GNU Linux-libre 6.8.9-gnu
[releases.git] / drivers / crypto / atmel-sha.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cryptographic API.
4  *
5  * Support for ATMEL SHA1/SHA256 HW acceleration.
6  *
7  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8  * Author: Nicolas Royer <nicolas@eukrea.com>
9  *
10  * Some ideas are from omap-sham.c drivers.
11  */
12
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/sha1.h>
37 #include <crypto/sha2.h>
38 #include <crypto/hash.h>
39 #include <crypto/internal/hash.h>
40 #include "atmel-sha-regs.h"
41 #include "atmel-authenc.h"
42
43 #define ATMEL_SHA_PRIORITY      300
44
45 /* SHA flags */
46 #define SHA_FLAGS_BUSY                  BIT(0)
47 #define SHA_FLAGS_FINAL                 BIT(1)
48 #define SHA_FLAGS_DMA_ACTIVE    BIT(2)
49 #define SHA_FLAGS_OUTPUT_READY  BIT(3)
50 #define SHA_FLAGS_INIT                  BIT(4)
51 #define SHA_FLAGS_CPU                   BIT(5)
52 #define SHA_FLAGS_DMA_READY             BIT(6)
53 #define SHA_FLAGS_DUMP_REG      BIT(7)
54
55 /* bits[11:8] are reserved. */
56
57 #define SHA_FLAGS_FINUP         BIT(16)
58 #define SHA_FLAGS_SG            BIT(17)
59 #define SHA_FLAGS_ERROR         BIT(23)
60 #define SHA_FLAGS_PAD           BIT(24)
61 #define SHA_FLAGS_RESTORE       BIT(25)
62 #define SHA_FLAGS_IDATAR0       BIT(26)
63 #define SHA_FLAGS_WAIT_DATARDY  BIT(27)
64
65 #define SHA_OP_INIT     0
66 #define SHA_OP_UPDATE   1
67 #define SHA_OP_FINAL    2
68 #define SHA_OP_DIGEST   3
69
70 #define SHA_BUFFER_LEN          (PAGE_SIZE / 16)
71
72 #define ATMEL_SHA_DMA_THRESHOLD         56
73
74 struct atmel_sha_caps {
75         bool    has_dma;
76         bool    has_dualbuff;
77         bool    has_sha224;
78         bool    has_sha_384_512;
79         bool    has_uihv;
80         bool    has_hmac;
81 };
82
83 struct atmel_sha_dev;
84
85 /*
86  * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
87  * tested by the ahash_prepare_alg() function.
88  */
89 struct atmel_sha_reqctx {
90         struct atmel_sha_dev    *dd;
91         unsigned long   flags;
92         unsigned long   op;
93
94         u8      digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
95         u64     digcnt[2];
96         size_t  bufcnt;
97         size_t  buflen;
98         dma_addr_t      dma_addr;
99
100         /* walk state */
101         struct scatterlist      *sg;
102         unsigned int    offset; /* offset in current sg */
103         unsigned int    total;  /* total request */
104
105         size_t block_size;
106         size_t hash_size;
107
108         u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
109 };
110
111 typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
112
113 struct atmel_sha_ctx {
114         struct atmel_sha_dev    *dd;
115         atmel_sha_fn_t          start;
116
117         unsigned long           flags;
118 };
119
120 #define ATMEL_SHA_QUEUE_LENGTH  50
121
122 struct atmel_sha_dma {
123         struct dma_chan                 *chan;
124         struct dma_slave_config dma_conf;
125         struct scatterlist      *sg;
126         int                     nents;
127         unsigned int            last_sg_length;
128 };
129
130 struct atmel_sha_dev {
131         struct list_head        list;
132         unsigned long           phys_base;
133         struct device           *dev;
134         struct clk                      *iclk;
135         int                                     irq;
136         void __iomem            *io_base;
137
138         spinlock_t              lock;
139         struct tasklet_struct   done_task;
140         struct tasklet_struct   queue_task;
141
142         unsigned long           flags;
143         struct crypto_queue     queue;
144         struct ahash_request    *req;
145         bool                    is_async;
146         bool                    force_complete;
147         atmel_sha_fn_t          resume;
148         atmel_sha_fn_t          cpu_transfer_complete;
149
150         struct atmel_sha_dma    dma_lch_in;
151
152         struct atmel_sha_caps   caps;
153
154         struct scatterlist      tmp;
155
156         u32     hw_version;
157 };
158
159 struct atmel_sha_drv {
160         struct list_head        dev_list;
161         spinlock_t              lock;
162 };
163
164 static struct atmel_sha_drv atmel_sha = {
165         .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
166         .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
167 };
168
169 #ifdef VERBOSE_DEBUG
170 static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
171 {
172         switch (offset) {
173         case SHA_CR:
174                 return "CR";
175
176         case SHA_MR:
177                 return "MR";
178
179         case SHA_IER:
180                 return "IER";
181
182         case SHA_IDR:
183                 return "IDR";
184
185         case SHA_IMR:
186                 return "IMR";
187
188         case SHA_ISR:
189                 return "ISR";
190
191         case SHA_MSR:
192                 return "MSR";
193
194         case SHA_BCR:
195                 return "BCR";
196
197         case SHA_REG_DIN(0):
198         case SHA_REG_DIN(1):
199         case SHA_REG_DIN(2):
200         case SHA_REG_DIN(3):
201         case SHA_REG_DIN(4):
202         case SHA_REG_DIN(5):
203         case SHA_REG_DIN(6):
204         case SHA_REG_DIN(7):
205         case SHA_REG_DIN(8):
206         case SHA_REG_DIN(9):
207         case SHA_REG_DIN(10):
208         case SHA_REG_DIN(11):
209         case SHA_REG_DIN(12):
210         case SHA_REG_DIN(13):
211         case SHA_REG_DIN(14):
212         case SHA_REG_DIN(15):
213                 snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
214                 break;
215
216         case SHA_REG_DIGEST(0):
217         case SHA_REG_DIGEST(1):
218         case SHA_REG_DIGEST(2):
219         case SHA_REG_DIGEST(3):
220         case SHA_REG_DIGEST(4):
221         case SHA_REG_DIGEST(5):
222         case SHA_REG_DIGEST(6):
223         case SHA_REG_DIGEST(7):
224         case SHA_REG_DIGEST(8):
225         case SHA_REG_DIGEST(9):
226         case SHA_REG_DIGEST(10):
227         case SHA_REG_DIGEST(11):
228         case SHA_REG_DIGEST(12):
229         case SHA_REG_DIGEST(13):
230         case SHA_REG_DIGEST(14):
231         case SHA_REG_DIGEST(15):
232                 if (wr)
233                         snprintf(tmp, sz, "IDATAR[%u]",
234                                  16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
235                 else
236                         snprintf(tmp, sz, "ODATAR[%u]",
237                                  (offset - SHA_REG_DIGEST(0)) >> 2);
238                 break;
239
240         case SHA_HW_VERSION:
241                 return "HWVER";
242
243         default:
244                 snprintf(tmp, sz, "0x%02x", offset);
245                 break;
246         }
247
248         return tmp;
249 }
250
251 #endif /* VERBOSE_DEBUG */
252
253 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
254 {
255         u32 value = readl_relaxed(dd->io_base + offset);
256
257 #ifdef VERBOSE_DEBUG
258         if (dd->flags & SHA_FLAGS_DUMP_REG) {
259                 char tmp[16];
260
261                 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
262                          atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
263         }
264 #endif /* VERBOSE_DEBUG */
265
266         return value;
267 }
268
269 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
270                                         u32 offset, u32 value)
271 {
272 #ifdef VERBOSE_DEBUG
273         if (dd->flags & SHA_FLAGS_DUMP_REG) {
274                 char tmp[16];
275
276                 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
277                          atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
278         }
279 #endif /* VERBOSE_DEBUG */
280
281         writel_relaxed(value, dd->io_base + offset);
282 }
283
284 static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
285 {
286         struct ahash_request *req = dd->req;
287
288         dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
289                        SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
290                        SHA_FLAGS_DUMP_REG);
291
292         clk_disable(dd->iclk);
293
294         if ((dd->is_async || dd->force_complete) && req->base.complete)
295                 ahash_request_complete(req, err);
296
297         /* handle new request */
298         tasklet_schedule(&dd->queue_task);
299
300         return err;
301 }
302
303 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
304 {
305         size_t count;
306
307         while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
308                 count = min(ctx->sg->length - ctx->offset, ctx->total);
309                 count = min(count, ctx->buflen - ctx->bufcnt);
310
311                 if (count <= 0) {
312                         /*
313                         * Check if count <= 0 because the buffer is full or
314                         * because the sg length is 0. In the latest case,
315                         * check if there is another sg in the list, a 0 length
316                         * sg doesn't necessarily mean the end of the sg list.
317                         */
318                         if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
319                                 ctx->sg = sg_next(ctx->sg);
320                                 continue;
321                         } else {
322                                 break;
323                         }
324                 }
325
326                 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
327                         ctx->offset, count, 0);
328
329                 ctx->bufcnt += count;
330                 ctx->offset += count;
331                 ctx->total -= count;
332
333                 if (ctx->offset == ctx->sg->length) {
334                         ctx->sg = sg_next(ctx->sg);
335                         if (ctx->sg)
336                                 ctx->offset = 0;
337                         else
338                                 ctx->total = 0;
339                 }
340         }
341
342         return 0;
343 }
344
345 /*
346  * The purpose of this padding is to ensure that the padded message is a
347  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
348  * The bit "1" is appended at the end of the message followed by
349  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
350  * 128 bits block (SHA384/SHA512) equals to the message length in bits
351  * is appended.
352  *
353  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
354  *  - if message length < 56 bytes then padlen = 56 - message length
355  *  - else padlen = 64 + 56 - message length
356  *
357  * For SHA384/SHA512, padlen is calculated as followed:
358  *  - if message length < 112 bytes then padlen = 112 - message length
359  *  - else padlen = 128 + 112 - message length
360  */
361 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
362 {
363         unsigned int index, padlen;
364         __be64 bits[2];
365         u64 size[2];
366
367         size[0] = ctx->digcnt[0];
368         size[1] = ctx->digcnt[1];
369
370         size[0] += ctx->bufcnt;
371         if (size[0] < ctx->bufcnt)
372                 size[1]++;
373
374         size[0] += length;
375         if (size[0]  < length)
376                 size[1]++;
377
378         bits[1] = cpu_to_be64(size[0] << 3);
379         bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
380
381         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
382         case SHA_FLAGS_SHA384:
383         case SHA_FLAGS_SHA512:
384                 index = ctx->bufcnt & 0x7f;
385                 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
386                 *(ctx->buffer + ctx->bufcnt) = 0x80;
387                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
388                 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
389                 ctx->bufcnt += padlen + 16;
390                 ctx->flags |= SHA_FLAGS_PAD;
391                 break;
392
393         default:
394                 index = ctx->bufcnt & 0x3f;
395                 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
396                 *(ctx->buffer + ctx->bufcnt) = 0x80;
397                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
398                 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
399                 ctx->bufcnt += padlen + 8;
400                 ctx->flags |= SHA_FLAGS_PAD;
401                 break;
402         }
403 }
404
405 static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
406 {
407         struct atmel_sha_dev *dd = NULL;
408         struct atmel_sha_dev *tmp;
409
410         spin_lock_bh(&atmel_sha.lock);
411         if (!tctx->dd) {
412                 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
413                         dd = tmp;
414                         break;
415                 }
416                 tctx->dd = dd;
417         } else {
418                 dd = tctx->dd;
419         }
420
421         spin_unlock_bh(&atmel_sha.lock);
422
423         return dd;
424 }
425
426 static int atmel_sha_init(struct ahash_request *req)
427 {
428         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
429         struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
430         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
431         struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
432
433         ctx->dd = dd;
434
435         ctx->flags = 0;
436
437         dev_dbg(dd->dev, "init: digest size: %u\n",
438                 crypto_ahash_digestsize(tfm));
439
440         switch (crypto_ahash_digestsize(tfm)) {
441         case SHA1_DIGEST_SIZE:
442                 ctx->flags |= SHA_FLAGS_SHA1;
443                 ctx->block_size = SHA1_BLOCK_SIZE;
444                 break;
445         case SHA224_DIGEST_SIZE:
446                 ctx->flags |= SHA_FLAGS_SHA224;
447                 ctx->block_size = SHA224_BLOCK_SIZE;
448                 break;
449         case SHA256_DIGEST_SIZE:
450                 ctx->flags |= SHA_FLAGS_SHA256;
451                 ctx->block_size = SHA256_BLOCK_SIZE;
452                 break;
453         case SHA384_DIGEST_SIZE:
454                 ctx->flags |= SHA_FLAGS_SHA384;
455                 ctx->block_size = SHA384_BLOCK_SIZE;
456                 break;
457         case SHA512_DIGEST_SIZE:
458                 ctx->flags |= SHA_FLAGS_SHA512;
459                 ctx->block_size = SHA512_BLOCK_SIZE;
460                 break;
461         default:
462                 return -EINVAL;
463         }
464
465         ctx->bufcnt = 0;
466         ctx->digcnt[0] = 0;
467         ctx->digcnt[1] = 0;
468         ctx->buflen = SHA_BUFFER_LEN;
469
470         return 0;
471 }
472
473 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
474 {
475         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
476         u32 valmr = SHA_MR_MODE_AUTO;
477         unsigned int i, hashsize = 0;
478
479         if (likely(dma)) {
480                 if (!dd->caps.has_dma)
481                         atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
482                 valmr = SHA_MR_MODE_PDC;
483                 if (dd->caps.has_dualbuff)
484                         valmr |= SHA_MR_DUALBUFF;
485         } else {
486                 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
487         }
488
489         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
490         case SHA_FLAGS_SHA1:
491                 valmr |= SHA_MR_ALGO_SHA1;
492                 hashsize = SHA1_DIGEST_SIZE;
493                 break;
494
495         case SHA_FLAGS_SHA224:
496                 valmr |= SHA_MR_ALGO_SHA224;
497                 hashsize = SHA256_DIGEST_SIZE;
498                 break;
499
500         case SHA_FLAGS_SHA256:
501                 valmr |= SHA_MR_ALGO_SHA256;
502                 hashsize = SHA256_DIGEST_SIZE;
503                 break;
504
505         case SHA_FLAGS_SHA384:
506                 valmr |= SHA_MR_ALGO_SHA384;
507                 hashsize = SHA512_DIGEST_SIZE;
508                 break;
509
510         case SHA_FLAGS_SHA512:
511                 valmr |= SHA_MR_ALGO_SHA512;
512                 hashsize = SHA512_DIGEST_SIZE;
513                 break;
514
515         default:
516                 break;
517         }
518
519         /* Setting CR_FIRST only for the first iteration */
520         if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
521                 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
522         } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
523                 const u32 *hash = (const u32 *)ctx->digest;
524
525                 /*
526                  * Restore the hardware context: update the User Initialize
527                  * Hash Value (UIHV) with the value saved when the latest
528                  * 'update' operation completed on this very same crypto
529                  * request.
530                  */
531                 ctx->flags &= ~SHA_FLAGS_RESTORE;
532                 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
533                 for (i = 0; i < hashsize / sizeof(u32); ++i)
534                         atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
535                 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
536                 valmr |= SHA_MR_UIHV;
537         }
538         /*
539          * WARNING: If the UIHV feature is not available, the hardware CANNOT
540          * process concurrent requests: the internal registers used to store
541          * the hash/digest are still set to the partial digest output values
542          * computed during the latest round.
543          */
544
545         atmel_sha_write(dd, SHA_MR, valmr);
546 }
547
548 static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
549                                                 atmel_sha_fn_t resume)
550 {
551         u32 isr = atmel_sha_read(dd, SHA_ISR);
552
553         if (unlikely(isr & SHA_INT_DATARDY))
554                 return resume(dd);
555
556         dd->resume = resume;
557         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
558         return -EINPROGRESS;
559 }
560
561 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
562                               size_t length, int final)
563 {
564         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
565         int count, len32;
566         const u32 *buffer = (const u32 *)buf;
567
568         dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
569                 ctx->digcnt[1], ctx->digcnt[0], length, final);
570
571         atmel_sha_write_ctrl(dd, 0);
572
573         /* should be non-zero before next lines to disable clocks later */
574         ctx->digcnt[0] += length;
575         if (ctx->digcnt[0] < length)
576                 ctx->digcnt[1]++;
577
578         if (final)
579                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
580
581         len32 = DIV_ROUND_UP(length, sizeof(u32));
582
583         dd->flags |= SHA_FLAGS_CPU;
584
585         for (count = 0; count < len32; count++)
586                 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
587
588         return -EINPROGRESS;
589 }
590
591 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
592                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
593 {
594         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
595         int len32;
596
597         dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
598                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
599
600         len32 = DIV_ROUND_UP(length1, sizeof(u32));
601         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
602         atmel_sha_write(dd, SHA_TPR, dma_addr1);
603         atmel_sha_write(dd, SHA_TCR, len32);
604
605         len32 = DIV_ROUND_UP(length2, sizeof(u32));
606         atmel_sha_write(dd, SHA_TNPR, dma_addr2);
607         atmel_sha_write(dd, SHA_TNCR, len32);
608
609         atmel_sha_write_ctrl(dd, 1);
610
611         /* should be non-zero before next lines to disable clocks later */
612         ctx->digcnt[0] += length1;
613         if (ctx->digcnt[0] < length1)
614                 ctx->digcnt[1]++;
615
616         if (final)
617                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
618
619         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
620
621         /* Start DMA transfer */
622         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
623
624         return -EINPROGRESS;
625 }
626
627 static void atmel_sha_dma_callback(void *data)
628 {
629         struct atmel_sha_dev *dd = data;
630
631         dd->is_async = true;
632
633         /* dma_lch_in - completed - wait DATRDY */
634         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
635 }
636
637 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
638                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
639 {
640         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
641         struct dma_async_tx_descriptor  *in_desc;
642         struct scatterlist sg[2];
643
644         dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
645                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
646
647         dd->dma_lch_in.dma_conf.src_maxburst = 16;
648         dd->dma_lch_in.dma_conf.dst_maxburst = 16;
649
650         dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
651
652         if (length2) {
653                 sg_init_table(sg, 2);
654                 sg_dma_address(&sg[0]) = dma_addr1;
655                 sg_dma_len(&sg[0]) = length1;
656                 sg_dma_address(&sg[1]) = dma_addr2;
657                 sg_dma_len(&sg[1]) = length2;
658                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
659                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
660         } else {
661                 sg_init_table(sg, 1);
662                 sg_dma_address(&sg[0]) = dma_addr1;
663                 sg_dma_len(&sg[0]) = length1;
664                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
665                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
666         }
667         if (!in_desc)
668                 return atmel_sha_complete(dd, -EINVAL);
669
670         in_desc->callback = atmel_sha_dma_callback;
671         in_desc->callback_param = dd;
672
673         atmel_sha_write_ctrl(dd, 1);
674
675         /* should be non-zero before next lines to disable clocks later */
676         ctx->digcnt[0] += length1;
677         if (ctx->digcnt[0] < length1)
678                 ctx->digcnt[1]++;
679
680         if (final)
681                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
682
683         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
684
685         /* Start DMA transfer */
686         dmaengine_submit(in_desc);
687         dma_async_issue_pending(dd->dma_lch_in.chan);
688
689         return -EINPROGRESS;
690 }
691
692 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
693                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
694 {
695         if (dd->caps.has_dma)
696                 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
697                                 dma_addr2, length2, final);
698         else
699                 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
700                                 dma_addr2, length2, final);
701 }
702
703 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
704 {
705         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
706         int bufcnt;
707
708         atmel_sha_append_sg(ctx);
709         atmel_sha_fill_padding(ctx, 0);
710         bufcnt = ctx->bufcnt;
711         ctx->bufcnt = 0;
712
713         return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
714 }
715
716 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
717                                         struct atmel_sha_reqctx *ctx,
718                                         size_t length, int final)
719 {
720         ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
721                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
722         if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
723                 dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
724                                 ctx->block_size);
725                 return atmel_sha_complete(dd, -EINVAL);
726         }
727
728         ctx->flags &= ~SHA_FLAGS_SG;
729
730         /* next call does not fail... so no unmap in the case of error */
731         return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
732 }
733
734 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
735 {
736         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
737         unsigned int final;
738         size_t count;
739
740         atmel_sha_append_sg(ctx);
741
742         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
743
744         dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
745                  ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
746
747         if (final)
748                 atmel_sha_fill_padding(ctx, 0);
749
750         if (final || (ctx->bufcnt == ctx->buflen)) {
751                 count = ctx->bufcnt;
752                 ctx->bufcnt = 0;
753                 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
754         }
755
756         return 0;
757 }
758
759 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
760 {
761         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
762         unsigned int length, final, tail;
763         struct scatterlist *sg;
764         unsigned int count;
765
766         if (!ctx->total)
767                 return 0;
768
769         if (ctx->bufcnt || ctx->offset)
770                 return atmel_sha_update_dma_slow(dd);
771
772         dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
773                 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
774
775         sg = ctx->sg;
776
777         if (!IS_ALIGNED(sg->offset, sizeof(u32)))
778                 return atmel_sha_update_dma_slow(dd);
779
780         if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
781                 /* size is not ctx->block_size aligned */
782                 return atmel_sha_update_dma_slow(dd);
783
784         length = min(ctx->total, sg->length);
785
786         if (sg_is_last(sg)) {
787                 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
788                         /* not last sg must be ctx->block_size aligned */
789                         tail = length & (ctx->block_size - 1);
790                         length -= tail;
791                 }
792         }
793
794         ctx->total -= length;
795         ctx->offset = length; /* offset where to start slow */
796
797         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
798
799         /* Add padding */
800         if (final) {
801                 tail = length & (ctx->block_size - 1);
802                 length -= tail;
803                 ctx->total += tail;
804                 ctx->offset = length; /* offset where to start slow */
805
806                 sg = ctx->sg;
807                 atmel_sha_append_sg(ctx);
808
809                 atmel_sha_fill_padding(ctx, length);
810
811                 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
812                         ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
813                 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
814                         dev_err(dd->dev, "dma %zu bytes error\n",
815                                 ctx->buflen + ctx->block_size);
816                         return atmel_sha_complete(dd, -EINVAL);
817                 }
818
819                 if (length == 0) {
820                         ctx->flags &= ~SHA_FLAGS_SG;
821                         count = ctx->bufcnt;
822                         ctx->bufcnt = 0;
823                         return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
824                                         0, final);
825                 } else {
826                         ctx->sg = sg;
827                         if (!dma_map_sg(dd->dev, ctx->sg, 1,
828                                 DMA_TO_DEVICE)) {
829                                         dev_err(dd->dev, "dma_map_sg  error\n");
830                                         return atmel_sha_complete(dd, -EINVAL);
831                         }
832
833                         ctx->flags |= SHA_FLAGS_SG;
834
835                         count = ctx->bufcnt;
836                         ctx->bufcnt = 0;
837                         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
838                                         length, ctx->dma_addr, count, final);
839                 }
840         }
841
842         if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
843                 dev_err(dd->dev, "dma_map_sg  error\n");
844                 return atmel_sha_complete(dd, -EINVAL);
845         }
846
847         ctx->flags |= SHA_FLAGS_SG;
848
849         /* next call does not fail... so no unmap in the case of error */
850         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
851                                                                 0, final);
852 }
853
854 static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
855 {
856         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
857
858         if (ctx->flags & SHA_FLAGS_SG) {
859                 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
860                 if (ctx->sg->length == ctx->offset) {
861                         ctx->sg = sg_next(ctx->sg);
862                         if (ctx->sg)
863                                 ctx->offset = 0;
864                 }
865                 if (ctx->flags & SHA_FLAGS_PAD) {
866                         dma_unmap_single(dd->dev, ctx->dma_addr,
867                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
868                 }
869         } else {
870                 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
871                                                 ctx->block_size, DMA_TO_DEVICE);
872         }
873 }
874
875 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
876 {
877         struct ahash_request *req = dd->req;
878         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
879         int err;
880
881         dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
882                 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
883
884         if (ctx->flags & SHA_FLAGS_CPU)
885                 err = atmel_sha_update_cpu(dd);
886         else
887                 err = atmel_sha_update_dma_start(dd);
888
889         /* wait for dma completion before can take more data */
890         dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
891                         err, ctx->digcnt[1], ctx->digcnt[0]);
892
893         return err;
894 }
895
896 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
897 {
898         struct ahash_request *req = dd->req;
899         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
900         int err = 0;
901         int count;
902
903         if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
904                 atmel_sha_fill_padding(ctx, 0);
905                 count = ctx->bufcnt;
906                 ctx->bufcnt = 0;
907                 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
908         }
909         /* faster to handle last block with cpu */
910         else {
911                 atmel_sha_fill_padding(ctx, 0);
912                 count = ctx->bufcnt;
913                 ctx->bufcnt = 0;
914                 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
915         }
916
917         dev_dbg(dd->dev, "final_req: err: %d\n", err);
918
919         return err;
920 }
921
922 static void atmel_sha_copy_hash(struct ahash_request *req)
923 {
924         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
925         u32 *hash = (u32 *)ctx->digest;
926         unsigned int i, hashsize;
927
928         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
929         case SHA_FLAGS_SHA1:
930                 hashsize = SHA1_DIGEST_SIZE;
931                 break;
932
933         case SHA_FLAGS_SHA224:
934         case SHA_FLAGS_SHA256:
935                 hashsize = SHA256_DIGEST_SIZE;
936                 break;
937
938         case SHA_FLAGS_SHA384:
939         case SHA_FLAGS_SHA512:
940                 hashsize = SHA512_DIGEST_SIZE;
941                 break;
942
943         default:
944                 /* Should not happen... */
945                 return;
946         }
947
948         for (i = 0; i < hashsize / sizeof(u32); ++i)
949                 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
950         ctx->flags |= SHA_FLAGS_RESTORE;
951 }
952
953 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
954 {
955         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
956
957         if (!req->result)
958                 return;
959
960         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
961         default:
962         case SHA_FLAGS_SHA1:
963                 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
964                 break;
965
966         case SHA_FLAGS_SHA224:
967                 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
968                 break;
969
970         case SHA_FLAGS_SHA256:
971                 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
972                 break;
973
974         case SHA_FLAGS_SHA384:
975                 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
976                 break;
977
978         case SHA_FLAGS_SHA512:
979                 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
980                 break;
981         }
982 }
983
984 static int atmel_sha_finish(struct ahash_request *req)
985 {
986         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
987         struct atmel_sha_dev *dd = ctx->dd;
988
989         if (ctx->digcnt[0] || ctx->digcnt[1])
990                 atmel_sha_copy_ready_hash(req);
991
992         dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
993                 ctx->digcnt[0], ctx->bufcnt);
994
995         return 0;
996 }
997
998 static void atmel_sha_finish_req(struct ahash_request *req, int err)
999 {
1000         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1001         struct atmel_sha_dev *dd = ctx->dd;
1002
1003         if (!err) {
1004                 atmel_sha_copy_hash(req);
1005                 if (SHA_FLAGS_FINAL & dd->flags)
1006                         err = atmel_sha_finish(req);
1007         } else {
1008                 ctx->flags |= SHA_FLAGS_ERROR;
1009         }
1010
1011         /* atomic operation is not needed here */
1012         (void)atmel_sha_complete(dd, err);
1013 }
1014
1015 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1016 {
1017         int err;
1018
1019         err = clk_enable(dd->iclk);
1020         if (err)
1021                 return err;
1022
1023         if (!(SHA_FLAGS_INIT & dd->flags)) {
1024                 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1025                 dd->flags |= SHA_FLAGS_INIT;
1026         }
1027
1028         return 0;
1029 }
1030
1031 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1032 {
1033         return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1034 }
1035
1036 static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1037 {
1038         int err;
1039
1040         err = atmel_sha_hw_init(dd);
1041         if (err)
1042                 return err;
1043
1044         dd->hw_version = atmel_sha_get_version(dd);
1045
1046         dev_info(dd->dev,
1047                         "version: 0x%x\n", dd->hw_version);
1048
1049         clk_disable(dd->iclk);
1050
1051         return 0;
1052 }
1053
1054 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055                                   struct ahash_request *req)
1056 {
1057         struct crypto_async_request *async_req, *backlog;
1058         struct atmel_sha_ctx *ctx;
1059         unsigned long flags;
1060         bool start_async;
1061         int err = 0, ret = 0;
1062
1063         spin_lock_irqsave(&dd->lock, flags);
1064         if (req)
1065                 ret = ahash_enqueue_request(&dd->queue, req);
1066
1067         if (SHA_FLAGS_BUSY & dd->flags) {
1068                 spin_unlock_irqrestore(&dd->lock, flags);
1069                 return ret;
1070         }
1071
1072         backlog = crypto_get_backlog(&dd->queue);
1073         async_req = crypto_dequeue_request(&dd->queue);
1074         if (async_req)
1075                 dd->flags |= SHA_FLAGS_BUSY;
1076
1077         spin_unlock_irqrestore(&dd->lock, flags);
1078
1079         if (!async_req)
1080                 return ret;
1081
1082         if (backlog)
1083                 crypto_request_complete(backlog, -EINPROGRESS);
1084
1085         ctx = crypto_tfm_ctx(async_req->tfm);
1086
1087         dd->req = ahash_request_cast(async_req);
1088         start_async = (dd->req != req);
1089         dd->is_async = start_async;
1090         dd->force_complete = false;
1091
1092         /* WARNING: ctx->start() MAY change dd->is_async. */
1093         err = ctx->start(dd);
1094         return (start_async) ? ret : err;
1095 }
1096
1097 static int atmel_sha_done(struct atmel_sha_dev *dd);
1098
1099 static int atmel_sha_start(struct atmel_sha_dev *dd)
1100 {
1101         struct ahash_request *req = dd->req;
1102         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103         int err;
1104
1105         dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %u\n",
1106                                                 ctx->op, req->nbytes);
1107
1108         err = atmel_sha_hw_init(dd);
1109         if (err)
1110                 return atmel_sha_complete(dd, err);
1111
1112         /*
1113          * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114          *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115          *                its job later in the done_task.
1116          *                This is the main path.
1117          *
1118          * 0: the SHA driver can continue its job then release the hardware
1119          *    later, if needed, with atmel_sha_finish_req().
1120          *    This is the alternate path.
1121          *
1122          * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123          *      been called, hence the hardware has been released.
1124          *      The SHA driver must stop its job without calling
1125          *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126          *      called a second time.
1127          *
1128          * Please note that currently, atmel_sha_final_req() never returns 0.
1129          */
1130
1131         dd->resume = atmel_sha_done;
1132         if (ctx->op == SHA_OP_UPDATE) {
1133                 err = atmel_sha_update_req(dd);
1134                 if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135                         /* no final() after finup() */
1136                         err = atmel_sha_final_req(dd);
1137         } else if (ctx->op == SHA_OP_FINAL) {
1138                 err = atmel_sha_final_req(dd);
1139         }
1140
1141         if (!err)
1142                 /* done_task will not finish it, so do it here */
1143                 atmel_sha_finish_req(req, err);
1144
1145         dev_dbg(dd->dev, "exit, err: %d\n", err);
1146
1147         return err;
1148 }
1149
1150 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151 {
1152         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153         struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154         struct atmel_sha_dev *dd = tctx->dd;
1155
1156         ctx->op = op;
1157
1158         return atmel_sha_handle_queue(dd, req);
1159 }
1160
1161 static int atmel_sha_update(struct ahash_request *req)
1162 {
1163         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164
1165         if (!req->nbytes)
1166                 return 0;
1167
1168         ctx->total = req->nbytes;
1169         ctx->sg = req->src;
1170         ctx->offset = 0;
1171
1172         if (ctx->flags & SHA_FLAGS_FINUP) {
1173                 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174                         /* faster to use CPU for short transfers */
1175                         ctx->flags |= SHA_FLAGS_CPU;
1176         } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177                 atmel_sha_append_sg(ctx);
1178                 return 0;
1179         }
1180         return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181 }
1182
1183 static int atmel_sha_final(struct ahash_request *req)
1184 {
1185         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186
1187         ctx->flags |= SHA_FLAGS_FINUP;
1188
1189         if (ctx->flags & SHA_FLAGS_ERROR)
1190                 return 0; /* uncompleted hash is not needed */
1191
1192         if (ctx->flags & SHA_FLAGS_PAD)
1193                 /* copy ready hash (+ finalize hmac) */
1194                 return atmel_sha_finish(req);
1195
1196         return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197 }
1198
1199 static int atmel_sha_finup(struct ahash_request *req)
1200 {
1201         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202         int err1, err2;
1203
1204         ctx->flags |= SHA_FLAGS_FINUP;
1205
1206         err1 = atmel_sha_update(req);
1207         if (err1 == -EINPROGRESS ||
1208             (err1 == -EBUSY && (ahash_request_flags(req) &
1209                                 CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210                 return err1;
1211
1212         /*
1213          * final() has to be always called to cleanup resources
1214          * even if udpate() failed, except EINPROGRESS
1215          */
1216         err2 = atmel_sha_final(req);
1217
1218         return err1 ?: err2;
1219 }
1220
1221 static int atmel_sha_digest(struct ahash_request *req)
1222 {
1223         return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224 }
1225
1226
1227 static int atmel_sha_export(struct ahash_request *req, void *out)
1228 {
1229         const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230
1231         memcpy(out, ctx, sizeof(*ctx));
1232         return 0;
1233 }
1234
1235 static int atmel_sha_import(struct ahash_request *req, const void *in)
1236 {
1237         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238
1239         memcpy(ctx, in, sizeof(*ctx));
1240         return 0;
1241 }
1242
1243 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244 {
1245         struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246
1247         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248                                  sizeof(struct atmel_sha_reqctx));
1249         ctx->start = atmel_sha_start;
1250
1251         return 0;
1252 }
1253
1254 static void atmel_sha_alg_init(struct ahash_alg *alg)
1255 {
1256         alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
1257         alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
1258         alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
1259         alg->halg.base.cra_module = THIS_MODULE;
1260         alg->halg.base.cra_init = atmel_sha_cra_init;
1261
1262         alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
1263
1264         alg->init = atmel_sha_init;
1265         alg->update = atmel_sha_update;
1266         alg->final = atmel_sha_final;
1267         alg->finup = atmel_sha_finup;
1268         alg->digest = atmel_sha_digest;
1269         alg->export = atmel_sha_export;
1270         alg->import = atmel_sha_import;
1271 }
1272
1273 static struct ahash_alg sha_1_256_algs[] = {
1274 {
1275         .halg.base.cra_name             = "sha1",
1276         .halg.base.cra_driver_name      = "atmel-sha1",
1277         .halg.base.cra_blocksize        = SHA1_BLOCK_SIZE,
1278
1279         .halg.digestsize = SHA1_DIGEST_SIZE,
1280 },
1281 {
1282         .halg.base.cra_name             = "sha256",
1283         .halg.base.cra_driver_name      = "atmel-sha256",
1284         .halg.base.cra_blocksize        = SHA256_BLOCK_SIZE,
1285
1286         .halg.digestsize = SHA256_DIGEST_SIZE,
1287 },
1288 };
1289
1290 static struct ahash_alg sha_224_alg = {
1291         .halg.base.cra_name             = "sha224",
1292         .halg.base.cra_driver_name      = "atmel-sha224",
1293         .halg.base.cra_blocksize        = SHA224_BLOCK_SIZE,
1294
1295         .halg.digestsize = SHA224_DIGEST_SIZE,
1296 };
1297
1298 static struct ahash_alg sha_384_512_algs[] = {
1299 {
1300         .halg.base.cra_name             = "sha384",
1301         .halg.base.cra_driver_name      = "atmel-sha384",
1302         .halg.base.cra_blocksize        = SHA384_BLOCK_SIZE,
1303
1304         .halg.digestsize = SHA384_DIGEST_SIZE,
1305 },
1306 {
1307         .halg.base.cra_name             = "sha512",
1308         .halg.base.cra_driver_name      = "atmel-sha512",
1309         .halg.base.cra_blocksize        = SHA512_BLOCK_SIZE,
1310
1311         .halg.digestsize = SHA512_DIGEST_SIZE,
1312 },
1313 };
1314
1315 static void atmel_sha_queue_task(unsigned long data)
1316 {
1317         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1318
1319         atmel_sha_handle_queue(dd, NULL);
1320 }
1321
1322 static int atmel_sha_done(struct atmel_sha_dev *dd)
1323 {
1324         int err = 0;
1325
1326         if (SHA_FLAGS_CPU & dd->flags) {
1327                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1328                         dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1329                         goto finish;
1330                 }
1331         } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1332                 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1333                         dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1334                         atmel_sha_update_dma_stop(dd);
1335                 }
1336                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1337                         /* hash or semi-hash ready */
1338                         dd->flags &= ~(SHA_FLAGS_DMA_READY |
1339                                                 SHA_FLAGS_OUTPUT_READY);
1340                         err = atmel_sha_update_dma_start(dd);
1341                         if (err != -EINPROGRESS)
1342                                 goto finish;
1343                 }
1344         }
1345         return err;
1346
1347 finish:
1348         /* finish curent request */
1349         atmel_sha_finish_req(dd->req, err);
1350
1351         return err;
1352 }
1353
1354 static void atmel_sha_done_task(unsigned long data)
1355 {
1356         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1357
1358         dd->is_async = true;
1359         (void)dd->resume(dd);
1360 }
1361
1362 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1363 {
1364         struct atmel_sha_dev *sha_dd = dev_id;
1365         u32 reg;
1366
1367         reg = atmel_sha_read(sha_dd, SHA_ISR);
1368         if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1369                 atmel_sha_write(sha_dd, SHA_IDR, reg);
1370                 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1371                         sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1372                         if (!(SHA_FLAGS_CPU & sha_dd->flags))
1373                                 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1374                         tasklet_schedule(&sha_dd->done_task);
1375                 } else {
1376                         dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1377                 }
1378                 return IRQ_HANDLED;
1379         }
1380
1381         return IRQ_NONE;
1382 }
1383
1384
1385 /* DMA transfer functions */
1386
1387 static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1388                                         struct scatterlist *sg,
1389                                         size_t len)
1390 {
1391         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1392         struct ahash_request *req = dd->req;
1393         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1394         size_t bs = ctx->block_size;
1395         int nents;
1396
1397         for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1398                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1399                         return false;
1400
1401                 /*
1402                  * This is the last sg, the only one that is allowed to
1403                  * have an unaligned length.
1404                  */
1405                 if (len <= sg->length) {
1406                         dma->nents = nents + 1;
1407                         dma->last_sg_length = sg->length;
1408                         sg->length = ALIGN(len, sizeof(u32));
1409                         return true;
1410                 }
1411
1412                 /* All other sg lengths MUST be aligned to the block size. */
1413                 if (!IS_ALIGNED(sg->length, bs))
1414                         return false;
1415
1416                 len -= sg->length;
1417         }
1418
1419         return false;
1420 }
1421
1422 static void atmel_sha_dma_callback2(void *data)
1423 {
1424         struct atmel_sha_dev *dd = data;
1425         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1426         struct scatterlist *sg;
1427         int nents;
1428
1429         dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1430
1431         sg = dma->sg;
1432         for (nents = 0; nents < dma->nents - 1; ++nents)
1433                 sg = sg_next(sg);
1434         sg->length = dma->last_sg_length;
1435
1436         dd->is_async = true;
1437         (void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1438 }
1439
1440 static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1441                                struct scatterlist *src,
1442                                size_t len,
1443                                atmel_sha_fn_t resume)
1444 {
1445         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1446         struct dma_slave_config *config = &dma->dma_conf;
1447         struct dma_chan *chan = dma->chan;
1448         struct dma_async_tx_descriptor *desc;
1449         dma_cookie_t cookie;
1450         unsigned int sg_len;
1451         int err;
1452
1453         dd->resume = resume;
1454
1455         /*
1456          * dma->nents has already been initialized by
1457          * atmel_sha_dma_check_aligned().
1458          */
1459         dma->sg = src;
1460         sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1461         if (!sg_len) {
1462                 err = -ENOMEM;
1463                 goto exit;
1464         }
1465
1466         config->src_maxburst = 16;
1467         config->dst_maxburst = 16;
1468         err = dmaengine_slave_config(chan, config);
1469         if (err)
1470                 goto unmap_sg;
1471
1472         desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1473                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1474         if (!desc) {
1475                 err = -ENOMEM;
1476                 goto unmap_sg;
1477         }
1478
1479         desc->callback = atmel_sha_dma_callback2;
1480         desc->callback_param = dd;
1481         cookie = dmaengine_submit(desc);
1482         err = dma_submit_error(cookie);
1483         if (err)
1484                 goto unmap_sg;
1485
1486         dma_async_issue_pending(chan);
1487
1488         return -EINPROGRESS;
1489
1490 unmap_sg:
1491         dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1492 exit:
1493         return atmel_sha_complete(dd, err);
1494 }
1495
1496
1497 /* CPU transfer functions */
1498
1499 static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1500 {
1501         struct ahash_request *req = dd->req;
1502         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1503         const u32 *words = (const u32 *)ctx->buffer;
1504         size_t i, num_words;
1505         u32 isr, din, din_inc;
1506
1507         din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1508         for (;;) {
1509                 /* Write data into the Input Data Registers. */
1510                 num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1511                 for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1512                         atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1513
1514                 ctx->offset += ctx->bufcnt;
1515                 ctx->total -= ctx->bufcnt;
1516
1517                 if (!ctx->total)
1518                         break;
1519
1520                 /*
1521                  * Prepare next block:
1522                  * Fill ctx->buffer now with the next data to be written into
1523                  * IDATARx: it gives time for the SHA hardware to process
1524                  * the current data so the SHA_INT_DATARDY flag might be set
1525                  * in SHA_ISR when polling this register at the beginning of
1526                  * the next loop.
1527                  */
1528                 ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1529                 scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1530                                          ctx->offset, ctx->bufcnt, 0);
1531
1532                 /* Wait for hardware to be ready again. */
1533                 isr = atmel_sha_read(dd, SHA_ISR);
1534                 if (!(isr & SHA_INT_DATARDY)) {
1535                         /* Not ready yet. */
1536                         dd->resume = atmel_sha_cpu_transfer;
1537                         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1538                         return -EINPROGRESS;
1539                 }
1540         }
1541
1542         if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1543                 return dd->cpu_transfer_complete(dd);
1544
1545         return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1546 }
1547
1548 static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1549                                struct scatterlist *sg,
1550                                unsigned int len,
1551                                bool idatar0_only,
1552                                bool wait_data_ready,
1553                                atmel_sha_fn_t resume)
1554 {
1555         struct ahash_request *req = dd->req;
1556         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1557
1558         if (!len)
1559                 return resume(dd);
1560
1561         ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1562
1563         if (idatar0_only)
1564                 ctx->flags |= SHA_FLAGS_IDATAR0;
1565
1566         if (wait_data_ready)
1567                 ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1568
1569         ctx->sg = sg;
1570         ctx->total = len;
1571         ctx->offset = 0;
1572
1573         /* Prepare the first block to be written. */
1574         ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1575         scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1576                                  ctx->offset, ctx->bufcnt, 0);
1577
1578         dd->cpu_transfer_complete = resume;
1579         return atmel_sha_cpu_transfer(dd);
1580 }
1581
1582 static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1583                               const void *data, unsigned int datalen,
1584                               bool auto_padding,
1585                               atmel_sha_fn_t resume)
1586 {
1587         struct ahash_request *req = dd->req;
1588         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1589         u32 msglen = (auto_padding) ? datalen : 0;
1590         u32 mr = SHA_MR_MODE_AUTO;
1591
1592         if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1593                 return atmel_sha_complete(dd, -EINVAL);
1594
1595         mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1596         atmel_sha_write(dd, SHA_MR, mr);
1597         atmel_sha_write(dd, SHA_MSR, msglen);
1598         atmel_sha_write(dd, SHA_BCR, msglen);
1599         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1600
1601         sg_init_one(&dd->tmp, data, datalen);
1602         return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1603 }
1604
1605
1606 /* hmac functions */
1607
1608 struct atmel_sha_hmac_key {
1609         bool                    valid;
1610         unsigned int            keylen;
1611         u8                      buffer[SHA512_BLOCK_SIZE];
1612         u8                      *keydup;
1613 };
1614
1615 static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1616 {
1617         memset(hkey, 0, sizeof(*hkey));
1618 }
1619
1620 static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1621 {
1622         kfree(hkey->keydup);
1623         memset(hkey, 0, sizeof(*hkey));
1624 }
1625
1626 static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1627                                          const u8 *key,
1628                                          unsigned int keylen)
1629 {
1630         atmel_sha_hmac_key_release(hkey);
1631
1632         if (keylen > sizeof(hkey->buffer)) {
1633                 hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1634                 if (!hkey->keydup)
1635                         return -ENOMEM;
1636
1637         } else {
1638                 memcpy(hkey->buffer, key, keylen);
1639         }
1640
1641         hkey->valid = true;
1642         hkey->keylen = keylen;
1643         return 0;
1644 }
1645
1646 static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1647                                           const u8 **key,
1648                                           unsigned int *keylen)
1649 {
1650         if (!hkey->valid)
1651                 return false;
1652
1653         *keylen = hkey->keylen;
1654         *key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1655         return true;
1656 }
1657
1658
1659 struct atmel_sha_hmac_ctx {
1660         struct atmel_sha_ctx    base;
1661
1662         struct atmel_sha_hmac_key       hkey;
1663         u32                     ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1664         u32                     opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1665         atmel_sha_fn_t          resume;
1666 };
1667
1668 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1669                                 atmel_sha_fn_t resume);
1670 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1671                                       const u8 *key, unsigned int keylen);
1672 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1673 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1674 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1675 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1676
1677 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1678 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1679 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1680 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1681
1682 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1683                                 atmel_sha_fn_t resume)
1684 {
1685         struct ahash_request *req = dd->req;
1686         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1687         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1688         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1689         unsigned int keylen;
1690         const u8 *key;
1691         size_t bs;
1692
1693         hmac->resume = resume;
1694         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1695         case SHA_FLAGS_SHA1:
1696                 ctx->block_size = SHA1_BLOCK_SIZE;
1697                 ctx->hash_size = SHA1_DIGEST_SIZE;
1698                 break;
1699
1700         case SHA_FLAGS_SHA224:
1701                 ctx->block_size = SHA224_BLOCK_SIZE;
1702                 ctx->hash_size = SHA256_DIGEST_SIZE;
1703                 break;
1704
1705         case SHA_FLAGS_SHA256:
1706                 ctx->block_size = SHA256_BLOCK_SIZE;
1707                 ctx->hash_size = SHA256_DIGEST_SIZE;
1708                 break;
1709
1710         case SHA_FLAGS_SHA384:
1711                 ctx->block_size = SHA384_BLOCK_SIZE;
1712                 ctx->hash_size = SHA512_DIGEST_SIZE;
1713                 break;
1714
1715         case SHA_FLAGS_SHA512:
1716                 ctx->block_size = SHA512_BLOCK_SIZE;
1717                 ctx->hash_size = SHA512_DIGEST_SIZE;
1718                 break;
1719
1720         default:
1721                 return atmel_sha_complete(dd, -EINVAL);
1722         }
1723         bs = ctx->block_size;
1724
1725         if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1726                 return resume(dd);
1727
1728         /* Compute K' from K. */
1729         if (unlikely(keylen > bs))
1730                 return atmel_sha_hmac_prehash_key(dd, key, keylen);
1731
1732         /* Prepare ipad. */
1733         memcpy((u8 *)hmac->ipad, key, keylen);
1734         memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1735         return atmel_sha_hmac_compute_ipad_hash(dd);
1736 }
1737
1738 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1739                                       const u8 *key, unsigned int keylen)
1740 {
1741         return atmel_sha_cpu_hash(dd, key, keylen, true,
1742                                   atmel_sha_hmac_prehash_key_done);
1743 }
1744
1745 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1746 {
1747         struct ahash_request *req = dd->req;
1748         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1749         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1750         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1751         size_t ds = crypto_ahash_digestsize(tfm);
1752         size_t bs = ctx->block_size;
1753         size_t i, num_words = ds / sizeof(u32);
1754
1755         /* Prepare ipad. */
1756         for (i = 0; i < num_words; ++i)
1757                 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1758         memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1759         return atmel_sha_hmac_compute_ipad_hash(dd);
1760 }
1761
1762 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1763 {
1764         struct ahash_request *req = dd->req;
1765         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1766         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1767         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1768         size_t bs = ctx->block_size;
1769         size_t i, num_words = bs / sizeof(u32);
1770
1771         unsafe_memcpy(hmac->opad, hmac->ipad, bs,
1772                       "fortified memcpy causes -Wrestrict warning");
1773         for (i = 0; i < num_words; ++i) {
1774                 hmac->ipad[i] ^= 0x36363636;
1775                 hmac->opad[i] ^= 0x5c5c5c5c;
1776         }
1777
1778         return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1779                                   atmel_sha_hmac_compute_opad_hash);
1780 }
1781
1782 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1783 {
1784         struct ahash_request *req = dd->req;
1785         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1786         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1787         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1788         size_t bs = ctx->block_size;
1789         size_t hs = ctx->hash_size;
1790         size_t i, num_words = hs / sizeof(u32);
1791
1792         for (i = 0; i < num_words; ++i)
1793                 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1794         return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1795                                   atmel_sha_hmac_setup_done);
1796 }
1797
1798 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1799 {
1800         struct ahash_request *req = dd->req;
1801         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1802         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1803         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1804         size_t hs = ctx->hash_size;
1805         size_t i, num_words = hs / sizeof(u32);
1806
1807         for (i = 0; i < num_words; ++i)
1808                 hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1809         atmel_sha_hmac_key_release(&hmac->hkey);
1810         return hmac->resume(dd);
1811 }
1812
1813 static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1814 {
1815         struct ahash_request *req = dd->req;
1816         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1817         int err;
1818
1819         err = atmel_sha_hw_init(dd);
1820         if (err)
1821                 return atmel_sha_complete(dd, err);
1822
1823         switch (ctx->op) {
1824         case SHA_OP_INIT:
1825                 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1826                 break;
1827
1828         case SHA_OP_UPDATE:
1829                 dd->resume = atmel_sha_done;
1830                 err = atmel_sha_update_req(dd);
1831                 break;
1832
1833         case SHA_OP_FINAL:
1834                 dd->resume = atmel_sha_hmac_final;
1835                 err = atmel_sha_final_req(dd);
1836                 break;
1837
1838         case SHA_OP_DIGEST:
1839                 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1840                 break;
1841
1842         default:
1843                 return atmel_sha_complete(dd, -EINVAL);
1844         }
1845
1846         return err;
1847 }
1848
1849 static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1850                                  unsigned int keylen)
1851 {
1852         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1853
1854         return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
1855 }
1856
1857 static int atmel_sha_hmac_init(struct ahash_request *req)
1858 {
1859         int err;
1860
1861         err = atmel_sha_init(req);
1862         if (err)
1863                 return err;
1864
1865         return atmel_sha_enqueue(req, SHA_OP_INIT);
1866 }
1867
1868 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1869 {
1870         struct ahash_request *req = dd->req;
1871         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1872         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1873         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1874         size_t bs = ctx->block_size;
1875         size_t hs = ctx->hash_size;
1876
1877         ctx->bufcnt = 0;
1878         ctx->digcnt[0] = bs;
1879         ctx->digcnt[1] = 0;
1880         ctx->flags |= SHA_FLAGS_RESTORE;
1881         memcpy(ctx->digest, hmac->ipad, hs);
1882         return atmel_sha_complete(dd, 0);
1883 }
1884
1885 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1886 {
1887         struct ahash_request *req = dd->req;
1888         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1889         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1890         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1891         u32 *digest = (u32 *)ctx->digest;
1892         size_t ds = crypto_ahash_digestsize(tfm);
1893         size_t bs = ctx->block_size;
1894         size_t hs = ctx->hash_size;
1895         size_t i, num_words;
1896         u32 mr;
1897
1898         /* Save d = SHA((K' + ipad) | msg). */
1899         num_words = ds / sizeof(u32);
1900         for (i = 0; i < num_words; ++i)
1901                 digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1902
1903         /* Restore context to finish computing SHA((K' + opad) | d). */
1904         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1905         num_words = hs / sizeof(u32);
1906         for (i = 0; i < num_words; ++i)
1907                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1908
1909         mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1910         mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1911         atmel_sha_write(dd, SHA_MR, mr);
1912         atmel_sha_write(dd, SHA_MSR, bs + ds);
1913         atmel_sha_write(dd, SHA_BCR, ds);
1914         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1915
1916         sg_init_one(&dd->tmp, digest, ds);
1917         return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1918                                    atmel_sha_hmac_final_done);
1919 }
1920
1921 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1922 {
1923         /*
1924          * req->result might not be sizeof(u32) aligned, so copy the
1925          * digest into ctx->digest[] before memcpy() the data into
1926          * req->result.
1927          */
1928         atmel_sha_copy_hash(dd->req);
1929         atmel_sha_copy_ready_hash(dd->req);
1930         return atmel_sha_complete(dd, 0);
1931 }
1932
1933 static int atmel_sha_hmac_digest(struct ahash_request *req)
1934 {
1935         int err;
1936
1937         err = atmel_sha_init(req);
1938         if (err)
1939                 return err;
1940
1941         return atmel_sha_enqueue(req, SHA_OP_DIGEST);
1942 }
1943
1944 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
1945 {
1946         struct ahash_request *req = dd->req;
1947         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1948         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1949         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1950         struct scatterlist *sgbuf;
1951         size_t hs = ctx->hash_size;
1952         size_t i, num_words = hs / sizeof(u32);
1953         bool use_dma = false;
1954         u32 mr;
1955
1956         /* Special case for empty message. */
1957         if (!req->nbytes) {
1958                 req->nbytes = 0;
1959                 ctx->bufcnt = 0;
1960                 ctx->digcnt[0] = 0;
1961                 ctx->digcnt[1] = 0;
1962                 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1963                 case SHA_FLAGS_SHA1:
1964                 case SHA_FLAGS_SHA224:
1965                 case SHA_FLAGS_SHA256:
1966                         atmel_sha_fill_padding(ctx, 64);
1967                         break;
1968
1969                 case SHA_FLAGS_SHA384:
1970                 case SHA_FLAGS_SHA512:
1971                         atmel_sha_fill_padding(ctx, 128);
1972                         break;
1973                 }
1974                 sg_init_one(&dd->tmp, ctx->buffer, ctx->bufcnt);
1975         }
1976
1977         /* Check DMA threshold and alignment. */
1978         if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
1979             atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
1980                 use_dma = true;
1981
1982         /* Write both initial hash values to compute a HMAC. */
1983         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1984         for (i = 0; i < num_words; ++i)
1985                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
1986
1987         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
1988         for (i = 0; i < num_words; ++i)
1989                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1990
1991         /* Write the Mode, Message Size, Bytes Count then Control Registers. */
1992         mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
1993         mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
1994         if (use_dma)
1995                 mr |= SHA_MR_MODE_IDATAR0;
1996         else
1997                 mr |= SHA_MR_MODE_AUTO;
1998         atmel_sha_write(dd, SHA_MR, mr);
1999
2000         atmel_sha_write(dd, SHA_MSR, req->nbytes);
2001         atmel_sha_write(dd, SHA_BCR, req->nbytes);
2002
2003         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2004
2005         /* Special case for empty message. */
2006         if (!req->nbytes) {
2007                 sgbuf = &dd->tmp;
2008                 req->nbytes = ctx->bufcnt;
2009         } else {
2010                 sgbuf = req->src;
2011         }
2012
2013         /* Process data. */
2014         if (use_dma)
2015                 return atmel_sha_dma_start(dd, sgbuf, req->nbytes,
2016                                            atmel_sha_hmac_final_done);
2017
2018         return atmel_sha_cpu_start(dd, sgbuf, req->nbytes, false, true,
2019                                    atmel_sha_hmac_final_done);
2020 }
2021
2022 static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2023 {
2024         struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2025
2026         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2027                                  sizeof(struct atmel_sha_reqctx));
2028         hmac->base.start = atmel_sha_hmac_start;
2029         atmel_sha_hmac_key_init(&hmac->hkey);
2030
2031         return 0;
2032 }
2033
2034 static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2035 {
2036         struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2037
2038         atmel_sha_hmac_key_release(&hmac->hkey);
2039 }
2040
2041 static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
2042 {
2043         alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
2044         alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
2045         alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
2046         alg->halg.base.cra_module = THIS_MODULE;
2047         alg->halg.base.cra_init = atmel_sha_hmac_cra_init;
2048         alg->halg.base.cra_exit = atmel_sha_hmac_cra_exit;
2049
2050         alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
2051
2052         alg->init = atmel_sha_hmac_init;
2053         alg->update = atmel_sha_update;
2054         alg->final = atmel_sha_final;
2055         alg->digest = atmel_sha_hmac_digest;
2056         alg->setkey = atmel_sha_hmac_setkey;
2057         alg->export = atmel_sha_export;
2058         alg->import = atmel_sha_import;
2059 }
2060
2061 static struct ahash_alg sha_hmac_algs[] = {
2062 {
2063         .halg.base.cra_name             = "hmac(sha1)",
2064         .halg.base.cra_driver_name      = "atmel-hmac-sha1",
2065         .halg.base.cra_blocksize        = SHA1_BLOCK_SIZE,
2066
2067         .halg.digestsize = SHA1_DIGEST_SIZE,
2068 },
2069 {
2070         .halg.base.cra_name             = "hmac(sha224)",
2071         .halg.base.cra_driver_name      = "atmel-hmac-sha224",
2072         .halg.base.cra_blocksize        = SHA224_BLOCK_SIZE,
2073
2074         .halg.digestsize = SHA224_DIGEST_SIZE,
2075 },
2076 {
2077         .halg.base.cra_name             = "hmac(sha256)",
2078         .halg.base.cra_driver_name      = "atmel-hmac-sha256",
2079         .halg.base.cra_blocksize        = SHA256_BLOCK_SIZE,
2080
2081         .halg.digestsize = SHA256_DIGEST_SIZE,
2082 },
2083 {
2084         .halg.base.cra_name             = "hmac(sha384)",
2085         .halg.base.cra_driver_name      = "atmel-hmac-sha384",
2086         .halg.base.cra_blocksize        = SHA384_BLOCK_SIZE,
2087
2088         .halg.digestsize = SHA384_DIGEST_SIZE,
2089 },
2090 {
2091         .halg.base.cra_name             = "hmac(sha512)",
2092         .halg.base.cra_driver_name      = "atmel-hmac-sha512",
2093         .halg.base.cra_blocksize        = SHA512_BLOCK_SIZE,
2094
2095         .halg.digestsize = SHA512_DIGEST_SIZE,
2096 },
2097 };
2098
2099 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2100 /* authenc functions */
2101
2102 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2103 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2104 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2105
2106
2107 struct atmel_sha_authenc_ctx {
2108         struct crypto_ahash     *tfm;
2109 };
2110
2111 struct atmel_sha_authenc_reqctx {
2112         struct atmel_sha_reqctx base;
2113
2114         atmel_aes_authenc_fn_t  cb;
2115         struct atmel_aes_dev    *aes_dev;
2116
2117         /* _init() parameters. */
2118         struct scatterlist      *assoc;
2119         u32                     assoclen;
2120         u32                     textlen;
2121
2122         /* _final() parameters. */
2123         u32                     *digest;
2124         unsigned int            digestlen;
2125 };
2126
2127 static void atmel_sha_authenc_complete(void *data, int err)
2128 {
2129         struct ahash_request *req = data;
2130         struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2131
2132         authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2133 }
2134
2135 static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2136 {
2137         struct ahash_request *req = dd->req;
2138         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2139         int err;
2140
2141         /*
2142          * Force atmel_sha_complete() to call req->base.complete(), ie
2143          * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2144          */
2145         dd->force_complete = true;
2146
2147         err = atmel_sha_hw_init(dd);
2148         return authctx->cb(authctx->aes_dev, err, dd->is_async);
2149 }
2150
2151 bool atmel_sha_authenc_is_ready(void)
2152 {
2153         struct atmel_sha_ctx dummy;
2154
2155         dummy.dd = NULL;
2156         return (atmel_sha_find_dev(&dummy) != NULL);
2157 }
2158 EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2159
2160 unsigned int atmel_sha_authenc_get_reqsize(void)
2161 {
2162         return sizeof(struct atmel_sha_authenc_reqctx);
2163 }
2164 EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2165
2166 struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2167 {
2168         struct atmel_sha_authenc_ctx *auth;
2169         struct crypto_ahash *tfm;
2170         struct atmel_sha_ctx *tctx;
2171         const char *name;
2172         int err = -EINVAL;
2173
2174         switch (mode & SHA_FLAGS_MODE_MASK) {
2175         case SHA_FLAGS_HMAC_SHA1:
2176                 name = "atmel-hmac-sha1";
2177                 break;
2178
2179         case SHA_FLAGS_HMAC_SHA224:
2180                 name = "atmel-hmac-sha224";
2181                 break;
2182
2183         case SHA_FLAGS_HMAC_SHA256:
2184                 name = "atmel-hmac-sha256";
2185                 break;
2186
2187         case SHA_FLAGS_HMAC_SHA384:
2188                 name = "atmel-hmac-sha384";
2189                 break;
2190
2191         case SHA_FLAGS_HMAC_SHA512:
2192                 name = "atmel-hmac-sha512";
2193                 break;
2194
2195         default:
2196                 goto error;
2197         }
2198
2199         tfm = crypto_alloc_ahash(name, 0, 0);
2200         if (IS_ERR(tfm)) {
2201                 err = PTR_ERR(tfm);
2202                 goto error;
2203         }
2204         tctx = crypto_ahash_ctx(tfm);
2205         tctx->start = atmel_sha_authenc_start;
2206         tctx->flags = mode;
2207
2208         auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2209         if (!auth) {
2210                 err = -ENOMEM;
2211                 goto err_free_ahash;
2212         }
2213         auth->tfm = tfm;
2214
2215         return auth;
2216
2217 err_free_ahash:
2218         crypto_free_ahash(tfm);
2219 error:
2220         return ERR_PTR(err);
2221 }
2222 EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2223
2224 void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2225 {
2226         if (auth)
2227                 crypto_free_ahash(auth->tfm);
2228         kfree(auth);
2229 }
2230 EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2231
2232 int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2233                              const u8 *key, unsigned int keylen, u32 flags)
2234 {
2235         struct crypto_ahash *tfm = auth->tfm;
2236
2237         crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2238         crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
2239         return crypto_ahash_setkey(tfm, key, keylen);
2240 }
2241 EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2242
2243 int atmel_sha_authenc_schedule(struct ahash_request *req,
2244                                struct atmel_sha_authenc_ctx *auth,
2245                                atmel_aes_authenc_fn_t cb,
2246                                struct atmel_aes_dev *aes_dev)
2247 {
2248         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2249         struct atmel_sha_reqctx *ctx = &authctx->base;
2250         struct crypto_ahash *tfm = auth->tfm;
2251         struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2252         struct atmel_sha_dev *dd;
2253
2254         /* Reset request context (MUST be done first). */
2255         memset(authctx, 0, sizeof(*authctx));
2256
2257         /* Get SHA device. */
2258         dd = atmel_sha_find_dev(tctx);
2259         if (!dd)
2260                 return cb(aes_dev, -ENODEV, false);
2261
2262         /* Init request context. */
2263         ctx->dd = dd;
2264         ctx->buflen = SHA_BUFFER_LEN;
2265         authctx->cb = cb;
2266         authctx->aes_dev = aes_dev;
2267         ahash_request_set_tfm(req, tfm);
2268         ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2269
2270         return atmel_sha_handle_queue(dd, req);
2271 }
2272 EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2273
2274 int atmel_sha_authenc_init(struct ahash_request *req,
2275                            struct scatterlist *assoc, unsigned int assoclen,
2276                            unsigned int textlen,
2277                            atmel_aes_authenc_fn_t cb,
2278                            struct atmel_aes_dev *aes_dev)
2279 {
2280         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2281         struct atmel_sha_reqctx *ctx = &authctx->base;
2282         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2283         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2284         struct atmel_sha_dev *dd = ctx->dd;
2285
2286         if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2287                 return atmel_sha_complete(dd, -EINVAL);
2288
2289         authctx->cb = cb;
2290         authctx->aes_dev = aes_dev;
2291         authctx->assoc = assoc;
2292         authctx->assoclen = assoclen;
2293         authctx->textlen = textlen;
2294
2295         ctx->flags = hmac->base.flags;
2296         return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2297 }
2298 EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2299
2300 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2301 {
2302         struct ahash_request *req = dd->req;
2303         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2304         struct atmel_sha_reqctx *ctx = &authctx->base;
2305         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2306         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2307         size_t hs = ctx->hash_size;
2308         size_t i, num_words = hs / sizeof(u32);
2309         u32 mr, msg_size;
2310
2311         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2312         for (i = 0; i < num_words; ++i)
2313                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2314
2315         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2316         for (i = 0; i < num_words; ++i)
2317                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2318
2319         mr = (SHA_MR_MODE_IDATAR0 |
2320               SHA_MR_HMAC |
2321               SHA_MR_DUALBUFF);
2322         mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2323         atmel_sha_write(dd, SHA_MR, mr);
2324
2325         msg_size = authctx->assoclen + authctx->textlen;
2326         atmel_sha_write(dd, SHA_MSR, msg_size);
2327         atmel_sha_write(dd, SHA_BCR, msg_size);
2328
2329         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2330
2331         /* Process assoc data. */
2332         return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2333                                    true, false,
2334                                    atmel_sha_authenc_init_done);
2335 }
2336
2337 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2338 {
2339         struct ahash_request *req = dd->req;
2340         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2341
2342         return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2343 }
2344
2345 int atmel_sha_authenc_final(struct ahash_request *req,
2346                             u32 *digest, unsigned int digestlen,
2347                             atmel_aes_authenc_fn_t cb,
2348                             struct atmel_aes_dev *aes_dev)
2349 {
2350         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2351         struct atmel_sha_reqctx *ctx = &authctx->base;
2352         struct atmel_sha_dev *dd = ctx->dd;
2353
2354         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2355         case SHA_FLAGS_SHA1:
2356                 authctx->digestlen = SHA1_DIGEST_SIZE;
2357                 break;
2358
2359         case SHA_FLAGS_SHA224:
2360                 authctx->digestlen = SHA224_DIGEST_SIZE;
2361                 break;
2362
2363         case SHA_FLAGS_SHA256:
2364                 authctx->digestlen = SHA256_DIGEST_SIZE;
2365                 break;
2366
2367         case SHA_FLAGS_SHA384:
2368                 authctx->digestlen = SHA384_DIGEST_SIZE;
2369                 break;
2370
2371         case SHA_FLAGS_SHA512:
2372                 authctx->digestlen = SHA512_DIGEST_SIZE;
2373                 break;
2374
2375         default:
2376                 return atmel_sha_complete(dd, -EINVAL);
2377         }
2378         if (authctx->digestlen > digestlen)
2379                 authctx->digestlen = digestlen;
2380
2381         authctx->cb = cb;
2382         authctx->aes_dev = aes_dev;
2383         authctx->digest = digest;
2384         return atmel_sha_wait_for_data_ready(dd,
2385                                              atmel_sha_authenc_final_done);
2386 }
2387 EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2388
2389 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2390 {
2391         struct ahash_request *req = dd->req;
2392         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2393         size_t i, num_words = authctx->digestlen / sizeof(u32);
2394
2395         for (i = 0; i < num_words; ++i)
2396                 authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2397
2398         return atmel_sha_complete(dd, 0);
2399 }
2400
2401 void atmel_sha_authenc_abort(struct ahash_request *req)
2402 {
2403         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2404         struct atmel_sha_reqctx *ctx = &authctx->base;
2405         struct atmel_sha_dev *dd = ctx->dd;
2406
2407         /* Prevent atmel_sha_complete() from calling req->base.complete(). */
2408         dd->is_async = false;
2409         dd->force_complete = false;
2410         (void)atmel_sha_complete(dd, 0);
2411 }
2412 EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2413
2414 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2415
2416
2417 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2418 {
2419         int i;
2420
2421         if (dd->caps.has_hmac)
2422                 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2423                         crypto_unregister_ahash(&sha_hmac_algs[i]);
2424
2425         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2426                 crypto_unregister_ahash(&sha_1_256_algs[i]);
2427
2428         if (dd->caps.has_sha224)
2429                 crypto_unregister_ahash(&sha_224_alg);
2430
2431         if (dd->caps.has_sha_384_512) {
2432                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2433                         crypto_unregister_ahash(&sha_384_512_algs[i]);
2434         }
2435 }
2436
2437 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2438 {
2439         int err, i, j;
2440
2441         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2442                 atmel_sha_alg_init(&sha_1_256_algs[i]);
2443
2444                 err = crypto_register_ahash(&sha_1_256_algs[i]);
2445                 if (err)
2446                         goto err_sha_1_256_algs;
2447         }
2448
2449         if (dd->caps.has_sha224) {
2450                 atmel_sha_alg_init(&sha_224_alg);
2451
2452                 err = crypto_register_ahash(&sha_224_alg);
2453                 if (err)
2454                         goto err_sha_224_algs;
2455         }
2456
2457         if (dd->caps.has_sha_384_512) {
2458                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2459                         atmel_sha_alg_init(&sha_384_512_algs[i]);
2460
2461                         err = crypto_register_ahash(&sha_384_512_algs[i]);
2462                         if (err)
2463                                 goto err_sha_384_512_algs;
2464                 }
2465         }
2466
2467         if (dd->caps.has_hmac) {
2468                 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2469                         atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
2470
2471                         err = crypto_register_ahash(&sha_hmac_algs[i]);
2472                         if (err)
2473                                 goto err_sha_hmac_algs;
2474                 }
2475         }
2476
2477         return 0;
2478
2479         /*i = ARRAY_SIZE(sha_hmac_algs);*/
2480 err_sha_hmac_algs:
2481         for (j = 0; j < i; j++)
2482                 crypto_unregister_ahash(&sha_hmac_algs[j]);
2483         i = ARRAY_SIZE(sha_384_512_algs);
2484 err_sha_384_512_algs:
2485         for (j = 0; j < i; j++)
2486                 crypto_unregister_ahash(&sha_384_512_algs[j]);
2487         crypto_unregister_ahash(&sha_224_alg);
2488 err_sha_224_algs:
2489         i = ARRAY_SIZE(sha_1_256_algs);
2490 err_sha_1_256_algs:
2491         for (j = 0; j < i; j++)
2492                 crypto_unregister_ahash(&sha_1_256_algs[j]);
2493
2494         return err;
2495 }
2496
2497 static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
2498 {
2499         dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
2500         if (IS_ERR(dd->dma_lch_in.chan)) {
2501                 return dev_err_probe(dd->dev, PTR_ERR(dd->dma_lch_in.chan),
2502                         "DMA channel is not available\n");
2503         }
2504
2505         dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2506                 SHA_REG_DIN(0);
2507         dd->dma_lch_in.dma_conf.src_maxburst = 1;
2508         dd->dma_lch_in.dma_conf.src_addr_width =
2509                 DMA_SLAVE_BUSWIDTH_4_BYTES;
2510         dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2511         dd->dma_lch_in.dma_conf.dst_addr_width =
2512                 DMA_SLAVE_BUSWIDTH_4_BYTES;
2513         dd->dma_lch_in.dma_conf.device_fc = false;
2514
2515         return 0;
2516 }
2517
2518 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2519 {
2520         dma_release_channel(dd->dma_lch_in.chan);
2521 }
2522
2523 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2524 {
2525
2526         dd->caps.has_dma = 0;
2527         dd->caps.has_dualbuff = 0;
2528         dd->caps.has_sha224 = 0;
2529         dd->caps.has_sha_384_512 = 0;
2530         dd->caps.has_uihv = 0;
2531         dd->caps.has_hmac = 0;
2532
2533         /* keep only major version number */
2534         switch (dd->hw_version & 0xff0) {
2535         case 0x700:
2536         case 0x600:
2537         case 0x510:
2538                 dd->caps.has_dma = 1;
2539                 dd->caps.has_dualbuff = 1;
2540                 dd->caps.has_sha224 = 1;
2541                 dd->caps.has_sha_384_512 = 1;
2542                 dd->caps.has_uihv = 1;
2543                 dd->caps.has_hmac = 1;
2544                 break;
2545         case 0x420:
2546                 dd->caps.has_dma = 1;
2547                 dd->caps.has_dualbuff = 1;
2548                 dd->caps.has_sha224 = 1;
2549                 dd->caps.has_sha_384_512 = 1;
2550                 dd->caps.has_uihv = 1;
2551                 break;
2552         case 0x410:
2553                 dd->caps.has_dma = 1;
2554                 dd->caps.has_dualbuff = 1;
2555                 dd->caps.has_sha224 = 1;
2556                 dd->caps.has_sha_384_512 = 1;
2557                 break;
2558         case 0x400:
2559                 dd->caps.has_dma = 1;
2560                 dd->caps.has_dualbuff = 1;
2561                 dd->caps.has_sha224 = 1;
2562                 break;
2563         case 0x320:
2564                 break;
2565         default:
2566                 dev_warn(dd->dev,
2567                                 "Unmanaged sha version, set minimum capabilities\n");
2568                 break;
2569         }
2570 }
2571
2572 static const struct of_device_id atmel_sha_dt_ids[] = {
2573         { .compatible = "atmel,at91sam9g46-sha" },
2574         { /* sentinel */ }
2575 };
2576
2577 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2578
2579 static int atmel_sha_probe(struct platform_device *pdev)
2580 {
2581         struct atmel_sha_dev *sha_dd;
2582         struct device *dev = &pdev->dev;
2583         struct resource *sha_res;
2584         int err;
2585
2586         sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2587         if (!sha_dd)
2588                 return -ENOMEM;
2589
2590         sha_dd->dev = dev;
2591
2592         platform_set_drvdata(pdev, sha_dd);
2593
2594         INIT_LIST_HEAD(&sha_dd->list);
2595         spin_lock_init(&sha_dd->lock);
2596
2597         tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2598                                         (unsigned long)sha_dd);
2599         tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2600                                         (unsigned long)sha_dd);
2601
2602         crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2603
2604         sha_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &sha_res);
2605         if (IS_ERR(sha_dd->io_base)) {
2606                 err = PTR_ERR(sha_dd->io_base);
2607                 goto err_tasklet_kill;
2608         }
2609         sha_dd->phys_base = sha_res->start;
2610
2611         /* Get the IRQ */
2612         sha_dd->irq = platform_get_irq(pdev,  0);
2613         if (sha_dd->irq < 0) {
2614                 err = sha_dd->irq;
2615                 goto err_tasklet_kill;
2616         }
2617
2618         err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2619                                IRQF_SHARED, "atmel-sha", sha_dd);
2620         if (err) {
2621                 dev_err(dev, "unable to request sha irq.\n");
2622                 goto err_tasklet_kill;
2623         }
2624
2625         /* Initializing the clock */
2626         sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2627         if (IS_ERR(sha_dd->iclk)) {
2628                 dev_err(dev, "clock initialization failed.\n");
2629                 err = PTR_ERR(sha_dd->iclk);
2630                 goto err_tasklet_kill;
2631         }
2632
2633         err = clk_prepare(sha_dd->iclk);
2634         if (err)
2635                 goto err_tasklet_kill;
2636
2637         err = atmel_sha_hw_version_init(sha_dd);
2638         if (err)
2639                 goto err_iclk_unprepare;
2640
2641         atmel_sha_get_cap(sha_dd);
2642
2643         if (sha_dd->caps.has_dma) {
2644                 err = atmel_sha_dma_init(sha_dd);
2645                 if (err)
2646                         goto err_iclk_unprepare;
2647
2648                 dev_info(dev, "using %s for DMA transfers\n",
2649                                 dma_chan_name(sha_dd->dma_lch_in.chan));
2650         }
2651
2652         spin_lock(&atmel_sha.lock);
2653         list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2654         spin_unlock(&atmel_sha.lock);
2655
2656         err = atmel_sha_register_algs(sha_dd);
2657         if (err)
2658                 goto err_algs;
2659
2660         dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2661                         sha_dd->caps.has_sha224 ? "/SHA224" : "",
2662                         sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2663
2664         return 0;
2665
2666 err_algs:
2667         spin_lock(&atmel_sha.lock);
2668         list_del(&sha_dd->list);
2669         spin_unlock(&atmel_sha.lock);
2670         if (sha_dd->caps.has_dma)
2671                 atmel_sha_dma_cleanup(sha_dd);
2672 err_iclk_unprepare:
2673         clk_unprepare(sha_dd->iclk);
2674 err_tasklet_kill:
2675         tasklet_kill(&sha_dd->queue_task);
2676         tasklet_kill(&sha_dd->done_task);
2677
2678         return err;
2679 }
2680
2681 static void atmel_sha_remove(struct platform_device *pdev)
2682 {
2683         struct atmel_sha_dev *sha_dd = platform_get_drvdata(pdev);
2684
2685         spin_lock(&atmel_sha.lock);
2686         list_del(&sha_dd->list);
2687         spin_unlock(&atmel_sha.lock);
2688
2689         atmel_sha_unregister_algs(sha_dd);
2690
2691         tasklet_kill(&sha_dd->queue_task);
2692         tasklet_kill(&sha_dd->done_task);
2693
2694         if (sha_dd->caps.has_dma)
2695                 atmel_sha_dma_cleanup(sha_dd);
2696
2697         clk_unprepare(sha_dd->iclk);
2698 }
2699
2700 static struct platform_driver atmel_sha_driver = {
2701         .probe          = atmel_sha_probe,
2702         .remove_new     = atmel_sha_remove,
2703         .driver         = {
2704                 .name   = "atmel_sha",
2705                 .of_match_table = atmel_sha_dt_ids,
2706         },
2707 };
2708
2709 module_platform_driver(atmel_sha_driver);
2710
2711 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2712 MODULE_LICENSE("GPL v2");
2713 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");