIZE },
1294 };
1295 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1296
1297 static LIST_HEAD(ahash_algs);
1298 static LIST_HEAD(hmac_algs);
1299
1300 static int algs_registered;
1301
1302 static void __n2_unregister_algs(void)
1303 {
1304         struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1305         struct n2_ahash_alg *alg, *alg_tmp;
1306         struct n2_hmac_alg *hmac, *hmac_tmp;
1307
1308         list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1309                 crypto_unregister_skcipher(&skcipher->skcipher);
1310                 list_del(&skcipher->entry);
1311                 kfree(skcipher);
1312         }
1313         list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1314                 crypto_unregister_ahash(&hmac->derived.alg);
1315                 list_del(&hmac->derived.entry);
1316                 kfree(hmac);
1317         }
1318         list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1319                 crypto_unregister_ahash(&alg->alg);
1320                 list_del(&alg->entry);
1321                 kfree(alg);
1322         }
1323 }
1324
1325 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1326 {
1327         crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1328         return 0;
1329 }
1330
1331 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1332 {
1333         struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1334         struct skcipher_alg *alg;
1335         int err;
1336
1337         if (!p)
1338                 return -ENOMEM;
1339
1340         alg = &p->skcipher;
1341         *alg = tmpl->skcipher;
1342
1343         snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1344         snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1345         alg->base.cra_priority = N2_CRA_PRIORITY;
1346         alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1347                               CRYPTO_ALG_ALLOCATES_MEMORY;
1348         alg->base.cra_blocksize = tmpl->block_size;
1349         p->enc_type = tmpl->enc_type;
1350         alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1351         alg->base.cra_module = THIS_MODULE;
1352         alg->init = n2_skcipher_init_tfm;
1353
1354         list_add(&p->entry, &skcipher_algs);
1355         err = crypto_register_skcipher(alg);
1356         if (err) {
1357                 pr_err("%s alg registration failed\n", alg->base.cra_name);
1358                 list_del(&p->entry);
1359                 kfree(p);
1360         } else {
1361                 pr_info("%s alg registered\n", alg->base.cra_name);
1362         }
1363         return err;
1364 }
1365
1366 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1367 {
1368         struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1369         struct ahash_alg *ahash;
1370         struct crypto_alg *base;
1371         int err;
1372
1373         if (!p)
1374                 return -ENOMEM;
1375
1376         p->child_alg = n2ahash->alg.halg.base.cra_name;
1377         memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1378         INIT_LIST_HEAD(&p->derived.entry);
1379
1380         ahash = &p->derived.alg;
1381         ahash->digest = n2_hmac_async_digest;
1382         ahash->setkey = n2_hmac_async_setkey;
1383
1384         base = &ahash->halg.base;
1385         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1386         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1387
1388         base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1389         base->cra_init = n2_hmac_cra_init;
1390         base->cra_exit = n2_hmac_cra_exit;
1391
1392         list_add(&p->derived.entry, &hmac_algs);
1393         err = crypto_register_ahash(ahash);
1394         if (err) {
1395                 pr_err("%s alg registration failed\n", base->cra_name);
1396                 list_del(&p->derived.entry);
1397                 kfree(p);
1398         } else {
1399                 pr_info("%s alg registered\n", base->cra_name);
1400         }
1401         return err;
1402 }
1403
1404 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1405 {
1406         struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1407         struct hash_alg_common *halg;
1408         struct crypto_alg *base;
1409         struct ahash_alg *ahash;
1410         int err;
1411
1412         if (!p)
1413                 return -ENOMEM;
1414
1415         p->hash_zero = tmpl->hash_zero;
1416         p->hash_init = tmpl->hash_init;
1417         p->auth_type = tmpl->auth_type;
1418         p->hmac_type = tmpl->hmac_type;
1419         p->hw_op_hashsz = tmpl->hw_op_hashsz;
1420         p->digest_size = tmpl->digest_size;
1421
1422         ahash = &p->alg;
1423         ahash->init = n2_hash_async_init;
1424         ahash->update = n2_hash_async_update;
1425         ahash->final = n2_hash_async_final;
1426         ahash->finup = n2_hash_async_finup;
1427         ahash->digest = n2_hash_async_digest;
1428         ahash->export = n2_hash_async_noexport;
1429         ahash->import = n2_hash_async_noimport;
1430
1431         halg = &ahash->halg;
1432         halg->digestsize = tmpl->digest_size;
1433         halg->statesize = tmpl->statesize;
1434
1435         base = &halg->base;
1436         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1437         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1438         base->cra_priority = N2_CRA_PRIORITY;
1439         base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1440                           CRYPTO_ALG_NEED_FALLBACK;
1441         base->cra_blocksize = tmpl->block_size;
1442         base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1443         base->cra_module = THIS_MODULE;
1444         base->cra_init = n2_hash_cra_init;
1445         base->cra_exit = n2_hash_cra_exit;
1446
1447         list_add(&p->entry, &ahash_algs);
1448         err = crypto_register_ahash(ahash);
1449         if (err) {
1450                 pr_err("%s alg registration failed\n", base->cra_name);
1451                 list_del(&p->entry);
1452                 kfree(p);
1453         } else {
1454                 pr_info("%s alg registered\n", base->cra_name);
1455         }
1456         if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1457                 err = __n2_register_one_hmac(p);
1458         return err;
1459 }
1460
1461 static int n2_register_algs(void)
1462 {
1463         int i, err = 0;
1464
1465         mutex_lock(&spu_lock);
1466         if (algs_registered++)
1467                 goto out;
1468
1469         for (i = 0; i < NUM_HASH_TMPLS; i++) {
1470                 err = __n2_register_one_ahash(&hash_tmpls[i]);
1471                 if (err) {
1472                         __n2_unregister_algs();
1473                         goto out;
1474                 }
1475         }
1476         for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1477                 err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1478                 if (err) {
1479                         __n2_unregister_algs();
1480                         goto out;
1481                 }
1482         }
1483
1484 out:
1485         mutex_unlock(&spu_lock);
1486         return err;
1487 }
1488
1489 static void n2_unregister_algs(void)
1490 {
1491         mutex_lock(&spu_lock);
1492         if (!--algs_registered)
1493                 __n2_unregister_algs();
1494         mutex_unlock(&spu_lock);
1495 }
1496
1497 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1498  * a devino.  This isn't very useful to us because all of the
1499  * interrupts listed in the device_node have been translated to
1500  * Linux virtual IRQ cookie numbers.
1501  *
1502  * So we have to back-translate, going through the 'intr' and 'ino'
1503  * property tables of the n2cp MDESC node, matching it with the OF
1504  * 'interrupts' property entries, in order to figure out which
1505  * devino goes to which already-translated IRQ.
1506  */
1507 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1508                              unsigned long dev_ino)
1509 {
1510         const unsigned int *dev_intrs;
1511         unsigned int intr;
1512         int i;
1513
1514         for (i = 0; i < ip->num_intrs; i++) {
1515                 if (ip->ino_table[i].ino == dev_ino)
1516                         break;
1517         }
1518         if (i == ip->num_intrs)
1519                 return -ENODEV;
1520
1521         intr = ip->ino_table[i].intr;
1522
1523         dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1524         if (!dev_intrs)
1525                 return -ENODEV;
1526
1527         for (i = 0; i < dev->archdata.num_irqs; i++) {
1528                 if (dev_intrs[i] == intr)
1529                         return i;
1530         }
1531
1532         return -ENODEV;
1533 }
1534
1535 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1536                        const char *irq_name, struct spu_queue *p,
1537                        irq_handler_t handler)
1538 {
1539         unsigned long herr;
1540         int index;
1541
1542         herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1543         if (herr)
1544                 return -EINVAL;
1545
1546         index = find_devino_index(dev, ip, p->devino);
1547         if (index < 0)
1548                 return index;
1549
1550         p->irq = dev->archdata.irqs[index];
1551
1552         sprintf(p->irq_name, "%s-%d", irq_name, index);
1553
1554         return request_irq(p->irq, handler, 0, p->irq_name, p);
1555 }
1556
1557 static struct kmem_cache *queue_cache[2];
1558
1559 static void *new_queue(unsigned long q_type)
1560 {
1561         return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1562 }
1563
1564 static void free_queue(void *p, unsigned long q_type)
1565 {
1566         kmem_cache_free(queue_cache[q_type - 1], p);
1567 }
1568
1569 static int queue_cache_init(void)
1570 {
1571         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1572                 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1573                         kmem_cache_create("mau_queue",
1574                                           (MAU_NUM_ENTRIES *
1575                                            MAU_ENTRY_SIZE),
1576                                           MAU_ENTRY_SIZE, 0, NULL);
1577         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1578                 return -ENOMEM;
1579
1580         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1581                 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1582                         kmem_cache_create("cwq_queue",
1583                                           (CWQ_NUM_ENTRIES *
1584                                            CWQ_ENTRY_SIZE),
1585                                           CWQ_ENTRY_SIZE, 0, NULL);
1586         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1587                 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1588                 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1589                 return -ENOMEM;
1590         }
1591         return 0;
1592 }
1593
1594 static void queue_cache_destroy(void)
1595 {
1596         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1597         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1598         queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1599         queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1600 }
1601
1602 static long spu_queue_register_workfn(void *arg)
1603 {
1604         struct spu_qreg *qr = arg;
1605         struct spu_queue *p = qr->queue;
1606         unsigned long q_type = qr->type;
1607         unsigned long hv_ret;
1608
1609         hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1610                                  CWQ_NUM_ENTRIES, &p->qhandle);
1611         if (!hv_ret)
1612                 sun4v_ncs_sethead_marker(p->qhandle, 0);
1613
1614         return hv_ret ? -EINVAL : 0;
1615 }
1616
1617 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1618 {
1619         int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1620         struct spu_qreg qr = { .queue = p, .type = q_type };
1621
1622         return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1623 }
1624
1625 static int spu_queue_setup(struct spu_queue *p)
1626 {
1627         int err;
1628
1629         p->q = new_queue(p->q_type);
1630         if (!p->q)
1631                 return -ENOMEM;
1632
1633         err = spu_queue_register(p, p->q_type);
1634         if (err) {
1635                 free_queue(p->q, p->q_type);
1636                 p->q = NULL;
1637         }
1638
1639         return err;
1640 }
1641
1642 static void spu_queue_destroy(struct spu_queue *p)
1643 {
1644         unsigned long hv_ret;
1645
1646         if (!p->q)
1647                 return;
1648
1649         hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1650
1651         if (!hv_ret)
1652                 free_queue(p->q, p->q_type);
1653 }
1654
1655 static void spu_list_destroy(struct list_head *list)
1656 {
1657         struct spu_queue *p, *n;
1658
1659         list_for_each_entry_safe(p, n, list, list) {
1660                 int i;
1661
1662                 for (i = 0; i < NR_CPUS; i++) {
1663                         if (cpu_to_cwq[i] == p)
1664                                 cpu_to_cwq[i] = NULL;
1665                 }
1666
1667                 if (p->irq) {
1668                         free_irq(p->irq, p);
1669                         p->irq = 0;
1670                 }
1671                 spu_queue_destroy(p);
1672                 list_del(&p->list);
1673                 kfree(p);
1674         }
1675 }
1676
1677 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1678  * gathering cpu membership information.
1679  */
1680 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1681                                struct platform_device *dev,
1682                                u64 node, struct spu_queue *p,
1683                                struct spu_queue **table)
1684 {
1685         u64 arc;
1686
1687         mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1688                 u64 tgt = mdesc_arc_target(mdesc, arc);
1689                 const char *name = mdesc_node_name(mdesc, tgt);
1690                 const u64 *id;
1691
1692                 if (strcmp(name, "cpu"))
1693                         continue;
1694                 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1695                 if (table[*id] != NULL) {
1696                         dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1697                                 dev->dev.of_node);
1698                         return -EINVAL;
1699                 }
1700                 cpumask_set_cpu(*id, &p->sharing);
1701                 table[*id] = p;
1702         }
1703         return 0;
1704 }
1705
1706 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1707 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1708                             struct platform_device *dev, struct mdesc_handle *mdesc,
1709                             u64 node, const char *iname, unsigned long q_type,
1710                             irq_handler_t handler, struct spu_queue **table)
1711 {
1712         struct spu_queue *p;
1713         int err;
1714
1715         p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1716         if (!p) {
1717                 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1718                         dev->dev.of_node);
1719                 return -ENOMEM;
1720         }
1721
1722         cpumask_clear(&p->sharing);
1723         spin_lock_init(&p->lock);
1724         p->q_type = q_type;
1725         INIT_LIST_HEAD(&p->jobs);
1726         list_add(&p->list, list);
1727
1728         err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1729         if (err)
1730                 return err;
1731
1732         err = spu_queue_setup(p);
1733         if (err)
1734                 return err;
1735
1736         return spu_map_ino(dev, ip, iname, p, handler);
1737 }
1738
1739 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1740                           struct spu_mdesc_info *ip, struct list_head *list,
1741                           const char *exec_name, unsigned long q_type,
1742                           irq_handler_t handler, struct spu_queue **table)
1743 {
1744         int err = 0;
1745         u64 node;
1746
1747         mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1748                 const char *type;
1749
1750                 type = mdesc_get_property(mdesc, node, "type", NULL);
1751                 if (!type || strcmp(type, exec_name))
1752                         continue;
1753
1754                 err = handle_exec_unit(ip, list, dev, mdesc, node,
1755                                        exec_name, q_type, handler, table);
1756                 if (err) {
1757                         spu_list_destroy(list);
1758                         break;
1759                 }
1760         }
1761
1762         return err;
1763 }
1764
1765 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1766                          struct spu_mdesc_info *ip)
1767 {
1768         const u64 *ino;
1769         int ino_len;
1770         int i;
1771
1772         ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1773         if (!ino) {
1774                 printk("NO 'ino'\n");
1775                 return -ENODEV;
1776         }
1777
1778         ip->num_intrs = ino_len / sizeof(u64);
1779         ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1780                                  ip->num_intrs),
1781                                 GFP_KERNEL);
1782         if (!ip->ino_table)
1783                 return -ENOMEM;
1784
1785         for (i = 0; i < ip->num_intrs; i++) {
1786                 struct ino_blob *b = &ip->ino_table[i];
1787                 b->intr = i + 1;
1788                 b->ino = ino[i];
1789         }
1790
1791         return 0;
1792 }
1793
1794 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1795                                 struct platform_device *dev,
1796                                 struct spu_mdesc_info *ip,
1797                                 const char *node_name)
1798 {
1799         u64 node, reg;
1800
1801         if (of_property_read_reg(dev->dev.of_node, 0, &reg, NULL) < 0)
1802                 return -ENODEV;
1803
1804         mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1805                 const char *name;
1806                 const u64 *chdl;
1807
1808                 name = mdesc_get_property(mdesc, node, "name", NULL);
1809                 if (!name || strcmp(name, node_name))
1810                         continue;
1811                 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1812                 if (!chdl || (*chdl != reg))
1813                         continue;
1814                 ip->cfg_handle = *chdl;
1815                 return get_irq_props(mdesc, node, ip);
1816         }
1817
1818         return -ENODEV;
1819 }
1820
1821 static unsigned long n2_spu_hvapi_major;
1822 static unsigned long n2_spu_hvapi_minor;
1823
1824 static int n2_spu_hvapi_register(void)
1825 {
1826         int err;
1827
1828         n2_spu_hvapi_major = 2;
1829         n2_spu_hvapi_minor = 0;
1830
1831         err = sun4v_hvapi_register(HV_GRP_NCS,
1832                                    n2_spu_hvapi_major,
1833                                    &n2_spu_hvapi_minor);
1834
1835         if (!err)
1836                 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1837                         n2_spu_hvapi_major,
1838                         n2_spu_hvapi_minor);
1839
1840         return err;
1841 }
1842
1843 static void n2_spu_hvapi_unregister(void)
1844 {
1845         sun4v_hvapi_unregister(HV_GRP_NCS);
1846 }
1847
1848 static int global_ref;
1849
1850 static int grab_global_resources(void)
1851 {
1852         int err = 0;
1853
1854         mutex_lock(&spu_lock);
1855
1856         if (global_ref++)
1857                 goto out;
1858
1859         err = n2_spu_hvapi_register();
1860         if (err)
1861                 goto out;
1862
1863         err = queue_cache_init();
1864         if (err)
1865                 goto out_hvapi_release;
1866
1867         err = -ENOMEM;
1868         cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1869                              GFP_KERNEL);
1870         if (!cpu_to_cwq)
1871                 goto out_queue_cache_destroy;
1872
1873         cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1874                              GFP_KERNEL);
1875         if (!cpu_to_mau)
1876                 goto out_free_cwq_table;
1877
1878         err = 0;
1879
1880 out:
1881         if (err)
1882                 global_ref--;
1883         mutex_unlock(&spu_lock);
1884         return err;
1885
1886 out_free_cwq_table:
1887         kfree(cpu_to_cwq);
1888         cpu_to_cwq = NULL;
1889
1890 out_queue_cache_destroy:
1891         queue_cache_destroy();
1892
1893 out_hvapi_release:
1894         n2_spu_hvapi_unregister();
1895         goto out;
1896 }
1897
1898 static void release_global_resources(void)
1899 {
1900         mutex_lock(&spu_lock);
1901         if (!--global_ref) {
1902                 kfree(cpu_to_cwq);
1903                 cpu_to_cwq = NULL;
1904
1905                 kfree(cpu_to_mau);
1906                 cpu_to_mau = NULL;
1907
1908                 queue_cache_destroy();
1909                 n2_spu_hvapi_unregister();
1910         }
1911         mutex_unlock(&spu_lock);
1912 }
1913
1914 static struct n2_crypto *alloc_n2cp(void)
1915 {
1916         struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1917
1918         if (np)
1919                 INIT_LIST_HEAD(&np->cwq_list);
1920
1921         return np;
1922 }
1923
1924 static void free_n2cp(struct n2_crypto *np)
1925 {
1926         kfree(np->cwq_info.ino_table);
1927         np->cwq_info.ino_table = NULL;
1928
1929         kfree(np);
1930 }
1931
1932 static void n2_spu_driver_version(void)
1933 {
1934         static int n2_spu_version_printed;
1935
1936         if (n2_spu_version_printed++ == 0)
1937                 pr_info("%s", version);
1938 }
1939
1940 static int n2_crypto_probe(struct platform_device *dev)
1941 {
1942         struct mdesc_handle *mdesc;
1943         struct n2_crypto *np;
1944         int err;
1945
1946         n2_spu_driver_version();
1947
1948         pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1949
1950         np = alloc_n2cp();
1951         if (!np) {
1952                 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1953                         dev->dev.of_node);
1954                 return -ENOMEM;
1955         }
1956
1957         err = grab_global_resources();
1958         if (err) {
1959                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1960                         dev->dev.of_node);
1961                 goto out_free_n2cp;
1962         }
1963
1964         mdesc = mdesc_grab();
1965
1966         if (!mdesc) {
1967                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1968                         dev->dev.of_node);
1969                 err = -ENODEV;
1970                 goto out_free_global;
1971         }
1972         err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1973         if (err) {
1974                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1975                         dev->dev.of_node);
1976                 mdesc_release(mdesc);
1977                 goto out_free_global;
1978         }
1979
1980         err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1981                              "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1982                              cpu_to_cwq);
1983         mdesc_release(mdesc);
1984
1985         if (err) {
1986                 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1987                         dev->dev.of_node);
1988                 goto out_free_global;
1989         }
1990
1991         err = n2_register_algs();
1992         if (err) {
1993                 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1994                         dev->dev.of_node);
1995                 goto out_free_spu_list;
1996         }
1997
1998         dev_set_drvdata(&dev->dev, np);
1999
2000         return 0;
2001
2002 out_free_spu_list:
2003         spu_list_destroy(&np->cwq_list);
2004
2005 out_free_global:
2006         release_global_resources();
2007
2008 out_free_n2cp:
2009         free_n2cp(np);
2010
2011         return err;
2012 }
2013
2014 static void n2_crypto_remove(struct platform_device *dev)
2015 {
2016         struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2017
2018         n2_unregister_algs();
2019
2020         spu_list_destroy(&np->cwq_list);
2021
2022         release_global_resources();
2023
2024         free_n2cp(np);
2025 }
2026
2027 static struct n2_mau *alloc_ncp(void)
2028 {
2029         struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2030
2031         if (mp)
2032                 INIT_LIST_HEAD(&mp->mau_list);
2033
2034         return mp;
2035 }
2036
2037 static void free_ncp(struct n2_mau *mp)
2038 {
2039         kfree(mp->mau_info.ino_table);
2040         mp->mau_info.ino_table = NULL;
2041
2042         kfree(mp);
2043 }
2044
2045 static int n2_mau_probe(struct platform_device *dev)
2046 {
2047         struct mdesc_handle *mdesc;
2048         struct n2_mau *mp;
2049         int err;
2050
2051         n2_spu_driver_version();
2052
2053         pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2054
2055         mp = alloc_ncp();
2056         if (!mp) {
2057                 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2058                         dev->dev.of_node);
2059                 return -ENOMEM;
2060         }
2061
2062         err = grab_global_resources();
2063         if (err) {
2064                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2065                         dev->dev.of_node);
2066                 goto out_free_ncp;
2067         }
2068
2069         mdesc = mdesc_grab();
2070
2071         if (!mdesc) {
2072                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2073                         dev->dev.of_node);
2074                 err = -ENODEV;
2075                 goto out_free_global;
2076         }
2077
2078         err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2079         if (err) {
2080                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2081                         dev->dev.of_node);
2082                 mdesc_release(mdesc);
2083                 goto out_free_global;
2084         }
2085
2086         err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2087                              "mau", HV_NCS_QTYPE_MAU, mau_intr,
2088                              cpu_to_mau);
2089         mdesc_release(mdesc);
2090
2091         if (err) {
2092                 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2093                         dev->dev.of_node);
2094                 goto out_free_global;
2095         }
2096
2097         dev_set_drvdata(&dev->dev, mp);
2098
2099         return 0;
2100
2101 out_free_global:
2102         release_global_resources();
2103
2104 out_free_ncp:
2105         free_ncp(mp);
2106
2107         return err;
2108 }
2109
2110 static void n2_mau_remove(struct platform_device *dev)
2111 {
2112         struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2113
2114         spu_list_destroy(&mp->mau_list);
2115
2116         release_global_resources();
2117
2118         free_ncp(mp);
2119 }
2120
2121 static const struct of_device_id n2_crypto_match[] = {
2122         {
2123                 .name = "n2cp",
2124                 .compatible = "SUNW,n2-cwq",
2125         },
2126         {
2127                 .name = "n2cp",
2128                 .compatible = "SUNW,vf-cwq",
2129         },
2130         {
2131                 .name = "n2cp",
2132                 .compatible = "SUNW,kt-cwq",
2133         },
2134         {},
2135 };
2136
2137 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2138
2139 static struct platform_driver n2_crypto_driver = {
2140         .driver = {
2141                 .name           =       "n2cp",
2142                 .of_match_table =       n2_crypto_match,
2143         },
2144         .probe          =       n2_crypto_probe,
2145         .remove_new     =       n2_crypto_remove,
2146 };
2147
2148 static const struct of_device_id n2_mau_match[] = {
2149         {
2150                 .name = "ncp",
2151                 .compatible = "SUNW,n2-mau",
2152         },
2153         {
2154                 .name = "ncp",
2155                 .compatible = "SUNW,vf-mau",
2156         },
2157         {
2158                 .name = "ncp",
2159                 .compatible = "SUNW,kt-mau",
2160         },
2161         {},
2162 };
2163
2164 MODULE_DEVICE_TABLE(of, n2_mau_match);
2165
2166 static struct platform_driver n2_mau_driver = {
2167         .driver = {
2168                 .name           =       "ncp",
2169                 .of_match_table =       n2_mau_match,
2170         },
2171         .probe          =       n2_mau_probe,
2172         .remove_new     =       n2_mau_remove,
2173 };
2174
2175 static struct platform_driver * const drivers[] = {
2176         &n2_crypto_driver,
2177         &n2_mau_driver,
2178 };
2179
2180 static int __init n2_init(void)
2181 {
2182         return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2183 }
2184
2185 static void __exit n2_exit(void)
2186 {
2187         platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2188 }
2189
2190 module_init(n2_init);
2191 module_exit(n2_exit);