GNU Linux-libre 5.10.217-gnu1
[releases.git] / drivers / crypto / hisilicon / qm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/debugfs.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/idr.h>
10 #include <linux/io.h>
11 #include <linux/irqreturn.h>
12 #include <linux/log2.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include "qm.h"
19
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE            0x0
22 #define QM_VF_AEQ_INT_MASK              0x4
23 #define QM_VF_EQ_INT_SOURCE             0x8
24 #define QM_VF_EQ_INT_MASK               0xc
25 #define QM_IRQ_NUM_V1                   1
26 #define QM_IRQ_NUM_PF_V2                4
27 #define QM_IRQ_NUM_VF_V2                2
28
29 #define QM_EQ_EVENT_IRQ_VECTOR          0
30 #define QM_AEQ_EVENT_IRQ_VECTOR         1
31 #define QM_ABNORMAL_EVENT_IRQ_VECTOR    3
32
33 /* mailbox */
34 #define QM_MB_CMD_SQC                   0x0
35 #define QM_MB_CMD_CQC                   0x1
36 #define QM_MB_CMD_EQC                   0x2
37 #define QM_MB_CMD_AEQC                  0x3
38 #define QM_MB_CMD_SQC_BT                0x4
39 #define QM_MB_CMD_CQC_BT                0x5
40 #define QM_MB_CMD_SQC_VFT_V2            0x6
41
42 #define QM_MB_CMD_SEND_BASE             0x300
43 #define QM_MB_EVENT_SHIFT               8
44 #define QM_MB_BUSY_SHIFT                13
45 #define QM_MB_OP_SHIFT                  14
46 #define QM_MB_CMD_DATA_ADDR_L           0x304
47 #define QM_MB_CMD_DATA_ADDR_H           0x308
48
49 /* sqc shift */
50 #define QM_SQ_HOP_NUM_SHIFT             0
51 #define QM_SQ_PAGE_SIZE_SHIFT           4
52 #define QM_SQ_BUF_SIZE_SHIFT            8
53 #define QM_SQ_SQE_SIZE_SHIFT            12
54 #define QM_SQ_PRIORITY_SHIFT            0
55 #define QM_SQ_ORDERS_SHIFT              4
56 #define QM_SQ_TYPE_SHIFT                8
57
58 #define QM_SQ_TYPE_MASK                 GENMASK(3, 0)
59 #define QM_SQ_TAIL_IDX(sqc)             ((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
60
61 /* cqc shift */
62 #define QM_CQ_HOP_NUM_SHIFT             0
63 #define QM_CQ_PAGE_SIZE_SHIFT           4
64 #define QM_CQ_BUF_SIZE_SHIFT            8
65 #define QM_CQ_CQE_SIZE_SHIFT            12
66 #define QM_CQ_PHASE_SHIFT               0
67 #define QM_CQ_FLAG_SHIFT                1
68
69 #define QM_CQE_PHASE(cqe)               (le16_to_cpu((cqe)->w7) & 0x1)
70 #define QM_QC_CQE_SIZE                  4
71 #define QM_CQ_TAIL_IDX(cqc)             ((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
72
73 /* eqc shift */
74 #define QM_EQE_AEQE_SIZE                (2UL << 12)
75 #define QM_EQC_PHASE_SHIFT              16
76
77 #define QM_EQE_PHASE(eqe)               ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
78 #define QM_EQE_CQN_MASK                 GENMASK(15, 0)
79
80 #define QM_AEQE_PHASE(aeqe)             ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
81 #define QM_AEQE_TYPE_SHIFT              17
82
83 #define QM_DOORBELL_CMD_SQ              0
84 #define QM_DOORBELL_CMD_CQ              1
85 #define QM_DOORBELL_CMD_EQ              2
86 #define QM_DOORBELL_CMD_AEQ             3
87
88 #define QM_DOORBELL_BASE_V1             0x340
89 #define QM_DB_CMD_SHIFT_V1              16
90 #define QM_DB_INDEX_SHIFT_V1            32
91 #define QM_DB_PRIORITY_SHIFT_V1         48
92 #define QM_DOORBELL_SQ_CQ_BASE_V2       0x1000
93 #define QM_DOORBELL_EQ_AEQ_BASE_V2      0x2000
94 #define QM_DB_CMD_SHIFT_V2              12
95 #define QM_DB_RAND_SHIFT_V2             16
96 #define QM_DB_INDEX_SHIFT_V2            32
97 #define QM_DB_PRIORITY_SHIFT_V2         48
98
99 #define QM_MEM_START_INIT               0x100040
100 #define QM_MEM_INIT_DONE                0x100044
101 #define QM_VFT_CFG_RDY                  0x10006c
102 #define QM_VFT_CFG_OP_WR                0x100058
103 #define QM_VFT_CFG_TYPE                 0x10005c
104 #define QM_SQC_VFT                      0x0
105 #define QM_CQC_VFT                      0x1
106 #define QM_VFT_CFG                      0x100060
107 #define QM_VFT_CFG_OP_ENABLE            0x100054
108
109 #define QM_VFT_CFG_DATA_L               0x100064
110 #define QM_VFT_CFG_DATA_H               0x100068
111 #define QM_SQC_VFT_BUF_SIZE             (7ULL << 8)
112 #define QM_SQC_VFT_SQC_SIZE             (5ULL << 12)
113 #define QM_SQC_VFT_INDEX_NUMBER         (1ULL << 16)
114 #define QM_SQC_VFT_START_SQN_SHIFT      28
115 #define QM_SQC_VFT_VALID                (1ULL << 44)
116 #define QM_SQC_VFT_SQN_SHIFT            45
117 #define QM_CQC_VFT_BUF_SIZE             (7ULL << 8)
118 #define QM_CQC_VFT_SQC_SIZE             (5ULL << 12)
119 #define QM_CQC_VFT_INDEX_NUMBER         (1ULL << 16)
120 #define QM_CQC_VFT_VALID                (1ULL << 28)
121
122 #define QM_SQC_VFT_BASE_SHIFT_V2        28
123 #define QM_SQC_VFT_BASE_MASK_V2         GENMASK(5, 0)
124 #define QM_SQC_VFT_NUM_SHIFT_V2         45
125 #define QM_SQC_VFT_NUM_MASK_v2          GENMASK(9, 0)
126
127 #define QM_DFX_CNT_CLR_CE               0x100118
128
129 #define QM_ABNORMAL_INT_SOURCE          0x100000
130 #define QM_ABNORMAL_INT_SOURCE_CLR      GENMASK(12, 0)
131 #define QM_ABNORMAL_INT_MASK            0x100004
132 #define QM_ABNORMAL_INT_MASK_VALUE      0x1fff
133 #define QM_ABNORMAL_INT_STATUS          0x100008
134 #define QM_ABNORMAL_INT_SET             0x10000c
135 #define QM_ABNORMAL_INF00               0x100010
136 #define QM_FIFO_OVERFLOW_TYPE           0xc0
137 #define QM_FIFO_OVERFLOW_TYPE_SHIFT     6
138 #define QM_FIFO_OVERFLOW_VF             0x3f
139 #define QM_ABNORMAL_INF01               0x100014
140 #define QM_DB_TIMEOUT_TYPE              0xc0
141 #define QM_DB_TIMEOUT_TYPE_SHIFT        6
142 #define QM_DB_TIMEOUT_VF                0x3f
143 #define QM_RAS_CE_ENABLE                0x1000ec
144 #define QM_RAS_FE_ENABLE                0x1000f0
145 #define QM_RAS_NFE_ENABLE               0x1000f4
146 #define QM_RAS_CE_THRESHOLD             0x1000f8
147 #define QM_RAS_CE_TIMES_PER_IRQ         1
148 #define QM_RAS_MSI_INT_SEL              0x1040f4
149
150 #define QM_DEV_RESET_FLAG               0
151 #define QM_RESET_WAIT_TIMEOUT           400
152 #define QM_PEH_VENDOR_ID                0x1000d8
153 #define ACC_VENDOR_ID_VALUE             0x5a5a
154 #define QM_PEH_DFX_INFO0                0x1000fc
155 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3
156 #define ACC_PEH_MSI_DISABLE             GENMASK(31, 0)
157 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1
158 #define ACC_MASTER_TRANS_RETURN_RW      3
159 #define ACC_MASTER_TRANS_RETURN         0x300150
160 #define ACC_MASTER_GLOBAL_CTRL          0x300000
161 #define ACC_AM_CFG_PORT_WR_EN           0x30001c
162 #define QM_RAS_NFE_MBIT_DISABLE         ~QM_ECC_MBIT
163 #define ACC_AM_ROB_ECC_INT_STS          0x300104
164 #define ACC_ROB_ECC_ERR_MULTPL          BIT(1)
165
166 #define POLL_PERIOD                     10
167 #define POLL_TIMEOUT                    1000
168 #define WAIT_PERIOD_US_MAX              200
169 #define WAIT_PERIOD_US_MIN              100
170 #define MAX_WAIT_COUNTS                 1000
171 #define QM_CACHE_WB_START               0x204
172 #define QM_CACHE_WB_DONE                0x208
173
174 #define PCI_BAR_2                       2
175 #define QM_SQE_DATA_ALIGN_MASK          GENMASK(6, 0)
176 #define QMC_ALIGN(sz)                   ALIGN(sz, 32)
177
178 #define QM_DBG_READ_LEN         256
179 #define QM_DBG_WRITE_LEN                1024
180 #define QM_DBG_TMP_BUF_LEN              22
181 #define QM_PCI_COMMAND_INVALID          ~0
182
183 #define WAIT_PERIOD                     20
184 #define REMOVE_WAIT_DELAY               10
185 #define QM_SQE_ADDR_MASK                GENMASK(7, 0)
186 #define QM_EQ_DEPTH                     (1024 * 2)
187
188 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
189         (((hop_num) << QM_CQ_HOP_NUM_SHIFT)     | \
190         ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT)      | \
191         ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT)      | \
192         ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
193
194 #define QM_MK_CQC_DW3_V2(cqe_sz) \
195         ((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
196
197 #define QM_MK_SQC_W13(priority, orders, alg_type) \
198         (((priority) << QM_SQ_PRIORITY_SHIFT)   | \
199         ((orders) << QM_SQ_ORDERS_SHIFT)        | \
200         (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
201
202 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
203         (((hop_num) << QM_SQ_HOP_NUM_SHIFT)     | \
204         ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT)      | \
205         ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT)      | \
206         ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
207
208 #define QM_MK_SQC_DW3_V2(sqe_sz) \
209         ((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
210
211 #define INIT_QC_COMMON(qc, base, pasid) do {                    \
212         (qc)->head = 0;                                         \
213         (qc)->tail = 0;                                         \
214         (qc)->base_l = cpu_to_le32(lower_32_bits(base));        \
215         (qc)->base_h = cpu_to_le32(upper_32_bits(base));        \
216         (qc)->dw3 = 0;                                          \
217         (qc)->w8 = 0;                                           \
218         (qc)->rsvd0 = 0;                                        \
219         (qc)->pasid = cpu_to_le16(pasid);                       \
220         (qc)->w11 = 0;                                          \
221         (qc)->rsvd1 = 0;                                        \
222 } while (0)
223
224 enum vft_type {
225         SQC_VFT = 0,
226         CQC_VFT,
227 };
228
229 enum acc_err_result {
230         ACC_ERR_NONE,
231         ACC_ERR_NEED_RESET,
232         ACC_ERR_RECOVERED,
233 };
234
235 struct qm_cqe {
236         __le32 rsvd0;
237         __le16 cmd_id;
238         __le16 rsvd1;
239         __le16 sq_head;
240         __le16 sq_num;
241         __le16 rsvd2;
242         __le16 w7;
243 };
244
245 struct qm_eqe {
246         __le32 dw0;
247 };
248
249 struct qm_aeqe {
250         __le32 dw0;
251 };
252
253 struct qm_sqc {
254         __le16 head;
255         __le16 tail;
256         __le32 base_l;
257         __le32 base_h;
258         __le32 dw3;
259         __le16 w8;
260         __le16 rsvd0;
261         __le16 pasid;
262         __le16 w11;
263         __le16 cq_num;
264         __le16 w13;
265         __le32 rsvd1;
266 };
267
268 struct qm_cqc {
269         __le16 head;
270         __le16 tail;
271         __le32 base_l;
272         __le32 base_h;
273         __le32 dw3;
274         __le16 w8;
275         __le16 rsvd0;
276         __le16 pasid;
277         __le16 w11;
278         __le32 dw6;
279         __le32 rsvd1;
280 };
281
282 struct qm_eqc {
283         __le16 head;
284         __le16 tail;
285         __le32 base_l;
286         __le32 base_h;
287         __le32 dw3;
288         __le32 rsvd[2];
289         __le32 dw6;
290 };
291
292 struct qm_aeqc {
293         __le16 head;
294         __le16 tail;
295         __le32 base_l;
296         __le32 base_h;
297         __le32 dw3;
298         __le32 rsvd[2];
299         __le32 dw6;
300 };
301
302 struct qm_mailbox {
303         __le16 w0;
304         __le16 queue_num;
305         __le32 base_l;
306         __le32 base_h;
307         __le32 rsvd;
308 };
309
310 struct qm_doorbell {
311         __le16 queue_num;
312         __le16 cmd;
313         __le16 index;
314         __le16 priority;
315 };
316
317 struct hisi_qm_resource {
318         struct hisi_qm *qm;
319         int distance;
320         struct list_head list;
321 };
322
323 struct hisi_qm_hw_ops {
324         int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
325         void (*qm_db)(struct hisi_qm *qm, u16 qn,
326                       u8 cmd, u16 index, u8 priority);
327         u32 (*get_irq_num)(struct hisi_qm *qm);
328         int (*debug_init)(struct hisi_qm *qm);
329         void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe);
330         void (*hw_error_uninit)(struct hisi_qm *qm);
331         enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
332 };
333
334 struct qm_dfx_item {
335         const char *name;
336         u32 offset;
337 };
338
339 static struct qm_dfx_item qm_dfx_files[] = {
340         {"err_irq", offsetof(struct qm_dfx, err_irq_cnt)},
341         {"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)},
342         {"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)},
343         {"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)},
344         {"mb_err", offsetof(struct qm_dfx, mb_err_cnt)},
345 };
346
347 static const char * const qm_debug_file_name[] = {
348         [CURRENT_Q]    = "current_q",
349         [CLEAR_ENABLE] = "clear_enable",
350 };
351
352 struct hisi_qm_hw_error {
353         u32 int_msk;
354         const char *msg;
355 };
356
357 static const struct hisi_qm_hw_error qm_hw_error[] = {
358         { .int_msk = BIT(0), .msg = "qm_axi_rresp" },
359         { .int_msk = BIT(1), .msg = "qm_axi_bresp" },
360         { .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
361         { .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
362         { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
363         { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
364         { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
365         { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
366         { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
367         { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
368         { .int_msk = BIT(10), .msg = "qm_db_timeout" },
369         { .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
370         { .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
371         { /* sentinel */ }
372 };
373
374 static const char * const qm_db_timeout[] = {
375         "sq", "cq", "eq", "aeq",
376 };
377
378 static const char * const qm_fifo_overflow[] = {
379         "cq", "eq", "aeq",
380 };
381
382 static const char * const qm_s[] = {
383         "init", "start", "close", "stop",
384 };
385
386 static const char * const qp_s[] = {
387         "none", "init", "start", "stop", "close",
388 };
389
390 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
391 {
392         enum qm_state curr = atomic_read(&qm->status.flags);
393         bool avail = false;
394
395         switch (curr) {
396         case QM_INIT:
397                 if (new == QM_START || new == QM_CLOSE)
398                         avail = true;
399                 break;
400         case QM_START:
401                 if (new == QM_STOP)
402                         avail = true;
403                 break;
404         case QM_STOP:
405                 if (new == QM_CLOSE || new == QM_START)
406                         avail = true;
407                 break;
408         default:
409                 break;
410         }
411
412         dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
413                 qm_s[curr], qm_s[new]);
414
415         if (!avail)
416                 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
417                          qm_s[curr], qm_s[new]);
418
419         return avail;
420 }
421
422 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
423                               enum qp_state new)
424 {
425         enum qm_state qm_curr = atomic_read(&qm->status.flags);
426         enum qp_state qp_curr = 0;
427         bool avail = false;
428
429         if (qp)
430                 qp_curr = atomic_read(&qp->qp_status.flags);
431
432         switch (new) {
433         case QP_INIT:
434                 if (qm_curr == QM_START || qm_curr == QM_INIT)
435                         avail = true;
436                 break;
437         case QP_START:
438                 if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
439                     (qm_curr == QM_START && qp_curr == QP_STOP))
440                         avail = true;
441                 break;
442         case QP_STOP:
443                 if ((qm_curr == QM_START && qp_curr == QP_START) ||
444                     (qp_curr == QP_INIT))
445                         avail = true;
446                 break;
447         case QP_CLOSE:
448                 if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
449                     (qm_curr == QM_START && qp_curr == QP_STOP) ||
450                     (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
451                     (qm_curr == QM_STOP && qp_curr == QP_INIT))
452                         avail = true;
453                 break;
454         default:
455                 break;
456         }
457
458         dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
459                 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
460
461         if (!avail)
462                 dev_warn(&qm->pdev->dev,
463                          "Can not change qp state from %s to %s in QM %s\n",
464                          qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
465
466         return avail;
467 }
468
469 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
470 static int qm_wait_mb_ready(struct hisi_qm *qm)
471 {
472         u32 val;
473
474         return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
475                                           val, !((val >> QM_MB_BUSY_SHIFT) &
476                                           0x1), 10, 1000);
477 }
478
479 /* 128 bit should be written to hardware at one time to trigger a mailbox */
480 static void qm_mb_write(struct hisi_qm *qm, const void *src)
481 {
482         void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
483         unsigned long tmp0 = 0, tmp1 = 0;
484
485         if (!IS_ENABLED(CONFIG_ARM64)) {
486                 memcpy_toio(fun_base, src, 16);
487                 wmb();
488                 return;
489         }
490
491         asm volatile("ldp %0, %1, %3\n"
492                      "stp %0, %1, %2\n"
493                      "dsb sy\n"
494                      : "=&r" (tmp0),
495                        "=&r" (tmp1),
496                        "+Q" (*((char __iomem *)fun_base))
497                      : "Q" (*((char *)src))
498                      : "memory");
499 }
500
501 static int qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
502                  bool op)
503 {
504         struct qm_mailbox mailbox;
505         int ret = 0;
506
507         dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
508                 queue, cmd, (unsigned long long)dma_addr);
509
510         mailbox.w0 = cpu_to_le16(cmd |
511                      (op ? 0x1 << QM_MB_OP_SHIFT : 0) |
512                      (0x1 << QM_MB_BUSY_SHIFT));
513         mailbox.queue_num = cpu_to_le16(queue);
514         mailbox.base_l = cpu_to_le32(lower_32_bits(dma_addr));
515         mailbox.base_h = cpu_to_le32(upper_32_bits(dma_addr));
516         mailbox.rsvd = 0;
517
518         mutex_lock(&qm->mailbox_lock);
519
520         if (unlikely(qm_wait_mb_ready(qm))) {
521                 ret = -EBUSY;
522                 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
523                 goto busy_unlock;
524         }
525
526         qm_mb_write(qm, &mailbox);
527
528         if (unlikely(qm_wait_mb_ready(qm))) {
529                 ret = -EBUSY;
530                 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
531                 goto busy_unlock;
532         }
533
534 busy_unlock:
535         mutex_unlock(&qm->mailbox_lock);
536
537         if (ret)
538                 atomic64_inc(&qm->debug.dfx.mb_err_cnt);
539         return ret;
540 }
541
542 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
543 {
544         u64 doorbell;
545
546         doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
547                    ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
548                    ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
549
550         writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
551 }
552
553 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
554 {
555         u64 doorbell;
556         u64 dbase;
557         u16 randata = 0;
558
559         if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
560                 dbase = QM_DOORBELL_SQ_CQ_BASE_V2;
561         else
562                 dbase = QM_DOORBELL_EQ_AEQ_BASE_V2;
563
564         doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
565                    ((u64)randata << QM_DB_RAND_SHIFT_V2) |
566                    ((u64)index << QM_DB_INDEX_SHIFT_V2)  |
567                    ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
568
569         writeq(doorbell, qm->io_base + dbase);
570 }
571
572 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
573 {
574         dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
575                 qn, cmd, index);
576
577         qm->ops->qm_db(qm, qn, cmd, index, priority);
578 }
579
580 static int qm_dev_mem_reset(struct hisi_qm *qm)
581 {
582         u32 val;
583
584         writel(0x1, qm->io_base + QM_MEM_START_INIT);
585         return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
586                                           val & BIT(0), 10, 1000);
587 }
588
589 static u32 qm_get_irq_num_v1(struct hisi_qm *qm)
590 {
591         return QM_IRQ_NUM_V1;
592 }
593
594 static u32 qm_get_irq_num_v2(struct hisi_qm *qm)
595 {
596         if (qm->fun_type == QM_HW_PF)
597                 return QM_IRQ_NUM_PF_V2;
598         else
599                 return QM_IRQ_NUM_VF_V2;
600 }
601
602 static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe)
603 {
604         u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
605
606         return &qm->qp_array[cqn];
607 }
608
609 static void qm_cq_head_update(struct hisi_qp *qp)
610 {
611         if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) {
612                 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
613                 qp->qp_status.cq_head = 0;
614         } else {
615                 qp->qp_status.cq_head++;
616         }
617 }
618
619 static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm)
620 {
621         if (qp->event_cb) {
622                 qp->event_cb(qp);
623                 return;
624         }
625
626         if (qp->req_cb) {
627                 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
628
629                 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
630                         dma_rmb();
631                         qp->req_cb(qp, qp->sqe + qm->sqe_size *
632                                    le16_to_cpu(cqe->sq_head));
633                         qm_cq_head_update(qp);
634                         cqe = qp->cqe + qp->qp_status.cq_head;
635                         qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
636                               qp->qp_status.cq_head, 0);
637                         atomic_dec(&qp->qp_status.used);
638                 }
639
640                 /* set c_flag */
641                 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
642                       qp->qp_status.cq_head, 1);
643         }
644 }
645
646 static void qm_work_process(struct work_struct *work)
647 {
648         struct hisi_qm *qm = container_of(work, struct hisi_qm, work);
649         struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
650         struct hisi_qp *qp;
651         int eqe_num = 0;
652
653         while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
654                 eqe_num++;
655                 qp = qm_to_hisi_qp(qm, eqe);
656                 qm_poll_qp(qp, qm);
657
658                 if (qm->status.eq_head == QM_EQ_DEPTH - 1) {
659                         qm->status.eqc_phase = !qm->status.eqc_phase;
660                         eqe = qm->eqe;
661                         qm->status.eq_head = 0;
662                 } else {
663                         eqe++;
664                         qm->status.eq_head++;
665                 }
666
667                 if (eqe_num == QM_EQ_DEPTH / 2 - 1) {
668                         eqe_num = 0;
669                         qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
670                 }
671         }
672
673         qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
674 }
675
676 static irqreturn_t do_qm_irq(int irq, void *data)
677 {
678         struct hisi_qm *qm = (struct hisi_qm *)data;
679
680         /* the workqueue created by device driver of QM */
681         if (qm->wq)
682                 queue_work(qm->wq, &qm->work);
683         else
684                 schedule_work(&qm->work);
685
686         return IRQ_HANDLED;
687 }
688
689 static irqreturn_t qm_irq(int irq, void *data)
690 {
691         struct hisi_qm *qm = data;
692
693         if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
694                 return do_qm_irq(irq, data);
695
696         atomic64_inc(&qm->debug.dfx.err_irq_cnt);
697         dev_err(&qm->pdev->dev, "invalid int source\n");
698         qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
699
700         return IRQ_NONE;
701 }
702
703 static irqreturn_t qm_aeq_irq(int irq, void *data)
704 {
705         struct hisi_qm *qm = data;
706         struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
707         u32 type;
708
709         atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
710         if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
711                 return IRQ_NONE;
712
713         while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
714                 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
715                 if (type < ARRAY_SIZE(qm_fifo_overflow))
716                         dev_err(&qm->pdev->dev, "%s overflow\n",
717                                 qm_fifo_overflow[type]);
718                 else
719                         dev_err(&qm->pdev->dev, "unknown error type %d\n",
720                                 type);
721
722                 if (qm->status.aeq_head == QM_Q_DEPTH - 1) {
723                         qm->status.aeqc_phase = !qm->status.aeqc_phase;
724                         aeqe = qm->aeqe;
725                         qm->status.aeq_head = 0;
726                 } else {
727                         aeqe++;
728                         qm->status.aeq_head++;
729                 }
730
731                 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
732         }
733
734         return IRQ_HANDLED;
735 }
736
737 static void qm_irq_unregister(struct hisi_qm *qm)
738 {
739         struct pci_dev *pdev = qm->pdev;
740
741         free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
742
743         if (qm->ver == QM_HW_V1)
744                 return;
745
746         free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
747
748         if (qm->fun_type == QM_HW_PF)
749                 free_irq(pci_irq_vector(pdev,
750                          QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
751 }
752
753 static void qm_init_qp_status(struct hisi_qp *qp)
754 {
755         struct hisi_qp_status *qp_status = &qp->qp_status;
756
757         qp_status->sq_tail = 0;
758         qp_status->cq_head = 0;
759         qp_status->cqc_phase = true;
760         atomic_set(&qp_status->used, 0);
761 }
762
763 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
764                             u32 number)
765 {
766         u64 tmp = 0;
767
768         if (number > 0) {
769                 switch (type) {
770                 case SQC_VFT:
771                         if (qm->ver == QM_HW_V1) {
772                                 tmp = QM_SQC_VFT_BUF_SIZE       |
773                                       QM_SQC_VFT_SQC_SIZE       |
774                                       QM_SQC_VFT_INDEX_NUMBER   |
775                                       QM_SQC_VFT_VALID          |
776                                       (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
777                         } else {
778                                 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
779                                       QM_SQC_VFT_VALID |
780                                       (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
781                         }
782                         break;
783                 case CQC_VFT:
784                         if (qm->ver == QM_HW_V1) {
785                                 tmp = QM_CQC_VFT_BUF_SIZE       |
786                                       QM_CQC_VFT_SQC_SIZE       |
787                                       QM_CQC_VFT_INDEX_NUMBER   |
788                                       QM_CQC_VFT_VALID;
789                         } else {
790                                 tmp = QM_CQC_VFT_VALID;
791                         }
792                         break;
793                 }
794         }
795
796         writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
797         writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
798 }
799
800 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
801                              u32 fun_num, u32 base, u32 number)
802 {
803         unsigned int val;
804         int ret;
805
806         ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
807                                          val & BIT(0), 10, 1000);
808         if (ret)
809                 return ret;
810
811         writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
812         writel(type, qm->io_base + QM_VFT_CFG_TYPE);
813         writel(fun_num, qm->io_base + QM_VFT_CFG);
814
815         qm_vft_data_cfg(qm, type, base, number);
816
817         writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
818         writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
819
820         return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
821                                           val & BIT(0), 10, 1000);
822 }
823
824 /* The config should be conducted after qm_dev_mem_reset() */
825 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
826                               u32 number)
827 {
828         int ret, i;
829
830         for (i = SQC_VFT; i <= CQC_VFT; i++) {
831                 ret = qm_set_vft_common(qm, i, fun_num, base, number);
832                 if (ret)
833                         return ret;
834         }
835
836         return 0;
837 }
838
839 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
840 {
841         u64 sqc_vft;
842         int ret;
843
844         ret = qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
845         if (ret)
846                 return ret;
847
848         sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
849                   ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
850         *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
851         *number = (QM_SQC_VFT_NUM_MASK_v2 &
852                    (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
853
854         return 0;
855 }
856
857 static struct hisi_qm *file_to_qm(struct debugfs_file *file)
858 {
859         struct qm_debug *debug = file->debug;
860
861         return container_of(debug, struct hisi_qm, debug);
862 }
863
864 static u32 current_q_read(struct debugfs_file *file)
865 {
866         struct hisi_qm *qm = file_to_qm(file);
867
868         return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT;
869 }
870
871 static int current_q_write(struct debugfs_file *file, u32 val)
872 {
873         struct hisi_qm *qm = file_to_qm(file);
874         u32 tmp;
875
876         if (val >= qm->debug.curr_qm_qp_num)
877                 return -EINVAL;
878
879         tmp = val << QM_DFX_QN_SHIFT |
880               (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK);
881         writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
882
883         tmp = val << QM_DFX_QN_SHIFT |
884               (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK);
885         writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
886
887         return 0;
888 }
889
890 static u32 clear_enable_read(struct debugfs_file *file)
891 {
892         struct hisi_qm *qm = file_to_qm(file);
893
894         return readl(qm->io_base + QM_DFX_CNT_CLR_CE);
895 }
896
897 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */
898 static int clear_enable_write(struct debugfs_file *file, u32 rd_clr_ctrl)
899 {
900         struct hisi_qm *qm = file_to_qm(file);
901
902         if (rd_clr_ctrl > 1)
903                 return -EINVAL;
904
905         writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE);
906
907         return 0;
908 }
909
910 static ssize_t qm_debug_read(struct file *filp, char __user *buf,
911                              size_t count, loff_t *pos)
912 {
913         struct debugfs_file *file = filp->private_data;
914         enum qm_debug_file index = file->index;
915         char tbuf[QM_DBG_TMP_BUF_LEN];
916         u32 val;
917         int ret;
918
919         mutex_lock(&file->lock);
920         switch (index) {
921         case CURRENT_Q:
922                 val = current_q_read(file);
923                 break;
924         case CLEAR_ENABLE:
925                 val = clear_enable_read(file);
926                 break;
927         default:
928                 mutex_unlock(&file->lock);
929                 return -EINVAL;
930         }
931         mutex_unlock(&file->lock);
932         ret = sprintf(tbuf, "%u\n", val);
933         return simple_read_from_buffer(buf, count, pos, tbuf, ret);
934 }
935
936 static ssize_t qm_debug_write(struct file *filp, const char __user *buf,
937                               size_t count, loff_t *pos)
938 {
939         struct debugfs_file *file = filp->private_data;
940         enum qm_debug_file index = file->index;
941         unsigned long val;
942         char tbuf[QM_DBG_TMP_BUF_LEN];
943         int len, ret;
944
945         if (*pos != 0)
946                 return 0;
947
948         if (count >= QM_DBG_TMP_BUF_LEN)
949                 return -ENOSPC;
950
951         len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf,
952                                      count);
953         if (len < 0)
954                 return len;
955
956         tbuf[len] = '\0';
957         if (kstrtoul(tbuf, 0, &val))
958                 return -EFAULT;
959
960         mutex_lock(&file->lock);
961         switch (index) {
962         case CURRENT_Q:
963                 ret = current_q_write(file, val);
964                 if (ret)
965                         goto err_input;
966                 break;
967         case CLEAR_ENABLE:
968                 ret = clear_enable_write(file, val);
969                 if (ret)
970                         goto err_input;
971                 break;
972         default:
973                 ret = -EINVAL;
974                 goto err_input;
975         }
976         mutex_unlock(&file->lock);
977
978         return count;
979
980 err_input:
981         mutex_unlock(&file->lock);
982         return ret;
983 }
984
985 static const struct file_operations qm_debug_fops = {
986         .owner = THIS_MODULE,
987         .open = simple_open,
988         .read = qm_debug_read,
989         .write = qm_debug_write,
990 };
991
992 struct qm_dfx_registers {
993         char  *reg_name;
994         u64   reg_offset;
995 };
996
997 #define CNT_CYC_REGS_NUM                10
998 static struct qm_dfx_registers qm_dfx_regs[] = {
999         /* XXX_CNT are reading clear register */
1000         {"QM_ECC_1BIT_CNT               ",  0x104000ull},
1001         {"QM_ECC_MBIT_CNT               ",  0x104008ull},
1002         {"QM_DFX_MB_CNT                 ",  0x104018ull},
1003         {"QM_DFX_DB_CNT                 ",  0x104028ull},
1004         {"QM_DFX_SQE_CNT                ",  0x104038ull},
1005         {"QM_DFX_CQE_CNT                ",  0x104048ull},
1006         {"QM_DFX_SEND_SQE_TO_ACC_CNT    ",  0x104050ull},
1007         {"QM_DFX_WB_SQE_FROM_ACC_CNT    ",  0x104058ull},
1008         {"QM_DFX_ACC_FINISH_CNT         ",  0x104060ull},
1009         {"QM_DFX_CQE_ERR_CNT            ",  0x1040b4ull},
1010         {"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1011         {"QM_ECC_1BIT_INF               ",  0x104004ull},
1012         {"QM_ECC_MBIT_INF               ",  0x10400cull},
1013         {"QM_DFX_ACC_RDY_VLD0           ",  0x1040a0ull},
1014         {"QM_DFX_ACC_RDY_VLD1           ",  0x1040a4ull},
1015         {"QM_DFX_AXI_RDY_VLD            ",  0x1040a8ull},
1016         {"QM_DFX_FF_ST0                 ",  0x1040c8ull},
1017         {"QM_DFX_FF_ST1                 ",  0x1040ccull},
1018         {"QM_DFX_FF_ST2                 ",  0x1040d0ull},
1019         {"QM_DFX_FF_ST3                 ",  0x1040d4ull},
1020         {"QM_DFX_FF_ST4                 ",  0x1040d8ull},
1021         {"QM_DFX_FF_ST5                 ",  0x1040dcull},
1022         {"QM_DFX_FF_ST6                 ",  0x1040e0ull},
1023         {"QM_IN_IDLE_ST                 ",  0x1040e4ull},
1024         { NULL, 0}
1025 };
1026
1027 static struct qm_dfx_registers qm_vf_dfx_regs[] = {
1028         {"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1029         { NULL, 0}
1030 };
1031
1032 static int qm_regs_show(struct seq_file *s, void *unused)
1033 {
1034         struct hisi_qm *qm = s->private;
1035         struct qm_dfx_registers *regs;
1036         u32 val;
1037
1038         if (qm->fun_type == QM_HW_PF)
1039                 regs = qm_dfx_regs;
1040         else
1041                 regs = qm_vf_dfx_regs;
1042
1043         while (regs->reg_name) {
1044                 val = readl(qm->io_base + regs->reg_offset);
1045                 seq_printf(s, "%s= 0x%08x\n", regs->reg_name, val);
1046                 regs++;
1047         }
1048
1049         return 0;
1050 }
1051
1052 DEFINE_SHOW_ATTRIBUTE(qm_regs);
1053
1054 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer,
1055                            size_t count, loff_t *pos)
1056 {
1057         char buf[QM_DBG_READ_LEN];
1058         int len;
1059
1060         len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n",
1061                         "Please echo help to cmd to get help information");
1062
1063         return simple_read_from_buffer(buffer, count, pos, buf, len);
1064 }
1065
1066 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1067                           dma_addr_t *dma_addr)
1068 {
1069         struct device *dev = &qm->pdev->dev;
1070         void *ctx_addr;
1071
1072         ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1073         if (!ctx_addr)
1074                 return ERR_PTR(-ENOMEM);
1075
1076         *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1077         if (dma_mapping_error(dev, *dma_addr)) {
1078                 dev_err(dev, "DMA mapping error!\n");
1079                 kfree(ctx_addr);
1080                 return ERR_PTR(-ENOMEM);
1081         }
1082
1083         return ctx_addr;
1084 }
1085
1086 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1087                         const void *ctx_addr, dma_addr_t *dma_addr)
1088 {
1089         struct device *dev = &qm->pdev->dev;
1090
1091         dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1092         kfree(ctx_addr);
1093 }
1094
1095 static int dump_show(struct hisi_qm *qm, void *info,
1096                      unsigned int info_size, char *info_name)
1097 {
1098         struct device *dev = &qm->pdev->dev;
1099         u8 *info_buf, *info_curr = info;
1100         u32 i;
1101 #define BYTE_PER_DW     4
1102
1103         info_buf = kzalloc(info_size, GFP_KERNEL);
1104         if (!info_buf)
1105                 return -ENOMEM;
1106
1107         for (i = 0; i < info_size; i++, info_curr++) {
1108                 if (i % BYTE_PER_DW == 0)
1109                         info_buf[i + 3UL] = *info_curr;
1110                 else if (i % BYTE_PER_DW == 1)
1111                         info_buf[i + 1UL] = *info_curr;
1112                 else if (i % BYTE_PER_DW == 2)
1113                         info_buf[i - 1] = *info_curr;
1114                 else if (i % BYTE_PER_DW == 3)
1115                         info_buf[i - 3] = *info_curr;
1116         }
1117
1118         dev_info(dev, "%s DUMP\n", info_name);
1119         for (i = 0; i < info_size; i += BYTE_PER_DW) {
1120                 pr_info("DW%d: %02X%02X %02X%02X\n", i / BYTE_PER_DW,
1121                         info_buf[i], info_buf[i + 1UL],
1122                         info_buf[i + 2UL], info_buf[i + 3UL]);
1123         }
1124
1125         kfree(info_buf);
1126
1127         return 0;
1128 }
1129
1130 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1131 {
1132         return qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1133 }
1134
1135 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1136 {
1137         return qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1138 }
1139
1140 static int qm_sqc_dump(struct hisi_qm *qm, const char *s)
1141 {
1142         struct device *dev = &qm->pdev->dev;
1143         struct qm_sqc *sqc, *sqc_curr;
1144         dma_addr_t sqc_dma;
1145         u32 qp_id;
1146         int ret;
1147
1148         if (!s)
1149                 return -EINVAL;
1150
1151         ret = kstrtou32(s, 0, &qp_id);
1152         if (ret || qp_id >= qm->qp_num) {
1153                 dev_err(dev, "Please input qp num (0-%d)", qm->qp_num - 1);
1154                 return -EINVAL;
1155         }
1156
1157         sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma);
1158         if (IS_ERR(sqc))
1159                 return PTR_ERR(sqc);
1160
1161         ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id);
1162         if (ret) {
1163                 down_read(&qm->qps_lock);
1164                 if (qm->sqc) {
1165                         sqc_curr = qm->sqc + qp_id;
1166
1167                         ret = dump_show(qm, sqc_curr, sizeof(*sqc),
1168                                         "SOFT SQC");
1169                         if (ret)
1170                                 dev_info(dev, "Show soft sqc failed!\n");
1171                 }
1172                 up_read(&qm->qps_lock);
1173
1174                 goto err_free_ctx;
1175         }
1176
1177         ret = dump_show(qm, sqc, sizeof(*sqc), "SQC");
1178         if (ret)
1179                 dev_info(dev, "Show hw sqc failed!\n");
1180
1181 err_free_ctx:
1182         qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma);
1183         return ret;
1184 }
1185
1186 static int qm_cqc_dump(struct hisi_qm *qm, const char *s)
1187 {
1188         struct device *dev = &qm->pdev->dev;
1189         struct qm_cqc *cqc, *cqc_curr;
1190         dma_addr_t cqc_dma;
1191         u32 qp_id;
1192         int ret;
1193
1194         if (!s)
1195                 return -EINVAL;
1196
1197         ret = kstrtou32(s, 0, &qp_id);
1198         if (ret || qp_id >= qm->qp_num) {
1199                 dev_err(dev, "Please input qp num (0-%d)", qm->qp_num - 1);
1200                 return -EINVAL;
1201         }
1202
1203         cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma);
1204         if (IS_ERR(cqc))
1205                 return PTR_ERR(cqc);
1206
1207         ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id);
1208         if (ret) {
1209                 down_read(&qm->qps_lock);
1210                 if (qm->cqc) {
1211                         cqc_curr = qm->cqc + qp_id;
1212
1213                         ret = dump_show(qm, cqc_curr, sizeof(*cqc),
1214                                         "SOFT CQC");
1215                         if (ret)
1216                                 dev_info(dev, "Show soft cqc failed!\n");
1217                 }
1218                 up_read(&qm->qps_lock);
1219
1220                 goto err_free_ctx;
1221         }
1222
1223         ret = dump_show(qm, cqc, sizeof(*cqc), "CQC");
1224         if (ret)
1225                 dev_info(dev, "Show hw cqc failed!\n");
1226
1227 err_free_ctx:
1228         qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma);
1229         return ret;
1230 }
1231
1232 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size,
1233                             int cmd, char *name)
1234 {
1235         struct device *dev = &qm->pdev->dev;
1236         dma_addr_t xeqc_dma;
1237         void *xeqc;
1238         int ret;
1239
1240         if (strsep(&s, " ")) {
1241                 dev_err(dev, "Please do not input extra characters!\n");
1242                 return -EINVAL;
1243         }
1244
1245         xeqc = qm_ctx_alloc(qm, size, &xeqc_dma);
1246         if (IS_ERR(xeqc))
1247                 return PTR_ERR(xeqc);
1248
1249         ret = qm_mb(qm, cmd, xeqc_dma, 0, 1);
1250         if (ret)
1251                 goto err_free_ctx;
1252
1253         ret = dump_show(qm, xeqc, size, name);
1254         if (ret)
1255                 dev_info(dev, "Show hw %s failed!\n", name);
1256
1257 err_free_ctx:
1258         qm_ctx_free(qm, size, xeqc, &xeqc_dma);
1259         return ret;
1260 }
1261
1262 static int q_dump_param_parse(struct hisi_qm *qm, char *s,
1263                               u32 *e_id, u32 *q_id)
1264 {
1265         struct device *dev = &qm->pdev->dev;
1266         unsigned int qp_num = qm->qp_num;
1267         char *presult;
1268         int ret;
1269
1270         presult = strsep(&s, " ");
1271         if (!presult) {
1272                 dev_err(dev, "Please input qp number!\n");
1273                 return -EINVAL;
1274         }
1275
1276         ret = kstrtou32(presult, 0, q_id);
1277         if (ret || *q_id >= qp_num) {
1278                 dev_err(dev, "Please input qp num (0-%d)", qp_num - 1);
1279                 return -EINVAL;
1280         }
1281
1282         presult = strsep(&s, " ");
1283         if (!presult) {
1284                 dev_err(dev, "Please input sqe number!\n");
1285                 return -EINVAL;
1286         }
1287
1288         ret = kstrtou32(presult, 0, e_id);
1289         if (ret || *e_id >= QM_Q_DEPTH) {
1290                 dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1);
1291                 return -EINVAL;
1292         }
1293
1294         if (strsep(&s, " ")) {
1295                 dev_err(dev, "Please do not input extra characters!\n");
1296                 return -EINVAL;
1297         }
1298
1299         return 0;
1300 }
1301
1302 static int qm_sq_dump(struct hisi_qm *qm, char *s)
1303 {
1304         struct device *dev = &qm->pdev->dev;
1305         void *sqe, *sqe_curr;
1306         struct hisi_qp *qp;
1307         u32 qp_id, sqe_id;
1308         int ret;
1309
1310         ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id);
1311         if (ret)
1312                 return ret;
1313
1314         sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL);
1315         if (!sqe)
1316                 return -ENOMEM;
1317
1318         qp = &qm->qp_array[qp_id];
1319         memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH);
1320         sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size);
1321         memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK,
1322                qm->debug.sqe_mask_len);
1323
1324         ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE");
1325         if (ret)
1326                 dev_info(dev, "Show sqe failed!\n");
1327
1328         kfree(sqe);
1329
1330         return ret;
1331 }
1332
1333 static int qm_cq_dump(struct hisi_qm *qm, char *s)
1334 {
1335         struct device *dev = &qm->pdev->dev;
1336         struct qm_cqe *cqe_curr;
1337         struct hisi_qp *qp;
1338         u32 qp_id, cqe_id;
1339         int ret;
1340
1341         ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id);
1342         if (ret)
1343                 return ret;
1344
1345         qp = &qm->qp_array[qp_id];
1346         cqe_curr = qp->cqe + cqe_id;
1347         ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE");
1348         if (ret)
1349                 dev_info(dev, "Show cqe failed!\n");
1350
1351         return ret;
1352 }
1353
1354 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s,
1355                           size_t size, char *name)
1356 {
1357         struct device *dev = &qm->pdev->dev;
1358         void *xeqe;
1359         u32 xeqe_id;
1360         int ret;
1361
1362         if (!s)
1363                 return -EINVAL;
1364
1365         ret = kstrtou32(s, 0, &xeqe_id);
1366         if (ret)
1367                 return -EINVAL;
1368
1369         if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) {
1370                 dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1);
1371                 return -EINVAL;
1372         } else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) {
1373                 dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1);
1374                 return -EINVAL;
1375         }
1376
1377         down_read(&qm->qps_lock);
1378
1379         if (qm->eqe && !strcmp(name, "EQE")) {
1380                 xeqe = qm->eqe + xeqe_id;
1381         } else if (qm->aeqe && !strcmp(name, "AEQE")) {
1382                 xeqe = qm->aeqe + xeqe_id;
1383         } else {
1384                 ret = -EINVAL;
1385                 goto err_unlock;
1386         }
1387
1388         ret = dump_show(qm, xeqe, size, name);
1389         if (ret)
1390                 dev_info(dev, "Show %s failed!\n", name);
1391
1392 err_unlock:
1393         up_read(&qm->qps_lock);
1394         return ret;
1395 }
1396
1397 static int qm_dbg_help(struct hisi_qm *qm, char *s)
1398 {
1399         struct device *dev = &qm->pdev->dev;
1400
1401         if (strsep(&s, " ")) {
1402                 dev_err(dev, "Please do not input extra characters!\n");
1403                 return -EINVAL;
1404         }
1405
1406         dev_info(dev, "available commands:\n");
1407         dev_info(dev, "sqc <num>\n");
1408         dev_info(dev, "cqc <num>\n");
1409         dev_info(dev, "eqc\n");
1410         dev_info(dev, "aeqc\n");
1411         dev_info(dev, "sq <num> <e>\n");
1412         dev_info(dev, "cq <num> <e>\n");
1413         dev_info(dev, "eq <e>\n");
1414         dev_info(dev, "aeq <e>\n");
1415
1416         return 0;
1417 }
1418
1419 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf)
1420 {
1421         struct device *dev = &qm->pdev->dev;
1422         char *presult, *s, *s_tmp;
1423         int ret;
1424
1425         s = kstrdup(cmd_buf, GFP_KERNEL);
1426         if (!s)
1427                 return -ENOMEM;
1428
1429         s_tmp = s;
1430         presult = strsep(&s, " ");
1431         if (!presult) {
1432                 ret = -EINVAL;
1433                 goto err_buffer_free;
1434         }
1435
1436         if (!strcmp(presult, "sqc"))
1437                 ret = qm_sqc_dump(qm, s);
1438         else if (!strcmp(presult, "cqc"))
1439                 ret = qm_cqc_dump(qm, s);
1440         else if (!strcmp(presult, "eqc"))
1441                 ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc),
1442                                        QM_MB_CMD_EQC, "EQC");
1443         else if (!strcmp(presult, "aeqc"))
1444                 ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc),
1445                                        QM_MB_CMD_AEQC, "AEQC");
1446         else if (!strcmp(presult, "sq"))
1447                 ret = qm_sq_dump(qm, s);
1448         else if (!strcmp(presult, "cq"))
1449                 ret = qm_cq_dump(qm, s);
1450         else if (!strcmp(presult, "eq"))
1451                 ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE");
1452         else if (!strcmp(presult, "aeq"))
1453                 ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE");
1454         else if (!strcmp(presult, "help"))
1455                 ret = qm_dbg_help(qm, s);
1456         else
1457                 ret = -EINVAL;
1458
1459         if (ret)
1460                 dev_info(dev, "Please echo help\n");
1461
1462 err_buffer_free:
1463         kfree(s_tmp);
1464
1465         return ret;
1466 }
1467
1468 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer,
1469                             size_t count, loff_t *pos)
1470 {
1471         struct hisi_qm *qm = filp->private_data;
1472         char *cmd_buf, *cmd_buf_tmp;
1473         int ret;
1474
1475         if (*pos)
1476                 return 0;
1477
1478         /* Judge if the instance is being reset. */
1479         if (unlikely(atomic_read(&qm->status.flags) == QM_STOP))
1480                 return 0;
1481
1482         if (count > QM_DBG_WRITE_LEN)
1483                 return -ENOSPC;
1484
1485         cmd_buf = kzalloc(count + 1, GFP_KERNEL);
1486         if (!cmd_buf)
1487                 return -ENOMEM;
1488
1489         if (copy_from_user(cmd_buf, buffer, count)) {
1490                 kfree(cmd_buf);
1491                 return -EFAULT;
1492         }
1493
1494         cmd_buf[count] = '\0';
1495
1496         cmd_buf_tmp = strchr(cmd_buf, '\n');
1497         if (cmd_buf_tmp) {
1498                 *cmd_buf_tmp = '\0';
1499                 count = cmd_buf_tmp - cmd_buf + 1;
1500         }
1501
1502         ret = qm_cmd_write_dump(qm, cmd_buf);
1503         if (ret) {
1504                 kfree(cmd_buf);
1505                 return ret;
1506         }
1507
1508         kfree(cmd_buf);
1509
1510         return count;
1511 }
1512
1513 static const struct file_operations qm_cmd_fops = {
1514         .owner = THIS_MODULE,
1515         .open = simple_open,
1516         .read = qm_cmd_read,
1517         .write = qm_cmd_write,
1518 };
1519
1520 static int qm_create_debugfs_file(struct hisi_qm *qm, enum qm_debug_file index)
1521 {
1522         struct dentry *qm_d = qm->debug.qm_d;
1523         struct debugfs_file *file = qm->debug.files + index;
1524
1525         debugfs_create_file(qm_debug_file_name[index], 0600, qm_d, file,
1526                             &qm_debug_fops);
1527
1528         file->index = index;
1529         mutex_init(&file->lock);
1530         file->debug = &qm->debug;
1531
1532         return 0;
1533 }
1534
1535 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1536 {
1537         writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1538 }
1539
1540 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1541 {
1542         u32 irq_enable = ce | nfe | fe;
1543         u32 irq_unmask = ~irq_enable;
1544
1545         qm->error_mask = ce | nfe | fe;
1546
1547         /* clear QM hw residual error source */
1548         writel(QM_ABNORMAL_INT_SOURCE_CLR,
1549                qm->io_base + QM_ABNORMAL_INT_SOURCE);
1550
1551         /* configure error type */
1552         writel(ce, qm->io_base + QM_RAS_CE_ENABLE);
1553         writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1554         writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1555         writel(fe, qm->io_base + QM_RAS_FE_ENABLE);
1556
1557         irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1558         writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1559 }
1560
1561 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1562 {
1563         writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1564 }
1565
1566 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1567 {
1568         const struct hisi_qm_hw_error *err;
1569         struct device *dev = &qm->pdev->dev;
1570         u32 reg_val, type, vf_num;
1571         int i;
1572
1573         for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1574                 err = &qm_hw_error[i];
1575                 if (!(err->int_msk & error_status))
1576                         continue;
1577
1578                 dev_err(dev, "%s [error status=0x%x] found\n",
1579                         err->msg, err->int_msk);
1580
1581                 if (err->int_msk & QM_DB_TIMEOUT) {
1582                         reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1583                         type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1584                                QM_DB_TIMEOUT_TYPE_SHIFT;
1585                         vf_num = reg_val & QM_DB_TIMEOUT_VF;
1586                         dev_err(dev, "qm %s doorbell timeout in function %u\n",
1587                                 qm_db_timeout[type], vf_num);
1588                 } else if (err->int_msk & QM_OF_FIFO_OF) {
1589                         reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1590                         type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1591                                QM_FIFO_OVERFLOW_TYPE_SHIFT;
1592                         vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1593
1594                         if (type < ARRAY_SIZE(qm_fifo_overflow))
1595                                 dev_err(dev, "qm %s fifo overflow in function %u\n",
1596                                         qm_fifo_overflow[type], vf_num);
1597                         else
1598                                 dev_err(dev, "unknown error type\n");
1599                 }
1600         }
1601 }
1602
1603 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1604 {
1605         u32 error_status, tmp;
1606
1607         /* read err sts */
1608         tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1609         error_status = qm->error_mask & tmp;
1610
1611         if (error_status) {
1612                 if (error_status & QM_ECC_MBIT)
1613                         qm->err_status.is_qm_ecc_mbit = true;
1614
1615                 qm_log_hw_error(qm, error_status);
1616                 if (error_status == QM_DB_RANDOM_INVALID) {
1617                         writel(error_status, qm->io_base +
1618                                QM_ABNORMAL_INT_SOURCE);
1619                         return ACC_ERR_RECOVERED;
1620                 }
1621
1622                 return ACC_ERR_NEED_RESET;
1623         }
1624
1625         return ACC_ERR_RECOVERED;
1626 }
1627
1628 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1629         .qm_db = qm_db_v1,
1630         .get_irq_num = qm_get_irq_num_v1,
1631         .hw_error_init = qm_hw_error_init_v1,
1632 };
1633
1634 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1635         .get_vft = qm_get_vft_v2,
1636         .qm_db = qm_db_v2,
1637         .get_irq_num = qm_get_irq_num_v2,
1638         .hw_error_init = qm_hw_error_init_v2,
1639         .hw_error_uninit = qm_hw_error_uninit_v2,
1640         .hw_error_handle = qm_hw_error_handle_v2,
1641 };
1642
1643 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1644 {
1645         struct hisi_qp_status *qp_status = &qp->qp_status;
1646         u16 sq_tail = qp_status->sq_tail;
1647
1648         if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1))
1649                 return NULL;
1650
1651         return qp->sqe + sq_tail * qp->qm->sqe_size;
1652 }
1653
1654 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1655 {
1656         struct device *dev = &qm->pdev->dev;
1657         struct hisi_qp *qp;
1658         int qp_id;
1659
1660         if (!qm_qp_avail_state(qm, NULL, QP_INIT))
1661                 return ERR_PTR(-EPERM);
1662
1663         if (qm->qp_in_used == qm->qp_num) {
1664                 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1665                                      qm->qp_num);
1666                 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1667                 return ERR_PTR(-EBUSY);
1668         }
1669
1670         qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1671         if (qp_id < 0) {
1672                 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1673                                     qm->qp_num);
1674                 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1675                 return ERR_PTR(-EBUSY);
1676         }
1677
1678         qp = &qm->qp_array[qp_id];
1679
1680         memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH);
1681
1682         qp->event_cb = NULL;
1683         qp->req_cb = NULL;
1684         qp->qp_id = qp_id;
1685         qp->alg_type = alg_type;
1686         qm->qp_in_used++;
1687         atomic_set(&qp->qp_status.flags, QP_INIT);
1688
1689         return qp;
1690 }
1691
1692 /**
1693  * hisi_qm_create_qp() - Create a queue pair from qm.
1694  * @qm: The qm we create a qp from.
1695  * @alg_type: Accelerator specific algorithm type in sqc.
1696  *
1697  * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating
1698  * qp memory fails.
1699  */
1700 struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1701 {
1702         struct hisi_qp *qp;
1703
1704         down_write(&qm->qps_lock);
1705         qp = qm_create_qp_nolock(qm, alg_type);
1706         up_write(&qm->qps_lock);
1707
1708         return qp;
1709 }
1710 EXPORT_SYMBOL_GPL(hisi_qm_create_qp);
1711
1712 /**
1713  * hisi_qm_release_qp() - Release a qp back to its qm.
1714  * @qp: The qp we want to release.
1715  *
1716  * This function releases the resource of a qp.
1717  */
1718 void hisi_qm_release_qp(struct hisi_qp *qp)
1719 {
1720         struct hisi_qm *qm = qp->qm;
1721
1722         down_write(&qm->qps_lock);
1723
1724         if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
1725                 up_write(&qm->qps_lock);
1726                 return;
1727         }
1728
1729         qm->qp_in_used--;
1730         idr_remove(&qm->qp_idr, qp->qp_id);
1731
1732         up_write(&qm->qps_lock);
1733 }
1734 EXPORT_SYMBOL_GPL(hisi_qm_release_qp);
1735
1736 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1737 {
1738         struct hisi_qm *qm = qp->qm;
1739         struct device *dev = &qm->pdev->dev;
1740         enum qm_hw_ver ver = qm->ver;
1741         struct qm_sqc *sqc;
1742         struct qm_cqc *cqc;
1743         dma_addr_t sqc_dma;
1744         dma_addr_t cqc_dma;
1745         int ret;
1746
1747         qm_init_qp_status(qp);
1748
1749         sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
1750         if (!sqc)
1751                 return -ENOMEM;
1752         sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
1753                                  DMA_TO_DEVICE);
1754         if (dma_mapping_error(dev, sqc_dma)) {
1755                 kfree(sqc);
1756                 return -ENOMEM;
1757         }
1758
1759         INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
1760         if (ver == QM_HW_V1) {
1761                 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1762                 sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
1763         } else {
1764                 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size));
1765                 sqc->w8 = 0; /* rand_qc */
1766         }
1767         sqc->cq_num = cpu_to_le16(qp_id);
1768         sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1769
1770         ret = qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
1771         dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
1772         kfree(sqc);
1773         if (ret)
1774                 return ret;
1775
1776         cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
1777         if (!cqc)
1778                 return -ENOMEM;
1779         cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
1780                                  DMA_TO_DEVICE);
1781         if (dma_mapping_error(dev, cqc_dma)) {
1782                 kfree(cqc);
1783                 return -ENOMEM;
1784         }
1785
1786         INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
1787         if (ver == QM_HW_V1) {
1788                 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 4));
1789                 cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
1790         } else {
1791                 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(4));
1792                 cqc->w8 = 0;
1793         }
1794         cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
1795
1796         ret = qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
1797         dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
1798         kfree(cqc);
1799
1800         return ret;
1801 }
1802
1803 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
1804 {
1805         struct hisi_qm *qm = qp->qm;
1806         struct device *dev = &qm->pdev->dev;
1807         int qp_id = qp->qp_id;
1808         u32 pasid = arg;
1809         int ret;
1810
1811         if (!qm_qp_avail_state(qm, qp, QP_START))
1812                 return -EPERM;
1813
1814         ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
1815         if (ret)
1816                 return ret;
1817
1818         atomic_set(&qp->qp_status.flags, QP_START);
1819         dev_dbg(dev, "queue %d started\n", qp_id);
1820
1821         return 0;
1822 }
1823
1824 /**
1825  * hisi_qm_start_qp() - Start a qp into running.
1826  * @qp: The qp we want to start to run.
1827  * @arg: Accelerator specific argument.
1828  *
1829  * After this function, qp can receive request from user. Return 0 if
1830  * successful, Return -EBUSY if failed.
1831  */
1832 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
1833 {
1834         struct hisi_qm *qm = qp->qm;
1835         int ret;
1836
1837         down_write(&qm->qps_lock);
1838         ret = qm_start_qp_nolock(qp, arg);
1839         up_write(&qm->qps_lock);
1840
1841         return ret;
1842 }
1843 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
1844
1845 /**
1846  * Determine whether the queue is cleared by judging the tail pointers of
1847  * sq and cq.
1848  */
1849 static int qm_drain_qp(struct hisi_qp *qp)
1850 {
1851         size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
1852         struct hisi_qm *qm = qp->qm;
1853         struct device *dev = &qm->pdev->dev;
1854         struct qm_sqc *sqc;
1855         struct qm_cqc *cqc;
1856         dma_addr_t dma_addr;
1857         int ret = 0, i = 0;
1858         void *addr;
1859
1860         /*
1861          * No need to judge if ECC multi-bit error occurs because the
1862          * master OOO will be blocked.
1863          */
1864         if (qm->err_status.is_qm_ecc_mbit || qm->err_status.is_dev_ecc_mbit)
1865                 return 0;
1866
1867         addr = qm_ctx_alloc(qm, size, &dma_addr);
1868         if (IS_ERR(addr)) {
1869                 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
1870                 return -ENOMEM;
1871         }
1872
1873         while (++i) {
1874                 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
1875                 if (ret) {
1876                         dev_err_ratelimited(dev, "Failed to dump sqc!\n");
1877                         break;
1878                 }
1879                 sqc = addr;
1880
1881                 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
1882                                       qp->qp_id);
1883                 if (ret) {
1884                         dev_err_ratelimited(dev, "Failed to dump cqc!\n");
1885                         break;
1886                 }
1887                 cqc = addr + sizeof(struct qm_sqc);
1888
1889                 if ((sqc->tail == cqc->tail) &&
1890                     (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
1891                         break;
1892
1893                 if (i == MAX_WAIT_COUNTS) {
1894                         dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
1895                         ret = -EBUSY;
1896                         break;
1897                 }
1898
1899                 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
1900         }
1901
1902         qm_ctx_free(qm, size, addr, &dma_addr);
1903
1904         return ret;
1905 }
1906
1907 static int qm_stop_qp_nolock(struct hisi_qp *qp)
1908 {
1909         struct device *dev = &qp->qm->pdev->dev;
1910         int ret;
1911
1912         /*
1913          * It is allowed to stop and release qp when reset, If the qp is
1914          * stopped when reset but still want to be released then, the
1915          * is_resetting flag should be set negative so that this qp will not
1916          * be restarted after reset.
1917          */
1918         if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
1919                 qp->is_resetting = false;
1920                 return 0;
1921         }
1922
1923         if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
1924                 return -EPERM;
1925
1926         atomic_set(&qp->qp_status.flags, QP_STOP);
1927
1928         ret = qm_drain_qp(qp);
1929         if (ret)
1930                 dev_err(dev, "Failed to drain out data for stopping!\n");
1931
1932         if (qp->qm->wq)
1933                 flush_workqueue(qp->qm->wq);
1934         else
1935                 flush_work(&qp->qm->work);
1936
1937         dev_dbg(dev, "stop queue %u!", qp->qp_id);
1938
1939         return 0;
1940 }
1941
1942 /**
1943  * hisi_qm_stop_qp() - Stop a qp in qm.
1944  * @qp: The qp we want to stop.
1945  *
1946  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
1947  */
1948 int hisi_qm_stop_qp(struct hisi_qp *qp)
1949 {
1950         int ret;
1951
1952         down_write(&qp->qm->qps_lock);
1953         ret = qm_stop_qp_nolock(qp);
1954         up_write(&qp->qm->qps_lock);
1955
1956         return ret;
1957 }
1958 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
1959
1960 /**
1961  * hisi_qp_send() - Queue up a task in the hardware queue.
1962  * @qp: The qp in which to put the message.
1963  * @msg: The message.
1964  *
1965  * This function will return -EBUSY if qp is currently full, and -EAGAIN
1966  * if qp related qm is resetting.
1967  *
1968  * Note: This function may run with qm_irq_thread and ACC reset at same time.
1969  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
1970  *       reset may happen, we have no lock here considering performance. This
1971  *       causes current qm_db sending fail or can not receive sended sqe. QM
1972  *       sync/async receive function should handle the error sqe. ACC reset
1973  *       done function should clear used sqe to 0.
1974  */
1975 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
1976 {
1977         struct hisi_qp_status *qp_status = &qp->qp_status;
1978         u16 sq_tail = qp_status->sq_tail;
1979         u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH;
1980         void *sqe = qm_get_avail_sqe(qp);
1981
1982         if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
1983                      atomic_read(&qp->qm->status.flags) == QM_STOP ||
1984                      qp->is_resetting)) {
1985                 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
1986                 return -EAGAIN;
1987         }
1988
1989         if (!sqe)
1990                 return -EBUSY;
1991
1992         memcpy(sqe, msg, qp->qm->sqe_size);
1993
1994         qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
1995         atomic_inc(&qp->qp_status.used);
1996         qp_status->sq_tail = sq_tail_next;
1997
1998         return 0;
1999 }
2000 EXPORT_SYMBOL_GPL(hisi_qp_send);
2001
2002 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2003 {
2004         unsigned int val;
2005
2006         if (qm->ver == QM_HW_V1)
2007                 return;
2008
2009         writel(0x1, qm->io_base + QM_CACHE_WB_START);
2010         if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2011                                             val, val & BIT(0), 10, 1000))
2012                 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2013 }
2014
2015 static void qm_qp_event_notifier(struct hisi_qp *qp)
2016 {
2017         wake_up_interruptible(&qp->uacce_q->wait);
2018 }
2019
2020 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2021 {
2022         return hisi_qm_get_free_qp_num(uacce->priv);
2023 }
2024
2025 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2026                                    unsigned long arg,
2027                                    struct uacce_queue *q)
2028 {
2029         struct hisi_qm *qm = uacce->priv;
2030         struct hisi_qp *qp;
2031         u8 alg_type = 0;
2032
2033         qp = hisi_qm_create_qp(qm, alg_type);
2034         if (IS_ERR(qp))
2035                 return PTR_ERR(qp);
2036
2037         q->priv = qp;
2038         q->uacce = uacce;
2039         qp->uacce_q = q;
2040         qp->event_cb = qm_qp_event_notifier;
2041         qp->pasid = arg;
2042
2043         return 0;
2044 }
2045
2046 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2047 {
2048         struct hisi_qp *qp = q->priv;
2049
2050         hisi_qm_cache_wb(qp->qm);
2051         hisi_qm_release_qp(qp);
2052 }
2053
2054 /* map sq/cq/doorbell to user space */
2055 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2056                               struct vm_area_struct *vma,
2057                               struct uacce_qfile_region *qfr)
2058 {
2059         struct hisi_qp *qp = q->priv;
2060         struct hisi_qm *qm = qp->qm;
2061         size_t sz = vma->vm_end - vma->vm_start;
2062         struct pci_dev *pdev = qm->pdev;
2063         struct device *dev = &pdev->dev;
2064         unsigned long vm_pgoff;
2065         int ret;
2066
2067         switch (qfr->type) {
2068         case UACCE_QFRT_MMIO:
2069                 if (qm->ver == QM_HW_V1) {
2070                         if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2071                                 return -EINVAL;
2072                 } else {
2073                         if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2074                             QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2075                                 return -EINVAL;
2076                 }
2077
2078                 vma->vm_flags |= VM_IO;
2079
2080                 return remap_pfn_range(vma, vma->vm_start,
2081                                        qm->phys_base >> PAGE_SHIFT,
2082                                        sz, pgprot_noncached(vma->vm_page_prot));
2083         case UACCE_QFRT_DUS:
2084                 if (sz != qp->qdma.size)
2085                         return -EINVAL;
2086
2087                 /*
2088                  * dma_mmap_coherent() requires vm_pgoff as 0
2089                  * restore vm_pfoff to initial value for mmap()
2090                  */
2091                 vm_pgoff = vma->vm_pgoff;
2092                 vma->vm_pgoff = 0;
2093                 ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2094                                         qp->qdma.dma, sz);
2095                 vma->vm_pgoff = vm_pgoff;
2096                 return ret;
2097
2098         default:
2099                 return -EINVAL;
2100         }
2101 }
2102
2103 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2104 {
2105         struct hisi_qp *qp = q->priv;
2106
2107         return hisi_qm_start_qp(qp, qp->pasid);
2108 }
2109
2110 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2111 {
2112         hisi_qm_stop_qp(q->priv);
2113 }
2114
2115 static int qm_set_sqctype(struct uacce_queue *q, u16 type)
2116 {
2117         struct hisi_qm *qm = q->uacce->priv;
2118         struct hisi_qp *qp = q->priv;
2119
2120         down_write(&qm->qps_lock);
2121         qp->alg_type = type;
2122         up_write(&qm->qps_lock);
2123
2124         return 0;
2125 }
2126
2127 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2128                                 unsigned long arg)
2129 {
2130         struct hisi_qp *qp = q->priv;
2131         struct hisi_qp_ctx qp_ctx;
2132
2133         if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2134                 if (copy_from_user(&qp_ctx, (void __user *)arg,
2135                                    sizeof(struct hisi_qp_ctx)))
2136                         return -EFAULT;
2137
2138                 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2139                         return -EINVAL;
2140
2141                 qm_set_sqctype(q, qp_ctx.qc_type);
2142                 qp_ctx.id = qp->qp_id;
2143
2144                 if (copy_to_user((void __user *)arg, &qp_ctx,
2145                                  sizeof(struct hisi_qp_ctx)))
2146                         return -EFAULT;
2147         } else {
2148                 return -EINVAL;
2149         }
2150
2151         return 0;
2152 }
2153
2154 static const struct uacce_ops uacce_qm_ops = {
2155         .get_available_instances = hisi_qm_get_available_instances,
2156         .get_queue = hisi_qm_uacce_get_queue,
2157         .put_queue = hisi_qm_uacce_put_queue,
2158         .start_queue = hisi_qm_uacce_start_queue,
2159         .stop_queue = hisi_qm_uacce_stop_queue,
2160         .mmap = hisi_qm_uacce_mmap,
2161         .ioctl = hisi_qm_uacce_ioctl,
2162 };
2163
2164 static int qm_alloc_uacce(struct hisi_qm *qm)
2165 {
2166         struct pci_dev *pdev = qm->pdev;
2167         struct uacce_device *uacce;
2168         unsigned long mmio_page_nr;
2169         unsigned long dus_page_nr;
2170         struct uacce_interface interface = {
2171                 .flags = UACCE_DEV_SVA,
2172                 .ops = &uacce_qm_ops,
2173         };
2174         int ret;
2175
2176         ret = strscpy(interface.name, pdev->driver->name,
2177                       sizeof(interface.name));
2178         if (ret < 0)
2179                 return -ENAMETOOLONG;
2180
2181         uacce = uacce_alloc(&pdev->dev, &interface);
2182         if (IS_ERR(uacce))
2183                 return PTR_ERR(uacce);
2184
2185         if (uacce->flags & UACCE_DEV_SVA) {
2186                 qm->use_sva = true;
2187         } else {
2188                 /* only consider sva case */
2189                 uacce_remove(uacce);
2190                 qm->uacce = NULL;
2191                 return -EINVAL;
2192         }
2193
2194         uacce->is_vf = pdev->is_virtfn;
2195         uacce->priv = qm;
2196         uacce->algs = qm->algs;
2197
2198         if (qm->ver == QM_HW_V1) {
2199                 mmio_page_nr = QM_DOORBELL_PAGE_NR;
2200                 uacce->api_ver = HISI_QM_API_VER_BASE;
2201         } else {
2202                 mmio_page_nr = QM_DOORBELL_PAGE_NR +
2203                         QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2204                 uacce->api_ver = HISI_QM_API_VER2_BASE;
2205         }
2206
2207         dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH +
2208                        sizeof(struct qm_cqe) * QM_Q_DEPTH) >> PAGE_SHIFT;
2209
2210         uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2211         uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2212
2213         qm->uacce = uacce;
2214
2215         return 0;
2216 }
2217
2218 /**
2219  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2220  * there is user on the QM, return failure without doing anything.
2221  * @qm: The qm needed to be fronzen.
2222  *
2223  * This function frozes QM, then we can do SRIOV disabling.
2224  */
2225 static int qm_frozen(struct hisi_qm *qm)
2226 {
2227         down_write(&qm->qps_lock);
2228
2229         if (qm->is_frozen) {
2230                 up_write(&qm->qps_lock);
2231                 return 0;
2232         }
2233
2234         if (!qm->qp_in_used) {
2235                 qm->qp_in_used = qm->qp_num;
2236                 qm->is_frozen = true;
2237                 up_write(&qm->qps_lock);
2238                 return 0;
2239         }
2240
2241         up_write(&qm->qps_lock);
2242
2243         return -EBUSY;
2244 }
2245
2246 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2247                              struct hisi_qm_list *qm_list)
2248 {
2249         struct hisi_qm *qm, *vf_qm;
2250         struct pci_dev *dev;
2251         int ret = 0;
2252
2253         if (!qm_list || !pdev)
2254                 return -EINVAL;
2255
2256         /* Try to frozen all the VFs as disable SRIOV */
2257         mutex_lock(&qm_list->lock);
2258         list_for_each_entry(qm, &qm_list->list, list) {
2259                 dev = qm->pdev;
2260                 if (dev == pdev)
2261                         continue;
2262                 if (pci_physfn(dev) == pdev) {
2263                         vf_qm = pci_get_drvdata(dev);
2264                         ret = qm_frozen(vf_qm);
2265                         if (ret)
2266                                 goto frozen_fail;
2267                 }
2268         }
2269
2270 frozen_fail:
2271         mutex_unlock(&qm_list->lock);
2272
2273         return ret;
2274 }
2275
2276 /**
2277  * hisi_qm_wait_task_finish() - Wait until the task is finished
2278  * when removing the driver.
2279  * @qm: The qm needed to wait for the task to finish.
2280  * @qm_list: The list of all available devices.
2281  */
2282 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2283 {
2284         while (qm_frozen(qm) ||
2285                ((qm->fun_type == QM_HW_PF) &&
2286                qm_try_frozen_vfs(qm->pdev, qm_list))) {
2287                 msleep(WAIT_PERIOD);
2288         }
2289
2290         udelay(REMOVE_WAIT_DELAY);
2291 }
2292 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2293
2294 /**
2295  * hisi_qm_get_free_qp_num() - Get free number of qp in qm.
2296  * @qm: The qm which want to get free qp.
2297  *
2298  * This function return free number of qp in qm.
2299  */
2300 int hisi_qm_get_free_qp_num(struct hisi_qm *qm)
2301 {
2302         int ret;
2303
2304         down_read(&qm->qps_lock);
2305         ret = qm->qp_num - qm->qp_in_used;
2306         up_read(&qm->qps_lock);
2307
2308         return ret;
2309 }
2310 EXPORT_SYMBOL_GPL(hisi_qm_get_free_qp_num);
2311
2312 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2313 {
2314         struct device *dev = &qm->pdev->dev;
2315         struct qm_dma *qdma;
2316         int i;
2317
2318         for (i = num - 1; i >= 0; i--) {
2319                 qdma = &qm->qp_array[i].qdma;
2320                 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2321         }
2322
2323         kfree(qm->qp_array);
2324 }
2325
2326 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id)
2327 {
2328         struct device *dev = &qm->pdev->dev;
2329         size_t off = qm->sqe_size * QM_Q_DEPTH;
2330         struct hisi_qp *qp;
2331
2332         qp = &qm->qp_array[id];
2333         qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2334                                          GFP_KERNEL);
2335         if (!qp->qdma.va)
2336                 return -ENOMEM;
2337
2338         qp->sqe = qp->qdma.va;
2339         qp->sqe_dma = qp->qdma.dma;
2340         qp->cqe = qp->qdma.va + off;
2341         qp->cqe_dma = qp->qdma.dma + off;
2342         qp->qdma.size = dma_size;
2343         qp->qm = qm;
2344         qp->qp_id = id;
2345
2346         return 0;
2347 }
2348
2349 static int hisi_qm_memory_init(struct hisi_qm *qm)
2350 {
2351         struct device *dev = &qm->pdev->dev;
2352         size_t qp_dma_size, off = 0;
2353         int i, ret = 0;
2354
2355 #define QM_INIT_BUF(qm, type, num) do { \
2356         (qm)->type = ((qm)->qdma.va + (off)); \
2357         (qm)->type##_dma = (qm)->qdma.dma + (off); \
2358         off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
2359 } while (0)
2360
2361         idr_init(&qm->qp_idr);
2362         qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) +
2363                         QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) +
2364                         QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
2365                         QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
2366         qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
2367                                          GFP_ATOMIC);
2368         dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
2369         if (!qm->qdma.va)
2370                 return -ENOMEM;
2371
2372         QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH);
2373         QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH);
2374         QM_INIT_BUF(qm, sqc, qm->qp_num);
2375         QM_INIT_BUF(qm, cqc, qm->qp_num);
2376
2377         qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
2378         if (!qm->qp_array) {
2379                 ret = -ENOMEM;
2380                 goto err_alloc_qp_array;
2381         }
2382
2383         /* one more page for device or qp statuses */
2384         qp_dma_size = qm->sqe_size * QM_Q_DEPTH +
2385                       sizeof(struct qm_cqe) * QM_Q_DEPTH;
2386         qp_dma_size = PAGE_ALIGN(qp_dma_size);
2387         for (i = 0; i < qm->qp_num; i++) {
2388                 ret = hisi_qp_memory_init(qm, qp_dma_size, i);
2389                 if (ret)
2390                         goto err_init_qp_mem;
2391
2392                 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
2393         }
2394
2395         return ret;
2396
2397 err_init_qp_mem:
2398         hisi_qp_memory_uninit(qm, i);
2399 err_alloc_qp_array:
2400         dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
2401
2402         return ret;
2403 }
2404
2405 static void hisi_qm_pre_init(struct hisi_qm *qm)
2406 {
2407         struct pci_dev *pdev = qm->pdev;
2408
2409         if (qm->ver == QM_HW_V1)
2410                 qm->ops = &qm_hw_ops_v1;
2411         else
2412                 qm->ops = &qm_hw_ops_v2;
2413
2414         pci_set_drvdata(pdev, qm);
2415         mutex_init(&qm->mailbox_lock);
2416         init_rwsem(&qm->qps_lock);
2417         qm->qp_in_used = 0;
2418         qm->is_frozen = false;
2419 }
2420
2421 /**
2422  * hisi_qm_uninit() - Uninitialize qm.
2423  * @qm: The qm needed uninit.
2424  *
2425  * This function uninits qm related device resources.
2426  */
2427 void hisi_qm_uninit(struct hisi_qm *qm)
2428 {
2429         struct pci_dev *pdev = qm->pdev;
2430         struct device *dev = &pdev->dev;
2431
2432         down_write(&qm->qps_lock);
2433
2434         if (!qm_avail_state(qm, QM_CLOSE)) {
2435                 up_write(&qm->qps_lock);
2436                 return;
2437         }
2438
2439         uacce_remove(qm->uacce);
2440         qm->uacce = NULL;
2441
2442         hisi_qp_memory_uninit(qm, qm->qp_num);
2443         idr_destroy(&qm->qp_idr);
2444
2445         if (qm->qdma.va) {
2446                 hisi_qm_cache_wb(qm);
2447                 dma_free_coherent(dev, qm->qdma.size,
2448                                   qm->qdma.va, qm->qdma.dma);
2449                 memset(&qm->qdma, 0, sizeof(qm->qdma));
2450         }
2451
2452         qm_irq_unregister(qm);
2453         pci_free_irq_vectors(pdev);
2454         iounmap(qm->io_base);
2455         pci_release_mem_regions(pdev);
2456         pci_disable_device(pdev);
2457
2458         up_write(&qm->qps_lock);
2459 }
2460 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2461
2462 /**
2463  * hisi_qm_get_vft() - Get vft from a qm.
2464  * @qm: The qm we want to get its vft.
2465  * @base: The base number of queue in vft.
2466  * @number: The number of queues in vft.
2467  *
2468  * We can allocate multiple queues to a qm by configuring virtual function
2469  * table. We get related configures by this function. Normally, we call this
2470  * function in VF driver to get the queue information.
2471  *
2472  * qm hw v1 does not support this interface.
2473  */
2474 int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2475 {
2476         if (!base || !number)
2477                 return -EINVAL;
2478
2479         if (!qm->ops->get_vft) {
2480                 dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2481                 return -EINVAL;
2482         }
2483
2484         return qm->ops->get_vft(qm, base, number);
2485 }
2486 EXPORT_SYMBOL_GPL(hisi_qm_get_vft);
2487
2488 /**
2489  * This function is alway called in PF driver, it is used to assign queues
2490  * among PF and VFs.
2491  *
2492  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2493  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2494  * (VF function number 0x2)
2495  */
2496 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2497                     u32 number)
2498 {
2499         u32 max_q_num = qm->ctrl_qp_num;
2500
2501         if (base >= max_q_num || number > max_q_num ||
2502             (base + number) > max_q_num)
2503                 return -EINVAL;
2504
2505         return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2506 }
2507
2508 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2509 {
2510         struct hisi_qm_status *status = &qm->status;
2511
2512         status->eq_head = 0;
2513         status->aeq_head = 0;
2514         status->eqc_phase = true;
2515         status->aeqc_phase = true;
2516 }
2517
2518 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
2519 {
2520         struct device *dev = &qm->pdev->dev;
2521         struct qm_eqc *eqc;
2522         struct qm_aeqc *aeqc;
2523         dma_addr_t eqc_dma;
2524         dma_addr_t aeqc_dma;
2525         int ret;
2526
2527         qm_init_eq_aeq_status(qm);
2528
2529         eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
2530         if (!eqc)
2531                 return -ENOMEM;
2532         eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
2533                                  DMA_TO_DEVICE);
2534         if (dma_mapping_error(dev, eqc_dma)) {
2535                 kfree(eqc);
2536                 return -ENOMEM;
2537         }
2538
2539         eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
2540         eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
2541         if (qm->ver == QM_HW_V1)
2542                 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
2543         eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
2544         ret = qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
2545         dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
2546         kfree(eqc);
2547         if (ret)
2548                 return ret;
2549
2550         aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
2551         if (!aeqc)
2552                 return -ENOMEM;
2553         aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
2554                                   DMA_TO_DEVICE);
2555         if (dma_mapping_error(dev, aeqc_dma)) {
2556                 kfree(aeqc);
2557                 return -ENOMEM;
2558         }
2559
2560         aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
2561         aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
2562         aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
2563
2564         ret = qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
2565         dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
2566         kfree(aeqc);
2567
2568         return ret;
2569 }
2570
2571 static int __hisi_qm_start(struct hisi_qm *qm)
2572 {
2573         int ret;
2574
2575         WARN_ON(!qm->qdma.dma);
2576
2577         if (qm->fun_type == QM_HW_PF) {
2578                 ret = qm_dev_mem_reset(qm);
2579                 if (ret)
2580                         return ret;
2581
2582                 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
2583                 if (ret)
2584                         return ret;
2585         }
2586
2587         ret = qm_eq_ctx_cfg(qm);
2588         if (ret)
2589                 return ret;
2590
2591         ret = qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
2592         if (ret)
2593                 return ret;
2594
2595         ret = qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
2596         if (ret)
2597                 return ret;
2598
2599         writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
2600         writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
2601
2602         return 0;
2603 }
2604
2605 /**
2606  * hisi_qm_start() - start qm
2607  * @qm: The qm to be started.
2608  *
2609  * This function starts a qm, then we can allocate qp from this qm.
2610  */
2611 int hisi_qm_start(struct hisi_qm *qm)
2612 {
2613         struct device *dev = &qm->pdev->dev;
2614         int ret = 0;
2615
2616         down_write(&qm->qps_lock);
2617
2618         if (!qm_avail_state(qm, QM_START)) {
2619                 up_write(&qm->qps_lock);
2620                 return -EPERM;
2621         }
2622
2623         dev_dbg(dev, "qm start with %d queue pairs\n", qm->qp_num);
2624
2625         if (!qm->qp_num) {
2626                 dev_err(dev, "qp_num should not be 0\n");
2627                 ret = -EINVAL;
2628                 goto err_unlock;
2629         }
2630
2631         ret = __hisi_qm_start(qm);
2632         if (!ret)
2633                 atomic_set(&qm->status.flags, QM_START);
2634
2635 err_unlock:
2636         up_write(&qm->qps_lock);
2637         return ret;
2638 }
2639 EXPORT_SYMBOL_GPL(hisi_qm_start);
2640
2641 static int qm_restart(struct hisi_qm *qm)
2642 {
2643         struct device *dev = &qm->pdev->dev;
2644         struct hisi_qp *qp;
2645         int ret, i;
2646
2647         ret = hisi_qm_start(qm);
2648         if (ret < 0)
2649                 return ret;
2650
2651         down_write(&qm->qps_lock);
2652         for (i = 0; i < qm->qp_num; i++) {
2653                 qp = &qm->qp_array[i];
2654                 if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
2655                     qp->is_resetting == true) {
2656                         ret = qm_start_qp_nolock(qp, 0);
2657                         if (ret < 0) {
2658                                 dev_err(dev, "Failed to start qp%d!\n", i);
2659
2660                                 up_write(&qm->qps_lock);
2661                                 return ret;
2662                         }
2663                         qp->is_resetting = false;
2664                 }
2665         }
2666         up_write(&qm->qps_lock);
2667
2668         return 0;
2669 }
2670
2671 /* Stop started qps in reset flow */
2672 static int qm_stop_started_qp(struct hisi_qm *qm)
2673 {
2674         struct device *dev = &qm->pdev->dev;
2675         struct hisi_qp *qp;
2676         int i, ret;
2677
2678         for (i = 0; i < qm->qp_num; i++) {
2679                 qp = &qm->qp_array[i];
2680                 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
2681                         qp->is_resetting = true;
2682                         ret = qm_stop_qp_nolock(qp);
2683                         if (ret < 0) {
2684                                 dev_err(dev, "Failed to stop qp%d!\n", i);
2685                                 return ret;
2686                         }
2687                 }
2688         }
2689
2690         return 0;
2691 }
2692
2693 /**
2694  * This function clears all queues memory in a qm. Reset of accelerator can
2695  * use this to clear queues.
2696  */
2697 static void qm_clear_queues(struct hisi_qm *qm)
2698 {
2699         struct hisi_qp *qp;
2700         int i;
2701
2702         for (i = 0; i < qm->qp_num; i++) {
2703                 qp = &qm->qp_array[i];
2704                 if (qp->is_resetting)
2705                         memset(qp->qdma.va, 0, qp->qdma.size);
2706         }
2707
2708         memset(qm->qdma.va, 0, qm->qdma.size);
2709 }
2710
2711 /**
2712  * hisi_qm_stop() - Stop a qm.
2713  * @qm: The qm which will be stopped.
2714  * @r: The reason to stop qm.
2715  *
2716  * This function stops qm and its qps, then qm can not accept request.
2717  * Related resources are not released at this state, we can use hisi_qm_start
2718  * to let qm start again.
2719  */
2720 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
2721 {
2722         struct device *dev = &qm->pdev->dev;
2723         int ret = 0;
2724
2725         down_write(&qm->qps_lock);
2726
2727         qm->status.stop_reason = r;
2728         if (!qm_avail_state(qm, QM_STOP)) {
2729                 ret = -EPERM;
2730                 goto err_unlock;
2731         }
2732
2733         if (qm->status.stop_reason == QM_SOFT_RESET ||
2734             qm->status.stop_reason == QM_FLR) {
2735                 ret = qm_stop_started_qp(qm);
2736                 if (ret < 0) {
2737                         dev_err(dev, "Failed to stop started qp!\n");
2738                         goto err_unlock;
2739                 }
2740         }
2741
2742         /* Mask eq and aeq irq */
2743         writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
2744         writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
2745
2746         if (qm->fun_type == QM_HW_PF) {
2747                 ret = hisi_qm_set_vft(qm, 0, 0, 0);
2748                 if (ret < 0) {
2749                         dev_err(dev, "Failed to set vft!\n");
2750                         ret = -EBUSY;
2751                         goto err_unlock;
2752                 }
2753         }
2754
2755         qm_clear_queues(qm);
2756         atomic_set(&qm->status.flags, QM_STOP);
2757
2758 err_unlock:
2759         up_write(&qm->qps_lock);
2760         return ret;
2761 }
2762 EXPORT_SYMBOL_GPL(hisi_qm_stop);
2763
2764 static ssize_t qm_status_read(struct file *filp, char __user *buffer,
2765                               size_t count, loff_t *pos)
2766 {
2767         struct hisi_qm *qm = filp->private_data;
2768         char buf[QM_DBG_READ_LEN];
2769         int val, len;
2770
2771         val = atomic_read(&qm->status.flags);
2772         len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]);
2773
2774         return simple_read_from_buffer(buffer, count, pos, buf, len);
2775 }
2776
2777 static const struct file_operations qm_status_fops = {
2778         .owner = THIS_MODULE,
2779         .open = simple_open,
2780         .read = qm_status_read,
2781 };
2782
2783 static int qm_debugfs_atomic64_set(void *data, u64 val)
2784 {
2785         if (val)
2786                 return -EINVAL;
2787
2788         atomic64_set((atomic64_t *)data, 0);
2789
2790         return 0;
2791 }
2792
2793 static int qm_debugfs_atomic64_get(void *data, u64 *val)
2794 {
2795         *val = atomic64_read((atomic64_t *)data);
2796
2797         return 0;
2798 }
2799
2800 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get,
2801                          qm_debugfs_atomic64_set, "%llu\n");
2802
2803 /**
2804  * hisi_qm_debug_init() - Initialize qm related debugfs files.
2805  * @qm: The qm for which we want to add debugfs files.
2806  *
2807  * Create qm related debugfs files.
2808  */
2809 int hisi_qm_debug_init(struct hisi_qm *qm)
2810 {
2811         struct qm_dfx *dfx = &qm->debug.dfx;
2812         struct dentry *qm_d;
2813         void *data;
2814         int i, ret;
2815
2816         qm_d = debugfs_create_dir("qm", qm->debug.debug_root);
2817         qm->debug.qm_d = qm_d;
2818
2819         /* only show this in PF */
2820         if (qm->fun_type == QM_HW_PF)
2821                 for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++)
2822                         if (qm_create_debugfs_file(qm, i)) {
2823                                 ret = -ENOENT;
2824                                 goto failed_to_create;
2825                         }
2826
2827         debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops);
2828
2829         debugfs_create_file("cmd", 0444, qm->debug.qm_d, qm, &qm_cmd_fops);
2830
2831         debugfs_create_file("status", 0444, qm->debug.qm_d, qm,
2832                         &qm_status_fops);
2833         for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) {
2834                 data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset);
2835                 debugfs_create_file(qm_dfx_files[i].name,
2836                         0644,
2837                         qm_d,
2838                         data,
2839                         &qm_atomic64_ops);
2840         }
2841
2842         return 0;
2843
2844 failed_to_create:
2845         debugfs_remove_recursive(qm_d);
2846         return ret;
2847 }
2848 EXPORT_SYMBOL_GPL(hisi_qm_debug_init);
2849
2850 /**
2851  * hisi_qm_debug_regs_clear() - clear qm debug related registers.
2852  * @qm: The qm for which we want to clear its debug registers.
2853  */
2854 void hisi_qm_debug_regs_clear(struct hisi_qm *qm)
2855 {
2856         struct qm_dfx_registers *regs;
2857         int i;
2858
2859         /* clear current_q */
2860         writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
2861         writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
2862
2863         /*
2864          * these registers are reading and clearing, so clear them after
2865          * reading them.
2866          */
2867         writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE);
2868
2869         regs = qm_dfx_regs;
2870         for (i = 0; i < CNT_CYC_REGS_NUM; i++) {
2871                 readl(qm->io_base + regs->reg_offset);
2872                 regs++;
2873         }
2874
2875         writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE);
2876 }
2877 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear);
2878
2879 static void qm_hw_error_init(struct hisi_qm *qm)
2880 {
2881         const struct hisi_qm_err_info *err_info = &qm->err_ini->err_info;
2882
2883         if (!qm->ops->hw_error_init) {
2884                 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
2885                 return;
2886         }
2887
2888         qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe);
2889 }
2890
2891 static void qm_hw_error_uninit(struct hisi_qm *qm)
2892 {
2893         if (!qm->ops->hw_error_uninit) {
2894                 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
2895                 return;
2896         }
2897
2898         qm->ops->hw_error_uninit(qm);
2899 }
2900
2901 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
2902 {
2903         if (!qm->ops->hw_error_handle) {
2904                 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
2905                 return ACC_ERR_NONE;
2906         }
2907
2908         return qm->ops->hw_error_handle(qm);
2909 }
2910
2911 /**
2912  * hisi_qm_dev_err_init() - Initialize device error configuration.
2913  * @qm: The qm for which we want to do error initialization.
2914  *
2915  * Initialize QM and device error related configuration.
2916  */
2917 void hisi_qm_dev_err_init(struct hisi_qm *qm)
2918 {
2919         if (qm->fun_type == QM_HW_VF)
2920                 return;
2921
2922         qm_hw_error_init(qm);
2923
2924         if (!qm->err_ini->hw_err_enable) {
2925                 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
2926                 return;
2927         }
2928         qm->err_ini->hw_err_enable(qm);
2929 }
2930 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
2931
2932 /**
2933  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
2934  * @qm: The qm for which we want to do error uninitialization.
2935  *
2936  * Uninitialize QM and device error related configuration.
2937  */
2938 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
2939 {
2940         if (qm->fun_type == QM_HW_VF)
2941                 return;
2942
2943         qm_hw_error_uninit(qm);
2944
2945         if (!qm->err_ini->hw_err_disable) {
2946                 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
2947                 return;
2948         }
2949         qm->err_ini->hw_err_disable(qm);
2950 }
2951 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
2952
2953 /**
2954  * hisi_qm_free_qps() - free multiple queue pairs.
2955  * @qps: The queue pairs need to be freed.
2956  * @qp_num: The num of queue pairs.
2957  */
2958 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
2959 {
2960         int i;
2961
2962         if (!qps || qp_num <= 0)
2963                 return;
2964
2965         for (i = qp_num - 1; i >= 0; i--)
2966                 hisi_qm_release_qp(qps[i]);
2967 }
2968 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
2969
2970 static void free_list(struct list_head *head)
2971 {
2972         struct hisi_qm_resource *res, *tmp;
2973
2974         list_for_each_entry_safe(res, tmp, head, list) {
2975                 list_del(&res->list);
2976                 kfree(res);
2977         }
2978 }
2979
2980 static int hisi_qm_sort_devices(int node, struct list_head *head,
2981                                 struct hisi_qm_list *qm_list)
2982 {
2983         struct hisi_qm_resource *res, *tmp;
2984         struct hisi_qm *qm;
2985         struct list_head *n;
2986         struct device *dev;
2987         int dev_node = 0;
2988
2989         list_for_each_entry(qm, &qm_list->list, list) {
2990                 dev = &qm->pdev->dev;
2991
2992                 if (IS_ENABLED(CONFIG_NUMA)) {
2993                         dev_node = dev_to_node(dev);
2994                         if (dev_node < 0)
2995                                 dev_node = 0;
2996                 }
2997
2998                 res = kzalloc(sizeof(*res), GFP_KERNEL);
2999                 if (!res)
3000                         return -ENOMEM;
3001
3002                 res->qm = qm;
3003                 res->distance = node_distance(dev_node, node);
3004                 n = head;
3005                 list_for_each_entry(tmp, head, list) {
3006                         if (res->distance < tmp->distance) {
3007                                 n = &tmp->list;
3008                                 break;
3009                         }
3010                 }
3011                 list_add_tail(&res->list, n);
3012         }
3013
3014         return 0;
3015 }
3016
3017 /**
3018  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3019  * @qm_list: The list of all available devices.
3020  * @qp_num: The number of queue pairs need created.
3021  * @alg_type: The algorithm type.
3022  * @node: The numa node.
3023  * @qps: The queue pairs need created.
3024  *
3025  * This function will sort all available device according to numa distance.
3026  * Then try to create all queue pairs from one device, if all devices do
3027  * not meet the requirements will return error.
3028  */
3029 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3030                            u8 alg_type, int node, struct hisi_qp **qps)
3031 {
3032         struct hisi_qm_resource *tmp;
3033         int ret = -ENODEV;
3034         LIST_HEAD(head);
3035         int i;
3036
3037         if (!qps || !qm_list || qp_num <= 0)
3038                 return -EINVAL;
3039
3040         mutex_lock(&qm_list->lock);
3041         if (hisi_qm_sort_devices(node, &head, qm_list)) {
3042                 mutex_unlock(&qm_list->lock);
3043                 goto err;
3044         }
3045
3046         list_for_each_entry(tmp, &head, list) {
3047                 for (i = 0; i < qp_num; i++) {
3048                         qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3049                         if (IS_ERR(qps[i])) {
3050                                 hisi_qm_free_qps(qps, i);
3051                                 break;
3052                         }
3053                 }
3054
3055                 if (i == qp_num) {
3056                         ret = 0;
3057                         break;
3058                 }
3059         }
3060
3061         mutex_unlock(&qm_list->lock);
3062         if (ret)
3063                 pr_info("Failed to create qps, node[%d], alg[%d], qp[%d]!\n",
3064                         node, alg_type, qp_num);
3065
3066 err:
3067         free_list(&head);
3068         return ret;
3069 }
3070 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3071
3072 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3073 {
3074         u32 remain_q_num, q_num, i, j;
3075         u32 q_base = qm->qp_num;
3076         int ret;
3077
3078         if (!num_vfs)
3079                 return -EINVAL;
3080
3081         remain_q_num = qm->ctrl_qp_num - qm->qp_num;
3082
3083         /* If remain queues not enough, return error. */
3084         if (qm->ctrl_qp_num < qm->qp_num || remain_q_num < num_vfs)
3085                 return -EINVAL;
3086
3087         q_num = remain_q_num / num_vfs;
3088         for (i = 1; i <= num_vfs; i++) {
3089                 if (i == num_vfs)
3090                         q_num += remain_q_num % num_vfs;
3091                 ret = hisi_qm_set_vft(qm, i, q_base, q_num);
3092                 if (ret) {
3093                         for (j = i; j > 0; j--)
3094                                 hisi_qm_set_vft(qm, j, 0, 0);
3095                         return ret;
3096                 }
3097                 q_base += q_num;
3098         }
3099
3100         return 0;
3101 }
3102
3103 static int qm_clear_vft_config(struct hisi_qm *qm)
3104 {
3105         int ret;
3106         u32 i;
3107
3108         for (i = 1; i <= qm->vfs_num; i++) {
3109                 ret = hisi_qm_set_vft(qm, i, 0, 0);
3110                 if (ret)
3111                         return ret;
3112         }
3113         qm->vfs_num = 0;
3114
3115         return 0;
3116 }
3117
3118 /**
3119  * hisi_qm_sriov_enable() - enable virtual functions
3120  * @pdev: the PCIe device
3121  * @max_vfs: the number of virtual functions to enable
3122  *
3123  * Returns the number of enabled VFs. If there are VFs enabled already or
3124  * max_vfs is more than the total number of device can be enabled, returns
3125  * failure.
3126  */
3127 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3128 {
3129         struct hisi_qm *qm = pci_get_drvdata(pdev);
3130         int pre_existing_vfs, num_vfs, total_vfs, ret;
3131
3132         total_vfs = pci_sriov_get_totalvfs(pdev);
3133         pre_existing_vfs = pci_num_vf(pdev);
3134         if (pre_existing_vfs) {
3135                 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3136                         pre_existing_vfs);
3137                 return 0;
3138         }
3139
3140         num_vfs = min_t(int, max_vfs, total_vfs);
3141         ret = qm_vf_q_assign(qm, num_vfs);
3142         if (ret) {
3143                 pci_err(pdev, "Can't assign queues for VF!\n");
3144                 return ret;
3145         }
3146
3147         qm->vfs_num = num_vfs;
3148
3149         ret = pci_enable_sriov(pdev, num_vfs);
3150         if (ret) {
3151                 pci_err(pdev, "Can't enable VF!\n");
3152                 qm_clear_vft_config(qm);
3153                 return ret;
3154         }
3155
3156         pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3157
3158         return num_vfs;
3159 }
3160 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3161
3162 /**
3163  * hisi_qm_sriov_disable - disable virtual functions
3164  * @pdev: the PCI device.
3165  * @is_frozen: true when all the VFs are frozen.
3166  *
3167  * Return failure if there are VFs assigned already or VF is in used.
3168  */
3169 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3170 {
3171         struct hisi_qm *qm = pci_get_drvdata(pdev);
3172
3173         if (pci_vfs_assigned(pdev)) {
3174                 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3175                 return -EPERM;
3176         }
3177
3178         /* While VF is in used, SRIOV cannot be disabled. */
3179         if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3180                 pci_err(pdev, "Task is using its VF!\n");
3181                 return -EBUSY;
3182         }
3183
3184         pci_disable_sriov(pdev);
3185         return qm_clear_vft_config(qm);
3186 }
3187 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3188
3189 /**
3190  * hisi_qm_sriov_configure - configure the number of VFs
3191  * @pdev: The PCI device
3192  * @num_vfs: The number of VFs need enabled
3193  *
3194  * Enable SR-IOV according to num_vfs, 0 means disable.
3195  */
3196 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3197 {
3198         if (num_vfs == 0)
3199                 return hisi_qm_sriov_disable(pdev, 0);
3200         else
3201                 return hisi_qm_sriov_enable(pdev, num_vfs);
3202 }
3203 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3204
3205 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3206 {
3207         u32 err_sts;
3208
3209         if (!qm->err_ini->get_dev_hw_err_status) {
3210                 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3211                 return ACC_ERR_NONE;
3212         }
3213
3214         /* get device hardware error status */
3215         err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3216         if (err_sts) {
3217                 if (err_sts & qm->err_ini->err_info.ecc_2bits_mask)
3218                         qm->err_status.is_dev_ecc_mbit = true;
3219
3220                 if (!qm->err_ini->log_dev_hw_err) {
3221                         dev_err(&qm->pdev->dev, "Device doesn't support log hw error!\n");
3222                         return ACC_ERR_NEED_RESET;
3223                 }
3224
3225                 qm->err_ini->log_dev_hw_err(qm, err_sts);
3226                 return ACC_ERR_NEED_RESET;
3227         }
3228
3229         return ACC_ERR_RECOVERED;
3230 }
3231
3232 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3233 {
3234         enum acc_err_result qm_ret, dev_ret;
3235
3236         /* log qm error */
3237         qm_ret = qm_hw_error_handle(qm);
3238
3239         /* log device error */
3240         dev_ret = qm_dev_err_handle(qm);
3241
3242         return (qm_ret == ACC_ERR_NEED_RESET ||
3243                 dev_ret == ACC_ERR_NEED_RESET) ?
3244                 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3245 }
3246
3247 /**
3248  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3249  * @pdev: The PCI device which need report error.
3250  * @state: The connectivity between CPU and device.
3251  *
3252  * We register this function into PCIe AER handlers, It will report device or
3253  * qm hardware error status when error occur.
3254  */
3255 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3256                                           pci_channel_state_t state)
3257 {
3258         struct hisi_qm *qm = pci_get_drvdata(pdev);
3259         enum acc_err_result ret;
3260
3261         if (pdev->is_virtfn)
3262                 return PCI_ERS_RESULT_NONE;
3263
3264         pci_info(pdev, "PCI error detected, state(=%d)!!\n", state);
3265         if (state == pci_channel_io_perm_failure)
3266                 return PCI_ERS_RESULT_DISCONNECT;
3267
3268         ret = qm_process_dev_error(qm);
3269         if (ret == ACC_ERR_NEED_RESET)
3270                 return PCI_ERS_RESULT_NEED_RESET;
3271
3272         return PCI_ERS_RESULT_RECOVERED;
3273 }
3274 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3275
3276 static int qm_get_hw_error_status(struct hisi_qm *qm)
3277 {
3278         return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
3279 }
3280
3281 static int qm_check_req_recv(struct hisi_qm *qm)
3282 {
3283         struct pci_dev *pdev = qm->pdev;
3284         int ret;
3285         u32 val;
3286
3287         writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
3288         ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3289                                          (val == ACC_VENDOR_ID_VALUE),
3290                                          POLL_PERIOD, POLL_TIMEOUT);
3291         if (ret) {
3292                 dev_err(&pdev->dev, "Fails to read QM reg!\n");
3293                 return ret;
3294         }
3295
3296         writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
3297         ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3298                                          (val == PCI_VENDOR_ID_HUAWEI),
3299                                          POLL_PERIOD, POLL_TIMEOUT);
3300         if (ret)
3301                 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
3302
3303         return ret;
3304 }
3305
3306 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
3307 {
3308         struct pci_dev *pdev = qm->pdev;
3309         u16 cmd;
3310         int i;
3311
3312         pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3313         if (set)
3314                 cmd |= PCI_COMMAND_MEMORY;
3315         else
3316                 cmd &= ~PCI_COMMAND_MEMORY;
3317
3318         pci_write_config_word(pdev, PCI_COMMAND, cmd);
3319         for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3320                 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3321                 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
3322                         return 0;
3323
3324                 udelay(1);
3325         }
3326
3327         return -ETIMEDOUT;
3328 }
3329
3330 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
3331 {
3332         struct pci_dev *pdev = qm->pdev;
3333         u16 sriov_ctrl;
3334         int pos;
3335         int i;
3336
3337         pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3338         pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3339         if (set)
3340                 sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
3341         else
3342                 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
3343         pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
3344
3345         for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3346                 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3347                 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
3348                     ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
3349                         return 0;
3350
3351                 udelay(1);
3352         }
3353
3354         return -ETIMEDOUT;
3355 }
3356
3357 static int qm_set_msi(struct hisi_qm *qm, bool set)
3358 {
3359         struct pci_dev *pdev = qm->pdev;
3360
3361         if (set) {
3362                 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
3363                                        0);
3364         } else {
3365                 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
3366                                        ACC_PEH_MSI_DISABLE);
3367                 if (qm->err_status.is_qm_ecc_mbit ||
3368                     qm->err_status.is_dev_ecc_mbit)
3369                         return 0;
3370
3371                 mdelay(1);
3372                 if (readl(qm->io_base + QM_PEH_DFX_INFO0))
3373                         return -EFAULT;
3374         }
3375
3376         return 0;
3377 }
3378
3379 static int qm_vf_reset_prepare(struct hisi_qm *qm,
3380                                enum qm_stop_reason stop_reason)
3381 {
3382         struct hisi_qm_list *qm_list = qm->qm_list;
3383         struct pci_dev *pdev = qm->pdev;
3384         struct pci_dev *virtfn;
3385         struct hisi_qm *vf_qm;
3386         int ret = 0;
3387
3388         mutex_lock(&qm_list->lock);
3389         list_for_each_entry(vf_qm, &qm_list->list, list) {
3390                 virtfn = vf_qm->pdev;
3391                 if (virtfn == pdev)
3392                         continue;
3393
3394                 if (pci_physfn(virtfn) == pdev) {
3395                         /* save VFs PCIE BAR configuration */
3396                         pci_save_state(virtfn);
3397
3398                         ret = hisi_qm_stop(vf_qm, stop_reason);
3399                         if (ret)
3400                                 goto stop_fail;
3401                 }
3402         }
3403
3404 stop_fail:
3405         mutex_unlock(&qm_list->lock);
3406         return ret;
3407 }
3408
3409 static int qm_reset_prepare_ready(struct hisi_qm *qm)
3410 {
3411         struct pci_dev *pdev = qm->pdev;
3412         struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3413         int delay = 0;
3414
3415         /* All reset requests need to be queued for processing */
3416         while (test_and_set_bit(QM_DEV_RESET_FLAG, &pf_qm->reset_flag)) {
3417                 msleep(++delay);
3418                 if (delay > QM_RESET_WAIT_TIMEOUT)
3419                         return -EBUSY;
3420         }
3421
3422         return 0;
3423 }
3424
3425 static int qm_controller_reset_prepare(struct hisi_qm *qm)
3426 {
3427         struct pci_dev *pdev = qm->pdev;
3428         int ret;
3429
3430         ret = qm_reset_prepare_ready(qm);
3431         if (ret) {
3432                 pci_err(pdev, "Controller reset not ready!\n");
3433                 return ret;
3434         }
3435
3436         if (qm->vfs_num) {
3437                 ret = qm_vf_reset_prepare(qm, QM_SOFT_RESET);
3438                 if (ret) {
3439                         pci_err(pdev, "Fails to stop VFs!\n");
3440                         return ret;
3441                 }
3442         }
3443
3444         ret = hisi_qm_stop(qm, QM_SOFT_RESET);
3445         if (ret) {
3446                 pci_err(pdev, "Fails to stop QM!\n");
3447                 return ret;
3448         }
3449
3450         return 0;
3451 }
3452
3453 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
3454 {
3455         u32 nfe_enb = 0;
3456
3457         if (!qm->err_status.is_dev_ecc_mbit &&
3458             qm->err_status.is_qm_ecc_mbit &&
3459             qm->err_ini->close_axi_master_ooo) {
3460
3461                 qm->err_ini->close_axi_master_ooo(qm);
3462
3463         } else if (qm->err_status.is_dev_ecc_mbit &&
3464                    !qm->err_status.is_qm_ecc_mbit &&
3465                    !qm->err_ini->close_axi_master_ooo) {
3466
3467                 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
3468                 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
3469                        qm->io_base + QM_RAS_NFE_ENABLE);
3470                 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
3471         }
3472 }
3473
3474 static int qm_soft_reset(struct hisi_qm *qm)
3475 {
3476         struct pci_dev *pdev = qm->pdev;
3477         int ret;
3478         u32 val;
3479
3480         /* Ensure all doorbells and mailboxes received by QM */
3481         ret = qm_check_req_recv(qm);
3482         if (ret)
3483                 return ret;
3484
3485         if (qm->vfs_num) {
3486                 ret = qm_set_vf_mse(qm, false);
3487                 if (ret) {
3488                         pci_err(pdev, "Fails to disable vf MSE bit.\n");
3489                         return ret;
3490                 }
3491         }
3492
3493         ret = qm_set_msi(qm, false);
3494         if (ret) {
3495                 pci_err(pdev, "Fails to disable PEH MSI bit.\n");
3496                 return ret;
3497         }
3498
3499         qm_dev_ecc_mbit_handle(qm);
3500
3501         /* OOO register set and check */
3502         writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
3503                qm->io_base + ACC_MASTER_GLOBAL_CTRL);
3504
3505         /* If bus lock, reset chip */
3506         ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
3507                                          val,
3508                                          (val == ACC_MASTER_TRANS_RETURN_RW),
3509                                          POLL_PERIOD, POLL_TIMEOUT);
3510         if (ret) {
3511                 pci_emerg(pdev, "Bus lock! Please reset system.\n");
3512                 return ret;
3513         }
3514
3515         ret = qm_set_pf_mse(qm, false);
3516         if (ret) {
3517                 pci_err(pdev, "Fails to disable pf MSE bit.\n");
3518                 return ret;
3519         }
3520
3521         /* The reset related sub-control registers are not in PCI BAR */
3522         if (ACPI_HANDLE(&pdev->dev)) {
3523                 unsigned long long value = 0;
3524                 acpi_status s;
3525
3526                 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
3527                                           qm->err_ini->err_info.acpi_rst,
3528                                           NULL, &value);
3529                 if (ACPI_FAILURE(s)) {
3530                         pci_err(pdev, "NO controller reset method!\n");
3531                         return -EIO;
3532                 }
3533
3534                 if (value) {
3535                         pci_err(pdev, "Reset step %llu failed!\n", value);
3536                         return -EIO;
3537                 }
3538         } else {
3539                 pci_err(pdev, "No reset method!\n");
3540                 return -EINVAL;
3541         }
3542
3543         return 0;
3544 }
3545
3546 static int qm_vf_reset_done(struct hisi_qm *qm)
3547 {
3548         struct hisi_qm_list *qm_list = qm->qm_list;
3549         struct pci_dev *pdev = qm->pdev;
3550         struct pci_dev *virtfn;
3551         struct hisi_qm *vf_qm;
3552         int ret = 0;
3553
3554         mutex_lock(&qm_list->lock);
3555         list_for_each_entry(vf_qm, &qm_list->list, list) {
3556                 virtfn = vf_qm->pdev;
3557                 if (virtfn == pdev)
3558                         continue;
3559
3560                 if (pci_physfn(virtfn) == pdev) {
3561                         /* enable VFs PCIE BAR configuration */
3562                         pci_restore_state(virtfn);
3563
3564                         ret = qm_restart(vf_qm);
3565                         if (ret)
3566                                 goto restart_fail;
3567                 }
3568         }
3569
3570 restart_fail:
3571         mutex_unlock(&qm_list->lock);
3572         return ret;
3573 }
3574
3575 static int qm_get_dev_err_status(struct hisi_qm *qm)
3576 {
3577         return qm->err_ini->get_dev_hw_err_status(qm);
3578 }
3579
3580 static int qm_dev_hw_init(struct hisi_qm *qm)
3581 {
3582         return qm->err_ini->hw_init(qm);
3583 }
3584
3585 static void qm_restart_prepare(struct hisi_qm *qm)
3586 {
3587         u32 value;
3588
3589         if (!qm->err_status.is_qm_ecc_mbit &&
3590             !qm->err_status.is_dev_ecc_mbit)
3591                 return;
3592
3593         /* temporarily close the OOO port used for PEH to write out MSI */
3594         value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3595         writel(value & ~qm->err_ini->err_info.msi_wr_port,
3596                qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3597
3598         /* clear dev ecc 2bit error source if having */
3599         value = qm_get_dev_err_status(qm) &
3600                 qm->err_ini->err_info.ecc_2bits_mask;
3601         if (value && qm->err_ini->clear_dev_hw_err_status)
3602                 qm->err_ini->clear_dev_hw_err_status(qm, value);
3603
3604         /* clear QM ecc mbit error source */
3605         writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
3606
3607         /* clear AM Reorder Buffer ecc mbit source */
3608         writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
3609
3610         if (qm->err_ini->open_axi_master_ooo)
3611                 qm->err_ini->open_axi_master_ooo(qm);
3612 }
3613
3614 static void qm_restart_done(struct hisi_qm *qm)
3615 {
3616         u32 value;
3617
3618         if (!qm->err_status.is_qm_ecc_mbit &&
3619             !qm->err_status.is_dev_ecc_mbit)
3620                 return;
3621
3622         /* open the OOO port for PEH to write out MSI */
3623         value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3624         value |= qm->err_ini->err_info.msi_wr_port;
3625         writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3626
3627         qm->err_status.is_qm_ecc_mbit = false;
3628         qm->err_status.is_dev_ecc_mbit = false;
3629 }
3630
3631 static int qm_controller_reset_done(struct hisi_qm *qm)
3632 {
3633         struct pci_dev *pdev = qm->pdev;
3634         int ret;
3635
3636         ret = qm_set_msi(qm, true);
3637         if (ret) {
3638                 pci_err(pdev, "Fails to enable PEH MSI bit!\n");
3639                 return ret;
3640         }
3641
3642         ret = qm_set_pf_mse(qm, true);
3643         if (ret) {
3644                 pci_err(pdev, "Fails to enable pf MSE bit!\n");
3645                 return ret;
3646         }
3647
3648         if (qm->vfs_num) {
3649                 ret = qm_set_vf_mse(qm, true);
3650                 if (ret) {
3651                         pci_err(pdev, "Fails to enable vf MSE bit!\n");
3652                         return ret;
3653                 }
3654         }
3655
3656         ret = qm_dev_hw_init(qm);
3657         if (ret) {
3658                 pci_err(pdev, "Failed to init device\n");
3659                 return ret;
3660         }
3661
3662         qm_restart_prepare(qm);
3663
3664         ret = qm_restart(qm);
3665         if (ret) {
3666                 pci_err(pdev, "Failed to start QM!\n");
3667                 return ret;
3668         }
3669
3670         if (qm->vfs_num) {
3671                 ret = qm_vf_q_assign(qm, qm->vfs_num);
3672                 if (ret) {
3673                         pci_err(pdev, "Failed to assign queue!\n");
3674                         return ret;
3675                 }
3676         }
3677
3678         ret = qm_vf_reset_done(qm);
3679         if (ret) {
3680                 pci_err(pdev, "Failed to start VFs!\n");
3681                 return -EPERM;
3682         }
3683
3684         hisi_qm_dev_err_init(qm);
3685         qm_restart_done(qm);
3686
3687         clear_bit(QM_DEV_RESET_FLAG, &qm->reset_flag);
3688
3689         return 0;
3690 }
3691
3692 static int qm_controller_reset(struct hisi_qm *qm)
3693 {
3694         struct pci_dev *pdev = qm->pdev;
3695         int ret;
3696
3697         pci_info(pdev, "Controller resetting...\n");
3698
3699         ret = qm_controller_reset_prepare(qm);
3700         if (ret)
3701                 return ret;
3702
3703         ret = qm_soft_reset(qm);
3704         if (ret) {
3705                 pci_err(pdev, "Controller reset failed (%d)\n", ret);
3706                 return ret;
3707         }
3708
3709         ret = qm_controller_reset_done(qm);
3710         if (ret)
3711                 return ret;
3712
3713         pci_info(pdev, "Controller reset complete\n");
3714
3715         return 0;
3716 }
3717
3718 /**
3719  * hisi_qm_dev_slot_reset() - slot reset
3720  * @pdev: the PCIe device
3721  *
3722  * This function offers QM relate PCIe device reset interface. Drivers which
3723  * use QM can use this function as slot_reset in its struct pci_error_handlers.
3724  */
3725 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
3726 {
3727         struct hisi_qm *qm = pci_get_drvdata(pdev);
3728         int ret;
3729
3730         if (pdev->is_virtfn)
3731                 return PCI_ERS_RESULT_RECOVERED;
3732
3733         pci_aer_clear_nonfatal_status(pdev);
3734
3735         /* reset pcie device controller */
3736         ret = qm_controller_reset(qm);
3737         if (ret) {
3738                 pci_err(pdev, "Controller reset failed (%d)\n", ret);
3739                 return PCI_ERS_RESULT_DISCONNECT;
3740         }
3741
3742         return PCI_ERS_RESULT_RECOVERED;
3743 }
3744 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
3745
3746 /* check the interrupt is ecc-mbit error or not */
3747 static int qm_check_dev_error(struct hisi_qm *qm)
3748 {
3749         int ret;
3750
3751         if (qm->fun_type == QM_HW_VF)
3752                 return 0;
3753
3754         ret = qm_get_hw_error_status(qm) & QM_ECC_MBIT;
3755         if (ret)
3756                 return ret;
3757
3758         return (qm_get_dev_err_status(qm) &
3759                 qm->err_ini->err_info.ecc_2bits_mask);
3760 }
3761
3762 void hisi_qm_reset_prepare(struct pci_dev *pdev)
3763 {
3764         struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3765         struct hisi_qm *qm = pci_get_drvdata(pdev);
3766         u32 delay = 0;
3767         int ret;
3768
3769         hisi_qm_dev_err_uninit(pf_qm);
3770
3771         /*
3772          * Check whether there is an ECC mbit error, If it occurs, need to
3773          * wait for soft reset to fix it.
3774          */
3775         while (qm_check_dev_error(pf_qm)) {
3776                 msleep(++delay);
3777                 if (delay > QM_RESET_WAIT_TIMEOUT)
3778                         return;
3779         }
3780
3781         ret = qm_reset_prepare_ready(qm);
3782         if (ret) {
3783                 pci_err(pdev, "FLR not ready!\n");
3784                 return;
3785         }
3786
3787         if (qm->vfs_num) {
3788                 ret = qm_vf_reset_prepare(qm, QM_FLR);
3789                 if (ret) {
3790                         pci_err(pdev, "Failed to prepare reset, ret = %d.\n",
3791                                 ret);
3792                         return;
3793                 }
3794         }
3795
3796         ret = hisi_qm_stop(qm, QM_FLR);
3797         if (ret) {
3798                 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
3799                 return;
3800         }
3801
3802         pci_info(pdev, "FLR resetting...\n");
3803 }
3804 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
3805
3806 static bool qm_flr_reset_complete(struct pci_dev *pdev)
3807 {
3808         struct pci_dev *pf_pdev = pci_physfn(pdev);
3809         struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
3810         u32 id;
3811
3812         pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
3813         if (id == QM_PCI_COMMAND_INVALID) {
3814                 pci_err(pdev, "Device can not be used!\n");
3815                 return false;
3816         }
3817
3818         clear_bit(QM_DEV_RESET_FLAG, &qm->reset_flag);
3819
3820         return true;
3821 }
3822
3823 void hisi_qm_reset_done(struct pci_dev *pdev)
3824 {
3825         struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3826         struct hisi_qm *qm = pci_get_drvdata(pdev);
3827         int ret;
3828
3829         hisi_qm_dev_err_init(pf_qm);
3830
3831         ret = qm_restart(qm);
3832         if (ret) {
3833                 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
3834                 goto flr_done;
3835         }
3836
3837         if (qm->fun_type == QM_HW_PF) {
3838                 ret = qm_dev_hw_init(qm);
3839                 if (ret) {
3840                         pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
3841                         goto flr_done;
3842                 }
3843
3844                 if (!qm->vfs_num)
3845                         goto flr_done;
3846
3847                 ret = qm_vf_q_assign(qm, qm->vfs_num);
3848                 if (ret) {
3849                         pci_err(pdev, "Failed to assign VFs, ret = %d.\n", ret);
3850                         goto flr_done;
3851                 }
3852
3853                 ret = qm_vf_reset_done(qm);
3854                 if (ret) {
3855                         pci_err(pdev, "Failed to start VFs, ret = %d.\n", ret);
3856                         goto flr_done;
3857                 }
3858         }
3859
3860 flr_done:
3861         if (qm_flr_reset_complete(pdev))
3862                 pci_info(pdev, "FLR reset complete\n");
3863 }
3864 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
3865
3866 static irqreturn_t qm_abnormal_irq(int irq, void *data)
3867 {
3868         struct hisi_qm *qm = data;
3869         enum acc_err_result ret;
3870
3871         atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
3872         ret = qm_process_dev_error(qm);
3873         if (ret == ACC_ERR_NEED_RESET)
3874                 schedule_work(&qm->rst_work);
3875
3876         return IRQ_HANDLED;
3877 }
3878
3879 static int qm_irq_register(struct hisi_qm *qm)
3880 {
3881         struct pci_dev *pdev = qm->pdev;
3882         int ret;
3883
3884         ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR),
3885                           qm_irq, IRQF_SHARED, qm->dev_name, qm);
3886         if (ret)
3887                 return ret;
3888
3889         if (qm->ver != QM_HW_V1) {
3890                 ret = request_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR),
3891                                   qm_aeq_irq, IRQF_SHARED, qm->dev_name, qm);
3892                 if (ret)
3893                         goto err_aeq_irq;
3894
3895                 if (qm->fun_type == QM_HW_PF) {
3896                         ret = request_irq(pci_irq_vector(pdev,
3897                                           QM_ABNORMAL_EVENT_IRQ_VECTOR),
3898                                           qm_abnormal_irq, IRQF_SHARED,
3899                                           qm->dev_name, qm);
3900                         if (ret)
3901                                 goto err_abonormal_irq;
3902                 }
3903         }
3904
3905         return 0;
3906
3907 err_abonormal_irq:
3908         free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
3909 err_aeq_irq:
3910         free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
3911         return ret;
3912 }
3913
3914 /**
3915  * hisi_qm_dev_shutdown() - Shutdown device.
3916  * @pdev: The device will be shutdown.
3917  *
3918  * This function will stop qm when OS shutdown or rebooting.
3919  */
3920 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
3921 {
3922         struct hisi_qm *qm = pci_get_drvdata(pdev);
3923         int ret;
3924
3925         ret = hisi_qm_stop(qm, QM_NORMAL);
3926         if (ret)
3927                 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
3928 }
3929 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
3930
3931 static void hisi_qm_controller_reset(struct work_struct *rst_work)
3932 {
3933         struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
3934         int ret;
3935
3936         /* reset pcie device controller */
3937         ret = qm_controller_reset(qm);
3938         if (ret)
3939                 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
3940
3941 }
3942
3943 /**
3944  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
3945  * @qm: The qm needs add.
3946  * @qm_list: The qm list.
3947  *
3948  * This function adds qm to qm list, and will register algorithm to
3949  * crypto when the qm list is empty.
3950  */
3951 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
3952 {
3953         int flag = 0;
3954         int ret = 0;
3955
3956         mutex_lock(&qm_list->lock);
3957         if (list_empty(&qm_list->list))
3958                 flag = 1;
3959         list_add_tail(&qm->list, &qm_list->list);
3960         mutex_unlock(&qm_list->lock);
3961
3962         if (flag) {
3963                 ret = qm_list->register_to_crypto();
3964                 if (ret) {
3965                         mutex_lock(&qm_list->lock);
3966                         list_del(&qm->list);
3967                         mutex_unlock(&qm_list->lock);
3968                 }
3969         }
3970
3971         return ret;
3972 }
3973 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
3974
3975 /**
3976  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
3977  * qm list.
3978  * @qm: The qm needs delete.
3979  * @qm_list: The qm list.
3980  *
3981  * This function deletes qm from qm list, and will unregister algorithm
3982  * from crypto when the qm list is empty.
3983  */
3984 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
3985 {
3986         mutex_lock(&qm_list->lock);
3987         list_del(&qm->list);
3988         mutex_unlock(&qm_list->lock);
3989
3990         if (list_empty(&qm_list->list))
3991                 qm_list->unregister_from_crypto();
3992 }
3993 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
3994
3995 /**
3996  * hisi_qm_init() - Initialize configures about qm.
3997  * @qm: The qm needing init.
3998  *
3999  * This function init qm, then we can call hisi_qm_start to put qm into work.
4000  */
4001 int hisi_qm_init(struct hisi_qm *qm)
4002 {
4003         struct pci_dev *pdev = qm->pdev;
4004         struct device *dev = &pdev->dev;
4005         unsigned int num_vec;
4006         int ret;
4007
4008         hisi_qm_pre_init(qm);
4009
4010         ret = qm_alloc_uacce(qm);
4011         if (ret < 0)
4012                 dev_warn(&pdev->dev, "fail to alloc uacce (%d)\n", ret);
4013
4014         ret = pci_enable_device_mem(pdev);
4015         if (ret < 0) {
4016                 dev_err(&pdev->dev, "Failed to enable device mem!\n");
4017                 goto err_remove_uacce;
4018         }
4019
4020         ret = pci_request_mem_regions(pdev, qm->dev_name);
4021         if (ret < 0) {
4022                 dev_err(&pdev->dev, "Failed to request mem regions!\n");
4023                 goto err_disable_pcidev;
4024         }
4025
4026         qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
4027         qm->phys_size = pci_resource_len(qm->pdev, PCI_BAR_2);
4028         qm->io_base = ioremap(qm->phys_base, qm->phys_size);
4029         if (!qm->io_base) {
4030                 ret = -EIO;
4031                 goto err_release_mem_regions;
4032         }
4033
4034         ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4035         if (ret < 0)
4036                 goto err_iounmap;
4037         pci_set_master(pdev);
4038
4039         if (!qm->ops->get_irq_num) {
4040                 ret = -EOPNOTSUPP;
4041                 goto err_iounmap;
4042         }
4043         num_vec = qm->ops->get_irq_num(qm);
4044         ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
4045         if (ret < 0) {
4046                 dev_err(dev, "Failed to enable MSI vectors!\n");
4047                 goto err_iounmap;
4048         }
4049
4050         ret = qm_irq_register(qm);
4051         if (ret)
4052                 goto err_free_irq_vectors;
4053
4054         if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) {
4055                 /* v2 starts to support get vft by mailbox */
4056                 ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
4057                 if (ret)
4058                         goto err_irq_unregister;
4059         }
4060
4061         ret = hisi_qm_memory_init(qm);
4062         if (ret)
4063                 goto err_irq_unregister;
4064
4065         INIT_WORK(&qm->work, qm_work_process);
4066         if (qm->fun_type == QM_HW_PF)
4067                 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
4068
4069         atomic_set(&qm->status.flags, QM_INIT);
4070
4071         return 0;
4072
4073 err_irq_unregister:
4074         qm_irq_unregister(qm);
4075 err_free_irq_vectors:
4076         pci_free_irq_vectors(pdev);
4077 err_iounmap:
4078         iounmap(qm->io_base);
4079 err_release_mem_regions:
4080         pci_release_mem_regions(pdev);
4081 err_disable_pcidev:
4082         pci_disable_device(pdev);
4083 err_remove_uacce:
4084         uacce_remove(qm->uacce);
4085         qm->uacce = NULL;
4086         return ret;
4087 }
4088 EXPORT_SYMBOL_GPL(hisi_qm_init);
4089
4090
4091 MODULE_LICENSE("GPL v2");
4092 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
4093 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");