GNU Linux-libre 5.4.241-gnu1
[releases.git] / drivers / crypto / n2_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3  *
4  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5  */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_device.h>
13 #include <linux/cpumask.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/crypto.h>
17 #include <crypto/md5.h>
18 #include <crypto/sha.h>
19 #include <crypto/aes.h>
20 #include <crypto/internal/des.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24
25 #include <crypto/internal/hash.h>
26 #include <crypto/scatterwalk.h>
27 #include <crypto/algapi.h>
28
29 #include <asm/hypervisor.h>
30 #include <asm/mdesc.h>
31
32 #include "n2_core.h"
33
34 #define DRV_MODULE_NAME         "n2_crypto"
35 #define DRV_MODULE_VERSION      "0.2"
36 #define DRV_MODULE_RELDATE      "July 28, 2011"
37
38 static const char version[] =
39         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
40
41 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
42 MODULE_DESCRIPTION("Niagara2 Crypto driver");
43 MODULE_LICENSE("GPL");
44 MODULE_VERSION(DRV_MODULE_VERSION);
45
46 #define N2_CRA_PRIORITY         200
47
48 static DEFINE_MUTEX(spu_lock);
49
50 struct spu_queue {
51         cpumask_t               sharing;
52         unsigned long           qhandle;
53
54         spinlock_t              lock;
55         u8                      q_type;
56         void                    *q;
57         unsigned long           head;
58         unsigned long           tail;
59         struct list_head        jobs;
60
61         unsigned long           devino;
62
63         char                    irq_name[32];
64         unsigned int            irq;
65
66         struct list_head        list;
67 };
68
69 struct spu_qreg {
70         struct spu_queue        *queue;
71         unsigned long           type;
72 };
73
74 static struct spu_queue **cpu_to_cwq;
75 static struct spu_queue **cpu_to_mau;
76
77 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
78 {
79         if (q->q_type == HV_NCS_QTYPE_MAU) {
80                 off += MAU_ENTRY_SIZE;
81                 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
82                         off = 0;
83         } else {
84                 off += CWQ_ENTRY_SIZE;
85                 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
86                         off = 0;
87         }
88         return off;
89 }
90
91 struct n2_request_common {
92         struct list_head        entry;
93         unsigned int            offset;
94 };
95 #define OFFSET_NOT_RUNNING      (~(unsigned int)0)
96
97 /* An async job request records the final tail value it used in
98  * n2_request_common->offset, test to see if that offset is in
99  * the range old_head, new_head, inclusive.
100  */
101 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
102                                 unsigned long old_head, unsigned long new_head)
103 {
104         if (old_head <= new_head) {
105                 if (offset > old_head && offset <= new_head)
106                         return true;
107         } else {
108                 if (offset > old_head || offset <= new_head)
109                         return true;
110         }
111         return false;
112 }
113
114 /* When the HEAD marker is unequal to the actual HEAD, we get
115  * a virtual device INO interrupt.  We should process the
116  * completed CWQ entries and adjust the HEAD marker to clear
117  * the IRQ.
118  */
119 static irqreturn_t cwq_intr(int irq, void *dev_id)
120 {
121         unsigned long off, new_head, hv_ret;
122         struct spu_queue *q = dev_id;
123
124         pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
125                smp_processor_id(), q->qhandle);
126
127         spin_lock(&q->lock);
128
129         hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
130
131         pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
132                smp_processor_id(), new_head, hv_ret);
133
134         for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
135                 /* XXX ... XXX */
136         }
137
138         hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
139         if (hv_ret == HV_EOK)
140                 q->head = new_head;
141
142         spin_unlock(&q->lock);
143
144         return IRQ_HANDLED;
145 }
146
147 static irqreturn_t mau_intr(int irq, void *dev_id)
148 {
149         struct spu_queue *q = dev_id;
150         unsigned long head, hv_ret;
151
152         spin_lock(&q->lock);
153
154         pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
155                smp_processor_id(), q->qhandle);
156
157         hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
158
159         pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
160                smp_processor_id(), head, hv_ret);
161
162         sun4v_ncs_sethead_marker(q->qhandle, head);
163
164         spin_unlock(&q->lock);
165
166         return IRQ_HANDLED;
167 }
168
169 static void *spu_queue_next(struct spu_queue *q, void *cur)
170 {
171         return q->q + spu_next_offset(q, cur - q->q);
172 }
173
174 static int spu_queue_num_free(struct spu_queue *q)
175 {
176         unsigned long head = q->head;
177         unsigned long tail = q->tail;
178         unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
179         unsigned long diff;
180
181         if (head > tail)
182                 diff = head - tail;
183         else
184                 diff = (end - tail) + head;
185
186         return (diff / CWQ_ENTRY_SIZE) - 1;
187 }
188
189 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
190 {
191         int avail = spu_queue_num_free(q);
192
193         if (avail >= num_entries)
194                 return q->q + q->tail;
195
196         return NULL;
197 }
198
199 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
200 {
201         unsigned long hv_ret, new_tail;
202
203         new_tail = spu_next_offset(q, last - q->q);
204
205         hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
206         if (hv_ret == HV_EOK)
207                 q->tail = new_tail;
208         return hv_ret;
209 }
210
211 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
212                              int enc_type, int auth_type,
213                              unsigned int hash_len,
214                              bool sfas, bool sob, bool eob, bool encrypt,
215                              int opcode)
216 {
217         u64 word = (len - 1) & CONTROL_LEN;
218
219         word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
220         word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
221         word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
222         if (sfas)
223                 word |= CONTROL_STORE_FINAL_AUTH_STATE;
224         if (sob)
225                 word |= CONTROL_START_OF_BLOCK;
226         if (eob)
227                 word |= CONTROL_END_OF_BLOCK;
228         if (encrypt)
229                 word |= CONTROL_ENCRYPT;
230         if (hmac_key_len)
231                 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
232         if (hash_len)
233                 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
234
235         return word;
236 }
237
238 #if 0
239 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
240 {
241         if (this_len >= 64 ||
242             qp->head != qp->tail)
243                 return true;
244         return false;
245 }
246 #endif
247
248 struct n2_ahash_alg {
249         struct list_head        entry;
250         const u8                *hash_zero;
251         const u32               *hash_init;
252         u8                      hw_op_hashsz;
253         u8                      digest_size;
254         u8                      auth_type;
255         u8                      hmac_type;
256         struct ahash_alg        alg;
257 };
258
259 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
260 {
261         struct crypto_alg *alg = tfm->__crt_alg;
262         struct ahash_alg *ahash_alg;
263
264         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
265
266         return container_of(ahash_alg, struct n2_ahash_alg, alg);
267 }
268
269 struct n2_hmac_alg {
270         const char              *child_alg;
271         struct n2_ahash_alg     derived;
272 };
273
274 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
275 {
276         struct crypto_alg *alg = tfm->__crt_alg;
277         struct ahash_alg *ahash_alg;
278
279         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
280
281         return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
282 }
283
284 struct n2_hash_ctx {
285         struct crypto_ahash             *fallback_tfm;
286 };
287
288 #define N2_HASH_KEY_MAX                 32 /* HW limit for all HMAC requests */
289
290 struct n2_hmac_ctx {
291         struct n2_hash_ctx              base;
292
293         struct crypto_shash             *child_shash;
294
295         int                             hash_key_len;
296         unsigned char                   hash_key[N2_HASH_KEY_MAX];
297 };
298
299 struct n2_hash_req_ctx {
300         union {
301                 struct md5_state        md5;
302                 struct sha1_state       sha1;
303                 struct sha256_state     sha256;
304         } u;
305
306         struct ahash_request            fallback_req;
307 };
308
309 static int n2_hash_async_init(struct ahash_request *req)
310 {
311         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
312         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
313         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
314
315         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
316         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
317
318         return crypto_ahash_init(&rctx->fallback_req);
319 }
320
321 static int n2_hash_async_update(struct ahash_request *req)
322 {
323         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
324         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
325         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
326
327         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
328         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
329         rctx->fallback_req.nbytes = req->nbytes;
330         rctx->fallback_req.src = req->src;
331
332         return crypto_ahash_update(&rctx->fallback_req);
333 }
334
335 static int n2_hash_async_final(struct ahash_request *req)
336 {
337         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
338         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
339         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
340
341         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
342         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
343         rctx->fallback_req.result = req->result;
344
345         return crypto_ahash_final(&rctx->fallback_req);
346 }
347
348 static int n2_hash_async_finup(struct ahash_request *req)
349 {
350         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
351         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
352         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
353
354         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
355         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
356         rctx->fallback_req.nbytes = req->nbytes;
357         rctx->fallback_req.src = req->src;
358         rctx->fallback_req.result = req->result;
359
360         return crypto_ahash_finup(&rctx->fallback_req);
361 }
362
363 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
364 {
365         return -ENOSYS;
366 }
367
368 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
369 {
370         return -ENOSYS;
371 }
372
373 static int n2_hash_cra_init(struct crypto_tfm *tfm)
374 {
375         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
376         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
377         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
378         struct crypto_ahash *fallback_tfm;
379         int err;
380
381         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
382                                           CRYPTO_ALG_NEED_FALLBACK);
383         if (IS_ERR(fallback_tfm)) {
384                 pr_warning("Fallback driver '%s' could not be loaded!\n",
385                            fallback_driver_name);
386                 err = PTR_ERR(fallback_tfm);
387                 goto out;
388         }
389
390         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
391                                          crypto_ahash_reqsize(fallback_tfm)));
392
393         ctx->fallback_tfm = fallback_tfm;
394         return 0;
395
396 out:
397         return err;
398 }
399
400 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
401 {
402         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
403         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
404
405         crypto_free_ahash(ctx->fallback_tfm);
406 }
407
408 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
409 {
410         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
411         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
412         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
413         struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
414         struct crypto_ahash *fallback_tfm;
415         struct crypto_shash *child_shash;
416         int err;
417
418         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
419                                           CRYPTO_ALG_NEED_FALLBACK);
420         if (IS_ERR(fallback_tfm)) {
421                 pr_warning("Fallback driver '%s' could not be loaded!\n",
422                            fallback_driver_name);
423                 err = PTR_ERR(fallback_tfm);
424                 goto out;
425         }
426
427         child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
428         if (IS_ERR(child_shash)) {
429                 pr_warning("Child shash '%s' could not be loaded!\n",
430                            n2alg->child_alg);
431                 err = PTR_ERR(child_shash);
432                 goto out_free_fallback;
433         }
434
435         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
436                                          crypto_ahash_reqsize(fallback_tfm)));
437
438         ctx->child_shash = child_shash;
439         ctx->base.fallback_tfm = fallback_tfm;
440         return 0;
441
442 out_free_fallback:
443         crypto_free_ahash(fallback_tfm);
444
445 out:
446         return err;
447 }
448
449 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
450 {
451         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
452         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
453
454         crypto_free_ahash(ctx->base.fallback_tfm);
455         crypto_free_shash(ctx->child_shash);
456 }
457
458 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
459                                 unsigned int keylen)
460 {
461         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
462         struct crypto_shash *child_shash = ctx->child_shash;
463         struct crypto_ahash *fallback_tfm;
464         SHASH_DESC_ON_STACK(shash, child_shash);
465         int err, bs, ds;
466
467         fallback_tfm = ctx->base.fallback_tfm;
468         err = crypto_ahash_setkey(fallback_tfm, key, keylen);
469         if (err)
470                 return err;
471
472         shash->tfm = child_shash;
473
474         bs = crypto_shash_blocksize(child_shash);
475         ds = crypto_shash_digestsize(child_shash);
476         BUG_ON(ds > N2_HASH_KEY_MAX);
477         if (keylen > bs) {
478                 err = crypto_shash_digest(shash, key, keylen,
479                                           ctx->hash_key);
480                 if (err)
481                         return err;
482                 keylen = ds;
483         } else if (keylen <= N2_HASH_KEY_MAX)
484                 memcpy(ctx->hash_key, key, keylen);
485
486         ctx->hash_key_len = keylen;
487
488         return err;
489 }
490
491 static unsigned long wait_for_tail(struct spu_queue *qp)
492 {
493         unsigned long head, hv_ret;
494
495         do {
496                 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
497                 if (hv_ret != HV_EOK) {
498                         pr_err("Hypervisor error on gethead\n");
499                         break;
500                 }
501                 if (head == qp->tail) {
502                         qp->head = head;
503                         break;
504                 }
505         } while (1);
506         return hv_ret;
507 }
508
509 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
510                                               struct cwq_initial_entry *ent)
511 {
512         unsigned long hv_ret = spu_queue_submit(qp, ent);
513
514         if (hv_ret == HV_EOK)
515                 hv_ret = wait_for_tail(qp);
516
517         return hv_ret;
518 }
519
520 static int n2_do_async_digest(struct ahash_request *req,
521                               unsigned int auth_type, unsigned int digest_size,
522                               unsigned int result_size, void *hash_loc,
523                               unsigned long auth_key, unsigned int auth_key_len)
524 {
525         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
526         struct cwq_initial_entry *ent;
527         struct crypto_hash_walk walk;
528         struct spu_queue *qp;
529         unsigned long flags;
530         int err = -ENODEV;
531         int nbytes, cpu;
532
533         /* The total effective length of the operation may not
534          * exceed 2^16.
535          */
536         if (unlikely(req->nbytes > (1 << 16))) {
537                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
538                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
539
540                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
541                 rctx->fallback_req.base.flags =
542                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
543                 rctx->fallback_req.nbytes = req->nbytes;
544                 rctx->fallback_req.src = req->src;
545                 rctx->fallback_req.result = req->result;
546
547                 return crypto_ahash_digest(&rctx->fallback_req);
548         }
549
550         nbytes = crypto_hash_walk_first(req, &walk);
551
552         cpu = get_cpu();
553         qp = cpu_to_cwq[cpu];
554         if (!qp)
555                 goto out;
556
557         spin_lock_irqsave(&qp->lock, flags);
558
559         /* XXX can do better, improve this later by doing a by-hand scatterlist
560          * XXX walk, etc.
561          */
562         ent = qp->q + qp->tail;
563
564         ent->control = control_word_base(nbytes, auth_key_len, 0,
565                                          auth_type, digest_size,
566                                          false, true, false, false,
567                                          OPCODE_INPLACE_BIT |
568                                          OPCODE_AUTH_MAC);
569         ent->src_addr = __pa(walk.data);
570         ent->auth_key_addr = auth_key;
571         ent->auth_iv_addr = __pa(hash_loc);
572         ent->final_auth_state_addr = 0UL;
573         ent->enc_key_addr = 0UL;
574         ent->enc_iv_addr = 0UL;
575         ent->dest_addr = __pa(hash_loc);
576
577         nbytes = crypto_hash_walk_done(&walk, 0);
578         while (nbytes > 0) {
579                 ent = spu_queue_next(qp, ent);
580
581                 ent->control = (nbytes - 1);
582                 ent->src_addr = __pa(walk.data);
583                 ent->auth_key_addr = 0UL;
584                 ent->auth_iv_addr = 0UL;
585                 ent->final_auth_state_addr = 0UL;
586                 ent->enc_key_addr = 0UL;
587                 ent->enc_iv_addr = 0UL;
588                 ent->dest_addr = 0UL;
589
590                 nbytes = crypto_hash_walk_done(&walk, 0);
591         }
592         ent->control |= CONTROL_END_OF_BLOCK;
593
594         if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
595                 err = -EINVAL;
596         else
597                 err = 0;
598
599         spin_unlock_irqrestore(&qp->lock, flags);
600
601         if (!err)
602                 memcpy(req->result, hash_loc, result_size);
603 out:
604         put_cpu();
605
606         return err;
607 }
608
609 static int n2_hash_async_digest(struct ahash_request *req)
610 {
611         struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
612         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
613         int ds;
614
615         ds = n2alg->digest_size;
616         if (unlikely(req->nbytes == 0)) {
617                 memcpy(req->result, n2alg->hash_zero, ds);
618                 return 0;
619         }
620         memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
621
622         return n2_do_async_digest(req, n2alg->auth_type,
623                                   n2alg->hw_op_hashsz, ds,
624                                   &rctx->u, 0UL, 0);
625 }
626
627 static int n2_hmac_async_digest(struct ahash_request *req)
628 {
629         struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
630         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
631         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
632         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
633         int ds;
634
635         ds = n2alg->derived.digest_size;
636         if (unlikely(req->nbytes == 0) ||
637             unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
638                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
639                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
640
641                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
642                 rctx->fallback_req.base.flags =
643                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
644                 rctx->fallback_req.nbytes = req->nbytes;
645                 rctx->fallback_req.src = req->src;
646                 rctx->fallback_req.result = req->result;
647
648                 return crypto_ahash_digest(&rctx->fallback_req);
649         }
650         memcpy(&rctx->u, n2alg->derived.hash_init,
651                n2alg->derived.hw_op_hashsz);
652
653         return n2_do_async_digest(req, n2alg->derived.hmac_type,
654                                   n2alg->derived.hw_op_hashsz, ds,
655                                   &rctx->u,
656                                   __pa(&ctx->hash_key),
657                                   ctx->hash_key_len);
658 }
659
660 struct n2_cipher_context {
661         int                     key_len;
662         int                     enc_type;
663         union {
664                 u8              aes[AES_MAX_KEY_SIZE];
665                 u8              des[DES_KEY_SIZE];
666                 u8              des3[3 * DES_KEY_SIZE];
667                 u8              arc4[258]; /* S-box, X, Y */
668         } key;
669 };
670
671 #define N2_CHUNK_ARR_LEN        16
672
673 struct n2_crypto_chunk {
674         struct list_head        entry;
675         unsigned long           iv_paddr : 44;
676         unsigned long           arr_len : 20;
677         unsigned long           dest_paddr;
678         unsigned long           dest_final;
679         struct {
680                 unsigned long   src_paddr : 44;
681                 unsigned long   src_len : 20;
682         } arr[N2_CHUNK_ARR_LEN];
683 };
684
685 struct n2_request_context {
686         struct ablkcipher_walk  walk;
687         struct list_head        chunk_list;
688         struct n2_crypto_chunk  chunk;
689         u8                      temp_iv[16];
690 };
691
692 /* The SPU allows some level of flexibility for partial cipher blocks
693  * being specified in a descriptor.
694  *
695  * It merely requires that every descriptor's length field is at least
696  * as large as the cipher block size.  This means that a cipher block
697  * can span at most 2 descriptors.  However, this does not allow a
698  * partial block to span into the final descriptor as that would
699  * violate the rule (since every descriptor's length must be at lest
700  * the block size).  So, for example, assuming an 8 byte block size:
701  *
702  *      0xe --> 0xa --> 0x8
703  *
704  * is a valid length sequence, whereas:
705  *
706  *      0xe --> 0xb --> 0x7
707  *
708  * is not a valid sequence.
709  */
710
711 struct n2_cipher_alg {
712         struct list_head        entry;
713         u8                      enc_type;
714         struct crypto_alg       alg;
715 };
716
717 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
718 {
719         struct crypto_alg *alg = tfm->__crt_alg;
720
721         return container_of(alg, struct n2_cipher_alg, alg);
722 }
723
724 struct n2_cipher_request_context {
725         struct ablkcipher_walk  walk;
726 };
727
728 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
729                          unsigned int keylen)
730 {
731         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
732         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
733         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
734
735         ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
736
737         switch (keylen) {
738         case AES_KEYSIZE_128:
739                 ctx->enc_type |= ENC_TYPE_ALG_AES128;
740                 break;
741         case AES_KEYSIZE_192:
742                 ctx->enc_type |= ENC_TYPE_ALG_AES192;
743                 break;
744         case AES_KEYSIZE_256:
745                 ctx->enc_type |= ENC_TYPE_ALG_AES256;
746                 break;
747         default:
748                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
749                 return -EINVAL;
750         }
751
752         ctx->key_len = keylen;
753         memcpy(ctx->key.aes, key, keylen);
754         return 0;
755 }
756
757 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
758                          unsigned int keylen)
759 {
760         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
761         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
762         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
763         int err;
764
765         err = verify_ablkcipher_des_key(cipher, key);
766         if (err)
767                 return err;
768
769         ctx->enc_type = n2alg->enc_type;
770
771         ctx->key_len = keylen;
772         memcpy(ctx->key.des, key, keylen);
773         return 0;
774 }
775
776 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
777                           unsigned int keylen)
778 {
779         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
780         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
781         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
782         int err;
783
784         err = verify_ablkcipher_des3_key(cipher, key);
785         if (err)
786                 return err;
787
788         ctx->enc_type = n2alg->enc_type;
789
790         ctx->key_len = keylen;
791         memcpy(ctx->key.des3, key, keylen);
792         return 0;
793 }
794
795 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
796                           unsigned int keylen)
797 {
798         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
799         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
800         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
801         u8 *s = ctx->key.arc4;
802         u8 *x = s + 256;
803         u8 *y = x + 1;
804         int i, j, k;
805
806         ctx->enc_type = n2alg->enc_type;
807
808         j = k = 0;
809         *x = 0;
810         *y = 0;
811         for (i = 0; i < 256; i++)
812                 s[i] = i;
813         for (i = 0; i < 256; i++) {
814                 u8 a = s[i];
815                 j = (j + key[k] + a) & 0xff;
816                 s[i] = s[j];
817                 s[j] = a;
818                 if (++k >= keylen)
819                         k = 0;
820         }
821
822         return 0;
823 }
824
825 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
826 {
827         int this_len = nbytes;
828
829         this_len -= (nbytes & (block_size - 1));
830         return this_len > (1 << 16) ? (1 << 16) : this_len;
831 }
832
833 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
834                             struct spu_queue *qp, bool encrypt)
835 {
836         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
837         struct cwq_initial_entry *ent;
838         bool in_place;
839         int i;
840
841         ent = spu_queue_alloc(qp, cp->arr_len);
842         if (!ent) {
843                 pr_info("queue_alloc() of %d fails\n",
844                         cp->arr_len);
845                 return -EBUSY;
846         }
847
848         in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
849
850         ent->control = control_word_base(cp->arr[0].src_len,
851                                          0, ctx->enc_type, 0, 0,
852                                          false, true, false, encrypt,
853                                          OPCODE_ENCRYPT |
854                                          (in_place ? OPCODE_INPLACE_BIT : 0));
855         ent->src_addr = cp->arr[0].src_paddr;
856         ent->auth_key_addr = 0UL;
857         ent->auth_iv_addr = 0UL;
858         ent->final_auth_state_addr = 0UL;
859         ent->enc_key_addr = __pa(&ctx->key);
860         ent->enc_iv_addr = cp->iv_paddr;
861         ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
862
863         for (i = 1; i < cp->arr_len; i++) {
864                 ent = spu_queue_next(qp, ent);
865
866                 ent->control = cp->arr[i].src_len - 1;
867                 ent->src_addr = cp->arr[i].src_paddr;
868                 ent->auth_key_addr = 0UL;
869                 ent->auth_iv_addr = 0UL;
870                 ent->final_auth_state_addr = 0UL;
871                 ent->enc_key_addr = 0UL;
872                 ent->enc_iv_addr = 0UL;
873                 ent->dest_addr = 0UL;
874         }
875         ent->control |= CONTROL_END_OF_BLOCK;
876
877         return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
878 }
879
880 static int n2_compute_chunks(struct ablkcipher_request *req)
881 {
882         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
883         struct ablkcipher_walk *walk = &rctx->walk;
884         struct n2_crypto_chunk *chunk;
885         unsigned long dest_prev;
886         unsigned int tot_len;
887         bool prev_in_place;
888         int err, nbytes;
889
890         ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
891         err = ablkcipher_walk_phys(req, walk);
892         if (err)
893                 return err;
894
895         INIT_LIST_HEAD(&rctx->chunk_list);
896
897         chunk = &rctx->chunk;
898         INIT_LIST_HEAD(&chunk->entry);
899
900         chunk->iv_paddr = 0UL;
901         chunk->arr_len = 0;
902         chunk->dest_paddr = 0UL;
903
904         prev_in_place = false;
905         dest_prev = ~0UL;
906         tot_len = 0;
907
908         while ((nbytes = walk->nbytes) != 0) {
909                 unsigned long dest_paddr, src_paddr;
910                 bool in_place;
911                 int this_len;
912
913                 src_paddr = (page_to_phys(walk->src.page) +
914                              walk->src.offset);
915                 dest_paddr = (page_to_phys(walk->dst.page) +
916                               walk->dst.offset);
917                 in_place = (src_paddr == dest_paddr);
918                 this_len = cipher_descriptor_len(nbytes, walk->blocksize);
919
920                 if (chunk->arr_len != 0) {
921                         if (in_place != prev_in_place ||
922                             (!prev_in_place &&
923                              dest_paddr != dest_prev) ||
924                             chunk->arr_len == N2_CHUNK_ARR_LEN ||
925                             tot_len + this_len > (1 << 16)) {
926                                 chunk->dest_final = dest_prev;
927                                 list_add_tail(&chunk->entry,
928                                               &rctx->chunk_list);
929                                 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
930                                 if (!chunk) {
931                                         err = -ENOMEM;
932                                         break;
933                                 }
934                                 INIT_LIST_HEAD(&chunk->entry);
935                         }
936                 }
937                 if (chunk->arr_len == 0) {
938                         chunk->dest_paddr = dest_paddr;
939                         tot_len = 0;
940                 }
941                 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
942                 chunk->arr[chunk->arr_len].src_len = this_len;
943                 chunk->arr_len++;
944
945                 dest_prev = dest_paddr + this_len;
946                 prev_in_place = in_place;
947                 tot_len += this_len;
948
949                 err = ablkcipher_walk_done(req, walk, nbytes - this_len);
950                 if (err)
951                         break;
952         }
953         if (!err && chunk->arr_len != 0) {
954                 chunk->dest_final = dest_prev;
955                 list_add_tail(&chunk->entry, &rctx->chunk_list);
956         }
957
958         return err;
959 }
960
961 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
962 {
963         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
964         struct n2_crypto_chunk *c, *tmp;
965
966         if (final_iv)
967                 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
968
969         ablkcipher_walk_complete(&rctx->walk);
970         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
971                 list_del(&c->entry);
972                 if (unlikely(c != &rctx->chunk))
973                         kfree(c);
974         }
975
976 }
977
978 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
979 {
980         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
981         struct crypto_tfm *tfm = req->base.tfm;
982         int err = n2_compute_chunks(req);
983         struct n2_crypto_chunk *c, *tmp;
984         unsigned long flags, hv_ret;
985         struct spu_queue *qp;
986
987         if (err)
988                 return err;
989
990         qp = cpu_to_cwq[get_cpu()];
991         err = -ENODEV;
992         if (!qp)
993                 goto out;
994
995         spin_lock_irqsave(&qp->lock, flags);
996
997         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
998                 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
999                 if (err)
1000                         break;
1001                 list_del(&c->entry);
1002                 if (unlikely(c != &rctx->chunk))
1003                         kfree(c);
1004         }
1005         if (!err) {
1006                 hv_ret = wait_for_tail(qp);
1007                 if (hv_ret != HV_EOK)
1008                         err = -EINVAL;
1009         }
1010
1011         spin_unlock_irqrestore(&qp->lock, flags);
1012
1013 out:
1014         put_cpu();
1015
1016         n2_chunk_complete(req, NULL);
1017         return err;
1018 }
1019
1020 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1021 {
1022         return n2_do_ecb(req, true);
1023 }
1024
1025 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1026 {
1027         return n2_do_ecb(req, false);
1028 }
1029
1030 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1031 {
1032         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1033         struct crypto_tfm *tfm = req->base.tfm;
1034         unsigned long flags, hv_ret, iv_paddr;
1035         int err = n2_compute_chunks(req);
1036         struct n2_crypto_chunk *c, *tmp;
1037         struct spu_queue *qp;
1038         void *final_iv_addr;
1039
1040         final_iv_addr = NULL;
1041
1042         if (err)
1043                 return err;
1044
1045         qp = cpu_to_cwq[get_cpu()];
1046         err = -ENODEV;
1047         if (!qp)
1048                 goto out;
1049
1050         spin_lock_irqsave(&qp->lock, flags);
1051
1052         if (encrypt) {
1053                 iv_paddr = __pa(rctx->walk.iv);
1054                 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1055                                          entry) {
1056                         c->iv_paddr = iv_paddr;
1057                         err = __n2_crypt_chunk(tfm, c, qp, true);
1058                         if (err)
1059                                 break;
1060                         iv_paddr = c->dest_final - rctx->walk.blocksize;
1061                         list_del(&c->entry);
1062                         if (unlikely(c != &rctx->chunk))
1063                                 kfree(c);
1064                 }
1065                 final_iv_addr = __va(iv_paddr);
1066         } else {
1067                 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1068                                                  entry) {
1069                         if (c == &rctx->chunk) {
1070                                 iv_paddr = __pa(rctx->walk.iv);
1071                         } else {
1072                                 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1073                                             tmp->arr[tmp->arr_len-1].src_len -
1074                                             rctx->walk.blocksize);
1075                         }
1076                         if (!final_iv_addr) {
1077                                 unsigned long pa;
1078
1079                                 pa = (c->arr[c->arr_len-1].src_paddr +
1080                                       c->arr[c->arr_len-1].src_len -
1081                                       rctx->walk.blocksize);
1082                                 final_iv_addr = rctx->temp_iv;
1083                                 memcpy(rctx->temp_iv, __va(pa),
1084                                        rctx->walk.blocksize);
1085                         }
1086                         c->iv_paddr = iv_paddr;
1087                         err = __n2_crypt_chunk(tfm, c, qp, false);
1088                         if (err)
1089                                 break;
1090                         list_del(&c->entry);
1091                         if (unlikely(c != &rctx->chunk))
1092                                 kfree(c);
1093                 }
1094         }
1095         if (!err) {
1096                 hv_ret = wait_for_tail(qp);
1097                 if (hv_ret != HV_EOK)
1098                         err = -EINVAL;
1099         }
1100
1101         spin_unlock_irqrestore(&qp->lock, flags);
1102
1103 out:
1104         put_cpu();
1105
1106         n2_chunk_complete(req, err ? NULL : final_iv_addr);
1107         return err;
1108 }
1109
1110 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1111 {
1112         return n2_do_chaining(req, true);
1113 }
1114
1115 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1116 {
1117         return n2_do_chaining(req, false);
1118 }
1119
1120 struct n2_cipher_tmpl {
1121         const char              *name;
1122         const char              *drv_name;
1123         u8                      block_size;
1124         u8                      enc_type;
1125         struct ablkcipher_alg   ablkcipher;
1126 };
1127
1128 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1129         /* ARC4: only ECB is supported (chaining bits ignored) */
1130         {       .name           = "ecb(arc4)",
1131                 .drv_name       = "ecb-arc4",
1132                 .block_size     = 1,
1133                 .enc_type       = (ENC_TYPE_ALG_RC4_STREAM |
1134                                    ENC_TYPE_CHAINING_ECB),
1135                 .ablkcipher     = {
1136                         .min_keysize    = 1,
1137                         .max_keysize    = 256,
1138                         .setkey         = n2_arc4_setkey,
1139                         .encrypt        = n2_encrypt_ecb,
1140                         .decrypt        = n2_decrypt_ecb,
1141                 },
1142         },
1143
1144         /* DES: ECB CBC and CFB are supported */
1145         {       .name           = "ecb(des)",
1146                 .drv_name       = "ecb-des",
1147                 .block_size     = DES_BLOCK_SIZE,
1148                 .enc_type       = (ENC_TYPE_ALG_DES |
1149                                    ENC_TYPE_CHAINING_ECB),
1150                 .ablkcipher     = {
1151                         .min_keysize    = DES_KEY_SIZE,
1152                         .max_keysize    = DES_KEY_SIZE,
1153                         .setkey         = n2_des_setkey,
1154                         .encrypt        = n2_encrypt_ecb,
1155                         .decrypt        = n2_decrypt_ecb,
1156                 },
1157         },
1158         {       .name           = "cbc(des)",
1159                 .drv_name       = "cbc-des",
1160                 .block_size     = DES_BLOCK_SIZE,
1161                 .enc_type       = (ENC_TYPE_ALG_DES |
1162                                    ENC_TYPE_CHAINING_CBC),
1163                 .ablkcipher     = {
1164                         .ivsize         = DES_BLOCK_SIZE,
1165                         .min_keysize    = DES_KEY_SIZE,
1166                         .max_keysize    = DES_KEY_SIZE,
1167                         .setkey         = n2_des_setkey,
1168                         .encrypt        = n2_encrypt_chaining,
1169                         .decrypt        = n2_decrypt_chaining,
1170                 },
1171         },
1172         {       .name           = "cfb(des)",
1173                 .drv_name       = "cfb-des",
1174                 .block_size     = DES_BLOCK_SIZE,
1175                 .enc_type       = (ENC_TYPE_ALG_DES |
1176                                    ENC_TYPE_CHAINING_CFB),
1177                 .ablkcipher     = {
1178                         .min_keysize    = DES_KEY_SIZE,
1179                         .max_keysize    = DES_KEY_SIZE,
1180                         .setkey         = n2_des_setkey,
1181                         .encrypt        = n2_encrypt_chaining,
1182                         .decrypt        = n2_decrypt_chaining,
1183                 },
1184         },
1185
1186         /* 3DES: ECB CBC and CFB are supported */
1187         {       .name           = "ecb(des3_ede)",
1188                 .drv_name       = "ecb-3des",
1189                 .block_size     = DES_BLOCK_SIZE,
1190                 .enc_type       = (ENC_TYPE_ALG_3DES |
1191                                    ENC_TYPE_CHAINING_ECB),
1192                 .ablkcipher     = {
1193                         .min_keysize    = 3 * DES_KEY_SIZE,
1194                         .max_keysize    = 3 * DES_KEY_SIZE,
1195                         .setkey         = n2_3des_setkey,
1196                         .encrypt        = n2_encrypt_ecb,
1197                         .decrypt        = n2_decrypt_ecb,
1198                 },
1199         },
1200         {       .name           = "cbc(des3_ede)",
1201                 .drv_name       = "cbc-3des",
1202                 .block_size     = DES_BLOCK_SIZE,
1203                 .enc_type       = (ENC_TYPE_ALG_3DES |
1204                                    ENC_TYPE_CHAINING_CBC),
1205                 .ablkcipher     = {
1206                         .ivsize         = DES_BLOCK_SIZE,
1207                         .min_keysize    = 3 * DES_KEY_SIZE,
1208                         .max_keysize    = 3 * DES_KEY_SIZE,
1209                         .setkey         = n2_3des_setkey,
1210                         .encrypt        = n2_encrypt_chaining,
1211                         .decrypt        = n2_decrypt_chaining,
1212                 },
1213         },
1214         {       .name           = "cfb(des3_ede)",
1215                 .drv_name       = "cfb-3des",
1216                 .block_size     = DES_BLOCK_SIZE,
1217                 .enc_type       = (ENC_TYPE_ALG_3DES |
1218                                    ENC_TYPE_CHAINING_CFB),
1219                 .ablkcipher     = {
1220                         .min_keysize    = 3 * DES_KEY_SIZE,
1221                         .max_keysize    = 3 * DES_KEY_SIZE,
1222                         .setkey         = n2_3des_setkey,
1223                         .encrypt        = n2_encrypt_chaining,
1224                         .decrypt        = n2_decrypt_chaining,
1225                 },
1226         },
1227         /* AES: ECB CBC and CTR are supported */
1228         {       .name           = "ecb(aes)",
1229                 .drv_name       = "ecb-aes",
1230                 .block_size     = AES_BLOCK_SIZE,
1231                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1232                                    ENC_TYPE_CHAINING_ECB),
1233                 .ablkcipher     = {
1234                         .min_keysize    = AES_MIN_KEY_SIZE,
1235                         .max_keysize    = AES_MAX_KEY_SIZE,
1236                         .setkey         = n2_aes_setkey,
1237                         .encrypt        = n2_encrypt_ecb,
1238                         .decrypt        = n2_decrypt_ecb,
1239                 },
1240         },
1241         {       .name           = "cbc(aes)",
1242                 .drv_name       = "cbc-aes",
1243                 .block_size     = AES_BLOCK_SIZE,
1244                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1245                                    ENC_TYPE_CHAINING_CBC),
1246                 .ablkcipher     = {
1247                         .ivsize         = AES_BLOCK_SIZE,
1248                         .min_keysize    = AES_MIN_KEY_SIZE,
1249                         .max_keysize    = AES_MAX_KEY_SIZE,
1250                         .setkey         = n2_aes_setkey,
1251                         .encrypt        = n2_encrypt_chaining,
1252                         .decrypt        = n2_decrypt_chaining,
1253                 },
1254         },
1255         {       .name           = "ctr(aes)",
1256                 .drv_name       = "ctr-aes",
1257                 .block_size     = AES_BLOCK_SIZE,
1258                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1259                                    ENC_TYPE_CHAINING_COUNTER),
1260                 .ablkcipher     = {
1261                         .ivsize         = AES_BLOCK_SIZE,
1262                         .min_keysize    = AES_MIN_KEY_SIZE,
1263                         .max_keysize    = AES_MAX_KEY_SIZE,
1264                         .setkey         = n2_aes_setkey,
1265                         .encrypt        = n2_encrypt_chaining,
1266                         .decrypt        = n2_encrypt_chaining,
1267                 },
1268         },
1269
1270 };
1271 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1272
1273 static LIST_HEAD(cipher_algs);
1274
1275 struct n2_hash_tmpl {
1276         const char      *name;
1277         const u8        *hash_zero;
1278         const u32       *hash_init;
1279         u8              hw_op_hashsz;
1280         u8              digest_size;
1281         u8              statesize;
1282         u8              block_size;
1283         u8              auth_type;
1284         u8              hmac_type;
1285 };
1286
1287 static const u32 n2_md5_init[MD5_HASH_WORDS] = {
1288         cpu_to_le32(MD5_H0),
1289         cpu_to_le32(MD5_H1),
1290         cpu_to_le32(MD5_H2),
1291         cpu_to_le32(MD5_H3),
1292 };
1293 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1294         SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1295 };
1296 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1297         SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1298         SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1299 };
1300 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1301         SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1302         SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1303 };
1304
1305 static const struct n2_hash_tmpl hash_tmpls[] = {
1306         { .name         = "md5",
1307           .hash_zero    = md5_zero_message_hash,
1308           .hash_init    = n2_md5_init,
1309           .auth_type    = AUTH_TYPE_MD5,
1310           .hmac_type    = AUTH_TYPE_HMAC_MD5,
1311           .hw_op_hashsz = MD5_DIGEST_SIZE,
1312           .digest_size  = MD5_DIGEST_SIZE,
1313           .statesize    = sizeof(struct md5_state),
1314           .block_size   = MD5_HMAC_BLOCK_SIZE },
1315         { .name         = "sha1",
1316           .hash_zero    = sha1_zero_message_hash,
1317           .hash_init    = n2_sha1_init,
1318           .auth_type    = AUTH_TYPE_SHA1,
1319           .hmac_type    = AUTH_TYPE_HMAC_SHA1,
1320           .hw_op_hashsz = SHA1_DIGEST_SIZE,
1321           .digest_size  = SHA1_DIGEST_SIZE,
1322           .statesize    = sizeof(struct sha1_state),
1323           .block_size   = SHA1_BLOCK_SIZE },
1324         { .name         = "sha256",
1325           .hash_zero    = sha256_zero_message_hash,
1326           .hash_init    = n2_sha256_init,
1327           .auth_type    = AUTH_TYPE_SHA256,
1328           .hmac_type    = AUTH_TYPE_HMAC_SHA256,
1329           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1330           .digest_size  = SHA256_DIGEST_SIZE,
1331           .statesize    = sizeof(struct sha256_state),
1332           .block_size   = SHA256_BLOCK_SIZE },
1333         { .name         = "sha224",
1334           .hash_zero    = sha224_zero_message_hash,
1335           .hash_init    = n2_sha224_init,
1336           .auth_type    = AUTH_TYPE_SHA256,
1337           .hmac_type    = AUTH_TYPE_RESERVED,
1338           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1339           .digest_size  = SHA224_DIGEST_SIZE,
1340           .statesize    = sizeof(struct sha256_state),
1341           .block_size   = SHA224_BLOCK_SIZE },
1342 };
1343 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1344
1345 static LIST_HEAD(ahash_algs);
1346 static LIST_HEAD(hmac_algs);
1347
1348 static int algs_registered;
1349
1350 static void __n2_unregister_algs(void)
1351 {
1352         struct n2_cipher_alg *cipher, *cipher_tmp;
1353         struct n2_ahash_alg *alg, *alg_tmp;
1354         struct n2_hmac_alg *hmac, *hmac_tmp;
1355
1356         list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1357                 crypto_unregister_alg(&cipher->alg);
1358                 list_del(&cipher->entry);
1359                 kfree(cipher);
1360         }
1361         list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1362                 crypto_unregister_ahash(&hmac->derived.alg);
1363                 list_del(&hmac->derived.entry);
1364                 kfree(hmac);
1365         }
1366         list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1367                 crypto_unregister_ahash(&alg->alg);
1368                 list_del(&alg->entry);
1369                 kfree(alg);
1370         }
1371 }
1372
1373 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1374 {
1375         tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1376         return 0;
1377 }
1378
1379 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1380 {
1381         struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1382         struct crypto_alg *alg;
1383         int err;
1384
1385         if (!p)
1386                 return -ENOMEM;
1387
1388         alg = &p->alg;
1389
1390         snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1391         snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1392         alg->cra_priority = N2_CRA_PRIORITY;
1393         alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1394                          CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1395         alg->cra_blocksize = tmpl->block_size;
1396         p->enc_type = tmpl->enc_type;
1397         alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1398         alg->cra_type = &crypto_ablkcipher_type;
1399         alg->cra_u.ablkcipher = tmpl->ablkcipher;
1400         alg->cra_init = n2_cipher_cra_init;
1401         alg->cra_module = THIS_MODULE;
1402
1403         list_add(&p->entry, &cipher_algs);
1404         err = crypto_register_alg(alg);
1405         if (err) {
1406                 pr_err("%s alg registration failed\n", alg->cra_name);
1407                 list_del(&p->entry);
1408                 kfree(p);
1409         } else {
1410                 pr_info("%s alg registered\n", alg->cra_name);
1411         }
1412         return err;
1413 }
1414
1415 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1416 {
1417         struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1418         struct ahash_alg *ahash;
1419         struct crypto_alg *base;
1420         int err;
1421
1422         if (!p)
1423                 return -ENOMEM;
1424
1425         p->child_alg = n2ahash->alg.halg.base.cra_name;
1426         memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1427         INIT_LIST_HEAD(&p->derived.entry);
1428
1429         ahash = &p->derived.alg;
1430         ahash->digest = n2_hmac_async_digest;
1431         ahash->setkey = n2_hmac_async_setkey;
1432
1433         base = &ahash->halg.base;
1434         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1435         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1436
1437         base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1438         base->cra_init = n2_hmac_cra_init;
1439         base->cra_exit = n2_hmac_cra_exit;
1440
1441         list_add(&p->derived.entry, &hmac_algs);
1442         err = crypto_register_ahash(ahash);
1443         if (err) {
1444                 pr_err("%s alg registration failed\n", base->cra_name);
1445                 list_del(&p->derived.entry);
1446                 kfree(p);
1447         } else {
1448                 pr_info("%s alg registered\n", base->cra_name);
1449         }
1450         return err;
1451 }
1452
1453 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1454 {
1455         struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1456         struct hash_alg_common *halg;
1457         struct crypto_alg *base;
1458         struct ahash_alg *ahash;
1459         int err;
1460
1461         if (!p)
1462                 return -ENOMEM;
1463
1464         p->hash_zero = tmpl->hash_zero;
1465         p->hash_init = tmpl->hash_init;
1466         p->auth_type = tmpl->auth_type;
1467         p->hmac_type = tmpl->hmac_type;
1468         p->hw_op_hashsz = tmpl->hw_op_hashsz;
1469         p->digest_size = tmpl->digest_size;
1470
1471         ahash = &p->alg;
1472         ahash->init = n2_hash_async_init;
1473         ahash->update = n2_hash_async_update;
1474         ahash->final = n2_hash_async_final;
1475         ahash->finup = n2_hash_async_finup;
1476         ahash->digest = n2_hash_async_digest;
1477         ahash->export = n2_hash_async_noexport;
1478         ahash->import = n2_hash_async_noimport;
1479
1480         halg = &ahash->halg;
1481         halg->digestsize = tmpl->digest_size;
1482         halg->statesize = tmpl->statesize;
1483
1484         base = &halg->base;
1485         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1486         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1487         base->cra_priority = N2_CRA_PRIORITY;
1488         base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1489                           CRYPTO_ALG_NEED_FALLBACK;
1490         base->cra_blocksize = tmpl->block_size;
1491         base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1492         base->cra_module = THIS_MODULE;
1493         base->cra_init = n2_hash_cra_init;
1494         base->cra_exit = n2_hash_cra_exit;
1495
1496         list_add(&p->entry, &ahash_algs);
1497         err = crypto_register_ahash(ahash);
1498         if (err) {
1499                 pr_err("%s alg registration failed\n", base->cra_name);
1500                 list_del(&p->entry);
1501                 kfree(p);
1502         } else {
1503                 pr_info("%s alg registered\n", base->cra_name);
1504         }
1505         if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1506                 err = __n2_register_one_hmac(p);
1507         return err;
1508 }
1509
1510 static int n2_register_algs(void)
1511 {
1512         int i, err = 0;
1513
1514         mutex_lock(&spu_lock);
1515         if (algs_registered++)
1516                 goto out;
1517
1518         for (i = 0; i < NUM_HASH_TMPLS; i++) {
1519                 err = __n2_register_one_ahash(&hash_tmpls[i]);
1520                 if (err) {
1521                         __n2_unregister_algs();
1522                         goto out;
1523                 }
1524         }
1525         for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1526                 err = __n2_register_one_cipher(&cipher_tmpls[i]);
1527                 if (err) {
1528                         __n2_unregister_algs();
1529                         goto out;
1530                 }
1531         }
1532
1533 out:
1534         mutex_unlock(&spu_lock);
1535         return err;
1536 }
1537
1538 static void n2_unregister_algs(void)
1539 {
1540         mutex_lock(&spu_lock);
1541         if (!--algs_registered)
1542                 __n2_unregister_algs();
1543         mutex_unlock(&spu_lock);
1544 }
1545
1546 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1547  * a devino.  This isn't very useful to us because all of the
1548  * interrupts listed in the device_node have been translated to
1549  * Linux virtual IRQ cookie numbers.
1550  *
1551  * So we have to back-translate, going through the 'intr' and 'ino'
1552  * property tables of the n2cp MDESC node, matching it with the OF
1553  * 'interrupts' property entries, in order to to figure out which
1554  * devino goes to which already-translated IRQ.
1555  */
1556 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1557                              unsigned long dev_ino)
1558 {
1559         const unsigned int *dev_intrs;
1560         unsigned int intr;
1561         int i;
1562
1563         for (i = 0; i < ip->num_intrs; i++) {
1564                 if (ip->ino_table[i].ino == dev_ino)
1565                         break;
1566         }
1567         if (i == ip->num_intrs)
1568                 return -ENODEV;
1569
1570         intr = ip->ino_table[i].intr;
1571
1572         dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1573         if (!dev_intrs)
1574                 return -ENODEV;
1575
1576         for (i = 0; i < dev->archdata.num_irqs; i++) {
1577                 if (dev_intrs[i] == intr)
1578                         return i;
1579         }
1580
1581         return -ENODEV;
1582 }
1583
1584 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1585                        const char *irq_name, struct spu_queue *p,
1586                        irq_handler_t handler)
1587 {
1588         unsigned long herr;
1589         int index;
1590
1591         herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1592         if (herr)
1593                 return -EINVAL;
1594
1595         index = find_devino_index(dev, ip, p->devino);
1596         if (index < 0)
1597                 return index;
1598
1599         p->irq = dev->archdata.irqs[index];
1600
1601         sprintf(p->irq_name, "%s-%d", irq_name, index);
1602
1603         return request_irq(p->irq, handler, 0, p->irq_name, p);
1604 }
1605
1606 static struct kmem_cache *queue_cache[2];
1607
1608 static void *new_queue(unsigned long q_type)
1609 {
1610         return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1611 }
1612
1613 static void free_queue(void *p, unsigned long q_type)
1614 {
1615         kmem_cache_free(queue_cache[q_type - 1], p);
1616 }
1617
1618 static int queue_cache_init(void)
1619 {
1620         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1621                 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1622                         kmem_cache_create("mau_queue",
1623                                           (MAU_NUM_ENTRIES *
1624                                            MAU_ENTRY_SIZE),
1625                                           MAU_ENTRY_SIZE, 0, NULL);
1626         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1627                 return -ENOMEM;
1628
1629         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1630                 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1631                         kmem_cache_create("cwq_queue",
1632                                           (CWQ_NUM_ENTRIES *
1633                                            CWQ_ENTRY_SIZE),
1634                                           CWQ_ENTRY_SIZE, 0, NULL);
1635         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1636                 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1637                 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1638                 return -ENOMEM;
1639         }
1640         return 0;
1641 }
1642
1643 static void queue_cache_destroy(void)
1644 {
1645         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1646         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1647         queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1648         queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1649 }
1650
1651 static long spu_queue_register_workfn(void *arg)
1652 {
1653         struct spu_qreg *qr = arg;
1654         struct spu_queue *p = qr->queue;
1655         unsigned long q_type = qr->type;
1656         unsigned long hv_ret;
1657
1658         hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1659                                  CWQ_NUM_ENTRIES, &p->qhandle);
1660         if (!hv_ret)
1661                 sun4v_ncs_sethead_marker(p->qhandle, 0);
1662
1663         return hv_ret ? -EINVAL : 0;
1664 }
1665
1666 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1667 {
1668         int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1669         struct spu_qreg qr = { .queue = p, .type = q_type };
1670
1671         return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1672 }
1673
1674 static int spu_queue_setup(struct spu_queue *p)
1675 {
1676         int err;
1677
1678         p->q = new_queue(p->q_type);
1679         if (!p->q)
1680                 return -ENOMEM;
1681
1682         err = spu_queue_register(p, p->q_type);
1683         if (err) {
1684                 free_queue(p->q, p->q_type);
1685                 p->q = NULL;
1686         }
1687
1688         return err;
1689 }
1690
1691 static void spu_queue_destroy(struct spu_queue *p)
1692 {
1693         unsigned long hv_ret;
1694
1695         if (!p->q)
1696                 return;
1697
1698         hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1699
1700         if (!hv_ret)
1701                 free_queue(p->q, p->q_type);
1702 }
1703
1704 static void spu_list_destroy(struct list_head *list)
1705 {
1706         struct spu_queue *p, *n;
1707
1708         list_for_each_entry_safe(p, n, list, list) {
1709                 int i;
1710
1711                 for (i = 0; i < NR_CPUS; i++) {
1712                         if (cpu_to_cwq[i] == p)
1713                                 cpu_to_cwq[i] = NULL;
1714                 }
1715
1716                 if (p->irq) {
1717                         free_irq(p->irq, p);
1718                         p->irq = 0;
1719                 }
1720                 spu_queue_destroy(p);
1721                 list_del(&p->list);
1722                 kfree(p);
1723         }
1724 }
1725
1726 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1727  * gathering cpu membership information.
1728  */
1729 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1730                                struct platform_device *dev,
1731                                u64 node, struct spu_queue *p,
1732                                struct spu_queue **table)
1733 {
1734         u64 arc;
1735
1736         mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1737                 u64 tgt = mdesc_arc_target(mdesc, arc);
1738                 const char *name = mdesc_node_name(mdesc, tgt);
1739                 const u64 *id;
1740
1741                 if (strcmp(name, "cpu"))
1742                         continue;
1743                 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1744                 if (table[*id] != NULL) {
1745                         dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1746                                 dev->dev.of_node);
1747                         return -EINVAL;
1748                 }
1749                 cpumask_set_cpu(*id, &p->sharing);
1750                 table[*id] = p;
1751         }
1752         return 0;
1753 }
1754
1755 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1756 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1757                             struct platform_device *dev, struct mdesc_handle *mdesc,
1758                             u64 node, const char *iname, unsigned long q_type,
1759                             irq_handler_t handler, struct spu_queue **table)
1760 {
1761         struct spu_queue *p;
1762         int err;
1763
1764         p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1765         if (!p) {
1766                 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1767                         dev->dev.of_node);
1768                 return -ENOMEM;
1769         }
1770
1771         cpumask_clear(&p->sharing);
1772         spin_lock_init(&p->lock);
1773         p->q_type = q_type;
1774         INIT_LIST_HEAD(&p->jobs);
1775         list_add(&p->list, list);
1776
1777         err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1778         if (err)
1779                 return err;
1780
1781         err = spu_queue_setup(p);
1782         if (err)
1783                 return err;
1784
1785         return spu_map_ino(dev, ip, iname, p, handler);
1786 }
1787
1788 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1789                           struct spu_mdesc_info *ip, struct list_head *list,
1790                           const char *exec_name, unsigned long q_type,
1791                           irq_handler_t handler, struct spu_queue **table)
1792 {
1793         int err = 0;
1794         u64 node;
1795
1796         mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1797                 const char *type;
1798
1799                 type = mdesc_get_property(mdesc, node, "type", NULL);
1800                 if (!type || strcmp(type, exec_name))
1801                         continue;
1802
1803                 err = handle_exec_unit(ip, list, dev, mdesc, node,
1804                                        exec_name, q_type, handler, table);
1805                 if (err) {
1806                         spu_list_destroy(list);
1807                         break;
1808                 }
1809         }
1810
1811         return err;
1812 }
1813
1814 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1815                          struct spu_mdesc_info *ip)
1816 {
1817         const u64 *ino;
1818         int ino_len;
1819         int i;
1820
1821         ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1822         if (!ino) {
1823                 printk("NO 'ino'\n");
1824                 return -ENODEV;
1825         }
1826
1827         ip->num_intrs = ino_len / sizeof(u64);
1828         ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1829                                  ip->num_intrs),
1830                                 GFP_KERNEL);
1831         if (!ip->ino_table)
1832                 return -ENOMEM;
1833
1834         for (i = 0; i < ip->num_intrs; i++) {
1835                 struct ino_blob *b = &ip->ino_table[i];
1836                 b->intr = i + 1;
1837                 b->ino = ino[i];
1838         }
1839
1840         return 0;
1841 }
1842
1843 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1844                                 struct platform_device *dev,
1845                                 struct spu_mdesc_info *ip,
1846                                 const char *node_name)
1847 {
1848         const unsigned int *reg;
1849         u64 node;
1850
1851         reg = of_get_property(dev->dev.of_node, "reg", NULL);
1852         if (!reg)
1853                 return -ENODEV;
1854
1855         mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1856                 const char *name;
1857                 const u64 *chdl;
1858
1859                 name = mdesc_get_property(mdesc, node, "name", NULL);
1860                 if (!name || strcmp(name, node_name))
1861                         continue;
1862                 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1863                 if (!chdl || (*chdl != *reg))
1864                         continue;
1865                 ip->cfg_handle = *chdl;
1866                 return get_irq_props(mdesc, node, ip);
1867         }
1868
1869         return -ENODEV;
1870 }
1871
1872 static unsigned long n2_spu_hvapi_major;
1873 static unsigned long n2_spu_hvapi_minor;
1874
1875 static int n2_spu_hvapi_register(void)
1876 {
1877         int err;
1878
1879         n2_spu_hvapi_major = 2;
1880         n2_spu_hvapi_minor = 0;
1881
1882         err = sun4v_hvapi_register(HV_GRP_NCS,
1883                                    n2_spu_hvapi_major,
1884                                    &n2_spu_hvapi_minor);
1885
1886         if (!err)
1887                 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1888                         n2_spu_hvapi_major,
1889                         n2_spu_hvapi_minor);
1890
1891         return err;
1892 }
1893
1894 static void n2_spu_hvapi_unregister(void)
1895 {
1896         sun4v_hvapi_unregister(HV_GRP_NCS);
1897 }
1898
1899 static int global_ref;
1900
1901 static int grab_global_resources(void)
1902 {
1903         int err = 0;
1904
1905         mutex_lock(&spu_lock);
1906
1907         if (global_ref++)
1908                 goto out;
1909
1910         err = n2_spu_hvapi_register();
1911         if (err)
1912                 goto out;
1913
1914         err = queue_cache_init();
1915         if (err)
1916                 goto out_hvapi_release;
1917
1918         err = -ENOMEM;
1919         cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1920                              GFP_KERNEL);
1921         if (!cpu_to_cwq)
1922                 goto out_queue_cache_destroy;
1923
1924         cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1925                              GFP_KERNEL);
1926         if (!cpu_to_mau)
1927                 goto out_free_cwq_table;
1928
1929         err = 0;
1930
1931 out:
1932         if (err)
1933                 global_ref--;
1934         mutex_unlock(&spu_lock);
1935         return err;
1936
1937 out_free_cwq_table:
1938         kfree(cpu_to_cwq);
1939         cpu_to_cwq = NULL;
1940
1941 out_queue_cache_destroy:
1942         queue_cache_destroy();
1943
1944 out_hvapi_release:
1945         n2_spu_hvapi_unregister();
1946         goto out;
1947 }
1948
1949 static void release_global_resources(void)
1950 {
1951         mutex_lock(&spu_lock);
1952         if (!--global_ref) {
1953                 kfree(cpu_to_cwq);
1954                 cpu_to_cwq = NULL;
1955
1956                 kfree(cpu_to_mau);
1957                 cpu_to_mau = NULL;
1958
1959                 queue_cache_destroy();
1960                 n2_spu_hvapi_unregister();
1961         }
1962         mutex_unlock(&spu_lock);
1963 }
1964
1965 static struct n2_crypto *alloc_n2cp(void)
1966 {
1967         struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1968
1969         if (np)
1970                 INIT_LIST_HEAD(&np->cwq_list);
1971
1972         return np;
1973 }
1974
1975 static void free_n2cp(struct n2_crypto *np)
1976 {
1977         kfree(np->cwq_info.ino_table);
1978         np->cwq_info.ino_table = NULL;
1979
1980         kfree(np);
1981 }
1982
1983 static void n2_spu_driver_version(void)
1984 {
1985         static int n2_spu_version_printed;
1986
1987         if (n2_spu_version_printed++ == 0)
1988                 pr_info("%s", version);
1989 }
1990
1991 static int n2_crypto_probe(struct platform_device *dev)
1992 {
1993         struct mdesc_handle *mdesc;
1994         struct n2_crypto *np;
1995         int err;
1996
1997         n2_spu_driver_version();
1998
1999         pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
2000
2001         np = alloc_n2cp();
2002         if (!np) {
2003                 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
2004                         dev->dev.of_node);
2005                 return -ENOMEM;
2006         }
2007
2008         err = grab_global_resources();
2009         if (err) {
2010                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2011                         dev->dev.of_node);
2012                 goto out_free_n2cp;
2013         }
2014
2015         mdesc = mdesc_grab();
2016
2017         if (!mdesc) {
2018                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2019                         dev->dev.of_node);
2020                 err = -ENODEV;
2021                 goto out_free_global;
2022         }
2023         err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2024         if (err) {
2025                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2026                         dev->dev.of_node);
2027                 mdesc_release(mdesc);
2028                 goto out_free_global;
2029         }
2030
2031         err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2032                              "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2033                              cpu_to_cwq);
2034         mdesc_release(mdesc);
2035
2036         if (err) {
2037                 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2038                         dev->dev.of_node);
2039                 goto out_free_global;
2040         }
2041
2042         err = n2_register_algs();
2043         if (err) {
2044                 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2045                         dev->dev.of_node);
2046                 goto out_free_spu_list;
2047         }
2048
2049         dev_set_drvdata(&dev->dev, np);
2050
2051         return 0;
2052
2053 out_free_spu_list:
2054         spu_list_destroy(&np->cwq_list);
2055
2056 out_free_global:
2057         release_global_resources();
2058
2059 out_free_n2cp:
2060         free_n2cp(np);
2061
2062         return err;
2063 }
2064
2065 static int n2_crypto_remove(struct platform_device *dev)
2066 {
2067         struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2068
2069         n2_unregister_algs();
2070
2071         spu_list_destroy(&np->cwq_list);
2072
2073         release_global_resources();
2074
2075         free_n2cp(np);
2076
2077         return 0;
2078 }
2079
2080 static struct n2_mau *alloc_ncp(void)
2081 {
2082         struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2083
2084         if (mp)
2085                 INIT_LIST_HEAD(&mp->mau_list);
2086
2087         return mp;
2088 }
2089
2090 static void free_ncp(struct n2_mau *mp)
2091 {
2092         kfree(mp->mau_info.ino_table);
2093         mp->mau_info.ino_table = NULL;
2094
2095         kfree(mp);
2096 }
2097
2098 static int n2_mau_probe(struct platform_device *dev)
2099 {
2100         struct mdesc_handle *mdesc;
2101         struct n2_mau *mp;
2102         int err;
2103
2104         n2_spu_driver_version();
2105
2106         pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2107
2108         mp = alloc_ncp();
2109         if (!mp) {
2110                 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2111                         dev->dev.of_node);
2112                 return -ENOMEM;
2113         }
2114
2115         err = grab_global_resources();
2116         if (err) {
2117                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2118                         dev->dev.of_node);
2119                 goto out_free_ncp;
2120         }
2121
2122         mdesc = mdesc_grab();
2123
2124         if (!mdesc) {
2125                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2126                         dev->dev.of_node);
2127                 err = -ENODEV;
2128                 goto out_free_global;
2129         }
2130
2131         err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2132         if (err) {
2133                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2134                         dev->dev.of_node);
2135                 mdesc_release(mdesc);
2136                 goto out_free_global;
2137         }
2138
2139         err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2140                              "mau", HV_NCS_QTYPE_MAU, mau_intr,
2141                              cpu_to_mau);
2142         mdesc_release(mdesc);
2143
2144         if (err) {
2145                 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2146                         dev->dev.of_node);
2147                 goto out_free_global;
2148         }
2149
2150         dev_set_drvdata(&dev->dev, mp);
2151
2152         return 0;
2153
2154 out_free_global:
2155         release_global_resources();
2156
2157 out_free_ncp:
2158         free_ncp(mp);
2159
2160         return err;
2161 }
2162
2163 static int n2_mau_remove(struct platform_device *dev)
2164 {
2165         struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2166
2167         spu_list_destroy(&mp->mau_list);
2168
2169         release_global_resources();
2170
2171         free_ncp(mp);
2172
2173         return 0;
2174 }
2175
2176 static const struct of_device_id n2_crypto_match[] = {
2177         {
2178                 .name = "n2cp",
2179                 .compatible = "SUNW,n2-cwq",
2180         },
2181         {
2182                 .name = "n2cp",
2183                 .compatible = "SUNW,vf-cwq",
2184         },
2185         {
2186                 .name = "n2cp",
2187                 .compatible = "SUNW,kt-cwq",
2188         },
2189         {},
2190 };
2191
2192 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2193
2194 static struct platform_driver n2_crypto_driver = {
2195         .driver = {
2196                 .name           =       "n2cp",
2197                 .of_match_table =       n2_crypto_match,
2198         },
2199         .probe          =       n2_crypto_probe,
2200         .remove         =       n2_crypto_remove,
2201 };
2202
2203 static const struct of_device_id n2_mau_match[] = {
2204         {
2205                 .name = "ncp",
2206                 .compatible = "SUNW,n2-mau",
2207         },
2208         {
2209                 .name = "ncp",
2210                 .compatible = "SUNW,vf-mau",
2211         },
2212         {
2213                 .name = "ncp",
2214                 .compatible = "SUNW,kt-mau",
2215         },
2216         {},
2217 };
2218
2219 MODULE_DEVICE_TABLE(of, n2_mau_match);
2220
2221 static struct platform_driver n2_mau_driver = {
2222         .driver = {
2223                 .name           =       "ncp",
2224                 .of_match_table =       n2_mau_match,
2225         },
2226         .probe          =       n2_mau_probe,
2227         .remove         =       n2_mau_remove,
2228 };
2229
2230 static struct platform_driver * const drivers[] = {
2231         &n2_crypto_driver,
2232         &n2_mau_driver,
2233 };
2234
2235 static int __init n2_init(void)
2236 {
2237         return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2238 }
2239
2240 static void __exit n2_exit(void)
2241 {
2242         platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2243 }
2244
2245 module_init(n2_init);
2246 module_exit(n2_exit);