GNU Linux-libre 6.8.7-gnu
[releases.git] / drivers / crypto / caam / qi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CAAM/SEC 4.x QI transport/backend driver
4  * Queue Interface backend functionality
5  *
6  * Copyright 2013-2016 Freescale Semiconductor, Inc.
7  * Copyright 2016-2017, 2019-2020 NXP
8  */
9
10 #include <linux/cpumask.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/kernel.h>
14 #include <linux/kthread.h>
15 #include <linux/netdevice.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <soc/fsl/qman.h>
20
21 #include "debugfs.h"
22 #include "regs.h"
23 #include "qi.h"
24 #include "desc.h"
25 #include "intern.h"
26 #include "desc_constr.h"
27
28 #define PREHDR_RSLS_SHIFT       31
29 #define PREHDR_ABS              BIT(25)
30
31 /*
32  * Use a reasonable backlog of frames (per CPU) as congestion threshold,
33  * so that resources used by the in-flight buffers do not become a memory hog.
34  */
35 #define MAX_RSP_FQ_BACKLOG_PER_CPU      256
36
37 #define CAAM_QI_ENQUEUE_RETRIES 10000
38
39 #define CAAM_NAPI_WEIGHT        63
40
41 /*
42  * caam_napi - struct holding CAAM NAPI-related params
43  * @irqtask: IRQ task for QI backend
44  * @p: QMan portal
45  */
46 struct caam_napi {
47         struct napi_struct irqtask;
48         struct qman_portal *p;
49 };
50
51 /*
52  * caam_qi_pcpu_priv - percpu private data structure to main list of pending
53  *                     responses expected on each cpu.
54  * @caam_napi: CAAM NAPI params
55  * @net_dev: netdev used by NAPI
56  * @rsp_fq: response FQ from CAAM
57  */
58 struct caam_qi_pcpu_priv {
59         struct caam_napi caam_napi;
60         struct net_device net_dev;
61         struct qman_fq *rsp_fq;
62 } ____cacheline_aligned;
63
64 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
65 static DEFINE_PER_CPU(int, last_cpu);
66
67 /*
68  * caam_qi_priv - CAAM QI backend private params
69  * @cgr: QMan congestion group
70  */
71 struct caam_qi_priv {
72         struct qman_cgr cgr;
73 };
74
75 static struct caam_qi_priv qipriv ____cacheline_aligned;
76
77 /*
78  * This is written by only one core - the one that initialized the CGR - and
79  * read by multiple cores (all the others).
80  */
81 bool caam_congested __read_mostly;
82 EXPORT_SYMBOL(caam_congested);
83
84 /*
85  * This is a cache of buffers, from which the users of CAAM QI driver
86  * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
87  * doing malloc on the hotpath.
88  * NOTE: A more elegant solution would be to have some headroom in the frames
89  *       being processed. This could be added by the dpaa-ethernet driver.
90  *       This would pose a problem for userspace application processing which
91  *       cannot know of this limitation. So for now, this will work.
92  * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
93  */
94 static struct kmem_cache *qi_cache;
95
96 static void *caam_iova_to_virt(struct iommu_domain *domain,
97                                dma_addr_t iova_addr)
98 {
99         phys_addr_t phys_addr;
100
101         phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
102
103         return phys_to_virt(phys_addr);
104 }
105
106 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
107 {
108         struct qm_fd fd;
109         dma_addr_t addr;
110         int ret;
111         int num_retries = 0;
112
113         qm_fd_clear_fd(&fd);
114         qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
115
116         addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
117                               DMA_BIDIRECTIONAL);
118         if (dma_mapping_error(qidev, addr)) {
119                 dev_err(qidev, "DMA mapping error for QI enqueue request\n");
120                 return -EIO;
121         }
122         qm_fd_addr_set64(&fd, addr);
123
124         do {
125                 ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
126                 if (likely(!ret)) {
127                         refcount_inc(&req->drv_ctx->refcnt);
128                         return 0;
129                 }
130
131                 if (ret != -EBUSY)
132                         break;
133                 num_retries++;
134         } while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
135
136         dev_err(qidev, "qman_enqueue failed: %d\n", ret);
137
138         return ret;
139 }
140 EXPORT_SYMBOL(caam_qi_enqueue);
141
142 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
143                            const union qm_mr_entry *msg)
144 {
145         const struct qm_fd *fd;
146         struct caam_drv_req *drv_req;
147         struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
148         struct caam_drv_private *priv = dev_get_drvdata(qidev);
149
150         fd = &msg->ern.fd;
151
152         drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
153         if (!drv_req) {
154                 dev_err(qidev,
155                         "Can't find original request for CAAM response\n");
156                 return;
157         }
158
159         refcount_dec(&drv_req->drv_ctx->refcnt);
160
161         if (qm_fd_get_format(fd) != qm_fd_compound) {
162                 dev_err(qidev, "Non-compound FD from CAAM\n");
163                 return;
164         }
165
166         dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
167                          sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
168
169         if (fd->status)
170                 drv_req->cbk(drv_req, be32_to_cpu(fd->status));
171         else
172                 drv_req->cbk(drv_req, JRSTA_SSRC_QI);
173 }
174
175 static struct qman_fq *create_caam_req_fq(struct device *qidev,
176                                           struct qman_fq *rsp_fq,
177                                           dma_addr_t hwdesc,
178                                           int fq_sched_flag)
179 {
180         int ret;
181         struct qman_fq *req_fq;
182         struct qm_mcc_initfq opts;
183
184         req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
185         if (!req_fq)
186                 return ERR_PTR(-ENOMEM);
187
188         req_fq->cb.ern = caam_fq_ern_cb;
189         req_fq->cb.fqs = NULL;
190
191         ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
192                                 QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
193         if (ret) {
194                 dev_err(qidev, "Failed to create session req FQ\n");
195                 goto create_req_fq_fail;
196         }
197
198         memset(&opts, 0, sizeof(opts));
199         opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
200                                    QM_INITFQ_WE_CONTEXTB |
201                                    QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
202         opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
203         qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
204         opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
205         qm_fqd_context_a_set64(&opts.fqd, hwdesc);
206         opts.fqd.cgid = qipriv.cgr.cgrid;
207
208         ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
209         if (ret) {
210                 dev_err(qidev, "Failed to init session req FQ\n");
211                 goto init_req_fq_fail;
212         }
213
214         dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
215                 smp_processor_id());
216         return req_fq;
217
218 init_req_fq_fail:
219         qman_destroy_fq(req_fq);
220 create_req_fq_fail:
221         kfree(req_fq);
222         return ERR_PTR(ret);
223 }
224
225 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
226 {
227         int ret;
228
229         ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
230                                     QMAN_VOLATILE_FLAG_FINISH,
231                                     QM_VDQCR_PRECEDENCE_VDQCR |
232                                     QM_VDQCR_NUMFRAMES_TILLEMPTY);
233         if (ret) {
234                 dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
235                 return ret;
236         }
237
238         do {
239                 struct qman_portal *p;
240
241                 p = qman_get_affine_portal(smp_processor_id());
242                 qman_p_poll_dqrr(p, 16);
243         } while (fq->flags & QMAN_FQ_STATE_NE);
244
245         return 0;
246 }
247
248 static int kill_fq(struct device *qidev, struct qman_fq *fq)
249 {
250         u32 flags;
251         int ret;
252
253         ret = qman_retire_fq(fq, &flags);
254         if (ret < 0) {
255                 dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
256                 return ret;
257         }
258
259         if (!ret)
260                 goto empty_fq;
261
262         /* Async FQ retirement condition */
263         if (ret == 1) {
264                 /* Retry till FQ gets in retired state */
265                 do {
266                         msleep(20);
267                 } while (fq->state != qman_fq_state_retired);
268
269                 WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
270                 WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
271         }
272
273 empty_fq:
274         if (fq->flags & QMAN_FQ_STATE_NE) {
275                 ret = empty_retired_fq(qidev, fq);
276                 if (ret) {
277                         dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
278                                 fq->fqid);
279                         return ret;
280                 }
281         }
282
283         ret = qman_oos_fq(fq);
284         if (ret)
285                 dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
286
287         qman_destroy_fq(fq);
288         kfree(fq);
289
290         return ret;
291 }
292
293 static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx)
294 {
295         int ret;
296         int retries = 10;
297         struct qm_mcr_queryfq_np np;
298
299         /* Wait till the older CAAM FQ get empty */
300         do {
301                 ret = qman_query_fq_np(fq, &np);
302                 if (ret)
303                         return ret;
304
305                 if (!qm_mcr_np_get(&np, frm_cnt))
306                         break;
307
308                 msleep(20);
309         } while (1);
310
311         /* Wait until pending jobs from this FQ are processed by CAAM */
312         do {
313                 if (refcount_read(&drv_ctx->refcnt) == 1)
314                         break;
315
316                 msleep(20);
317         } while (--retries);
318
319         if (!retries)
320                 dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n",
321                               refcount_read(&drv_ctx->refcnt), fq->fqid);
322
323         return 0;
324 }
325
326 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
327 {
328         int ret;
329         u32 num_words;
330         struct qman_fq *new_fq, *old_fq;
331         struct device *qidev = drv_ctx->qidev;
332
333         num_words = desc_len(sh_desc);
334         if (num_words > MAX_SDLEN) {
335                 dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
336                 return -EINVAL;
337         }
338
339         /* Note down older req FQ */
340         old_fq = drv_ctx->req_fq;
341
342         /* Create a new req FQ in parked state */
343         new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
344                                     drv_ctx->context_a, 0);
345         if (IS_ERR(new_fq)) {
346                 dev_err(qidev, "FQ allocation for shdesc update failed\n");
347                 return PTR_ERR(new_fq);
348         }
349
350         /* Hook up new FQ to context so that new requests keep queuing */
351         drv_ctx->req_fq = new_fq;
352
353         /* Empty and remove the older FQ */
354         ret = empty_caam_fq(old_fq, drv_ctx);
355         if (ret) {
356                 dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
357
358                 /* We can revert to older FQ */
359                 drv_ctx->req_fq = old_fq;
360
361                 if (kill_fq(qidev, new_fq))
362                         dev_warn(qidev, "New CAAM FQ kill failed\n");
363
364                 return ret;
365         }
366
367         /*
368          * Re-initialise pre-header. Set RSLS and SDLEN.
369          * Update the shared descriptor for driver context.
370          */
371         drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
372                                            num_words);
373         drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
374         memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
375         dma_sync_single_for_device(qidev, drv_ctx->context_a,
376                                    sizeof(drv_ctx->sh_desc) +
377                                    sizeof(drv_ctx->prehdr),
378                                    DMA_BIDIRECTIONAL);
379
380         /* Put the new FQ in scheduled state */
381         ret = qman_schedule_fq(new_fq);
382         if (ret) {
383                 dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
384
385                 /*
386                  * We can kill new FQ and revert to old FQ.
387                  * Since the desc is already modified, it is success case
388                  */
389
390                 drv_ctx->req_fq = old_fq;
391
392                 if (kill_fq(qidev, new_fq))
393                         dev_warn(qidev, "New CAAM FQ kill failed\n");
394         } else if (kill_fq(qidev, old_fq)) {
395                 dev_warn(qidev, "Old CAAM FQ kill failed\n");
396         }
397
398         return 0;
399 }
400 EXPORT_SYMBOL(caam_drv_ctx_update);
401
402 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
403                                        int *cpu,
404                                        u32 *sh_desc)
405 {
406         size_t size;
407         u32 num_words;
408         dma_addr_t hwdesc;
409         struct caam_drv_ctx *drv_ctx;
410         const cpumask_t *cpus = qman_affine_cpus();
411
412         num_words = desc_len(sh_desc);
413         if (num_words > MAX_SDLEN) {
414                 dev_err(qidev, "Invalid descriptor len: %d words\n",
415                         num_words);
416                 return ERR_PTR(-EINVAL);
417         }
418
419         drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
420         if (!drv_ctx)
421                 return ERR_PTR(-ENOMEM);
422
423         /*
424          * Initialise pre-header - set RSLS and SDLEN - and shared descriptor
425          * and dma-map them.
426          */
427         drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
428                                            num_words);
429         drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
430         memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
431         size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
432         hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
433                                 DMA_BIDIRECTIONAL);
434         if (dma_mapping_error(qidev, hwdesc)) {
435                 dev_err(qidev, "DMA map error for preheader + shdesc\n");
436                 kfree(drv_ctx);
437                 return ERR_PTR(-ENOMEM);
438         }
439         drv_ctx->context_a = hwdesc;
440
441         /* If given CPU does not own the portal, choose another one that does */
442         if (!cpumask_test_cpu(*cpu, cpus)) {
443                 int *pcpu = &get_cpu_var(last_cpu);
444
445                 *pcpu = cpumask_next(*pcpu, cpus);
446                 if (*pcpu >= nr_cpu_ids)
447                         *pcpu = cpumask_first(cpus);
448                 *cpu = *pcpu;
449
450                 put_cpu_var(last_cpu);
451         }
452         drv_ctx->cpu = *cpu;
453
454         /* Find response FQ hooked with this CPU */
455         drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
456
457         /* Attach request FQ */
458         drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
459                                              QMAN_INITFQ_FLAG_SCHED);
460         if (IS_ERR(drv_ctx->req_fq)) {
461                 dev_err(qidev, "create_caam_req_fq failed\n");
462                 dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
463                 kfree(drv_ctx);
464                 return ERR_PTR(-ENOMEM);
465         }
466
467         /* init reference counter used to track references to request FQ */
468         refcount_set(&drv_ctx->refcnt, 1);
469
470         drv_ctx->qidev = qidev;
471         return drv_ctx;
472 }
473 EXPORT_SYMBOL(caam_drv_ctx_init);
474
475 void *qi_cache_alloc(gfp_t flags)
476 {
477         return kmem_cache_alloc(qi_cache, flags);
478 }
479 EXPORT_SYMBOL(qi_cache_alloc);
480
481 void qi_cache_free(void *obj)
482 {
483         kmem_cache_free(qi_cache, obj);
484 }
485 EXPORT_SYMBOL(qi_cache_free);
486
487 static int caam_qi_poll(struct napi_struct *napi, int budget)
488 {
489         struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
490
491         int cleaned = qman_p_poll_dqrr(np->p, budget);
492
493         if (cleaned < budget) {
494                 napi_complete(napi);
495                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
496         }
497
498         return cleaned;
499 }
500
501 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
502 {
503         if (IS_ERR_OR_NULL(drv_ctx))
504                 return;
505
506         /* Remove request FQ */
507         if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
508                 dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
509
510         dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
511                          sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
512                          DMA_BIDIRECTIONAL);
513         kfree(drv_ctx);
514 }
515 EXPORT_SYMBOL(caam_drv_ctx_rel);
516
517 static void caam_qi_shutdown(void *data)
518 {
519         int i;
520         struct device *qidev = data;
521         struct caam_qi_priv *priv = &qipriv;
522         const cpumask_t *cpus = qman_affine_cpus();
523
524         for_each_cpu(i, cpus) {
525                 struct napi_struct *irqtask;
526
527                 irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
528                 napi_disable(irqtask);
529                 netif_napi_del(irqtask);
530
531                 if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
532                         dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
533         }
534
535         qman_delete_cgr_safe(&priv->cgr);
536         qman_release_cgrid(priv->cgr.cgrid);
537
538         kmem_cache_destroy(qi_cache);
539 }
540
541 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
542 {
543         caam_congested = congested;
544
545         if (congested) {
546                 caam_debugfs_qi_congested();
547
548                 pr_debug_ratelimited("CAAM entered congestion\n");
549
550         } else {
551                 pr_debug_ratelimited("CAAM exited congestion\n");
552         }
553 }
554
555 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np,
556                                  bool sched_napi)
557 {
558         if (sched_napi) {
559                 /* Disable QMan IRQ source and invoke NAPI */
560                 qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
561                 np->p = p;
562                 napi_schedule(&np->irqtask);
563                 return 1;
564         }
565         return 0;
566 }
567
568 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
569                                                     struct qman_fq *rsp_fq,
570                                                     const struct qm_dqrr_entry *dqrr,
571                                                     bool sched_napi)
572 {
573         struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
574         struct caam_drv_req *drv_req;
575         const struct qm_fd *fd;
576         struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
577         struct caam_drv_private *priv = dev_get_drvdata(qidev);
578         u32 status;
579
580         if (caam_qi_napi_schedule(p, caam_napi, sched_napi))
581                 return qman_cb_dqrr_stop;
582
583         fd = &dqrr->fd;
584
585         drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
586         if (unlikely(!drv_req)) {
587                 dev_err(qidev,
588                         "Can't find original request for caam response\n");
589                 return qman_cb_dqrr_consume;
590         }
591
592         refcount_dec(&drv_req->drv_ctx->refcnt);
593
594         status = be32_to_cpu(fd->status);
595         if (unlikely(status)) {
596                 u32 ssrc = status & JRSTA_SSRC_MASK;
597                 u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
598
599                 if (ssrc != JRSTA_SSRC_CCB_ERROR ||
600                     err_id != JRSTA_CCBERR_ERRID_ICVCHK)
601                         dev_err_ratelimited(qidev,
602                                             "Error: %#x in CAAM response FD\n",
603                                             status);
604         }
605
606         if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
607                 dev_err(qidev, "Non-compound FD from CAAM\n");
608                 return qman_cb_dqrr_consume;
609         }
610
611         dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
612                          sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
613
614         drv_req->cbk(drv_req, status);
615         return qman_cb_dqrr_consume;
616 }
617
618 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
619 {
620         struct qm_mcc_initfq opts;
621         struct qman_fq *fq;
622         int ret;
623
624         fq = kzalloc(sizeof(*fq), GFP_KERNEL);
625         if (!fq)
626                 return -ENOMEM;
627
628         fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
629
630         ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
631                              QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
632         if (ret) {
633                 dev_err(qidev, "Rsp FQ create failed\n");
634                 kfree(fq);
635                 return -ENODEV;
636         }
637
638         memset(&opts, 0, sizeof(opts));
639         opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
640                                    QM_INITFQ_WE_CONTEXTB |
641                                    QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
642         opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
643                                        QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
644         qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
645         opts.fqd.cgid = qipriv.cgr.cgrid;
646         opts.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_CTX |
647                                                 QM_STASHING_EXCL_DATA;
648         qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
649
650         ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
651         if (ret) {
652                 dev_err(qidev, "Rsp FQ init failed\n");
653                 kfree(fq);
654                 return -ENODEV;
655         }
656
657         per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
658
659         dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
660         return 0;
661 }
662
663 static int init_cgr(struct device *qidev)
664 {
665         int ret;
666         struct qm_mcc_initcgr opts;
667         const u64 val = (u64)cpumask_weight(qman_affine_cpus()) *
668                         MAX_RSP_FQ_BACKLOG_PER_CPU;
669
670         ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
671         if (ret) {
672                 dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
673                 return ret;
674         }
675
676         qipriv.cgr.cb = cgr_cb;
677         memset(&opts, 0, sizeof(opts));
678         opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
679                                    QM_CGR_WE_MODE);
680         opts.cgr.cscn_en = QM_CGR_EN;
681         opts.cgr.mode = QMAN_CGR_MODE_FRAME;
682         qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
683
684         ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
685         if (ret) {
686                 dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
687                         qipriv.cgr.cgrid);
688                 return ret;
689         }
690
691         dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
692         return 0;
693 }
694
695 static int alloc_rsp_fqs(struct device *qidev)
696 {
697         int ret, i;
698         const cpumask_t *cpus = qman_affine_cpus();
699
700         /*Now create response FQs*/
701         for_each_cpu(i, cpus) {
702                 ret = alloc_rsp_fq_cpu(qidev, i);
703                 if (ret) {
704                         dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
705                         return ret;
706                 }
707         }
708
709         return 0;
710 }
711
712 static void free_rsp_fqs(void)
713 {
714         int i;
715         const cpumask_t *cpus = qman_affine_cpus();
716
717         for_each_cpu(i, cpus)
718                 kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
719 }
720
721 int caam_qi_init(struct platform_device *caam_pdev)
722 {
723         int err, i;
724         struct device *ctrldev = &caam_pdev->dev, *qidev;
725         struct caam_drv_private *ctrlpriv;
726         const cpumask_t *cpus = qman_affine_cpus();
727
728         ctrlpriv = dev_get_drvdata(ctrldev);
729         qidev = ctrldev;
730
731         /* Initialize the congestion detection */
732         err = init_cgr(qidev);
733         if (err) {
734                 dev_err(qidev, "CGR initialization failed: %d\n", err);
735                 return err;
736         }
737
738         /* Initialise response FQs */
739         err = alloc_rsp_fqs(qidev);
740         if (err) {
741                 dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
742                 free_rsp_fqs();
743                 return err;
744         }
745
746         /*
747          * Enable the NAPI contexts on each of the core which has an affine
748          * portal.
749          */
750         for_each_cpu(i, cpus) {
751                 struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
752                 struct caam_napi *caam_napi = &priv->caam_napi;
753                 struct napi_struct *irqtask = &caam_napi->irqtask;
754                 struct net_device *net_dev = &priv->net_dev;
755
756                 net_dev->dev = *qidev;
757                 INIT_LIST_HEAD(&net_dev->napi_list);
758
759                 netif_napi_add_tx_weight(net_dev, irqtask, caam_qi_poll,
760                                          CAAM_NAPI_WEIGHT);
761
762                 napi_enable(irqtask);
763         }
764
765         qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE,
766                                      dma_get_cache_alignment(), 0, NULL);
767         if (!qi_cache) {
768                 dev_err(qidev, "Can't allocate CAAM cache\n");
769                 free_rsp_fqs();
770                 return -ENOMEM;
771         }
772
773         caam_debugfs_qi_init(ctrlpriv);
774
775         err = devm_add_action_or_reset(qidev, caam_qi_shutdown, ctrlpriv);
776         if (err)
777                 return err;
778
779         dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
780         return 0;
781 }