GNU Linux-libre 4.19.304-gnu1
[releases.git] / drivers / crypto / n2_core.c
1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
2  *
3  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
4  */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
27
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
30
31 #include "n2_core.h"
32
33 #define DRV_MODULE_NAME         "n2_crypto"
34 #define DRV_MODULE_VERSION      "0.2"
35 #define DRV_MODULE_RELDATE      "July 28, 2011"
36
37 static const char version[] =
38         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
39
40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION);
44
45 #define N2_CRA_PRIORITY         200
46
47 static DEFINE_MUTEX(spu_lock);
48
49 struct spu_queue {
50         cpumask_t               sharing;
51         unsigned long           qhandle;
52
53         spinlock_t              lock;
54         u8                      q_type;
55         void                    *q;
56         unsigned long           head;
57         unsigned long           tail;
58         struct list_head        jobs;
59
60         unsigned long           devino;
61
62         char                    irq_name[32];
63         unsigned int            irq;
64
65         struct list_head        list;
66 };
67
68 struct spu_qreg {
69         struct spu_queue        *queue;
70         unsigned long           type;
71 };
72
73 static struct spu_queue **cpu_to_cwq;
74 static struct spu_queue **cpu_to_mau;
75
76 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
77 {
78         if (q->q_type == HV_NCS_QTYPE_MAU) {
79                 off += MAU_ENTRY_SIZE;
80                 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
81                         off = 0;
82         } else {
83                 off += CWQ_ENTRY_SIZE;
84                 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
85                         off = 0;
86         }
87         return off;
88 }
89
90 struct n2_request_common {
91         struct list_head        entry;
92         unsigned int            offset;
93 };
94 #define OFFSET_NOT_RUNNING      (~(unsigned int)0)
95
96 /* An async job request records the final tail value it used in
97  * n2_request_common->offset, test to see if that offset is in
98  * the range old_head, new_head, inclusive.
99  */
100 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
101                                 unsigned long old_head, unsigned long new_head)
102 {
103         if (old_head <= new_head) {
104                 if (offset > old_head && offset <= new_head)
105                         return true;
106         } else {
107                 if (offset > old_head || offset <= new_head)
108                         return true;
109         }
110         return false;
111 }
112
113 /* When the HEAD marker is unequal to the actual HEAD, we get
114  * a virtual device INO interrupt.  We should process the
115  * completed CWQ entries and adjust the HEAD marker to clear
116  * the IRQ.
117  */
118 static irqreturn_t cwq_intr(int irq, void *dev_id)
119 {
120         unsigned long off, new_head, hv_ret;
121         struct spu_queue *q = dev_id;
122
123         pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
124                smp_processor_id(), q->qhandle);
125
126         spin_lock(&q->lock);
127
128         hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
129
130         pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
131                smp_processor_id(), new_head, hv_ret);
132
133         for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
134                 /* XXX ... XXX */
135         }
136
137         hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
138         if (hv_ret == HV_EOK)
139                 q->head = new_head;
140
141         spin_unlock(&q->lock);
142
143         return IRQ_HANDLED;
144 }
145
146 static irqreturn_t mau_intr(int irq, void *dev_id)
147 {
148         struct spu_queue *q = dev_id;
149         unsigned long head, hv_ret;
150
151         spin_lock(&q->lock);
152
153         pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
154                smp_processor_id(), q->qhandle);
155
156         hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
157
158         pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
159                smp_processor_id(), head, hv_ret);
160
161         sun4v_ncs_sethead_marker(q->qhandle, head);
162
163         spin_unlock(&q->lock);
164
165         return IRQ_HANDLED;
166 }
167
168 static void *spu_queue_next(struct spu_queue *q, void *cur)
169 {
170         return q->q + spu_next_offset(q, cur - q->q);
171 }
172
173 static int spu_queue_num_free(struct spu_queue *q)
174 {
175         unsigned long head = q->head;
176         unsigned long tail = q->tail;
177         unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
178         unsigned long diff;
179
180         if (head > tail)
181                 diff = head - tail;
182         else
183                 diff = (end - tail) + head;
184
185         return (diff / CWQ_ENTRY_SIZE) - 1;
186 }
187
188 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
189 {
190         int avail = spu_queue_num_free(q);
191
192         if (avail >= num_entries)
193                 return q->q + q->tail;
194
195         return NULL;
196 }
197
198 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
199 {
200         unsigned long hv_ret, new_tail;
201
202         new_tail = spu_next_offset(q, last - q->q);
203
204         hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
205         if (hv_ret == HV_EOK)
206                 q->tail = new_tail;
207         return hv_ret;
208 }
209
210 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
211                              int enc_type, int auth_type,
212                              unsigned int hash_len,
213                              bool sfas, bool sob, bool eob, bool encrypt,
214                              int opcode)
215 {
216         u64 word = (len - 1) & CONTROL_LEN;
217
218         word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
219         word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
220         word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
221         if (sfas)
222                 word |= CONTROL_STORE_FINAL_AUTH_STATE;
223         if (sob)
224                 word |= CONTROL_START_OF_BLOCK;
225         if (eob)
226                 word |= CONTROL_END_OF_BLOCK;
227         if (encrypt)
228                 word |= CONTROL_ENCRYPT;
229         if (hmac_key_len)
230                 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
231         if (hash_len)
232                 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
233
234         return word;
235 }
236
237 #if 0
238 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
239 {
240         if (this_len >= 64 ||
241             qp->head != qp->tail)
242                 return true;
243         return false;
244 }
245 #endif
246
247 struct n2_ahash_alg {
248         struct list_head        entry;
249         const u8                *hash_zero;
250         const u32               *hash_init;
251         u8                      hw_op_hashsz;
252         u8                      digest_size;
253         u8                      auth_type;
254         u8                      hmac_type;
255         struct ahash_alg        alg;
256 };
257
258 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
259 {
260         struct crypto_alg *alg = tfm->__crt_alg;
261         struct ahash_alg *ahash_alg;
262
263         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
264
265         return container_of(ahash_alg, struct n2_ahash_alg, alg);
266 }
267
268 struct n2_hmac_alg {
269         const char              *child_alg;
270         struct n2_ahash_alg     derived;
271 };
272
273 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
274 {
275         struct crypto_alg *alg = tfm->__crt_alg;
276         struct ahash_alg *ahash_alg;
277
278         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
279
280         return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
281 }
282
283 struct n2_hash_ctx {
284         struct crypto_ahash             *fallback_tfm;
285 };
286
287 #define N2_HASH_KEY_MAX                 32 /* HW limit for all HMAC requests */
288
289 struct n2_hmac_ctx {
290         struct n2_hash_ctx              base;
291
292         struct crypto_shash             *child_shash;
293
294         int                             hash_key_len;
295         unsigned char                   hash_key[N2_HASH_KEY_MAX];
296 };
297
298 struct n2_hash_req_ctx {
299         union {
300                 struct md5_state        md5;
301                 struct sha1_state       sha1;
302                 struct sha256_state     sha256;
303         } u;
304
305         struct ahash_request            fallback_req;
306 };
307
308 static int n2_hash_async_init(struct ahash_request *req)
309 {
310         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
311         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
312         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
313
314         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
315         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
316
317         return crypto_ahash_init(&rctx->fallback_req);
318 }
319
320 static int n2_hash_async_update(struct ahash_request *req)
321 {
322         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
323         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
324         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
325
326         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
327         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
328         rctx->fallback_req.nbytes = req->nbytes;
329         rctx->fallback_req.src = req->src;
330
331         return crypto_ahash_update(&rctx->fallback_req);
332 }
333
334 static int n2_hash_async_final(struct ahash_request *req)
335 {
336         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
337         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
338         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
339
340         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
341         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
342         rctx->fallback_req.result = req->result;
343
344         return crypto_ahash_final(&rctx->fallback_req);
345 }
346
347 static int n2_hash_async_finup(struct ahash_request *req)
348 {
349         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
350         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
351         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
352
353         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
354         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
355         rctx->fallback_req.nbytes = req->nbytes;
356         rctx->fallback_req.src = req->src;
357         rctx->fallback_req.result = req->result;
358
359         return crypto_ahash_finup(&rctx->fallback_req);
360 }
361
362 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
363 {
364         return -ENOSYS;
365 }
366
367 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
368 {
369         return -ENOSYS;
370 }
371
372 static int n2_hash_cra_init(struct crypto_tfm *tfm)
373 {
374         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
375         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
376         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
377         struct crypto_ahash *fallback_tfm;
378         int err;
379
380         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
381                                           CRYPTO_ALG_NEED_FALLBACK);
382         if (IS_ERR(fallback_tfm)) {
383                 pr_warning("Fallback driver '%s' could not be loaded!\n",
384                            fallback_driver_name);
385                 err = PTR_ERR(fallback_tfm);
386                 goto out;
387         }
388
389         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
390                                          crypto_ahash_reqsize(fallback_tfm)));
391
392         ctx->fallback_tfm = fallback_tfm;
393         return 0;
394
395 out:
396         return err;
397 }
398
399 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
400 {
401         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
402         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
403
404         crypto_free_ahash(ctx->fallback_tfm);
405 }
406
407 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
408 {
409         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
410         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
411         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
412         struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
413         struct crypto_ahash *fallback_tfm;
414         struct crypto_shash *child_shash;
415         int err;
416
417         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
418                                           CRYPTO_ALG_NEED_FALLBACK);
419         if (IS_ERR(fallback_tfm)) {
420                 pr_warning("Fallback driver '%s' could not be loaded!\n",
421                            fallback_driver_name);
422                 err = PTR_ERR(fallback_tfm);
423                 goto out;
424         }
425
426         child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
427         if (IS_ERR(child_shash)) {
428                 pr_warning("Child shash '%s' could not be loaded!\n",
429                            n2alg->child_alg);
430                 err = PTR_ERR(child_shash);
431                 goto out_free_fallback;
432         }
433
434         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
435                                          crypto_ahash_reqsize(fallback_tfm)));
436
437         ctx->child_shash = child_shash;
438         ctx->base.fallback_tfm = fallback_tfm;
439         return 0;
440
441 out_free_fallback:
442         crypto_free_ahash(fallback_tfm);
443
444 out:
445         return err;
446 }
447
448 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
449 {
450         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
451         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
452
453         crypto_free_ahash(ctx->base.fallback_tfm);
454         crypto_free_shash(ctx->child_shash);
455 }
456
457 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
458                                 unsigned int keylen)
459 {
460         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
461         struct crypto_shash *child_shash = ctx->child_shash;
462         struct crypto_ahash *fallback_tfm;
463         SHASH_DESC_ON_STACK(shash, child_shash);
464         int err, bs, ds;
465
466         fallback_tfm = ctx->base.fallback_tfm;
467         err = crypto_ahash_setkey(fallback_tfm, key, keylen);
468         if (err)
469                 return err;
470
471         shash->tfm = child_shash;
472         shash->flags = crypto_ahash_get_flags(tfm) &
473                 CRYPTO_TFM_REQ_MAY_SLEEP;
474
475         bs = crypto_shash_blocksize(child_shash);
476         ds = crypto_shash_digestsize(child_shash);
477         BUG_ON(ds > N2_HASH_KEY_MAX);
478         if (keylen > bs) {
479                 err = crypto_shash_digest(shash, key, keylen,
480                                           ctx->hash_key);
481                 if (err)
482                         return err;
483                 keylen = ds;
484         } else if (keylen <= N2_HASH_KEY_MAX)
485                 memcpy(ctx->hash_key, key, keylen);
486
487         ctx->hash_key_len = keylen;
488
489         return err;
490 }
491
492 static unsigned long wait_for_tail(struct spu_queue *qp)
493 {
494         unsigned long head, hv_ret;
495
496         do {
497                 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
498                 if (hv_ret != HV_EOK) {
499                         pr_err("Hypervisor error on gethead\n");
500                         break;
501                 }
502                 if (head == qp->tail) {
503                         qp->head = head;
504                         break;
505                 }
506         } while (1);
507         return hv_ret;
508 }
509
510 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
511                                               struct cwq_initial_entry *ent)
512 {
513         unsigned long hv_ret = spu_queue_submit(qp, ent);
514
515         if (hv_ret == HV_EOK)
516                 hv_ret = wait_for_tail(qp);
517
518         return hv_ret;
519 }
520
521 static int n2_do_async_digest(struct ahash_request *req,
522                               unsigned int auth_type, unsigned int digest_size,
523                               unsigned int result_size, void *hash_loc,
524                               unsigned long auth_key, unsigned int auth_key_len)
525 {
526         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
527         struct cwq_initial_entry *ent;
528         struct crypto_hash_walk walk;
529         struct spu_queue *qp;
530         unsigned long flags;
531         int err = -ENODEV;
532         int nbytes, cpu;
533
534         /* The total effective length of the operation may not
535          * exceed 2^16.
536          */
537         if (unlikely(req->nbytes > (1 << 16))) {
538                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
539                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
540
541                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
542                 rctx->fallback_req.base.flags =
543                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
544                 rctx->fallback_req.nbytes = req->nbytes;
545                 rctx->fallback_req.src = req->src;
546                 rctx->fallback_req.result = req->result;
547
548                 return crypto_ahash_digest(&rctx->fallback_req);
549         }
550
551         nbytes = crypto_hash_walk_first(req, &walk);
552
553         cpu = get_cpu();
554         qp = cpu_to_cwq[cpu];
555         if (!qp)
556                 goto out;
557
558         spin_lock_irqsave(&qp->lock, flags);
559
560         /* XXX can do better, improve this later by doing a by-hand scatterlist
561          * XXX walk, etc.
562          */
563         ent = qp->q + qp->tail;
564
565         ent->control = control_word_base(nbytes, auth_key_len, 0,
566                                          auth_type, digest_size,
567                                          false, true, false, false,
568                                          OPCODE_INPLACE_BIT |
569                                          OPCODE_AUTH_MAC);
570         ent->src_addr = __pa(walk.data);
571         ent->auth_key_addr = auth_key;
572         ent->auth_iv_addr = __pa(hash_loc);
573         ent->final_auth_state_addr = 0UL;
574         ent->enc_key_addr = 0UL;
575         ent->enc_iv_addr = 0UL;
576         ent->dest_addr = __pa(hash_loc);
577
578         nbytes = crypto_hash_walk_done(&walk, 0);
579         while (nbytes > 0) {
580                 ent = spu_queue_next(qp, ent);
581
582                 ent->control = (nbytes - 1);
583                 ent->src_addr = __pa(walk.data);
584                 ent->auth_key_addr = 0UL;
585                 ent->auth_iv_addr = 0UL;
586                 ent->final_auth_state_addr = 0UL;
587                 ent->enc_key_addr = 0UL;
588                 ent->enc_iv_addr = 0UL;
589                 ent->dest_addr = 0UL;
590
591                 nbytes = crypto_hash_walk_done(&walk, 0);
592         }
593         ent->control |= CONTROL_END_OF_BLOCK;
594
595         if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
596                 err = -EINVAL;
597         else
598                 err = 0;
599
600         spin_unlock_irqrestore(&qp->lock, flags);
601
602         if (!err)
603                 memcpy(req->result, hash_loc, result_size);
604 out:
605         put_cpu();
606
607         return err;
608 }
609
610 static int n2_hash_async_digest(struct ahash_request *req)
611 {
612         struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
613         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
614         int ds;
615
616         ds = n2alg->digest_size;
617         if (unlikely(req->nbytes == 0)) {
618                 memcpy(req->result, n2alg->hash_zero, ds);
619                 return 0;
620         }
621         memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
622
623         return n2_do_async_digest(req, n2alg->auth_type,
624                                   n2alg->hw_op_hashsz, ds,
625                                   &rctx->u, 0UL, 0);
626 }
627
628 static int n2_hmac_async_digest(struct ahash_request *req)
629 {
630         struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
631         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
632         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
633         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
634         int ds;
635
636         ds = n2alg->derived.digest_size;
637         if (unlikely(req->nbytes == 0) ||
638             unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
639                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
640                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
641
642                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
643                 rctx->fallback_req.base.flags =
644                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
645                 rctx->fallback_req.nbytes = req->nbytes;
646                 rctx->fallback_req.src = req->src;
647                 rctx->fallback_req.result = req->result;
648
649                 return crypto_ahash_digest(&rctx->fallback_req);
650         }
651         memcpy(&rctx->u, n2alg->derived.hash_init,
652                n2alg->derived.hw_op_hashsz);
653
654         return n2_do_async_digest(req, n2alg->derived.hmac_type,
655                                   n2alg->derived.hw_op_hashsz, ds,
656                                   &rctx->u,
657                                   __pa(&ctx->hash_key),
658                                   ctx->hash_key_len);
659 }
660
661 struct n2_cipher_context {
662         int                     key_len;
663         int                     enc_type;
664         union {
665                 u8              aes[AES_MAX_KEY_SIZE];
666                 u8              des[DES_KEY_SIZE];
667                 u8              des3[3 * DES_KEY_SIZE];
668                 u8              arc4[258]; /* S-box, X, Y */
669         } key;
670 };
671
672 #define N2_CHUNK_ARR_LEN        16
673
674 struct n2_crypto_chunk {
675         struct list_head        entry;
676         unsigned long           iv_paddr : 44;
677         unsigned long           arr_len : 20;
678         unsigned long           dest_paddr;
679         unsigned long           dest_final;
680         struct {
681                 unsigned long   src_paddr : 44;
682                 unsigned long   src_len : 20;
683         } arr[N2_CHUNK_ARR_LEN];
684 };
685
686 struct n2_request_context {
687         struct ablkcipher_walk  walk;
688         struct list_head        chunk_list;
689         struct n2_crypto_chunk  chunk;
690         u8                      temp_iv[16];
691 };
692
693 /* The SPU allows some level of flexibility for partial cipher blocks
694  * being specified in a descriptor.
695  *
696  * It merely requires that every descriptor's length field is at least
697  * as large as the cipher block size.  This means that a cipher block
698  * can span at most 2 descriptors.  However, this does not allow a
699  * partial block to span into the final descriptor as that would
700  * violate the rule (since every descriptor's length must be at lest
701  * the block size).  So, for example, assuming an 8 byte block size:
702  *
703  *      0xe --> 0xa --> 0x8
704  *
705  * is a valid length sequence, whereas:
706  *
707  *      0xe --> 0xb --> 0x7
708  *
709  * is not a valid sequence.
710  */
711
712 struct n2_cipher_alg {
713         struct list_head        entry;
714         u8                      enc_type;
715         struct crypto_alg       alg;
716 };
717
718 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
719 {
720         struct crypto_alg *alg = tfm->__crt_alg;
721
722         return container_of(alg, struct n2_cipher_alg, alg);
723 }
724
725 struct n2_cipher_request_context {
726         struct ablkcipher_walk  walk;
727 };
728
729 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
730                          unsigned int keylen)
731 {
732         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
733         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
734         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
735
736         ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
737
738         switch (keylen) {
739         case AES_KEYSIZE_128:
740                 ctx->enc_type |= ENC_TYPE_ALG_AES128;
741                 break;
742         case AES_KEYSIZE_192:
743                 ctx->enc_type |= ENC_TYPE_ALG_AES192;
744                 break;
745         case AES_KEYSIZE_256:
746                 ctx->enc_type |= ENC_TYPE_ALG_AES256;
747                 break;
748         default:
749                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
750                 return -EINVAL;
751         }
752
753         ctx->key_len = keylen;
754         memcpy(ctx->key.aes, key, keylen);
755         return 0;
756 }
757
758 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
759                          unsigned int keylen)
760 {
761         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
762         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
763         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
764         u32 tmp[DES_EXPKEY_WORDS];
765         int err;
766
767         ctx->enc_type = n2alg->enc_type;
768
769         if (keylen != DES_KEY_SIZE) {
770                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
771                 return -EINVAL;
772         }
773
774         err = des_ekey(tmp, key);
775         if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
776                 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
777                 return -EINVAL;
778         }
779
780         ctx->key_len = keylen;
781         memcpy(ctx->key.des, key, keylen);
782         return 0;
783 }
784
785 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
786                           unsigned int keylen)
787 {
788         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
789         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
790         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
791
792         ctx->enc_type = n2alg->enc_type;
793
794         if (keylen != (3 * DES_KEY_SIZE)) {
795                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
796                 return -EINVAL;
797         }
798         ctx->key_len = keylen;
799         memcpy(ctx->key.des3, key, keylen);
800         return 0;
801 }
802
803 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
804                           unsigned int keylen)
805 {
806         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
807         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
808         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
809         u8 *s = ctx->key.arc4;
810         u8 *x = s + 256;
811         u8 *y = x + 1;
812         int i, j, k;
813
814         ctx->enc_type = n2alg->enc_type;
815
816         j = k = 0;
817         *x = 0;
818         *y = 0;
819         for (i = 0; i < 256; i++)
820                 s[i] = i;
821         for (i = 0; i < 256; i++) {
822                 u8 a = s[i];
823                 j = (j + key[k] + a) & 0xff;
824                 s[i] = s[j];
825                 s[j] = a;
826                 if (++k >= keylen)
827                         k = 0;
828         }
829
830         return 0;
831 }
832
833 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
834 {
835         int this_len = nbytes;
836
837         this_len -= (nbytes & (block_size - 1));
838         return this_len > (1 << 16) ? (1 << 16) : this_len;
839 }
840
841 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
842                             struct spu_queue *qp, bool encrypt)
843 {
844         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
845         struct cwq_initial_entry *ent;
846         bool in_place;
847         int i;
848
849         ent = spu_queue_alloc(qp, cp->arr_len);
850         if (!ent) {
851                 pr_info("queue_alloc() of %d fails\n",
852                         cp->arr_len);
853                 return -EBUSY;
854         }
855
856         in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
857
858         ent->control = control_word_base(cp->arr[0].src_len,
859                                          0, ctx->enc_type, 0, 0,
860                                          false, true, false, encrypt,
861                                          OPCODE_ENCRYPT |
862                                          (in_place ? OPCODE_INPLACE_BIT : 0));
863         ent->src_addr = cp->arr[0].src_paddr;
864         ent->auth_key_addr = 0UL;
865         ent->auth_iv_addr = 0UL;
866         ent->final_auth_state_addr = 0UL;
867         ent->enc_key_addr = __pa(&ctx->key);
868         ent->enc_iv_addr = cp->iv_paddr;
869         ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
870
871         for (i = 1; i < cp->arr_len; i++) {
872                 ent = spu_queue_next(qp, ent);
873
874                 ent->control = cp->arr[i].src_len - 1;
875                 ent->src_addr = cp->arr[i].src_paddr;
876                 ent->auth_key_addr = 0UL;
877                 ent->auth_iv_addr = 0UL;
878                 ent->final_auth_state_addr = 0UL;
879                 ent->enc_key_addr = 0UL;
880                 ent->enc_iv_addr = 0UL;
881                 ent->dest_addr = 0UL;
882         }
883         ent->control |= CONTROL_END_OF_BLOCK;
884
885         return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
886 }
887
888 static int n2_compute_chunks(struct ablkcipher_request *req)
889 {
890         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
891         struct ablkcipher_walk *walk = &rctx->walk;
892         struct n2_crypto_chunk *chunk;
893         unsigned long dest_prev;
894         unsigned int tot_len;
895         bool prev_in_place;
896         int err, nbytes;
897
898         ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
899         err = ablkcipher_walk_phys(req, walk);
900         if (err)
901                 return err;
902
903         INIT_LIST_HEAD(&rctx->chunk_list);
904
905         chunk = &rctx->chunk;
906         INIT_LIST_HEAD(&chunk->entry);
907
908         chunk->iv_paddr = 0UL;
909         chunk->arr_len = 0;
910         chunk->dest_paddr = 0UL;
911
912         prev_in_place = false;
913         dest_prev = ~0UL;
914         tot_len = 0;
915
916         while ((nbytes = walk->nbytes) != 0) {
917                 unsigned long dest_paddr, src_paddr;
918                 bool in_place;
919                 int this_len;
920
921                 src_paddr = (page_to_phys(walk->src.page) +
922                              walk->src.offset);
923                 dest_paddr = (page_to_phys(walk->dst.page) +
924                               walk->dst.offset);
925                 in_place = (src_paddr == dest_paddr);
926                 this_len = cipher_descriptor_len(nbytes, walk->blocksize);
927
928                 if (chunk->arr_len != 0) {
929                         if (in_place != prev_in_place ||
930                             (!prev_in_place &&
931                              dest_paddr != dest_prev) ||
932                             chunk->arr_len == N2_CHUNK_ARR_LEN ||
933                             tot_len + this_len > (1 << 16)) {
934                                 chunk->dest_final = dest_prev;
935                                 list_add_tail(&chunk->entry,
936                                               &rctx->chunk_list);
937                                 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
938                                 if (!chunk) {
939                                         err = -ENOMEM;
940                                         break;
941                                 }
942                                 INIT_LIST_HEAD(&chunk->entry);
943                         }
944                 }
945                 if (chunk->arr_len == 0) {
946                         chunk->dest_paddr = dest_paddr;
947                         tot_len = 0;
948                 }
949                 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
950                 chunk->arr[chunk->arr_len].src_len = this_len;
951                 chunk->arr_len++;
952
953                 dest_prev = dest_paddr + this_len;
954                 prev_in_place = in_place;
955                 tot_len += this_len;
956
957                 err = ablkcipher_walk_done(req, walk, nbytes - this_len);
958                 if (err)
959                         break;
960         }
961         if (!err && chunk->arr_len != 0) {
962                 chunk->dest_final = dest_prev;
963                 list_add_tail(&chunk->entry, &rctx->chunk_list);
964         }
965
966         return err;
967 }
968
969 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
970 {
971         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
972         struct n2_crypto_chunk *c, *tmp;
973
974         if (final_iv)
975                 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
976
977         ablkcipher_walk_complete(&rctx->walk);
978         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
979                 list_del(&c->entry);
980                 if (unlikely(c != &rctx->chunk))
981                         kfree(c);
982         }
983
984 }
985
986 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
987 {
988         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
989         struct crypto_tfm *tfm = req->base.tfm;
990         int err = n2_compute_chunks(req);
991         struct n2_crypto_chunk *c, *tmp;
992         unsigned long flags, hv_ret;
993         struct spu_queue *qp;
994
995         if (err)
996                 return err;
997
998         qp = cpu_to_cwq[get_cpu()];
999         err = -ENODEV;
1000         if (!qp)
1001                 goto out;
1002
1003         spin_lock_irqsave(&qp->lock, flags);
1004
1005         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
1006                 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
1007                 if (err)
1008                         break;
1009                 list_del(&c->entry);
1010                 if (unlikely(c != &rctx->chunk))
1011                         kfree(c);
1012         }
1013         if (!err) {
1014                 hv_ret = wait_for_tail(qp);
1015                 if (hv_ret != HV_EOK)
1016                         err = -EINVAL;
1017         }
1018
1019         spin_unlock_irqrestore(&qp->lock, flags);
1020
1021 out:
1022         put_cpu();
1023
1024         n2_chunk_complete(req, NULL);
1025         return err;
1026 }
1027
1028 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1029 {
1030         return n2_do_ecb(req, true);
1031 }
1032
1033 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1034 {
1035         return n2_do_ecb(req, false);
1036 }
1037
1038 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1039 {
1040         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1041         struct crypto_tfm *tfm = req->base.tfm;
1042         unsigned long flags, hv_ret, iv_paddr;
1043         int err = n2_compute_chunks(req);
1044         struct n2_crypto_chunk *c, *tmp;
1045         struct spu_queue *qp;
1046         void *final_iv_addr;
1047
1048         final_iv_addr = NULL;
1049
1050         if (err)
1051                 return err;
1052
1053         qp = cpu_to_cwq[get_cpu()];
1054         err = -ENODEV;
1055         if (!qp)
1056                 goto out;
1057
1058         spin_lock_irqsave(&qp->lock, flags);
1059
1060         if (encrypt) {
1061                 iv_paddr = __pa(rctx->walk.iv);
1062                 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1063                                          entry) {
1064                         c->iv_paddr = iv_paddr;
1065                         err = __n2_crypt_chunk(tfm, c, qp, true);
1066                         if (err)
1067                                 break;
1068                         iv_paddr = c->dest_final - rctx->walk.blocksize;
1069                         list_del(&c->entry);
1070                         if (unlikely(c != &rctx->chunk))
1071                                 kfree(c);
1072                 }
1073                 final_iv_addr = __va(iv_paddr);
1074         } else {
1075                 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1076                                                  entry) {
1077                         if (c == &rctx->chunk) {
1078                                 iv_paddr = __pa(rctx->walk.iv);
1079                         } else {
1080                                 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1081                                             tmp->arr[tmp->arr_len-1].src_len -
1082                                             rctx->walk.blocksize);
1083                         }
1084                         if (!final_iv_addr) {
1085                                 unsigned long pa;
1086
1087                                 pa = (c->arr[c->arr_len-1].src_paddr +
1088                                       c->arr[c->arr_len-1].src_len -
1089                                       rctx->walk.blocksize);
1090                                 final_iv_addr = rctx->temp_iv;
1091                                 memcpy(rctx->temp_iv, __va(pa),
1092                                        rctx->walk.blocksize);
1093                         }
1094                         c->iv_paddr = iv_paddr;
1095                         err = __n2_crypt_chunk(tfm, c, qp, false);
1096                         if (err)
1097                                 break;
1098                         list_del(&c->entry);
1099                         if (unlikely(c != &rctx->chunk))
1100                                 kfree(c);
1101                 }
1102         }
1103         if (!err) {
1104                 hv_ret = wait_for_tail(qp);
1105                 if (hv_ret != HV_EOK)
1106                         err = -EINVAL;
1107         }
1108
1109         spin_unlock_irqrestore(&qp->lock, flags);
1110
1111 out:
1112         put_cpu();
1113
1114         n2_chunk_complete(req, err ? NULL : final_iv_addr);
1115         return err;
1116 }
1117
1118 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1119 {
1120         return n2_do_chaining(req, true);
1121 }
1122
1123 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1124 {
1125         return n2_do_chaining(req, false);
1126 }
1127
1128 struct n2_cipher_tmpl {
1129         const char              *name;
1130         const char              *drv_name;
1131         u8                      block_size;
1132         u8                      enc_type;
1133         struct ablkcipher_alg   ablkcipher;
1134 };
1135
1136 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1137         /* ARC4: only ECB is supported (chaining bits ignored) */
1138         {       .name           = "ecb(arc4)",
1139                 .drv_name       = "ecb-arc4",
1140                 .block_size     = 1,
1141                 .enc_type       = (ENC_TYPE_ALG_RC4_STREAM |
1142                                    ENC_TYPE_CHAINING_ECB),
1143                 .ablkcipher     = {
1144                         .min_keysize    = 1,
1145                         .max_keysize    = 256,
1146                         .setkey         = n2_arc4_setkey,
1147                         .encrypt        = n2_encrypt_ecb,
1148                         .decrypt        = n2_decrypt_ecb,
1149                 },
1150         },
1151
1152         /* DES: ECB CBC and CFB are supported */
1153         {       .name           = "ecb(des)",
1154                 .drv_name       = "ecb-des",
1155                 .block_size     = DES_BLOCK_SIZE,
1156                 .enc_type       = (ENC_TYPE_ALG_DES |
1157                                    ENC_TYPE_CHAINING_ECB),
1158                 .ablkcipher     = {
1159                         .min_keysize    = DES_KEY_SIZE,
1160                         .max_keysize    = DES_KEY_SIZE,
1161                         .setkey         = n2_des_setkey,
1162                         .encrypt        = n2_encrypt_ecb,
1163                         .decrypt        = n2_decrypt_ecb,
1164                 },
1165         },
1166         {       .name           = "cbc(des)",
1167                 .drv_name       = "cbc-des",
1168                 .block_size     = DES_BLOCK_SIZE,
1169                 .enc_type       = (ENC_TYPE_ALG_DES |
1170                                    ENC_TYPE_CHAINING_CBC),
1171                 .ablkcipher     = {
1172                         .ivsize         = DES_BLOCK_SIZE,
1173                         .min_keysize    = DES_KEY_SIZE,
1174                         .max_keysize    = DES_KEY_SIZE,
1175                         .setkey         = n2_des_setkey,
1176                         .encrypt        = n2_encrypt_chaining,
1177                         .decrypt        = n2_decrypt_chaining,
1178                 },
1179         },
1180         {       .name           = "cfb(des)",
1181                 .drv_name       = "cfb-des",
1182                 .block_size     = DES_BLOCK_SIZE,
1183                 .enc_type       = (ENC_TYPE_ALG_DES |
1184                                    ENC_TYPE_CHAINING_CFB),
1185                 .ablkcipher     = {
1186                         .min_keysize    = DES_KEY_SIZE,
1187                         .max_keysize    = DES_KEY_SIZE,
1188                         .setkey         = n2_des_setkey,
1189                         .encrypt        = n2_encrypt_chaining,
1190                         .decrypt        = n2_decrypt_chaining,
1191                 },
1192         },
1193
1194         /* 3DES: ECB CBC and CFB are supported */
1195         {       .name           = "ecb(des3_ede)",
1196                 .drv_name       = "ecb-3des",
1197                 .block_size     = DES_BLOCK_SIZE,
1198                 .enc_type       = (ENC_TYPE_ALG_3DES |
1199                                    ENC_TYPE_CHAINING_ECB),
1200                 .ablkcipher     = {
1201                         .min_keysize    = 3 * DES_KEY_SIZE,
1202                         .max_keysize    = 3 * DES_KEY_SIZE,
1203                         .setkey         = n2_3des_setkey,
1204                         .encrypt        = n2_encrypt_ecb,
1205                         .decrypt        = n2_decrypt_ecb,
1206                 },
1207         },
1208         {       .name           = "cbc(des3_ede)",
1209                 .drv_name       = "cbc-3des",
1210                 .block_size     = DES_BLOCK_SIZE,
1211                 .enc_type       = (ENC_TYPE_ALG_3DES |
1212                                    ENC_TYPE_CHAINING_CBC),
1213                 .ablkcipher     = {
1214                         .ivsize         = DES_BLOCK_SIZE,
1215                         .min_keysize    = 3 * DES_KEY_SIZE,
1216                         .max_keysize    = 3 * DES_KEY_SIZE,
1217                         .setkey         = n2_3des_setkey,
1218                         .encrypt        = n2_encrypt_chaining,
1219                         .decrypt        = n2_decrypt_chaining,
1220                 },
1221         },
1222         {       .name           = "cfb(des3_ede)",
1223                 .drv_name       = "cfb-3des",
1224                 .block_size     = DES_BLOCK_SIZE,
1225                 .enc_type       = (ENC_TYPE_ALG_3DES |
1226                                    ENC_TYPE_CHAINING_CFB),
1227                 .ablkcipher     = {
1228                         .min_keysize    = 3 * DES_KEY_SIZE,
1229                         .max_keysize    = 3 * DES_KEY_SIZE,
1230                         .setkey         = n2_3des_setkey,
1231                         .encrypt        = n2_encrypt_chaining,
1232                         .decrypt        = n2_decrypt_chaining,
1233                 },
1234         },
1235         /* AES: ECB CBC and CTR are supported */
1236         {       .name           = "ecb(aes)",
1237                 .drv_name       = "ecb-aes",
1238                 .block_size     = AES_BLOCK_SIZE,
1239                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1240                                    ENC_TYPE_CHAINING_ECB),
1241                 .ablkcipher     = {
1242                         .min_keysize    = AES_MIN_KEY_SIZE,
1243                         .max_keysize    = AES_MAX_KEY_SIZE,
1244                         .setkey         = n2_aes_setkey,
1245                         .encrypt        = n2_encrypt_ecb,
1246                         .decrypt        = n2_decrypt_ecb,
1247                 },
1248         },
1249         {       .name           = "cbc(aes)",
1250                 .drv_name       = "cbc-aes",
1251                 .block_size     = AES_BLOCK_SIZE,
1252                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1253                                    ENC_TYPE_CHAINING_CBC),
1254                 .ablkcipher     = {
1255                         .ivsize         = AES_BLOCK_SIZE,
1256                         .min_keysize    = AES_MIN_KEY_SIZE,
1257                         .max_keysize    = AES_MAX_KEY_SIZE,
1258                         .setkey         = n2_aes_setkey,
1259                         .encrypt        = n2_encrypt_chaining,
1260                         .decrypt        = n2_decrypt_chaining,
1261                 },
1262         },
1263         {       .name           = "ctr(aes)",
1264                 .drv_name       = "ctr-aes",
1265                 .block_size     = AES_BLOCK_SIZE,
1266                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1267                                    ENC_TYPE_CHAINING_COUNTER),
1268                 .ablkcipher     = {
1269                         .ivsize         = AES_BLOCK_SIZE,
1270                         .min_keysize    = AES_MIN_KEY_SIZE,
1271                         .max_keysize    = AES_MAX_KEY_SIZE,
1272                         .setkey         = n2_aes_setkey,
1273                         .encrypt        = n2_encrypt_chaining,
1274                         .decrypt        = n2_encrypt_chaining,
1275                 },
1276         },
1277
1278 };
1279 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1280
1281 static LIST_HEAD(cipher_algs);
1282
1283 struct n2_hash_tmpl {
1284         const char      *name;
1285         const u8        *hash_zero;
1286         const u32       *hash_init;
1287         u8              hw_op_hashsz;
1288         u8              digest_size;
1289         u8              statesize;
1290         u8              block_size;
1291         u8              auth_type;
1292         u8              hmac_type;
1293 };
1294
1295 static const u32 md5_init[MD5_HASH_WORDS] = {
1296         cpu_to_le32(MD5_H0),
1297         cpu_to_le32(MD5_H1),
1298         cpu_to_le32(MD5_H2),
1299         cpu_to_le32(MD5_H3),
1300 };
1301 static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1302         SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1303 };
1304 static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1305         SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1306         SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1307 };
1308 static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1309         SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1310         SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1311 };
1312
1313 static const struct n2_hash_tmpl hash_tmpls[] = {
1314         { .name         = "md5",
1315           .hash_zero    = md5_zero_message_hash,
1316           .hash_init    = md5_init,
1317           .auth_type    = AUTH_TYPE_MD5,
1318           .hmac_type    = AUTH_TYPE_HMAC_MD5,
1319           .hw_op_hashsz = MD5_DIGEST_SIZE,
1320           .digest_size  = MD5_DIGEST_SIZE,
1321           .statesize    = sizeof(struct md5_state),
1322           .block_size   = MD5_HMAC_BLOCK_SIZE },
1323         { .name         = "sha1",
1324           .hash_zero    = sha1_zero_message_hash,
1325           .hash_init    = sha1_init,
1326           .auth_type    = AUTH_TYPE_SHA1,
1327           .hmac_type    = AUTH_TYPE_HMAC_SHA1,
1328           .hw_op_hashsz = SHA1_DIGEST_SIZE,
1329           .digest_size  = SHA1_DIGEST_SIZE,
1330           .statesize    = sizeof(struct sha1_state),
1331           .block_size   = SHA1_BLOCK_SIZE },
1332         { .name         = "sha256",
1333           .hash_zero    = sha256_zero_message_hash,
1334           .hash_init    = sha256_init,
1335           .auth_type    = AUTH_TYPE_SHA256,
1336           .hmac_type    = AUTH_TYPE_HMAC_SHA256,
1337           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1338           .digest_size  = SHA256_DIGEST_SIZE,
1339           .statesize    = sizeof(struct sha256_state),
1340           .block_size   = SHA256_BLOCK_SIZE },
1341         { .name         = "sha224",
1342           .hash_zero    = sha224_zero_message_hash,
1343           .hash_init    = sha224_init,
1344           .auth_type    = AUTH_TYPE_SHA256,
1345           .hmac_type    = AUTH_TYPE_RESERVED,
1346           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1347           .digest_size  = SHA224_DIGEST_SIZE,
1348           .statesize    = sizeof(struct sha256_state),
1349           .block_size   = SHA224_BLOCK_SIZE },
1350 };
1351 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1352
1353 static LIST_HEAD(ahash_algs);
1354 static LIST_HEAD(hmac_algs);
1355
1356 static int algs_registered;
1357
1358 static void __n2_unregister_algs(void)
1359 {
1360         struct n2_cipher_alg *cipher, *cipher_tmp;
1361         struct n2_ahash_alg *alg, *alg_tmp;
1362         struct n2_hmac_alg *hmac, *hmac_tmp;
1363
1364         list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1365                 crypto_unregister_alg(&cipher->alg);
1366                 list_del(&cipher->entry);
1367                 kfree(cipher);
1368         }
1369         list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1370                 crypto_unregister_ahash(&hmac->derived.alg);
1371                 list_del(&hmac->derived.entry);
1372                 kfree(hmac);
1373         }
1374         list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1375                 crypto_unregister_ahash(&alg->alg);
1376                 list_del(&alg->entry);
1377                 kfree(alg);
1378         }
1379 }
1380
1381 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1382 {
1383         tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1384         return 0;
1385 }
1386
1387 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1388 {
1389         struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1390         struct crypto_alg *alg;
1391         int err;
1392
1393         if (!p)
1394                 return -ENOMEM;
1395
1396         alg = &p->alg;
1397
1398         snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1399         snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1400         alg->cra_priority = N2_CRA_PRIORITY;
1401         alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1402                          CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1403         alg->cra_blocksize = tmpl->block_size;
1404         p->enc_type = tmpl->enc_type;
1405         alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1406         alg->cra_type = &crypto_ablkcipher_type;
1407         alg->cra_u.ablkcipher = tmpl->ablkcipher;
1408         alg->cra_init = n2_cipher_cra_init;
1409         alg->cra_module = THIS_MODULE;
1410
1411         list_add(&p->entry, &cipher_algs);
1412         err = crypto_register_alg(alg);
1413         if (err) {
1414                 pr_err("%s alg registration failed\n", alg->cra_name);
1415                 list_del(&p->entry);
1416                 kfree(p);
1417         } else {
1418                 pr_info("%s alg registered\n", alg->cra_name);
1419         }
1420         return err;
1421 }
1422
1423 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1424 {
1425         struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1426         struct ahash_alg *ahash;
1427         struct crypto_alg *base;
1428         int err;
1429
1430         if (!p)
1431                 return -ENOMEM;
1432
1433         p->child_alg = n2ahash->alg.halg.base.cra_name;
1434         memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1435         INIT_LIST_HEAD(&p->derived.entry);
1436
1437         ahash = &p->derived.alg;
1438         ahash->digest = n2_hmac_async_digest;
1439         ahash->setkey = n2_hmac_async_setkey;
1440
1441         base = &ahash->halg.base;
1442         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1443         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1444
1445         base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1446         base->cra_init = n2_hmac_cra_init;
1447         base->cra_exit = n2_hmac_cra_exit;
1448
1449         list_add(&p->derived.entry, &hmac_algs);
1450         err = crypto_register_ahash(ahash);
1451         if (err) {
1452                 pr_err("%s alg registration failed\n", base->cra_name);
1453                 list_del(&p->derived.entry);
1454                 kfree(p);
1455         } else {
1456                 pr_info("%s alg registered\n", base->cra_name);
1457         }
1458         return err;
1459 }
1460
1461 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1462 {
1463         struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1464         struct hash_alg_common *halg;
1465         struct crypto_alg *base;
1466         struct ahash_alg *ahash;
1467         int err;
1468
1469         if (!p)
1470                 return -ENOMEM;
1471
1472         p->hash_zero = tmpl->hash_zero;
1473         p->hash_init = tmpl->hash_init;
1474         p->auth_type = tmpl->auth_type;
1475         p->hmac_type = tmpl->hmac_type;
1476         p->hw_op_hashsz = tmpl->hw_op_hashsz;
1477         p->digest_size = tmpl->digest_size;
1478
1479         ahash = &p->alg;
1480         ahash->init = n2_hash_async_init;
1481         ahash->update = n2_hash_async_update;
1482         ahash->final = n2_hash_async_final;
1483         ahash->finup = n2_hash_async_finup;
1484         ahash->digest = n2_hash_async_digest;
1485         ahash->export = n2_hash_async_noexport;
1486         ahash->import = n2_hash_async_noimport;
1487
1488         halg = &ahash->halg;
1489         halg->digestsize = tmpl->digest_size;
1490         halg->statesize = tmpl->statesize;
1491
1492         base = &halg->base;
1493         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1494         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1495         base->cra_priority = N2_CRA_PRIORITY;
1496         base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1497                           CRYPTO_ALG_NEED_FALLBACK;
1498         base->cra_blocksize = tmpl->block_size;
1499         base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1500         base->cra_module = THIS_MODULE;
1501         base->cra_init = n2_hash_cra_init;
1502         base->cra_exit = n2_hash_cra_exit;
1503
1504         list_add(&p->entry, &ahash_algs);
1505         err = crypto_register_ahash(ahash);
1506         if (err) {
1507                 pr_err("%s alg registration failed\n", base->cra_name);
1508                 list_del(&p->entry);
1509                 kfree(p);
1510         } else {
1511                 pr_info("%s alg registered\n", base->cra_name);
1512         }
1513         if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1514                 err = __n2_register_one_hmac(p);
1515         return err;
1516 }
1517
1518 static int n2_register_algs(void)
1519 {
1520         int i, err = 0;
1521
1522         mutex_lock(&spu_lock);
1523         if (algs_registered++)
1524                 goto out;
1525
1526         for (i = 0; i < NUM_HASH_TMPLS; i++) {
1527                 err = __n2_register_one_ahash(&hash_tmpls[i]);
1528                 if (err) {
1529                         __n2_unregister_algs();
1530                         goto out;
1531                 }
1532         }
1533         for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1534                 err = __n2_register_one_cipher(&cipher_tmpls[i]);
1535                 if (err) {
1536                         __n2_unregister_algs();
1537                         goto out;
1538                 }
1539         }
1540
1541 out:
1542         mutex_unlock(&spu_lock);
1543         return err;
1544 }
1545
1546 static void n2_unregister_algs(void)
1547 {
1548         mutex_lock(&spu_lock);
1549         if (!--algs_registered)
1550                 __n2_unregister_algs();
1551         mutex_unlock(&spu_lock);
1552 }
1553
1554 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1555  * a devino.  This isn't very useful to us because all of the
1556  * interrupts listed in the device_node have been translated to
1557  * Linux virtual IRQ cookie numbers.
1558  *
1559  * So we have to back-translate, going through the 'intr' and 'ino'
1560  * property tables of the n2cp MDESC node, matching it with the OF
1561  * 'interrupts' property entries, in order to to figure out which
1562  * devino goes to which already-translated IRQ.
1563  */
1564 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1565                              unsigned long dev_ino)
1566 {
1567         const unsigned int *dev_intrs;
1568         unsigned int intr;
1569         int i;
1570
1571         for (i = 0; i < ip->num_intrs; i++) {
1572                 if (ip->ino_table[i].ino == dev_ino)
1573                         break;
1574         }
1575         if (i == ip->num_intrs)
1576                 return -ENODEV;
1577
1578         intr = ip->ino_table[i].intr;
1579
1580         dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1581         if (!dev_intrs)
1582                 return -ENODEV;
1583
1584         for (i = 0; i < dev->archdata.num_irqs; i++) {
1585                 if (dev_intrs[i] == intr)
1586                         return i;
1587         }
1588
1589         return -ENODEV;
1590 }
1591
1592 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1593                        const char *irq_name, struct spu_queue *p,
1594                        irq_handler_t handler)
1595 {
1596         unsigned long herr;
1597         int index;
1598
1599         herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1600         if (herr)
1601                 return -EINVAL;
1602
1603         index = find_devino_index(dev, ip, p->devino);
1604         if (index < 0)
1605                 return index;
1606
1607         p->irq = dev->archdata.irqs[index];
1608
1609         sprintf(p->irq_name, "%s-%d", irq_name, index);
1610
1611         return request_irq(p->irq, handler, 0, p->irq_name, p);
1612 }
1613
1614 static struct kmem_cache *queue_cache[2];
1615
1616 static void *new_queue(unsigned long q_type)
1617 {
1618         return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1619 }
1620
1621 static void free_queue(void *p, unsigned long q_type)
1622 {
1623         kmem_cache_free(queue_cache[q_type - 1], p);
1624 }
1625
1626 static int queue_cache_init(void)
1627 {
1628         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1629                 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1630                         kmem_cache_create("mau_queue",
1631                                           (MAU_NUM_ENTRIES *
1632                                            MAU_ENTRY_SIZE),
1633                                           MAU_ENTRY_SIZE, 0, NULL);
1634         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1635                 return -ENOMEM;
1636
1637         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1638                 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1639                         kmem_cache_create("cwq_queue",
1640                                           (CWQ_NUM_ENTRIES *
1641                                            CWQ_ENTRY_SIZE),
1642                                           CWQ_ENTRY_SIZE, 0, NULL);
1643         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1644                 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1645                 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1646                 return -ENOMEM;
1647         }
1648         return 0;
1649 }
1650
1651 static void queue_cache_destroy(void)
1652 {
1653         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1654         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1655         queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1656         queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1657 }
1658
1659 static long spu_queue_register_workfn(void *arg)
1660 {
1661         struct spu_qreg *qr = arg;
1662         struct spu_queue *p = qr->queue;
1663         unsigned long q_type = qr->type;
1664         unsigned long hv_ret;
1665
1666         hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1667                                  CWQ_NUM_ENTRIES, &p->qhandle);
1668         if (!hv_ret)
1669                 sun4v_ncs_sethead_marker(p->qhandle, 0);
1670
1671         return hv_ret ? -EINVAL : 0;
1672 }
1673
1674 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1675 {
1676         int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1677         struct spu_qreg qr = { .queue = p, .type = q_type };
1678
1679         return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1680 }
1681
1682 static int spu_queue_setup(struct spu_queue *p)
1683 {
1684         int err;
1685
1686         p->q = new_queue(p->q_type);
1687         if (!p->q)
1688                 return -ENOMEM;
1689
1690         err = spu_queue_register(p, p->q_type);
1691         if (err) {
1692                 free_queue(p->q, p->q_type);
1693                 p->q = NULL;
1694         }
1695
1696         return err;
1697 }
1698
1699 static void spu_queue_destroy(struct spu_queue *p)
1700 {
1701         unsigned long hv_ret;
1702
1703         if (!p->q)
1704                 return;
1705
1706         hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1707
1708         if (!hv_ret)
1709                 free_queue(p->q, p->q_type);
1710 }
1711
1712 static void spu_list_destroy(struct list_head *list)
1713 {
1714         struct spu_queue *p, *n;
1715
1716         list_for_each_entry_safe(p, n, list, list) {
1717                 int i;
1718
1719                 for (i = 0; i < NR_CPUS; i++) {
1720                         if (cpu_to_cwq[i] == p)
1721                                 cpu_to_cwq[i] = NULL;
1722                 }
1723
1724                 if (p->irq) {
1725                         free_irq(p->irq, p);
1726                         p->irq = 0;
1727                 }
1728                 spu_queue_destroy(p);
1729                 list_del(&p->list);
1730                 kfree(p);
1731         }
1732 }
1733
1734 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1735  * gathering cpu membership information.
1736  */
1737 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1738                                struct platform_device *dev,
1739                                u64 node, struct spu_queue *p,
1740                                struct spu_queue **table)
1741 {
1742         u64 arc;
1743
1744         mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1745                 u64 tgt = mdesc_arc_target(mdesc, arc);
1746                 const char *name = mdesc_node_name(mdesc, tgt);
1747                 const u64 *id;
1748
1749                 if (strcmp(name, "cpu"))
1750                         continue;
1751                 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1752                 if (table[*id] != NULL) {
1753                         dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1754                                 dev->dev.of_node);
1755                         return -EINVAL;
1756                 }
1757                 cpumask_set_cpu(*id, &p->sharing);
1758                 table[*id] = p;
1759         }
1760         return 0;
1761 }
1762
1763 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1764 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1765                             struct platform_device *dev, struct mdesc_handle *mdesc,
1766                             u64 node, const char *iname, unsigned long q_type,
1767                             irq_handler_t handler, struct spu_queue **table)
1768 {
1769         struct spu_queue *p;
1770         int err;
1771
1772         p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1773         if (!p) {
1774                 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1775                         dev->dev.of_node);
1776                 return -ENOMEM;
1777         }
1778
1779         cpumask_clear(&p->sharing);
1780         spin_lock_init(&p->lock);
1781         p->q_type = q_type;
1782         INIT_LIST_HEAD(&p->jobs);
1783         list_add(&p->list, list);
1784
1785         err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1786         if (err)
1787                 return err;
1788
1789         err = spu_queue_setup(p);
1790         if (err)
1791                 return err;
1792
1793         return spu_map_ino(dev, ip, iname, p, handler);
1794 }
1795
1796 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1797                           struct spu_mdesc_info *ip, struct list_head *list,
1798                           const char *exec_name, unsigned long q_type,
1799                           irq_handler_t handler, struct spu_queue **table)
1800 {
1801         int err = 0;
1802         u64 node;
1803
1804         mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1805                 const char *type;
1806
1807                 type = mdesc_get_property(mdesc, node, "type", NULL);
1808                 if (!type || strcmp(type, exec_name))
1809                         continue;
1810
1811                 err = handle_exec_unit(ip, list, dev, mdesc, node,
1812                                        exec_name, q_type, handler, table);
1813                 if (err) {
1814                         spu_list_destroy(list);
1815                         break;
1816                 }
1817         }
1818
1819         return err;
1820 }
1821
1822 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1823                          struct spu_mdesc_info *ip)
1824 {
1825         const u64 *ino;
1826         int ino_len;
1827         int i;
1828
1829         ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1830         if (!ino) {
1831                 printk("NO 'ino'\n");
1832                 return -ENODEV;
1833         }
1834
1835         ip->num_intrs = ino_len / sizeof(u64);
1836         ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1837                                  ip->num_intrs),
1838                                 GFP_KERNEL);
1839         if (!ip->ino_table)
1840                 return -ENOMEM;
1841
1842         for (i = 0; i < ip->num_intrs; i++) {
1843                 struct ino_blob *b = &ip->ino_table[i];
1844                 b->intr = i + 1;
1845                 b->ino = ino[i];
1846         }
1847
1848         return 0;
1849 }
1850
1851 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1852                                 struct platform_device *dev,
1853                                 struct spu_mdesc_info *ip,
1854                                 const char *node_name)
1855 {
1856         const unsigned int *reg;
1857         u64 node;
1858
1859         reg = of_get_property(dev->dev.of_node, "reg", NULL);
1860         if (!reg)
1861                 return -ENODEV;
1862
1863         mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1864                 const char *name;
1865                 const u64 *chdl;
1866
1867                 name = mdesc_get_property(mdesc, node, "name", NULL);
1868                 if (!name || strcmp(name, node_name))
1869                         continue;
1870                 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1871                 if (!chdl || (*chdl != *reg))
1872                         continue;
1873                 ip->cfg_handle = *chdl;
1874                 return get_irq_props(mdesc, node, ip);
1875         }
1876
1877         return -ENODEV;
1878 }
1879
1880 static unsigned long n2_spu_hvapi_major;
1881 static unsigned long n2_spu_hvapi_minor;
1882
1883 static int n2_spu_hvapi_register(void)
1884 {
1885         int err;
1886
1887         n2_spu_hvapi_major = 2;
1888         n2_spu_hvapi_minor = 0;
1889
1890         err = sun4v_hvapi_register(HV_GRP_NCS,
1891                                    n2_spu_hvapi_major,
1892                                    &n2_spu_hvapi_minor);
1893
1894         if (!err)
1895                 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1896                         n2_spu_hvapi_major,
1897                         n2_spu_hvapi_minor);
1898
1899         return err;
1900 }
1901
1902 static void n2_spu_hvapi_unregister(void)
1903 {
1904         sun4v_hvapi_unregister(HV_GRP_NCS);
1905 }
1906
1907 static int global_ref;
1908
1909 static int grab_global_resources(void)
1910 {
1911         int err = 0;
1912
1913         mutex_lock(&spu_lock);
1914
1915         if (global_ref++)
1916                 goto out;
1917
1918         err = n2_spu_hvapi_register();
1919         if (err)
1920                 goto out;
1921
1922         err = queue_cache_init();
1923         if (err)
1924                 goto out_hvapi_release;
1925
1926         err = -ENOMEM;
1927         cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1928                              GFP_KERNEL);
1929         if (!cpu_to_cwq)
1930                 goto out_queue_cache_destroy;
1931
1932         cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1933                              GFP_KERNEL);
1934         if (!cpu_to_mau)
1935                 goto out_free_cwq_table;
1936
1937         err = 0;
1938
1939 out:
1940         if (err)
1941                 global_ref--;
1942         mutex_unlock(&spu_lock);
1943         return err;
1944
1945 out_free_cwq_table:
1946         kfree(cpu_to_cwq);
1947         cpu_to_cwq = NULL;
1948
1949 out_queue_cache_destroy:
1950         queue_cache_destroy();
1951
1952 out_hvapi_release:
1953         n2_spu_hvapi_unregister();
1954         goto out;
1955 }
1956
1957 static void release_global_resources(void)
1958 {
1959         mutex_lock(&spu_lock);
1960         if (!--global_ref) {
1961                 kfree(cpu_to_cwq);
1962                 cpu_to_cwq = NULL;
1963
1964                 kfree(cpu_to_mau);
1965                 cpu_to_mau = NULL;
1966
1967                 queue_cache_destroy();
1968                 n2_spu_hvapi_unregister();
1969         }
1970         mutex_unlock(&spu_lock);
1971 }
1972
1973 static struct n2_crypto *alloc_n2cp(void)
1974 {
1975         struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1976
1977         if (np)
1978                 INIT_LIST_HEAD(&np->cwq_list);
1979
1980         return np;
1981 }
1982
1983 static void free_n2cp(struct n2_crypto *np)
1984 {
1985         kfree(np->cwq_info.ino_table);
1986         np->cwq_info.ino_table = NULL;
1987
1988         kfree(np);
1989 }
1990
1991 static void n2_spu_driver_version(void)
1992 {
1993         static int n2_spu_version_printed;
1994
1995         if (n2_spu_version_printed++ == 0)
1996                 pr_info("%s", version);
1997 }
1998
1999 static int n2_crypto_probe(struct platform_device *dev)
2000 {
2001         struct mdesc_handle *mdesc;
2002         struct n2_crypto *np;
2003         int err;
2004
2005         n2_spu_driver_version();
2006
2007         pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
2008
2009         np = alloc_n2cp();
2010         if (!np) {
2011                 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
2012                         dev->dev.of_node);
2013                 return -ENOMEM;
2014         }
2015
2016         err = grab_global_resources();
2017         if (err) {
2018                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2019                         dev->dev.of_node);
2020                 goto out_free_n2cp;
2021         }
2022
2023         mdesc = mdesc_grab();
2024
2025         if (!mdesc) {
2026                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2027                         dev->dev.of_node);
2028                 err = -ENODEV;
2029                 goto out_free_global;
2030         }
2031         err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2032         if (err) {
2033                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2034                         dev->dev.of_node);
2035                 mdesc_release(mdesc);
2036                 goto out_free_global;
2037         }
2038
2039         err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2040                              "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2041                              cpu_to_cwq);
2042         mdesc_release(mdesc);
2043
2044         if (err) {
2045                 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2046                         dev->dev.of_node);
2047                 goto out_free_global;
2048         }
2049
2050         err = n2_register_algs();
2051         if (err) {
2052                 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2053                         dev->dev.of_node);
2054                 goto out_free_spu_list;
2055         }
2056
2057         dev_set_drvdata(&dev->dev, np);
2058
2059         return 0;
2060
2061 out_free_spu_list:
2062         spu_list_destroy(&np->cwq_list);
2063
2064 out_free_global:
2065         release_global_resources();
2066
2067 out_free_n2cp:
2068         free_n2cp(np);
2069
2070         return err;
2071 }
2072
2073 static int n2_crypto_remove(struct platform_device *dev)
2074 {
2075         struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2076
2077         n2_unregister_algs();
2078
2079         spu_list_destroy(&np->cwq_list);
2080
2081         release_global_resources();
2082
2083         free_n2cp(np);
2084
2085         return 0;
2086 }
2087
2088 static struct n2_mau *alloc_ncp(void)
2089 {
2090         struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2091
2092         if (mp)
2093                 INIT_LIST_HEAD(&mp->mau_list);
2094
2095         return mp;
2096 }
2097
2098 static void free_ncp(struct n2_mau *mp)
2099 {
2100         kfree(mp->mau_info.ino_table);
2101         mp->mau_info.ino_table = NULL;
2102
2103         kfree(mp);
2104 }
2105
2106 static int n2_mau_probe(struct platform_device *dev)
2107 {
2108         struct mdesc_handle *mdesc;
2109         struct n2_mau *mp;
2110         int err;
2111
2112         n2_spu_driver_version();
2113
2114         pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2115
2116         mp = alloc_ncp();
2117         if (!mp) {
2118                 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2119                         dev->dev.of_node);
2120                 return -ENOMEM;
2121         }
2122
2123         err = grab_global_resources();
2124         if (err) {
2125                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2126                         dev->dev.of_node);
2127                 goto out_free_ncp;
2128         }
2129
2130         mdesc = mdesc_grab();
2131
2132         if (!mdesc) {
2133                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2134                         dev->dev.of_node);
2135                 err = -ENODEV;
2136                 goto out_free_global;
2137         }
2138
2139         err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2140         if (err) {
2141                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2142                         dev->dev.of_node);
2143                 mdesc_release(mdesc);
2144                 goto out_free_global;
2145         }
2146
2147         err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2148                              "mau", HV_NCS_QTYPE_MAU, mau_intr,
2149                              cpu_to_mau);
2150         mdesc_release(mdesc);
2151
2152         if (err) {
2153                 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2154                         dev->dev.of_node);
2155                 goto out_free_global;
2156         }
2157
2158         dev_set_drvdata(&dev->dev, mp);
2159
2160         return 0;
2161
2162 out_free_global:
2163         release_global_resources();
2164
2165 out_free_ncp:
2166         free_ncp(mp);
2167
2168         return err;
2169 }
2170
2171 static int n2_mau_remove(struct platform_device *dev)
2172 {
2173         struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2174
2175         spu_list_destroy(&mp->mau_list);
2176
2177         release_global_resources();
2178
2179         free_ncp(mp);
2180
2181         return 0;
2182 }
2183
2184 static const struct of_device_id n2_crypto_match[] = {
2185         {
2186                 .name = "n2cp",
2187                 .compatible = "SUNW,n2-cwq",
2188         },
2189         {
2190                 .name = "n2cp",
2191                 .compatible = "SUNW,vf-cwq",
2192         },
2193         {
2194                 .name = "n2cp",
2195                 .compatible = "SUNW,kt-cwq",
2196         },
2197         {},
2198 };
2199
2200 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2201
2202 static struct platform_driver n2_crypto_driver = {
2203         .driver = {
2204                 .name           =       "n2cp",
2205                 .of_match_table =       n2_crypto_match,
2206         },
2207         .probe          =       n2_crypto_probe,
2208         .remove         =       n2_crypto_remove,
2209 };
2210
2211 static const struct of_device_id n2_mau_match[] = {
2212         {
2213                 .name = "ncp",
2214                 .compatible = "SUNW,n2-mau",
2215         },
2216         {
2217                 .name = "ncp",
2218                 .compatible = "SUNW,vf-mau",
2219         },
2220         {
2221                 .name = "ncp",
2222                 .compatible = "SUNW,kt-mau",
2223         },
2224         {},
2225 };
2226
2227 MODULE_DEVICE_TABLE(of, n2_mau_match);
2228
2229 static struct platform_driver n2_mau_driver = {
2230         .driver = {
2231                 .name           =       "ncp",
2232                 .of_match_table =       n2_mau_match,
2233         },
2234         .probe          =       n2_mau_probe,
2235         .remove         =       n2_mau_remove,
2236 };
2237
2238 static struct platform_driver * const drivers[] = {
2239         &n2_crypto_driver,
2240         &n2_mau_driver,
2241 };
2242
2243 static int __init n2_init(void)
2244 {
2245         return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2246 }
2247
2248 static void __exit n2_exit(void)
2249 {
2250         platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2251 }
2252
2253 module_init(n2_init);
2254 module_exit(n2_exit);