GNU Linux-libre 4.9.309-gnu1
[releases.git] / drivers / crypto / ccp / ccp-dev-v3.c
1 /*
2  * AMD Cryptographic Coprocessor (CCP) driver
3  *
4  * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  * Author: Gary R Hook <gary.hook@amd.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/kthread.h>
18 #include <linux/interrupt.h>
19 #include <linux/ccp.h>
20
21 #include "ccp-dev.h"
22
23 static u32 ccp_alloc_ksb(struct ccp_cmd_queue *cmd_q, unsigned int count)
24 {
25         int start;
26         struct ccp_device *ccp = cmd_q->ccp;
27
28         for (;;) {
29                 mutex_lock(&ccp->sb_mutex);
30
31                 start = (u32)bitmap_find_next_zero_area(ccp->sb,
32                                                         ccp->sb_count,
33                                                         ccp->sb_start,
34                                                         count, 0);
35                 if (start <= ccp->sb_count) {
36                         bitmap_set(ccp->sb, start, count);
37
38                         mutex_unlock(&ccp->sb_mutex);
39                         break;
40                 }
41
42                 ccp->sb_avail = 0;
43
44                 mutex_unlock(&ccp->sb_mutex);
45
46                 /* Wait for KSB entries to become available */
47                 if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
48                         return 0;
49         }
50
51         return KSB_START + start;
52 }
53
54 static void ccp_free_ksb(struct ccp_cmd_queue *cmd_q, unsigned int start,
55                          unsigned int count)
56 {
57         struct ccp_device *ccp = cmd_q->ccp;
58
59         if (!start)
60                 return;
61
62         mutex_lock(&ccp->sb_mutex);
63
64         bitmap_clear(ccp->sb, start - KSB_START, count);
65
66         ccp->sb_avail = 1;
67
68         mutex_unlock(&ccp->sb_mutex);
69
70         wake_up_interruptible_all(&ccp->sb_queue);
71 }
72
73 static unsigned int ccp_get_free_slots(struct ccp_cmd_queue *cmd_q)
74 {
75         return CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
76 }
77
78 static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count)
79 {
80         struct ccp_cmd_queue *cmd_q = op->cmd_q;
81         struct ccp_device *ccp = cmd_q->ccp;
82         void __iomem *cr_addr;
83         u32 cr0, cmd;
84         unsigned int i;
85         int ret = 0;
86
87         /* We could read a status register to see how many free slots
88          * are actually available, but reading that register resets it
89          * and you could lose some error information.
90          */
91         cmd_q->free_slots--;
92
93         cr0 = (cmd_q->id << REQ0_CMD_Q_SHIFT)
94               | (op->jobid << REQ0_JOBID_SHIFT)
95               | REQ0_WAIT_FOR_WRITE;
96
97         if (op->soc)
98                 cr0 |= REQ0_STOP_ON_COMPLETE
99                        | REQ0_INT_ON_COMPLETE;
100
101         if (op->ioc || !cmd_q->free_slots)
102                 cr0 |= REQ0_INT_ON_COMPLETE;
103
104         /* Start at CMD_REQ1 */
105         cr_addr = ccp->io_regs + CMD_REQ0 + CMD_REQ_INCR;
106
107         mutex_lock(&ccp->req_mutex);
108
109         /* Write CMD_REQ1 through CMD_REQx first */
110         for (i = 0; i < cr_count; i++, cr_addr += CMD_REQ_INCR)
111                 iowrite32(*(cr + i), cr_addr);
112
113         /* Tell the CCP to start */
114         wmb();
115         iowrite32(cr0, ccp->io_regs + CMD_REQ0);
116
117         mutex_unlock(&ccp->req_mutex);
118
119         if (cr0 & REQ0_INT_ON_COMPLETE) {
120                 /* Wait for the job to complete */
121                 ret = wait_event_interruptible(cmd_q->int_queue,
122                                                cmd_q->int_rcvd);
123                 if (ret || cmd_q->cmd_error) {
124                         /* On error delete all related jobs from the queue */
125                         cmd = (cmd_q->id << DEL_Q_ID_SHIFT)
126                               | op->jobid;
127                         if (cmd_q->cmd_error)
128                                 ccp_log_error(cmd_q->ccp,
129                                               cmd_q->cmd_error);
130
131                         iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
132
133                         if (!ret)
134                                 ret = -EIO;
135                 } else if (op->soc) {
136                         /* Delete just head job from the queue on SoC */
137                         cmd = DEL_Q_ACTIVE
138                               | (cmd_q->id << DEL_Q_ID_SHIFT)
139                               | op->jobid;
140
141                         iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
142                 }
143
144                 cmd_q->free_slots = CMD_Q_DEPTH(cmd_q->q_status);
145
146                 cmd_q->int_rcvd = 0;
147         }
148
149         return ret;
150 }
151
152 static int ccp_perform_aes(struct ccp_op *op)
153 {
154         u32 cr[6];
155
156         /* Fill out the register contents for REQ1 through REQ6 */
157         cr[0] = (CCP_ENGINE_AES << REQ1_ENGINE_SHIFT)
158                 | (op->u.aes.type << REQ1_AES_TYPE_SHIFT)
159                 | (op->u.aes.mode << REQ1_AES_MODE_SHIFT)
160                 | (op->u.aes.action << REQ1_AES_ACTION_SHIFT)
161                 | (op->sb_key << REQ1_KEY_KSB_SHIFT);
162         cr[1] = op->src.u.dma.length - 1;
163         cr[2] = ccp_addr_lo(&op->src.u.dma);
164         cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
165                 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
166                 | ccp_addr_hi(&op->src.u.dma);
167         cr[4] = ccp_addr_lo(&op->dst.u.dma);
168         cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
169                 | ccp_addr_hi(&op->dst.u.dma);
170
171         if (op->u.aes.mode == CCP_AES_MODE_CFB)
172                 cr[0] |= ((0x7f) << REQ1_AES_CFB_SIZE_SHIFT);
173
174         if (op->eom)
175                 cr[0] |= REQ1_EOM;
176
177         if (op->init)
178                 cr[0] |= REQ1_INIT;
179
180         return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
181 }
182
183 static int ccp_perform_xts_aes(struct ccp_op *op)
184 {
185         u32 cr[6];
186
187         /* Fill out the register contents for REQ1 through REQ6 */
188         cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT)
189                 | (op->u.xts.action << REQ1_AES_ACTION_SHIFT)
190                 | (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT)
191                 | (op->sb_key << REQ1_KEY_KSB_SHIFT);
192         cr[1] = op->src.u.dma.length - 1;
193         cr[2] = ccp_addr_lo(&op->src.u.dma);
194         cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
195                 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
196                 | ccp_addr_hi(&op->src.u.dma);
197         cr[4] = ccp_addr_lo(&op->dst.u.dma);
198         cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
199                 | ccp_addr_hi(&op->dst.u.dma);
200
201         if (op->eom)
202                 cr[0] |= REQ1_EOM;
203
204         if (op->init)
205                 cr[0] |= REQ1_INIT;
206
207         return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
208 }
209
210 static int ccp_perform_sha(struct ccp_op *op)
211 {
212         u32 cr[6];
213
214         /* Fill out the register contents for REQ1 through REQ6 */
215         cr[0] = (CCP_ENGINE_SHA << REQ1_ENGINE_SHIFT)
216                 | (op->u.sha.type << REQ1_SHA_TYPE_SHIFT)
217                 | REQ1_INIT;
218         cr[1] = op->src.u.dma.length - 1;
219         cr[2] = ccp_addr_lo(&op->src.u.dma);
220         cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
221                 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
222                 | ccp_addr_hi(&op->src.u.dma);
223
224         if (op->eom) {
225                 cr[0] |= REQ1_EOM;
226                 cr[4] = lower_32_bits(op->u.sha.msg_bits);
227                 cr[5] = upper_32_bits(op->u.sha.msg_bits);
228         } else {
229                 cr[4] = 0;
230                 cr[5] = 0;
231         }
232
233         return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
234 }
235
236 static int ccp_perform_rsa(struct ccp_op *op)
237 {
238         u32 cr[6];
239
240         /* Fill out the register contents for REQ1 through REQ6 */
241         cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT)
242                 | (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT)
243                 | (op->sb_key << REQ1_KEY_KSB_SHIFT)
244                 | REQ1_EOM;
245         cr[1] = op->u.rsa.input_len - 1;
246         cr[2] = ccp_addr_lo(&op->src.u.dma);
247         cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
248                 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
249                 | ccp_addr_hi(&op->src.u.dma);
250         cr[4] = ccp_addr_lo(&op->dst.u.dma);
251         cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
252                 | ccp_addr_hi(&op->dst.u.dma);
253
254         return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
255 }
256
257 static int ccp_perform_passthru(struct ccp_op *op)
258 {
259         u32 cr[6];
260
261         /* Fill out the register contents for REQ1 through REQ6 */
262         cr[0] = (CCP_ENGINE_PASSTHRU << REQ1_ENGINE_SHIFT)
263                 | (op->u.passthru.bit_mod << REQ1_PT_BW_SHIFT)
264                 | (op->u.passthru.byte_swap << REQ1_PT_BS_SHIFT);
265
266         if (op->src.type == CCP_MEMTYPE_SYSTEM)
267                 cr[1] = op->src.u.dma.length - 1;
268         else
269                 cr[1] = op->dst.u.dma.length - 1;
270
271         if (op->src.type == CCP_MEMTYPE_SYSTEM) {
272                 cr[2] = ccp_addr_lo(&op->src.u.dma);
273                 cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
274                         | ccp_addr_hi(&op->src.u.dma);
275
276                 if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
277                         cr[3] |= (op->sb_key << REQ4_KSB_SHIFT);
278         } else {
279                 cr[2] = op->src.u.sb * CCP_SB_BYTES;
280                 cr[3] = (CCP_MEMTYPE_SB << REQ4_MEMTYPE_SHIFT);
281         }
282
283         if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
284                 cr[4] = ccp_addr_lo(&op->dst.u.dma);
285                 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
286                         | ccp_addr_hi(&op->dst.u.dma);
287         } else {
288                 cr[4] = op->dst.u.sb * CCP_SB_BYTES;
289                 cr[5] = (CCP_MEMTYPE_SB << REQ6_MEMTYPE_SHIFT);
290         }
291
292         if (op->eom)
293                 cr[0] |= REQ1_EOM;
294
295         return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
296 }
297
298 static int ccp_perform_ecc(struct ccp_op *op)
299 {
300         u32 cr[6];
301
302         /* Fill out the register contents for REQ1 through REQ6 */
303         cr[0] = REQ1_ECC_AFFINE_CONVERT
304                 | (CCP_ENGINE_ECC << REQ1_ENGINE_SHIFT)
305                 | (op->u.ecc.function << REQ1_ECC_FUNCTION_SHIFT)
306                 | REQ1_EOM;
307         cr[1] = op->src.u.dma.length - 1;
308         cr[2] = ccp_addr_lo(&op->src.u.dma);
309         cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
310                 | ccp_addr_hi(&op->src.u.dma);
311         cr[4] = ccp_addr_lo(&op->dst.u.dma);
312         cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
313                 | ccp_addr_hi(&op->dst.u.dma);
314
315         return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
316 }
317
318 static void ccp_disable_queue_interrupts(struct ccp_device *ccp)
319 {
320         iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
321 }
322
323 static void ccp_enable_queue_interrupts(struct ccp_device *ccp)
324 {
325         iowrite32(ccp->qim, ccp->io_regs + IRQ_MASK_REG);
326 }
327
328 static void ccp_irq_bh(unsigned long data)
329 {
330         struct ccp_device *ccp = (struct ccp_device *)data;
331         struct ccp_cmd_queue *cmd_q;
332         u32 q_int, status;
333         unsigned int i;
334
335         status = ioread32(ccp->io_regs + IRQ_STATUS_REG);
336
337         for (i = 0; i < ccp->cmd_q_count; i++) {
338                 cmd_q = &ccp->cmd_q[i];
339
340                 q_int = status & (cmd_q->int_ok | cmd_q->int_err);
341                 if (q_int) {
342                         cmd_q->int_status = status;
343                         cmd_q->q_status = ioread32(cmd_q->reg_status);
344                         cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
345
346                         /* On error, only save the first error value */
347                         if ((q_int & cmd_q->int_err) && !cmd_q->cmd_error)
348                                 cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
349
350                         cmd_q->int_rcvd = 1;
351
352                         /* Acknowledge the interrupt and wake the kthread */
353                         iowrite32(q_int, ccp->io_regs + IRQ_STATUS_REG);
354                         wake_up_interruptible(&cmd_q->int_queue);
355                 }
356         }
357         ccp_enable_queue_interrupts(ccp);
358 }
359
360 static irqreturn_t ccp_irq_handler(int irq, void *data)
361 {
362         struct device *dev = data;
363         struct ccp_device *ccp = dev_get_drvdata(dev);
364
365         ccp_disable_queue_interrupts(ccp);
366         if (ccp->use_tasklet)
367                 tasklet_schedule(&ccp->irq_tasklet);
368         else
369                 ccp_irq_bh((unsigned long)ccp);
370
371         return IRQ_HANDLED;
372 }
373
374 static int ccp_init(struct ccp_device *ccp)
375 {
376         struct device *dev = ccp->dev;
377         struct ccp_cmd_queue *cmd_q;
378         struct dma_pool *dma_pool;
379         char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
380         unsigned int qmr, i;
381         int ret;
382
383         /* Find available queues */
384         ccp->qim = 0;
385         qmr = ioread32(ccp->io_regs + Q_MASK_REG);
386         for (i = 0; i < MAX_HW_QUEUES; i++) {
387                 if (!(qmr & (1 << i)))
388                         continue;
389
390                 /* Allocate a dma pool for this queue */
391                 snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
392                          ccp->name, i);
393                 dma_pool = dma_pool_create(dma_pool_name, dev,
394                                            CCP_DMAPOOL_MAX_SIZE,
395                                            CCP_DMAPOOL_ALIGN, 0);
396                 if (!dma_pool) {
397                         dev_err(dev, "unable to allocate dma pool\n");
398                         ret = -ENOMEM;
399                         goto e_pool;
400                 }
401
402                 cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
403                 ccp->cmd_q_count++;
404
405                 cmd_q->ccp = ccp;
406                 cmd_q->id = i;
407                 cmd_q->dma_pool = dma_pool;
408
409                 /* Reserve 2 KSB regions for the queue */
410                 cmd_q->sb_key = KSB_START + ccp->sb_start++;
411                 cmd_q->sb_ctx = KSB_START + ccp->sb_start++;
412                 ccp->sb_count -= 2;
413
414                 /* Preset some register values and masks that are queue
415                  * number dependent
416                  */
417                 cmd_q->reg_status = ccp->io_regs + CMD_Q_STATUS_BASE +
418                                     (CMD_Q_STATUS_INCR * i);
419                 cmd_q->reg_int_status = ccp->io_regs + CMD_Q_INT_STATUS_BASE +
420                                         (CMD_Q_STATUS_INCR * i);
421                 cmd_q->int_ok = 1 << (i * 2);
422                 cmd_q->int_err = 1 << ((i * 2) + 1);
423
424                 cmd_q->free_slots = ccp_get_free_slots(cmd_q);
425
426                 init_waitqueue_head(&cmd_q->int_queue);
427
428                 /* Build queue interrupt mask (two interrupts per queue) */
429                 ccp->qim |= cmd_q->int_ok | cmd_q->int_err;
430
431 #ifdef CONFIG_ARM64
432                 /* For arm64 set the recommended queue cache settings */
433                 iowrite32(ccp->axcache, ccp->io_regs + CMD_Q_CACHE_BASE +
434                           (CMD_Q_CACHE_INC * i));
435 #endif
436
437                 dev_dbg(dev, "queue #%u available\n", i);
438         }
439         if (ccp->cmd_q_count == 0) {
440                 dev_notice(dev, "no command queues available\n");
441                 ret = -EIO;
442                 goto e_pool;
443         }
444         dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
445
446         /* Disable and clear interrupts until ready */
447         ccp_disable_queue_interrupts(ccp);
448         for (i = 0; i < ccp->cmd_q_count; i++) {
449                 cmd_q = &ccp->cmd_q[i];
450
451                 ioread32(cmd_q->reg_int_status);
452                 ioread32(cmd_q->reg_status);
453         }
454         iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG);
455
456         /* Request an irq */
457         ret = ccp->get_irq(ccp);
458         if (ret) {
459                 dev_err(dev, "unable to allocate an IRQ\n");
460                 goto e_pool;
461         }
462
463         /* Initialize the queues used to wait for KSB space and suspend */
464         init_waitqueue_head(&ccp->sb_queue);
465         init_waitqueue_head(&ccp->suspend_queue);
466
467         /* Initialize the ISR tasklet? */
468         if (ccp->use_tasklet)
469                 tasklet_init(&ccp->irq_tasklet, ccp_irq_bh,
470                              (unsigned long)ccp);
471
472         dev_dbg(dev, "Starting threads...\n");
473         /* Create a kthread for each queue */
474         for (i = 0; i < ccp->cmd_q_count; i++) {
475                 struct task_struct *kthread;
476
477                 cmd_q = &ccp->cmd_q[i];
478
479                 kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
480                                          "%s-q%u", ccp->name, cmd_q->id);
481                 if (IS_ERR(kthread)) {
482                         dev_err(dev, "error creating queue thread (%ld)\n",
483                                 PTR_ERR(kthread));
484                         ret = PTR_ERR(kthread);
485                         goto e_kthread;
486                 }
487
488                 cmd_q->kthread = kthread;
489                 wake_up_process(kthread);
490         }
491
492         dev_dbg(dev, "Enabling interrupts...\n");
493         /* Enable interrupts */
494         ccp_enable_queue_interrupts(ccp);
495
496         dev_dbg(dev, "Registering device...\n");
497         ccp_add_device(ccp);
498
499         ret = ccp_register_rng(ccp);
500         if (ret)
501                 goto e_kthread;
502
503         /* Register the DMA engine support */
504         ret = ccp_dmaengine_register(ccp);
505         if (ret)
506                 goto e_hwrng;
507
508         return 0;
509
510 e_hwrng:
511         ccp_unregister_rng(ccp);
512
513 e_kthread:
514         for (i = 0; i < ccp->cmd_q_count; i++)
515                 if (ccp->cmd_q[i].kthread)
516                         kthread_stop(ccp->cmd_q[i].kthread);
517
518         ccp->free_irq(ccp);
519
520 e_pool:
521         for (i = 0; i < ccp->cmd_q_count; i++)
522                 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
523
524         return ret;
525 }
526
527 static void ccp_destroy(struct ccp_device *ccp)
528 {
529         struct ccp_cmd_queue *cmd_q;
530         struct ccp_cmd *cmd;
531         unsigned int i;
532
533         /* Unregister the DMA engine */
534         ccp_dmaengine_unregister(ccp);
535
536         /* Unregister the RNG */
537         ccp_unregister_rng(ccp);
538
539         /* Remove this device from the list of available units */
540         ccp_del_device(ccp);
541
542         /* Disable and clear interrupts */
543         ccp_disable_queue_interrupts(ccp);
544         for (i = 0; i < ccp->cmd_q_count; i++) {
545                 cmd_q = &ccp->cmd_q[i];
546
547                 ioread32(cmd_q->reg_int_status);
548                 ioread32(cmd_q->reg_status);
549         }
550         iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG);
551
552         /* Stop the queue kthreads */
553         for (i = 0; i < ccp->cmd_q_count; i++)
554                 if (ccp->cmd_q[i].kthread)
555                         kthread_stop(ccp->cmd_q[i].kthread);
556
557         ccp->free_irq(ccp);
558
559         for (i = 0; i < ccp->cmd_q_count; i++)
560                 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
561
562         /* Flush the cmd and backlog queue */
563         while (!list_empty(&ccp->cmd)) {
564                 /* Invoke the callback directly with an error code */
565                 cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
566                 list_del(&cmd->entry);
567                 cmd->callback(cmd->data, -ENODEV);
568         }
569         while (!list_empty(&ccp->backlog)) {
570                 /* Invoke the callback directly with an error code */
571                 cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
572                 list_del(&cmd->entry);
573                 cmd->callback(cmd->data, -ENODEV);
574         }
575 }
576
577 static const struct ccp_actions ccp3_actions = {
578         .aes = ccp_perform_aes,
579         .xts_aes = ccp_perform_xts_aes,
580         .sha = ccp_perform_sha,
581         .rsa = ccp_perform_rsa,
582         .passthru = ccp_perform_passthru,
583         .ecc = ccp_perform_ecc,
584         .sballoc = ccp_alloc_ksb,
585         .sbfree = ccp_free_ksb,
586         .init = ccp_init,
587         .destroy = ccp_destroy,
588         .get_free_slots = ccp_get_free_slots,
589         .irqhandler = ccp_irq_handler,
590 };
591
592 const struct ccp_vdata ccpv3 = {
593         .version = CCP_VERSION(3, 0),
594         .setup = NULL,
595         .perform = &ccp3_actions,
596         .bar = 2,
597         .offset = 0x20000,
598 };