GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / crypto / mediatek / mtk-aes.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cryptographic API.
4  *
5  * Driver for EIP97 AES acceleration.
6  *
7  * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
8  *
9  * Some ideas are from atmel-aes.c drivers.
10  */
11
12 #include <crypto/aes.h>
13 #include <crypto/gcm.h>
14 #include <crypto/internal/skcipher.h>
15 #include "mtk-platform.h"
16
17 #define AES_QUEUE_SIZE          512
18 #define AES_BUF_ORDER           2
19 #define AES_BUF_SIZE            ((PAGE_SIZE << AES_BUF_ORDER) \
20                                 & ~(AES_BLOCK_SIZE - 1))
21 #define AES_MAX_STATE_BUF_SIZE  SIZE_IN_WORDS(AES_KEYSIZE_256 + \
22                                 AES_BLOCK_SIZE * 2)
23 #define AES_MAX_CT_SIZE         6
24
25 #define AES_CT_CTRL_HDR         cpu_to_le32(0x00220000)
26
27 /* AES-CBC/ECB/CTR/OFB/CFB command token */
28 #define AES_CMD0                cpu_to_le32(0x05000000)
29 #define AES_CMD1                cpu_to_le32(0x2d060000)
30 #define AES_CMD2                cpu_to_le32(0xe4a63806)
31 /* AES-GCM command token */
32 #define AES_GCM_CMD0            cpu_to_le32(0x0b000000)
33 #define AES_GCM_CMD1            cpu_to_le32(0xa0800000)
34 #define AES_GCM_CMD2            cpu_to_le32(0x25000010)
35 #define AES_GCM_CMD3            cpu_to_le32(0x0f020000)
36 #define AES_GCM_CMD4            cpu_to_le32(0x21e60000)
37 #define AES_GCM_CMD5            cpu_to_le32(0x40e60000)
38 #define AES_GCM_CMD6            cpu_to_le32(0xd0070000)
39
40 /* AES transform information word 0 fields */
41 #define AES_TFM_BASIC_OUT       cpu_to_le32(0x4 << 0)
42 #define AES_TFM_BASIC_IN        cpu_to_le32(0x5 << 0)
43 #define AES_TFM_GCM_OUT         cpu_to_le32(0x6 << 0)
44 #define AES_TFM_GCM_IN          cpu_to_le32(0xf << 0)
45 #define AES_TFM_SIZE(x)         cpu_to_le32((x) << 8)
46 #define AES_TFM_128BITS         cpu_to_le32(0xb << 16)
47 #define AES_TFM_192BITS         cpu_to_le32(0xd << 16)
48 #define AES_TFM_256BITS         cpu_to_le32(0xf << 16)
49 #define AES_TFM_GHASH_DIGEST    cpu_to_le32(0x2 << 21)
50 #define AES_TFM_GHASH           cpu_to_le32(0x4 << 23)
51 /* AES transform information word 1 fields */
52 #define AES_TFM_ECB             cpu_to_le32(0x0 << 0)
53 #define AES_TFM_CBC             cpu_to_le32(0x1 << 0)
54 #define AES_TFM_OFB             cpu_to_le32(0x4 << 0)
55 #define AES_TFM_CFB128          cpu_to_le32(0x5 << 0)
56 #define AES_TFM_CTR_INIT        cpu_to_le32(0x2 << 0)   /* init counter to 1 */
57 #define AES_TFM_CTR_LOAD        cpu_to_le32(0x6 << 0)   /* load/reuse counter */
58 #define AES_TFM_3IV             cpu_to_le32(0x7 << 5)   /* using IV 0-2 */
59 #define AES_TFM_FULL_IV         cpu_to_le32(0xf << 5)   /* using IV 0-3 */
60 #define AES_TFM_IV_CTR_MODE     cpu_to_le32(0x1 << 10)
61 #define AES_TFM_ENC_HASH        cpu_to_le32(0x1 << 17)
62
63 /* AES flags */
64 #define AES_FLAGS_CIPHER_MSK    GENMASK(4, 0)
65 #define AES_FLAGS_ECB           BIT(0)
66 #define AES_FLAGS_CBC           BIT(1)
67 #define AES_FLAGS_CTR           BIT(2)
68 #define AES_FLAGS_OFB           BIT(3)
69 #define AES_FLAGS_CFB128        BIT(4)
70 #define AES_FLAGS_GCM           BIT(5)
71 #define AES_FLAGS_ENCRYPT       BIT(6)
72 #define AES_FLAGS_BUSY          BIT(7)
73
74 #define AES_AUTH_TAG_ERR        cpu_to_le32(BIT(26))
75
76 /**
77  * mtk_aes_info - hardware information of AES
78  * @cmd:        command token, hardware instruction
79  * @tfm:        transform state of cipher algorithm.
80  * @state:      contains keys and initial vectors.
81  *
82  * Memory layout of GCM buffer:
83  * /-----------\
84  * |  AES KEY  | 128/196/256 bits
85  * |-----------|
86  * |  HASH KEY | a string 128 zero bits encrypted using the block cipher
87  * |-----------|
88  * |    IVs    | 4 * 4 bytes
89  * \-----------/
90  *
91  * The engine requires all these info to do:
92  * - Commands decoding and control of the engine's data path.
93  * - Coordinating hardware data fetch and store operations.
94  * - Result token construction and output.
95  */
96 struct mtk_aes_info {
97         __le32 cmd[AES_MAX_CT_SIZE];
98         __le32 tfm[2];
99         __le32 state[AES_MAX_STATE_BUF_SIZE];
100 };
101
102 struct mtk_aes_reqctx {
103         u64 mode;
104 };
105
106 struct mtk_aes_base_ctx {
107         struct mtk_cryp *cryp;
108         u32 keylen;
109         __le32 key[12];
110         __le32 keymode;
111
112         mtk_aes_fn start;
113
114         struct mtk_aes_info info;
115         dma_addr_t ct_dma;
116         dma_addr_t tfm_dma;
117
118         __le32 ct_hdr;
119         u32 ct_size;
120 };
121
122 struct mtk_aes_ctx {
123         struct mtk_aes_base_ctx base;
124 };
125
126 struct mtk_aes_ctr_ctx {
127         struct mtk_aes_base_ctx base;
128
129         __be32  iv[AES_BLOCK_SIZE / sizeof(u32)];
130         size_t offset;
131         struct scatterlist src[2];
132         struct scatterlist dst[2];
133 };
134
135 struct mtk_aes_gcm_ctx {
136         struct mtk_aes_base_ctx base;
137
138         u32 authsize;
139         size_t textlen;
140 };
141
142 struct mtk_aes_drv {
143         struct list_head dev_list;
144         /* Device list lock */
145         spinlock_t lock;
146 };
147
148 static struct mtk_aes_drv mtk_aes = {
149         .dev_list = LIST_HEAD_INIT(mtk_aes.dev_list),
150         .lock = __SPIN_LOCK_UNLOCKED(mtk_aes.lock),
151 };
152
153 static inline u32 mtk_aes_read(struct mtk_cryp *cryp, u32 offset)
154 {
155         return readl_relaxed(cryp->base + offset);
156 }
157
158 static inline void mtk_aes_write(struct mtk_cryp *cryp,
159                                  u32 offset, u32 value)
160 {
161         writel_relaxed(value, cryp->base + offset);
162 }
163
164 static struct mtk_cryp *mtk_aes_find_dev(struct mtk_aes_base_ctx *ctx)
165 {
166         struct mtk_cryp *cryp = NULL;
167         struct mtk_cryp *tmp;
168
169         spin_lock_bh(&mtk_aes.lock);
170         if (!ctx->cryp) {
171                 list_for_each_entry(tmp, &mtk_aes.dev_list, aes_list) {
172                         cryp = tmp;
173                         break;
174                 }
175                 ctx->cryp = cryp;
176         } else {
177                 cryp = ctx->cryp;
178         }
179         spin_unlock_bh(&mtk_aes.lock);
180
181         return cryp;
182 }
183
184 static inline size_t mtk_aes_padlen(size_t len)
185 {
186         len &= AES_BLOCK_SIZE - 1;
187         return len ? AES_BLOCK_SIZE - len : 0;
188 }
189
190 static bool mtk_aes_check_aligned(struct scatterlist *sg, size_t len,
191                                   struct mtk_aes_dma *dma)
192 {
193         int nents;
194
195         if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
196                 return false;
197
198         for (nents = 0; sg; sg = sg_next(sg), ++nents) {
199                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
200                         return false;
201
202                 if (len <= sg->length) {
203                         if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
204                                 return false;
205
206                         dma->nents = nents + 1;
207                         dma->remainder = sg->length - len;
208                         sg->length = len;
209                         return true;
210                 }
211
212                 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
213                         return false;
214
215                 len -= sg->length;
216         }
217
218         return false;
219 }
220
221 static inline void mtk_aes_set_mode(struct mtk_aes_rec *aes,
222                                     const struct mtk_aes_reqctx *rctx)
223 {
224         /* Clear all but persistent flags and set request flags. */
225         aes->flags = (aes->flags & AES_FLAGS_BUSY) | rctx->mode;
226 }
227
228 static inline void mtk_aes_restore_sg(const struct mtk_aes_dma *dma)
229 {
230         struct scatterlist *sg = dma->sg;
231         int nents = dma->nents;
232
233         if (!dma->remainder)
234                 return;
235
236         while (--nents > 0 && sg)
237                 sg = sg_next(sg);
238
239         if (!sg)
240                 return;
241
242         sg->length += dma->remainder;
243 }
244
245 static inline int mtk_aes_complete(struct mtk_cryp *cryp,
246                                    struct mtk_aes_rec *aes,
247                                    int err)
248 {
249         aes->flags &= ~AES_FLAGS_BUSY;
250         aes->areq->complete(aes->areq, err);
251         /* Handle new request */
252         tasklet_schedule(&aes->queue_task);
253         return err;
254 }
255
256 /*
257  * Write descriptors for processing. This will configure the engine, load
258  * the transform information and then start the packet processing.
259  */
260 static int mtk_aes_xmit(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
261 {
262         struct mtk_ring *ring = cryp->ring[aes->id];
263         struct mtk_desc *cmd = NULL, *res = NULL;
264         struct scatterlist *ssg = aes->src.sg, *dsg = aes->dst.sg;
265         u32 slen = aes->src.sg_len, dlen = aes->dst.sg_len;
266         int nents;
267
268         /* Write command descriptors */
269         for (nents = 0; nents < slen; ++nents, ssg = sg_next(ssg)) {
270                 cmd = ring->cmd_next;
271                 cmd->hdr = MTK_DESC_BUF_LEN(ssg->length);
272                 cmd->buf = cpu_to_le32(sg_dma_address(ssg));
273
274                 if (nents == 0) {
275                         cmd->hdr |= MTK_DESC_FIRST |
276                                     MTK_DESC_CT_LEN(aes->ctx->ct_size);
277                         cmd->ct = cpu_to_le32(aes->ctx->ct_dma);
278                         cmd->ct_hdr = aes->ctx->ct_hdr;
279                         cmd->tfm = cpu_to_le32(aes->ctx->tfm_dma);
280                 }
281
282                 /* Shift ring buffer and check boundary */
283                 if (++ring->cmd_next == ring->cmd_base + MTK_DESC_NUM)
284                         ring->cmd_next = ring->cmd_base;
285         }
286         cmd->hdr |= MTK_DESC_LAST;
287
288         /* Prepare result descriptors */
289         for (nents = 0; nents < dlen; ++nents, dsg = sg_next(dsg)) {
290                 res = ring->res_next;
291                 res->hdr = MTK_DESC_BUF_LEN(dsg->length);
292                 res->buf = cpu_to_le32(sg_dma_address(dsg));
293
294                 if (nents == 0)
295                         res->hdr |= MTK_DESC_FIRST;
296
297                 /* Shift ring buffer and check boundary */
298                 if (++ring->res_next == ring->res_base + MTK_DESC_NUM)
299                         ring->res_next = ring->res_base;
300         }
301         res->hdr |= MTK_DESC_LAST;
302
303         /* Pointer to current result descriptor */
304         ring->res_prev = res;
305
306         /* Prepare enough space for authenticated tag */
307         if (aes->flags & AES_FLAGS_GCM)
308                 le32_add_cpu(&res->hdr, AES_BLOCK_SIZE);
309
310         /*
311          * Make sure that all changes to the DMA ring are done before we
312          * start engine.
313          */
314         wmb();
315         /* Start DMA transfer */
316         mtk_aes_write(cryp, RDR_PREP_COUNT(aes->id), MTK_DESC_CNT(dlen));
317         mtk_aes_write(cryp, CDR_PREP_COUNT(aes->id), MTK_DESC_CNT(slen));
318
319         return -EINPROGRESS;
320 }
321
322 static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
323 {
324         struct mtk_aes_base_ctx *ctx = aes->ctx;
325
326         dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
327                          DMA_TO_DEVICE);
328
329         if (aes->src.sg == aes->dst.sg) {
330                 dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
331                              DMA_BIDIRECTIONAL);
332
333                 if (aes->src.sg != &aes->aligned_sg)
334                         mtk_aes_restore_sg(&aes->src);
335         } else {
336                 dma_unmap_sg(cryp->dev, aes->dst.sg, aes->dst.nents,
337                              DMA_FROM_DEVICE);
338
339                 if (aes->dst.sg != &aes->aligned_sg)
340                         mtk_aes_restore_sg(&aes->dst);
341
342                 dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
343                              DMA_TO_DEVICE);
344
345                 if (aes->src.sg != &aes->aligned_sg)
346                         mtk_aes_restore_sg(&aes->src);
347         }
348
349         if (aes->dst.sg == &aes->aligned_sg)
350                 sg_copy_from_buffer(aes->real_dst, sg_nents(aes->real_dst),
351                                     aes->buf, aes->total);
352 }
353
354 static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
355 {
356         struct mtk_aes_base_ctx *ctx = aes->ctx;
357         struct mtk_aes_info *info = &ctx->info;
358
359         ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
360                                      DMA_TO_DEVICE);
361         if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma)))
362                 goto exit;
363
364         ctx->tfm_dma = ctx->ct_dma + sizeof(info->cmd);
365
366         if (aes->src.sg == aes->dst.sg) {
367                 aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
368                                              aes->src.nents,
369                                              DMA_BIDIRECTIONAL);
370                 aes->dst.sg_len = aes->src.sg_len;
371                 if (unlikely(!aes->src.sg_len))
372                         goto sg_map_err;
373         } else {
374                 aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
375                                              aes->src.nents, DMA_TO_DEVICE);
376                 if (unlikely(!aes->src.sg_len))
377                         goto sg_map_err;
378
379                 aes->dst.sg_len = dma_map_sg(cryp->dev, aes->dst.sg,
380                                              aes->dst.nents, DMA_FROM_DEVICE);
381                 if (unlikely(!aes->dst.sg_len)) {
382                         dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
383                                      DMA_TO_DEVICE);
384                         goto sg_map_err;
385                 }
386         }
387
388         return mtk_aes_xmit(cryp, aes);
389
390 sg_map_err:
391         dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(*info), DMA_TO_DEVICE);
392 exit:
393         return mtk_aes_complete(cryp, aes, -EINVAL);
394 }
395
396 /* Initialize transform information of CBC/ECB/CTR/OFB/CFB mode */
397 static void mtk_aes_info_init(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
398                               size_t len)
399 {
400         struct skcipher_request *req = skcipher_request_cast(aes->areq);
401         struct mtk_aes_base_ctx *ctx = aes->ctx;
402         struct mtk_aes_info *info = &ctx->info;
403         u32 cnt = 0;
404
405         ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len);
406         info->cmd[cnt++] = AES_CMD0 | cpu_to_le32(len);
407         info->cmd[cnt++] = AES_CMD1;
408
409         info->tfm[0] = AES_TFM_SIZE(ctx->keylen) | ctx->keymode;
410         if (aes->flags & AES_FLAGS_ENCRYPT)
411                 info->tfm[0] |= AES_TFM_BASIC_OUT;
412         else
413                 info->tfm[0] |= AES_TFM_BASIC_IN;
414
415         switch (aes->flags & AES_FLAGS_CIPHER_MSK) {
416         case AES_FLAGS_CBC:
417                 info->tfm[1] = AES_TFM_CBC;
418                 break;
419         case AES_FLAGS_ECB:
420                 info->tfm[1] = AES_TFM_ECB;
421                 goto ecb;
422         case AES_FLAGS_CTR:
423                 info->tfm[1] = AES_TFM_CTR_LOAD;
424                 goto ctr;
425         case AES_FLAGS_OFB:
426                 info->tfm[1] = AES_TFM_OFB;
427                 break;
428         case AES_FLAGS_CFB128:
429                 info->tfm[1] = AES_TFM_CFB128;
430                 break;
431         default:
432                 /* Should not happen... */
433                 return;
434         }
435
436         memcpy(info->state + ctx->keylen, req->iv, AES_BLOCK_SIZE);
437 ctr:
438         le32_add_cpu(&info->tfm[0],
439                      le32_to_cpu(AES_TFM_SIZE(SIZE_IN_WORDS(AES_BLOCK_SIZE))));
440         info->tfm[1] |= AES_TFM_FULL_IV;
441         info->cmd[cnt++] = AES_CMD2;
442 ecb:
443         ctx->ct_size = cnt;
444 }
445
446 static int mtk_aes_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
447                        struct scatterlist *src, struct scatterlist *dst,
448                        size_t len)
449 {
450         size_t padlen = 0;
451         bool src_aligned, dst_aligned;
452
453         aes->total = len;
454         aes->src.sg = src;
455         aes->dst.sg = dst;
456         aes->real_dst = dst;
457
458         src_aligned = mtk_aes_check_aligned(src, len, &aes->src);
459         if (src == dst)
460                 dst_aligned = src_aligned;
461         else
462                 dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst);
463
464         if (!src_aligned || !dst_aligned) {
465                 padlen = mtk_aes_padlen(len);
466
467                 if (len + padlen > AES_BUF_SIZE)
468                         return mtk_aes_complete(cryp, aes, -ENOMEM);
469
470                 if (!src_aligned) {
471                         sg_copy_to_buffer(src, sg_nents(src), aes->buf, len);
472                         aes->src.sg = &aes->aligned_sg;
473                         aes->src.nents = 1;
474                         aes->src.remainder = 0;
475                 }
476
477                 if (!dst_aligned) {
478                         aes->dst.sg = &aes->aligned_sg;
479                         aes->dst.nents = 1;
480                         aes->dst.remainder = 0;
481                 }
482
483                 sg_init_table(&aes->aligned_sg, 1);
484                 sg_set_buf(&aes->aligned_sg, aes->buf, len + padlen);
485         }
486
487         mtk_aes_info_init(cryp, aes, len + padlen);
488
489         return mtk_aes_map(cryp, aes);
490 }
491
492 static int mtk_aes_handle_queue(struct mtk_cryp *cryp, u8 id,
493                                 struct crypto_async_request *new_areq)
494 {
495         struct mtk_aes_rec *aes = cryp->aes[id];
496         struct crypto_async_request *areq, *backlog;
497         struct mtk_aes_base_ctx *ctx;
498         unsigned long flags;
499         int ret = 0;
500
501         spin_lock_irqsave(&aes->lock, flags);
502         if (new_areq)
503                 ret = crypto_enqueue_request(&aes->queue, new_areq);
504         if (aes->flags & AES_FLAGS_BUSY) {
505                 spin_unlock_irqrestore(&aes->lock, flags);
506                 return ret;
507         }
508         backlog = crypto_get_backlog(&aes->queue);
509         areq = crypto_dequeue_request(&aes->queue);
510         if (areq)
511                 aes->flags |= AES_FLAGS_BUSY;
512         spin_unlock_irqrestore(&aes->lock, flags);
513
514         if (!areq)
515                 return ret;
516
517         if (backlog)
518                 backlog->complete(backlog, -EINPROGRESS);
519
520         ctx = crypto_tfm_ctx(areq->tfm);
521         /* Write key into state buffer */
522         memcpy(ctx->info.state, ctx->key, sizeof(ctx->key));
523
524         aes->areq = areq;
525         aes->ctx = ctx;
526
527         return ctx->start(cryp, aes);
528 }
529
530 static int mtk_aes_transfer_complete(struct mtk_cryp *cryp,
531                                      struct mtk_aes_rec *aes)
532 {
533         return mtk_aes_complete(cryp, aes, 0);
534 }
535
536 static int mtk_aes_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
537 {
538         struct skcipher_request *req = skcipher_request_cast(aes->areq);
539         struct mtk_aes_reqctx *rctx = skcipher_request_ctx(req);
540
541         mtk_aes_set_mode(aes, rctx);
542         aes->resume = mtk_aes_transfer_complete;
543
544         return mtk_aes_dma(cryp, aes, req->src, req->dst, req->cryptlen);
545 }
546
547 static inline struct mtk_aes_ctr_ctx *
548 mtk_aes_ctr_ctx_cast(struct mtk_aes_base_ctx *ctx)
549 {
550         return container_of(ctx, struct mtk_aes_ctr_ctx, base);
551 }
552
553 static int mtk_aes_ctr_transfer(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
554 {
555         struct mtk_aes_base_ctx *ctx = aes->ctx;
556         struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(ctx);
557         struct skcipher_request *req = skcipher_request_cast(aes->areq);
558         struct scatterlist *src, *dst;
559         u32 start, end, ctr, blocks;
560         size_t datalen;
561         bool fragmented = false;
562
563         /* Check for transfer completion. */
564         cctx->offset += aes->total;
565         if (cctx->offset >= req->cryptlen)
566                 return mtk_aes_transfer_complete(cryp, aes);
567
568         /* Compute data length. */
569         datalen = req->cryptlen - cctx->offset;
570         blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
571         ctr = be32_to_cpu(cctx->iv[3]);
572
573         /* Check 32bit counter overflow. */
574         start = ctr;
575         end = start + blocks - 1;
576         if (end < start) {
577                 ctr = 0xffffffff;
578                 datalen = AES_BLOCK_SIZE * -start;
579                 fragmented = true;
580         }
581
582         /* Jump to offset. */
583         src = scatterwalk_ffwd(cctx->src, req->src, cctx->offset);
584         dst = ((req->src == req->dst) ? src :
585                scatterwalk_ffwd(cctx->dst, req->dst, cctx->offset));
586
587         /* Write IVs into transform state buffer. */
588         memcpy(ctx->info.state + ctx->keylen, cctx->iv, AES_BLOCK_SIZE);
589
590         if (unlikely(fragmented)) {
591         /*
592          * Increment the counter manually to cope with the hardware
593          * counter overflow.
594          */
595                 cctx->iv[3] = cpu_to_be32(ctr);
596                 crypto_inc((u8 *)cctx->iv, AES_BLOCK_SIZE);
597         }
598
599         return mtk_aes_dma(cryp, aes, src, dst, datalen);
600 }
601
602 static int mtk_aes_ctr_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
603 {
604         struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(aes->ctx);
605         struct skcipher_request *req = skcipher_request_cast(aes->areq);
606         struct mtk_aes_reqctx *rctx = skcipher_request_ctx(req);
607
608         mtk_aes_set_mode(aes, rctx);
609
610         memcpy(cctx->iv, req->iv, AES_BLOCK_SIZE);
611         cctx->offset = 0;
612         aes->total = 0;
613         aes->resume = mtk_aes_ctr_transfer;
614
615         return mtk_aes_ctr_transfer(cryp, aes);
616 }
617
618 /* Check and set the AES key to transform state buffer */
619 static int mtk_aes_setkey(struct crypto_skcipher *tfm,
620                           const u8 *key, u32 keylen)
621 {
622         struct mtk_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
623
624         switch (keylen) {
625         case AES_KEYSIZE_128:
626                 ctx->keymode = AES_TFM_128BITS;
627                 break;
628         case AES_KEYSIZE_192:
629                 ctx->keymode = AES_TFM_192BITS;
630                 break;
631         case AES_KEYSIZE_256:
632                 ctx->keymode = AES_TFM_256BITS;
633                 break;
634
635         default:
636                 return -EINVAL;
637         }
638
639         ctx->keylen = SIZE_IN_WORDS(keylen);
640         memcpy(ctx->key, key, keylen);
641
642         return 0;
643 }
644
645 static int mtk_aes_crypt(struct skcipher_request *req, u64 mode)
646 {
647         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
648         struct mtk_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
649         struct mtk_aes_reqctx *rctx;
650         struct mtk_cryp *cryp;
651
652         cryp = mtk_aes_find_dev(ctx);
653         if (!cryp)
654                 return -ENODEV;
655
656         rctx = skcipher_request_ctx(req);
657         rctx->mode = mode;
658
659         return mtk_aes_handle_queue(cryp, !(mode & AES_FLAGS_ENCRYPT),
660                                     &req->base);
661 }
662
663 static int mtk_aes_ecb_encrypt(struct skcipher_request *req)
664 {
665         return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_ECB);
666 }
667
668 static int mtk_aes_ecb_decrypt(struct skcipher_request *req)
669 {
670         return mtk_aes_crypt(req, AES_FLAGS_ECB);
671 }
672
673 static int mtk_aes_cbc_encrypt(struct skcipher_request *req)
674 {
675         return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CBC);
676 }
677
678 static int mtk_aes_cbc_decrypt(struct skcipher_request *req)
679 {
680         return mtk_aes_crypt(req, AES_FLAGS_CBC);
681 }
682
683 static int mtk_aes_ctr_encrypt(struct skcipher_request *req)
684 {
685         return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CTR);
686 }
687
688 static int mtk_aes_ctr_decrypt(struct skcipher_request *req)
689 {
690         return mtk_aes_crypt(req, AES_FLAGS_CTR);
691 }
692
693 static int mtk_aes_ofb_encrypt(struct skcipher_request *req)
694 {
695         return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_OFB);
696 }
697
698 static int mtk_aes_ofb_decrypt(struct skcipher_request *req)
699 {
700         return mtk_aes_crypt(req, AES_FLAGS_OFB);
701 }
702
703 static int mtk_aes_cfb_encrypt(struct skcipher_request *req)
704 {
705         return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CFB128);
706 }
707
708 static int mtk_aes_cfb_decrypt(struct skcipher_request *req)
709 {
710         return mtk_aes_crypt(req, AES_FLAGS_CFB128);
711 }
712
713 static int mtk_aes_init_tfm(struct crypto_skcipher *tfm)
714 {
715         struct mtk_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
716
717         crypto_skcipher_set_reqsize(tfm, sizeof(struct mtk_aes_reqctx));
718         ctx->base.start = mtk_aes_start;
719         return 0;
720 }
721
722 static int mtk_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
723 {
724         struct mtk_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
725
726         crypto_skcipher_set_reqsize(tfm, sizeof(struct mtk_aes_reqctx));
727         ctx->base.start = mtk_aes_ctr_start;
728         return 0;
729 }
730
731 static struct skcipher_alg aes_algs[] = {
732 {
733         .base.cra_name          = "cbc(aes)",
734         .base.cra_driver_name   = "cbc-aes-mtk",
735         .base.cra_priority      = 400,
736         .base.cra_flags         = CRYPTO_ALG_ASYNC,
737         .base.cra_blocksize     = AES_BLOCK_SIZE,
738         .base.cra_ctxsize       = sizeof(struct mtk_aes_ctx),
739         .base.cra_alignmask     = 0xf,
740         .base.cra_module        = THIS_MODULE,
741
742         .min_keysize            = AES_MIN_KEY_SIZE,
743         .max_keysize            = AES_MAX_KEY_SIZE,
744         .setkey                 = mtk_aes_setkey,
745         .encrypt                = mtk_aes_cbc_encrypt,
746         .decrypt                = mtk_aes_cbc_decrypt,
747         .ivsize                 = AES_BLOCK_SIZE,
748         .init                   = mtk_aes_init_tfm,
749 },
750 {
751         .base.cra_name          = "ecb(aes)",
752         .base.cra_driver_name   = "ecb-aes-mtk",
753         .base.cra_priority      = 400,
754         .base.cra_flags         = CRYPTO_ALG_ASYNC,
755         .base.cra_blocksize     = AES_BLOCK_SIZE,
756         .base.cra_ctxsize       = sizeof(struct mtk_aes_ctx),
757         .base.cra_alignmask     = 0xf,
758         .base.cra_module        = THIS_MODULE,
759
760         .min_keysize            = AES_MIN_KEY_SIZE,
761         .max_keysize            = AES_MAX_KEY_SIZE,
762         .setkey                 = mtk_aes_setkey,
763         .encrypt                = mtk_aes_ecb_encrypt,
764         .decrypt                = mtk_aes_ecb_decrypt,
765         .init                   = mtk_aes_init_tfm,
766 },
767 {
768         .base.cra_name          = "ctr(aes)",
769         .base.cra_driver_name   = "ctr-aes-mtk",
770         .base.cra_priority      = 400,
771         .base.cra_flags         = CRYPTO_ALG_ASYNC,
772         .base.cra_blocksize     = 1,
773         .base.cra_ctxsize       = sizeof(struct mtk_aes_ctx),
774         .base.cra_alignmask     = 0xf,
775         .base.cra_module        = THIS_MODULE,
776
777         .min_keysize            = AES_MIN_KEY_SIZE,
778         .max_keysize            = AES_MAX_KEY_SIZE,
779         .ivsize                 = AES_BLOCK_SIZE,
780         .setkey                 = mtk_aes_setkey,
781         .encrypt                = mtk_aes_ctr_encrypt,
782         .decrypt                = mtk_aes_ctr_decrypt,
783         .init                   = mtk_aes_ctr_init_tfm,
784 },
785 {
786         .base.cra_name          = "ofb(aes)",
787         .base.cra_driver_name   = "ofb-aes-mtk",
788         .base.cra_priority      = 400,
789         .base.cra_flags         = CRYPTO_ALG_ASYNC,
790         .base.cra_blocksize     = AES_BLOCK_SIZE,
791         .base.cra_ctxsize       = sizeof(struct mtk_aes_ctx),
792         .base.cra_alignmask     = 0xf,
793         .base.cra_module        = THIS_MODULE,
794
795         .min_keysize            = AES_MIN_KEY_SIZE,
796         .max_keysize            = AES_MAX_KEY_SIZE,
797         .ivsize                 = AES_BLOCK_SIZE,
798         .setkey                 = mtk_aes_setkey,
799         .encrypt                = mtk_aes_ofb_encrypt,
800         .decrypt                = mtk_aes_ofb_decrypt,
801 },
802 {
803         .base.cra_name          = "cfb(aes)",
804         .base.cra_driver_name   = "cfb-aes-mtk",
805         .base.cra_priority      = 400,
806         .base.cra_flags         = CRYPTO_ALG_ASYNC,
807         .base.cra_blocksize     = 1,
808         .base.cra_ctxsize       = sizeof(struct mtk_aes_ctx),
809         .base.cra_alignmask     = 0xf,
810         .base.cra_module        = THIS_MODULE,
811
812         .min_keysize            = AES_MIN_KEY_SIZE,
813         .max_keysize            = AES_MAX_KEY_SIZE,
814         .ivsize                 = AES_BLOCK_SIZE,
815         .setkey                 = mtk_aes_setkey,
816         .encrypt                = mtk_aes_cfb_encrypt,
817         .decrypt                = mtk_aes_cfb_decrypt,
818 },
819 };
820
821 static inline struct mtk_aes_gcm_ctx *
822 mtk_aes_gcm_ctx_cast(struct mtk_aes_base_ctx *ctx)
823 {
824         return container_of(ctx, struct mtk_aes_gcm_ctx, base);
825 }
826
827 /*
828  * Engine will verify and compare tag automatically, so we just need
829  * to check returned status which stored in the result descriptor.
830  */
831 static int mtk_aes_gcm_tag_verify(struct mtk_cryp *cryp,
832                                   struct mtk_aes_rec *aes)
833 {
834         __le32 status = cryp->ring[aes->id]->res_prev->ct;
835
836         return mtk_aes_complete(cryp, aes, (status & AES_AUTH_TAG_ERR) ?
837                                 -EBADMSG : 0);
838 }
839
840 /* Initialize transform information of GCM mode */
841 static void mtk_aes_gcm_info_init(struct mtk_cryp *cryp,
842                                   struct mtk_aes_rec *aes,
843                                   size_t len)
844 {
845         struct aead_request *req = aead_request_cast(aes->areq);
846         struct mtk_aes_base_ctx *ctx = aes->ctx;
847         struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
848         struct mtk_aes_info *info = &ctx->info;
849         u32 ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
850         u32 cnt = 0;
851
852         ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len);
853
854         info->cmd[cnt++] = AES_GCM_CMD0 | cpu_to_le32(req->assoclen);
855         info->cmd[cnt++] = AES_GCM_CMD1 | cpu_to_le32(req->assoclen);
856         info->cmd[cnt++] = AES_GCM_CMD2;
857         info->cmd[cnt++] = AES_GCM_CMD3 | cpu_to_le32(gctx->textlen);
858
859         if (aes->flags & AES_FLAGS_ENCRYPT) {
860                 info->cmd[cnt++] = AES_GCM_CMD4 | cpu_to_le32(gctx->authsize);
861                 info->tfm[0] = AES_TFM_GCM_OUT;
862         } else {
863                 info->cmd[cnt++] = AES_GCM_CMD5 | cpu_to_le32(gctx->authsize);
864                 info->cmd[cnt++] = AES_GCM_CMD6 | cpu_to_le32(gctx->authsize);
865                 info->tfm[0] = AES_TFM_GCM_IN;
866         }
867         ctx->ct_size = cnt;
868
869         info->tfm[0] |= AES_TFM_GHASH_DIGEST | AES_TFM_GHASH | AES_TFM_SIZE(
870                         ctx->keylen + SIZE_IN_WORDS(AES_BLOCK_SIZE + ivsize)) |
871                         ctx->keymode;
872         info->tfm[1] = AES_TFM_CTR_INIT | AES_TFM_IV_CTR_MODE | AES_TFM_3IV |
873                        AES_TFM_ENC_HASH;
874
875         memcpy(info->state + ctx->keylen + SIZE_IN_WORDS(AES_BLOCK_SIZE),
876                req->iv, ivsize);
877 }
878
879 static int mtk_aes_gcm_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
880                            struct scatterlist *src, struct scatterlist *dst,
881                            size_t len)
882 {
883         bool src_aligned, dst_aligned;
884
885         aes->src.sg = src;
886         aes->dst.sg = dst;
887         aes->real_dst = dst;
888
889         src_aligned = mtk_aes_check_aligned(src, len, &aes->src);
890         if (src == dst)
891                 dst_aligned = src_aligned;
892         else
893                 dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst);
894
895         if (!src_aligned || !dst_aligned) {
896                 if (aes->total > AES_BUF_SIZE)
897                         return mtk_aes_complete(cryp, aes, -ENOMEM);
898
899                 if (!src_aligned) {
900                         sg_copy_to_buffer(src, sg_nents(src), aes->buf, len);
901                         aes->src.sg = &aes->aligned_sg;
902                         aes->src.nents = 1;
903                         aes->src.remainder = 0;
904                 }
905
906                 if (!dst_aligned) {
907                         aes->dst.sg = &aes->aligned_sg;
908                         aes->dst.nents = 1;
909                         aes->dst.remainder = 0;
910                 }
911
912                 sg_init_table(&aes->aligned_sg, 1);
913                 sg_set_buf(&aes->aligned_sg, aes->buf, aes->total);
914         }
915
916         mtk_aes_gcm_info_init(cryp, aes, len);
917
918         return mtk_aes_map(cryp, aes);
919 }
920
921 /* Todo: GMAC */
922 static int mtk_aes_gcm_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
923 {
924         struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(aes->ctx);
925         struct aead_request *req = aead_request_cast(aes->areq);
926         struct mtk_aes_reqctx *rctx = aead_request_ctx(req);
927         u32 len = req->assoclen + req->cryptlen;
928
929         mtk_aes_set_mode(aes, rctx);
930
931         if (aes->flags & AES_FLAGS_ENCRYPT) {
932                 u32 tag[4];
933
934                 aes->resume = mtk_aes_transfer_complete;
935                 /* Compute total process length. */
936                 aes->total = len + gctx->authsize;
937                 /* Hardware will append authenticated tag to output buffer */
938                 scatterwalk_map_and_copy(tag, req->dst, len, gctx->authsize, 1);
939         } else {
940                 aes->resume = mtk_aes_gcm_tag_verify;
941                 aes->total = len;
942         }
943
944         return mtk_aes_gcm_dma(cryp, aes, req->src, req->dst, len);
945 }
946
947 static int mtk_aes_gcm_crypt(struct aead_request *req, u64 mode)
948 {
949         struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
950         struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
951         struct mtk_aes_reqctx *rctx = aead_request_ctx(req);
952         struct mtk_cryp *cryp;
953         bool enc = !!(mode & AES_FLAGS_ENCRYPT);
954
955         cryp = mtk_aes_find_dev(ctx);
956         if (!cryp)
957                 return -ENODEV;
958
959         /* Compute text length. */
960         gctx->textlen = req->cryptlen - (enc ? 0 : gctx->authsize);
961
962         /* Empty messages are not supported yet */
963         if (!gctx->textlen && !req->assoclen)
964                 return -EINVAL;
965
966         rctx->mode = AES_FLAGS_GCM | mode;
967
968         return mtk_aes_handle_queue(cryp, enc, &req->base);
969 }
970
971 /*
972  * Because of the hardware limitation, we need to pre-calculate key(H)
973  * for the GHASH operation. The result of the encryption operation
974  * need to be stored in the transform state buffer.
975  */
976 static int mtk_aes_gcm_setkey(struct crypto_aead *aead, const u8 *key,
977                               u32 keylen)
978 {
979         struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead);
980         union {
981                 u32 x32[SIZE_IN_WORDS(AES_BLOCK_SIZE)];
982                 u8 x8[AES_BLOCK_SIZE];
983         } hash = {};
984         struct crypto_aes_ctx aes_ctx;
985         int err;
986         int i;
987
988         switch (keylen) {
989         case AES_KEYSIZE_128:
990                 ctx->keymode = AES_TFM_128BITS;
991                 break;
992         case AES_KEYSIZE_192:
993                 ctx->keymode = AES_TFM_192BITS;
994                 break;
995         case AES_KEYSIZE_256:
996                 ctx->keymode = AES_TFM_256BITS;
997                 break;
998
999         default:
1000                 return -EINVAL;
1001         }
1002
1003         ctx->keylen = SIZE_IN_WORDS(keylen);
1004
1005         err = aes_expandkey(&aes_ctx, key, keylen);
1006         if (err)
1007                 return err;
1008
1009         aes_encrypt(&aes_ctx, hash.x8, hash.x8);
1010         memzero_explicit(&aes_ctx, sizeof(aes_ctx));
1011
1012         memcpy(ctx->key, key, keylen);
1013
1014         /* Why do we need to do this? */
1015         for (i = 0; i < SIZE_IN_WORDS(AES_BLOCK_SIZE); i++)
1016                 hash.x32[i] = swab32(hash.x32[i]);
1017
1018         memcpy(ctx->key + ctx->keylen, &hash, AES_BLOCK_SIZE);
1019
1020         return 0;
1021 }
1022
1023 static int mtk_aes_gcm_setauthsize(struct crypto_aead *aead,
1024                                    u32 authsize)
1025 {
1026         struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead);
1027         struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
1028
1029         /* Same as crypto_gcm_authsize() from crypto/gcm.c */
1030         switch (authsize) {
1031         case 8:
1032         case 12:
1033         case 16:
1034                 break;
1035         default:
1036                 return -EINVAL;
1037         }
1038
1039         gctx->authsize = authsize;
1040         return 0;
1041 }
1042
1043 static int mtk_aes_gcm_encrypt(struct aead_request *req)
1044 {
1045         return mtk_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1046 }
1047
1048 static int mtk_aes_gcm_decrypt(struct aead_request *req)
1049 {
1050         return mtk_aes_gcm_crypt(req, 0);
1051 }
1052
1053 static int mtk_aes_gcm_init(struct crypto_aead *aead)
1054 {
1055         struct mtk_aes_gcm_ctx *ctx = crypto_aead_ctx(aead);
1056
1057         crypto_aead_set_reqsize(aead, sizeof(struct mtk_aes_reqctx));
1058         ctx->base.start = mtk_aes_gcm_start;
1059         return 0;
1060 }
1061
1062 static struct aead_alg aes_gcm_alg = {
1063         .setkey         = mtk_aes_gcm_setkey,
1064         .setauthsize    = mtk_aes_gcm_setauthsize,
1065         .encrypt        = mtk_aes_gcm_encrypt,
1066         .decrypt        = mtk_aes_gcm_decrypt,
1067         .init           = mtk_aes_gcm_init,
1068         .ivsize         = GCM_AES_IV_SIZE,
1069         .maxauthsize    = AES_BLOCK_SIZE,
1070
1071         .base = {
1072                 .cra_name               = "gcm(aes)",
1073                 .cra_driver_name        = "gcm-aes-mtk",
1074                 .cra_priority           = 400,
1075                 .cra_flags              = CRYPTO_ALG_ASYNC,
1076                 .cra_blocksize          = 1,
1077                 .cra_ctxsize            = sizeof(struct mtk_aes_gcm_ctx),
1078                 .cra_alignmask          = 0xf,
1079                 .cra_module             = THIS_MODULE,
1080         },
1081 };
1082
1083 static void mtk_aes_queue_task(unsigned long data)
1084 {
1085         struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data;
1086
1087         mtk_aes_handle_queue(aes->cryp, aes->id, NULL);
1088 }
1089
1090 static void mtk_aes_done_task(unsigned long data)
1091 {
1092         struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data;
1093         struct mtk_cryp *cryp = aes->cryp;
1094
1095         mtk_aes_unmap(cryp, aes);
1096         aes->resume(cryp, aes);
1097 }
1098
1099 static irqreturn_t mtk_aes_irq(int irq, void *dev_id)
1100 {
1101         struct mtk_aes_rec *aes  = (struct mtk_aes_rec *)dev_id;
1102         struct mtk_cryp *cryp = aes->cryp;
1103         u32 val = mtk_aes_read(cryp, RDR_STAT(aes->id));
1104
1105         mtk_aes_write(cryp, RDR_STAT(aes->id), val);
1106
1107         if (likely(AES_FLAGS_BUSY & aes->flags)) {
1108                 mtk_aes_write(cryp, RDR_PROC_COUNT(aes->id), MTK_CNT_RST);
1109                 mtk_aes_write(cryp, RDR_THRESH(aes->id),
1110                               MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
1111
1112                 tasklet_schedule(&aes->done_task);
1113         } else {
1114                 dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
1115         }
1116         return IRQ_HANDLED;
1117 }
1118
1119 /*
1120  * The purpose of creating encryption and decryption records is
1121  * to process outbound/inbound data in parallel, it can improve
1122  * performance in most use cases, such as IPSec VPN, especially
1123  * under heavy network traffic.
1124  */
1125 static int mtk_aes_record_init(struct mtk_cryp *cryp)
1126 {
1127         struct mtk_aes_rec **aes = cryp->aes;
1128         int i, err = -ENOMEM;
1129
1130         for (i = 0; i < MTK_REC_NUM; i++) {
1131                 aes[i] = kzalloc(sizeof(**aes), GFP_KERNEL);
1132                 if (!aes[i])
1133                         goto err_cleanup;
1134
1135                 aes[i]->buf = (void *)__get_free_pages(GFP_KERNEL,
1136                                                 AES_BUF_ORDER);
1137                 if (!aes[i]->buf)
1138                         goto err_cleanup;
1139
1140                 aes[i]->cryp = cryp;
1141
1142                 spin_lock_init(&aes[i]->lock);
1143                 crypto_init_queue(&aes[i]->queue, AES_QUEUE_SIZE);
1144
1145                 tasklet_init(&aes[i]->queue_task, mtk_aes_queue_task,
1146                              (unsigned long)aes[i]);
1147                 tasklet_init(&aes[i]->done_task, mtk_aes_done_task,
1148                              (unsigned long)aes[i]);
1149         }
1150
1151         /* Link to ring0 and ring1 respectively */
1152         aes[0]->id = MTK_RING0;
1153         aes[1]->id = MTK_RING1;
1154
1155         return 0;
1156
1157 err_cleanup:
1158         for (; i--; ) {
1159                 free_page((unsigned long)aes[i]->buf);
1160                 kfree(aes[i]);
1161         }
1162
1163         return err;
1164 }
1165
1166 static void mtk_aes_record_free(struct mtk_cryp *cryp)
1167 {
1168         int i;
1169
1170         for (i = 0; i < MTK_REC_NUM; i++) {
1171                 tasklet_kill(&cryp->aes[i]->done_task);
1172                 tasklet_kill(&cryp->aes[i]->queue_task);
1173
1174                 free_page((unsigned long)cryp->aes[i]->buf);
1175                 kfree(cryp->aes[i]);
1176         }
1177 }
1178
1179 static void mtk_aes_unregister_algs(void)
1180 {
1181         int i;
1182
1183         crypto_unregister_aead(&aes_gcm_alg);
1184
1185         for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
1186                 crypto_unregister_skcipher(&aes_algs[i]);
1187 }
1188
1189 static int mtk_aes_register_algs(void)
1190 {
1191         int err, i;
1192
1193         for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
1194                 err = crypto_register_skcipher(&aes_algs[i]);
1195                 if (err)
1196                         goto err_aes_algs;
1197         }
1198
1199         err = crypto_register_aead(&aes_gcm_alg);
1200         if (err)
1201                 goto err_aes_algs;
1202
1203         return 0;
1204
1205 err_aes_algs:
1206         for (; i--; )
1207                 crypto_unregister_skcipher(&aes_algs[i]);
1208
1209         return err;
1210 }
1211
1212 int mtk_cipher_alg_register(struct mtk_cryp *cryp)
1213 {
1214         int ret;
1215
1216         INIT_LIST_HEAD(&cryp->aes_list);
1217
1218         /* Initialize two cipher records */
1219         ret = mtk_aes_record_init(cryp);
1220         if (ret)
1221                 goto err_record;
1222
1223         ret = devm_request_irq(cryp->dev, cryp->irq[MTK_RING0], mtk_aes_irq,
1224                                0, "mtk-aes", cryp->aes[0]);
1225         if (ret) {
1226                 dev_err(cryp->dev, "unable to request AES irq.\n");
1227                 goto err_res;
1228         }
1229
1230         ret = devm_request_irq(cryp->dev, cryp->irq[MTK_RING1], mtk_aes_irq,
1231                                0, "mtk-aes", cryp->aes[1]);
1232         if (ret) {
1233                 dev_err(cryp->dev, "unable to request AES irq.\n");
1234                 goto err_res;
1235         }
1236
1237         /* Enable ring0 and ring1 interrupt */
1238         mtk_aes_write(cryp, AIC_ENABLE_SET(MTK_RING0), MTK_IRQ_RDR0);
1239         mtk_aes_write(cryp, AIC_ENABLE_SET(MTK_RING1), MTK_IRQ_RDR1);
1240
1241         spin_lock(&mtk_aes.lock);
1242         list_add_tail(&cryp->aes_list, &mtk_aes.dev_list);
1243         spin_unlock(&mtk_aes.lock);
1244
1245         ret = mtk_aes_register_algs();
1246         if (ret)
1247                 goto err_algs;
1248
1249         return 0;
1250
1251 err_algs:
1252         spin_lock(&mtk_aes.lock);
1253         list_del(&cryp->aes_list);
1254         spin_unlock(&mtk_aes.lock);
1255 err_res:
1256         mtk_aes_record_free(cryp);
1257 err_record:
1258
1259         dev_err(cryp->dev, "mtk-aes initialization failed.\n");
1260         return ret;
1261 }
1262
1263 void mtk_cipher_alg_release(struct mtk_cryp *cryp)
1264 {
1265         spin_lock(&mtk_aes.lock);
1266         list_del(&cryp->aes_list);
1267         spin_unlock(&mtk_aes.lock);
1268
1269         mtk_aes_unregister_algs();
1270         mtk_aes_record_free(cryp);
1271 }