GNU Linux-libre 6.7.9-gnu
[releases.git] / drivers / crypto / amcc / crypto4xx_core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * AMCC SoC PPC4xx Crypto Driver
4  *
5  * Copyright (c) 2008 Applied Micro Circuits Corporation.
6  * All rights reserved. James Hsiao <jhsiao@amcc.com>
7  *
8  * This file implements AMCC crypto offload Linux device driver for use with
9  * Linux CryptoAPI.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/spinlock_types.h>
15 #include <linux/random.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/platform_device.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_platform.h>
25 #include <linux/slab.h>
26 #include <asm/dcr.h>
27 #include <asm/dcr-regs.h>
28 #include <asm/cacheflush.h>
29 #include <crypto/aead.h>
30 #include <crypto/aes.h>
31 #include <crypto/ctr.h>
32 #include <crypto/gcm.h>
33 #include <crypto/sha1.h>
34 #include <crypto/rng.h>
35 #include <crypto/scatterwalk.h>
36 #include <crypto/skcipher.h>
37 #include <crypto/internal/aead.h>
38 #include <crypto/internal/rng.h>
39 #include <crypto/internal/skcipher.h>
40 #include "crypto4xx_reg_def.h"
41 #include "crypto4xx_core.h"
42 #include "crypto4xx_sa.h"
43 #include "crypto4xx_trng.h"
44
45 #define PPC4XX_SEC_VERSION_STR                  "0.5"
46
47 /*
48  * PPC4xx Crypto Engine Initialization Routine
49  */
50 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
51 {
52         union ce_ring_size ring_size;
53         union ce_ring_control ring_ctrl;
54         union ce_part_ring_size part_ring_size;
55         union ce_io_threshold io_threshold;
56         u32 rand_num;
57         union ce_pe_dma_cfg pe_dma_cfg;
58         u32 device_ctrl;
59
60         writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
61         /* setup pe dma, include reset sg, pdr and pe, then release reset */
62         pe_dma_cfg.w = 0;
63         pe_dma_cfg.bf.bo_sgpd_en = 1;
64         pe_dma_cfg.bf.bo_data_en = 0;
65         pe_dma_cfg.bf.bo_sa_en = 1;
66         pe_dma_cfg.bf.bo_pd_en = 1;
67         pe_dma_cfg.bf.dynamic_sa_en = 1;
68         pe_dma_cfg.bf.reset_sg = 1;
69         pe_dma_cfg.bf.reset_pdr = 1;
70         pe_dma_cfg.bf.reset_pe = 1;
71         writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
72         /* un reset pe,sg and pdr */
73         pe_dma_cfg.bf.pe_mode = 0;
74         pe_dma_cfg.bf.reset_sg = 0;
75         pe_dma_cfg.bf.reset_pdr = 0;
76         pe_dma_cfg.bf.reset_pe = 0;
77         pe_dma_cfg.bf.bo_td_en = 0;
78         writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79         writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
80         writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
81         writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
82         get_random_bytes(&rand_num, sizeof(rand_num));
83         writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
84         get_random_bytes(&rand_num, sizeof(rand_num));
85         writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
86         ring_size.w = 0;
87         ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
88         ring_size.bf.ring_size   = PPC4XX_NUM_PD;
89         writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
90         ring_ctrl.w = 0;
91         writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
92         device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
93         device_ctrl |= PPC4XX_DC_3DES_EN;
94         writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
95         writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
96         writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
97         part_ring_size.w = 0;
98         part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
99         part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
100         writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
101         writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
102         io_threshold.w = 0;
103         io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
104         io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
105         writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
106         writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
107         writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
108         writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
109         writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
110         writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
111         writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
112         writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
113         /* un reset pe,sg and pdr */
114         pe_dma_cfg.bf.pe_mode = 1;
115         pe_dma_cfg.bf.reset_sg = 0;
116         pe_dma_cfg.bf.reset_pdr = 0;
117         pe_dma_cfg.bf.reset_pe = 0;
118         pe_dma_cfg.bf.bo_td_en = 0;
119         writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
120         /*clear all pending interrupt*/
121         writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
122         writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123         writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
124         writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
125         if (dev->is_revb) {
126                 writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
127                        dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
128                 writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
129                        dev->ce_base + CRYPTO4XX_INT_EN);
130         } else {
131                 writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
132         }
133 }
134
135 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
136 {
137         ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
138         if (ctx->sa_in == NULL)
139                 return -ENOMEM;
140
141         ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
142         if (ctx->sa_out == NULL) {
143                 kfree(ctx->sa_in);
144                 ctx->sa_in = NULL;
145                 return -ENOMEM;
146         }
147
148         ctx->sa_len = size;
149
150         return 0;
151 }
152
153 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
154 {
155         kfree(ctx->sa_in);
156         ctx->sa_in = NULL;
157         kfree(ctx->sa_out);
158         ctx->sa_out = NULL;
159         ctx->sa_len = 0;
160 }
161
162 /*
163  * alloc memory for the gather ring
164  * no need to alloc buf for the ring
165  * gdr_tail, gdr_head and gdr_count are initialized by this function
166  */
167 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
168 {
169         int i;
170         dev->pdr = dma_alloc_coherent(dev->core_dev->device,
171                                       sizeof(struct ce_pd) * PPC4XX_NUM_PD,
172                                       &dev->pdr_pa, GFP_KERNEL);
173         if (!dev->pdr)
174                 return -ENOMEM;
175
176         dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
177                                  GFP_KERNEL);
178         if (!dev->pdr_uinfo) {
179                 dma_free_coherent(dev->core_dev->device,
180                                   sizeof(struct ce_pd) * PPC4XX_NUM_PD,
181                                   dev->pdr,
182                                   dev->pdr_pa);
183                 return -ENOMEM;
184         }
185         dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
186                                    sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
187                                    &dev->shadow_sa_pool_pa,
188                                    GFP_KERNEL);
189         if (!dev->shadow_sa_pool)
190                 return -ENOMEM;
191
192         dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
193                          sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
194                          &dev->shadow_sr_pool_pa, GFP_KERNEL);
195         if (!dev->shadow_sr_pool)
196                 return -ENOMEM;
197         for (i = 0; i < PPC4XX_NUM_PD; i++) {
198                 struct ce_pd *pd = &dev->pdr[i];
199                 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
200
201                 pd->sa = dev->shadow_sa_pool_pa +
202                         sizeof(union shadow_sa_buf) * i;
203
204                 /* alloc 256 bytes which is enough for any kind of dynamic sa */
205                 pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
206
207                 /* alloc state record */
208                 pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
209                 pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
210                     sizeof(struct sa_state_record) * i;
211         }
212
213         return 0;
214 }
215
216 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
217 {
218         if (dev->pdr)
219                 dma_free_coherent(dev->core_dev->device,
220                                   sizeof(struct ce_pd) * PPC4XX_NUM_PD,
221                                   dev->pdr, dev->pdr_pa);
222
223         if (dev->shadow_sa_pool)
224                 dma_free_coherent(dev->core_dev->device,
225                         sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
226                         dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
227
228         if (dev->shadow_sr_pool)
229                 dma_free_coherent(dev->core_dev->device,
230                         sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
231                         dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
232
233         kfree(dev->pdr_uinfo);
234 }
235
236 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
237 {
238         u32 retval;
239         u32 tmp;
240
241         retval = dev->pdr_head;
242         tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
243
244         if (tmp == dev->pdr_tail)
245                 return ERING_WAS_FULL;
246
247         dev->pdr_head = tmp;
248
249         return retval;
250 }
251
252 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
253 {
254         struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
255         u32 tail;
256         unsigned long flags;
257
258         spin_lock_irqsave(&dev->core_dev->lock, flags);
259         pd_uinfo->state = PD_ENTRY_FREE;
260
261         if (dev->pdr_tail != PPC4XX_LAST_PD)
262                 dev->pdr_tail++;
263         else
264                 dev->pdr_tail = 0;
265         tail = dev->pdr_tail;
266         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
267
268         return tail;
269 }
270
271 /*
272  * alloc memory for the gather ring
273  * no need to alloc buf for the ring
274  * gdr_tail, gdr_head and gdr_count are initialized by this function
275  */
276 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
277 {
278         dev->gdr = dma_alloc_coherent(dev->core_dev->device,
279                                       sizeof(struct ce_gd) * PPC4XX_NUM_GD,
280                                       &dev->gdr_pa, GFP_KERNEL);
281         if (!dev->gdr)
282                 return -ENOMEM;
283
284         return 0;
285 }
286
287 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
288 {
289         if (dev->gdr)
290                 dma_free_coherent(dev->core_dev->device,
291                           sizeof(struct ce_gd) * PPC4XX_NUM_GD,
292                           dev->gdr, dev->gdr_pa);
293 }
294
295 /*
296  * when this function is called.
297  * preemption or interrupt must be disabled
298  */
299 static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
300 {
301         u32 retval;
302         u32 tmp;
303
304         if (n >= PPC4XX_NUM_GD)
305                 return ERING_WAS_FULL;
306
307         retval = dev->gdr_head;
308         tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
309         if (dev->gdr_head > dev->gdr_tail) {
310                 if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
311                         return ERING_WAS_FULL;
312         } else if (dev->gdr_head < dev->gdr_tail) {
313                 if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
314                         return ERING_WAS_FULL;
315         }
316         dev->gdr_head = tmp;
317
318         return retval;
319 }
320
321 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
322 {
323         unsigned long flags;
324
325         spin_lock_irqsave(&dev->core_dev->lock, flags);
326         if (dev->gdr_tail == dev->gdr_head) {
327                 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
328                 return 0;
329         }
330
331         if (dev->gdr_tail != PPC4XX_LAST_GD)
332                 dev->gdr_tail++;
333         else
334                 dev->gdr_tail = 0;
335
336         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
337
338         return 0;
339 }
340
341 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
342                                               dma_addr_t *gd_dma, u32 idx)
343 {
344         *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
345
346         return &dev->gdr[idx];
347 }
348
349 /*
350  * alloc memory for the scatter ring
351  * need to alloc buf for the ring
352  * sdr_tail, sdr_head and sdr_count are initialized by this function
353  */
354 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
355 {
356         int i;
357
358         dev->scatter_buffer_va =
359                 dma_alloc_coherent(dev->core_dev->device,
360                         PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
361                         &dev->scatter_buffer_pa, GFP_KERNEL);
362         if (!dev->scatter_buffer_va)
363                 return -ENOMEM;
364
365         /* alloc memory for scatter descriptor ring */
366         dev->sdr = dma_alloc_coherent(dev->core_dev->device,
367                                       sizeof(struct ce_sd) * PPC4XX_NUM_SD,
368                                       &dev->sdr_pa, GFP_KERNEL);
369         if (!dev->sdr)
370                 return -ENOMEM;
371
372         for (i = 0; i < PPC4XX_NUM_SD; i++) {
373                 dev->sdr[i].ptr = dev->scatter_buffer_pa +
374                                   PPC4XX_SD_BUFFER_SIZE * i;
375         }
376
377         return 0;
378 }
379
380 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
381 {
382         if (dev->sdr)
383                 dma_free_coherent(dev->core_dev->device,
384                                   sizeof(struct ce_sd) * PPC4XX_NUM_SD,
385                                   dev->sdr, dev->sdr_pa);
386
387         if (dev->scatter_buffer_va)
388                 dma_free_coherent(dev->core_dev->device,
389                                   PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
390                                   dev->scatter_buffer_va,
391                                   dev->scatter_buffer_pa);
392 }
393
394 /*
395  * when this function is called.
396  * preemption or interrupt must be disabled
397  */
398 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
399 {
400         u32 retval;
401         u32 tmp;
402
403         if (n >= PPC4XX_NUM_SD)
404                 return ERING_WAS_FULL;
405
406         retval = dev->sdr_head;
407         tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
408         if (dev->sdr_head > dev->gdr_tail) {
409                 if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
410                         return ERING_WAS_FULL;
411         } else if (dev->sdr_head < dev->sdr_tail) {
412                 if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
413                         return ERING_WAS_FULL;
414         } /* the head = tail, or empty case is already take cared */
415         dev->sdr_head = tmp;
416
417         return retval;
418 }
419
420 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
421 {
422         unsigned long flags;
423
424         spin_lock_irqsave(&dev->core_dev->lock, flags);
425         if (dev->sdr_tail == dev->sdr_head) {
426                 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
427                 return 0;
428         }
429         if (dev->sdr_tail != PPC4XX_LAST_SD)
430                 dev->sdr_tail++;
431         else
432                 dev->sdr_tail = 0;
433         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
434
435         return 0;
436 }
437
438 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
439                                               dma_addr_t *sd_dma, u32 idx)
440 {
441         *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
442
443         return &dev->sdr[idx];
444 }
445
446 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
447                                       struct ce_pd *pd,
448                                       struct pd_uinfo *pd_uinfo,
449                                       u32 nbytes,
450                                       struct scatterlist *dst)
451 {
452         unsigned int first_sd = pd_uinfo->first_sd;
453         unsigned int last_sd;
454         unsigned int overflow = 0;
455         unsigned int to_copy;
456         unsigned int dst_start = 0;
457
458         /*
459          * Because the scatter buffers are all neatly organized in one
460          * big continuous ringbuffer; scatterwalk_map_and_copy() can
461          * be instructed to copy a range of buffers in one go.
462          */
463
464         last_sd = (first_sd + pd_uinfo->num_sd);
465         if (last_sd > PPC4XX_LAST_SD) {
466                 last_sd = PPC4XX_LAST_SD;
467                 overflow = last_sd % PPC4XX_NUM_SD;
468         }
469
470         while (nbytes) {
471                 void *buf = dev->scatter_buffer_va +
472                         first_sd * PPC4XX_SD_BUFFER_SIZE;
473
474                 to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
475                                       (1 + last_sd - first_sd));
476                 scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
477                 nbytes -= to_copy;
478
479                 if (overflow) {
480                         first_sd = 0;
481                         last_sd = overflow;
482                         dst_start += to_copy;
483                         overflow = 0;
484                 }
485         }
486 }
487
488 static void crypto4xx_copy_digest_to_dst(void *dst,
489                                         struct pd_uinfo *pd_uinfo,
490                                         struct crypto4xx_ctx *ctx)
491 {
492         struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
493
494         if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
495                 memcpy(dst, pd_uinfo->sr_va->save_digest,
496                        SA_HASH_ALG_SHA1_DIGEST_SIZE);
497         }
498 }
499
500 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
501                                   struct pd_uinfo *pd_uinfo)
502 {
503         int i;
504         if (pd_uinfo->num_gd) {
505                 for (i = 0; i < pd_uinfo->num_gd; i++)
506                         crypto4xx_put_gd_to_gdr(dev);
507                 pd_uinfo->first_gd = 0xffffffff;
508                 pd_uinfo->num_gd = 0;
509         }
510         if (pd_uinfo->num_sd) {
511                 for (i = 0; i < pd_uinfo->num_sd; i++)
512                         crypto4xx_put_sd_to_sdr(dev);
513
514                 pd_uinfo->first_sd = 0xffffffff;
515                 pd_uinfo->num_sd = 0;
516         }
517 }
518
519 static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
520                                      struct pd_uinfo *pd_uinfo,
521                                      struct ce_pd *pd)
522 {
523         struct skcipher_request *req;
524         struct scatterlist *dst;
525
526         req = skcipher_request_cast(pd_uinfo->async_req);
527
528         if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
529                 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
530                                           req->cryptlen, req->dst);
531         } else {
532                 dst = pd_uinfo->dest_va;
533                 dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
534                                DMA_FROM_DEVICE);
535         }
536
537         if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
538                 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
539
540                 crypto4xx_memcpy_from_le32((u32 *)req->iv,
541                         pd_uinfo->sr_va->save_iv,
542                         crypto_skcipher_ivsize(skcipher));
543         }
544
545         crypto4xx_ret_sg_desc(dev, pd_uinfo);
546
547         if (pd_uinfo->state & PD_ENTRY_BUSY)
548                 skcipher_request_complete(req, -EINPROGRESS);
549         skcipher_request_complete(req, 0);
550 }
551
552 static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
553                                 struct pd_uinfo *pd_uinfo)
554 {
555         struct crypto4xx_ctx *ctx;
556         struct ahash_request *ahash_req;
557
558         ahash_req = ahash_request_cast(pd_uinfo->async_req);
559         ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(ahash_req));
560
561         crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo, ctx);
562         crypto4xx_ret_sg_desc(dev, pd_uinfo);
563
564         if (pd_uinfo->state & PD_ENTRY_BUSY)
565                 ahash_request_complete(ahash_req, -EINPROGRESS);
566         ahash_request_complete(ahash_req, 0);
567 }
568
569 static void crypto4xx_aead_done(struct crypto4xx_device *dev,
570                                 struct pd_uinfo *pd_uinfo,
571                                 struct ce_pd *pd)
572 {
573         struct aead_request *aead_req = container_of(pd_uinfo->async_req,
574                 struct aead_request, base);
575         struct scatterlist *dst = pd_uinfo->dest_va;
576         size_t cp_len = crypto_aead_authsize(
577                 crypto_aead_reqtfm(aead_req));
578         u32 icv[AES_BLOCK_SIZE];
579         int err = 0;
580
581         if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
582                 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
583                                           pd->pd_ctl_len.bf.pkt_len,
584                                           dst);
585         } else {
586                 dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
587                                 DMA_FROM_DEVICE);
588         }
589
590         if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
591                 /* append icv at the end */
592                 crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
593                                            sizeof(icv));
594
595                 scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
596                                          cp_len, 1);
597         } else {
598                 /* check icv at the end */
599                 scatterwalk_map_and_copy(icv, aead_req->src,
600                         aead_req->assoclen + aead_req->cryptlen -
601                         cp_len, cp_len, 0);
602
603                 crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
604
605                 if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
606                         err = -EBADMSG;
607         }
608
609         crypto4xx_ret_sg_desc(dev, pd_uinfo);
610
611         if (pd->pd_ctl.bf.status & 0xff) {
612                 if (!__ratelimit(&dev->aead_ratelimit)) {
613                         if (pd->pd_ctl.bf.status & 2)
614                                 pr_err("pad fail error\n");
615                         if (pd->pd_ctl.bf.status & 4)
616                                 pr_err("seqnum fail\n");
617                         if (pd->pd_ctl.bf.status & 8)
618                                 pr_err("error _notify\n");
619                         pr_err("aead return err status = 0x%02x\n",
620                                 pd->pd_ctl.bf.status & 0xff);
621                         pr_err("pd pad_ctl = 0x%08x\n",
622                                 pd->pd_ctl.bf.pd_pad_ctl);
623                 }
624                 err = -EINVAL;
625         }
626
627         if (pd_uinfo->state & PD_ENTRY_BUSY)
628                 aead_request_complete(aead_req, -EINPROGRESS);
629
630         aead_request_complete(aead_req, err);
631 }
632
633 static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
634 {
635         struct ce_pd *pd = &dev->pdr[idx];
636         struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
637
638         switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
639         case CRYPTO_ALG_TYPE_SKCIPHER:
640                 crypto4xx_cipher_done(dev, pd_uinfo, pd);
641                 break;
642         case CRYPTO_ALG_TYPE_AEAD:
643                 crypto4xx_aead_done(dev, pd_uinfo, pd);
644                 break;
645         case CRYPTO_ALG_TYPE_AHASH:
646                 crypto4xx_ahash_done(dev, pd_uinfo);
647                 break;
648         }
649 }
650
651 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
652 {
653         crypto4xx_destroy_pdr(core_dev->dev);
654         crypto4xx_destroy_gdr(core_dev->dev);
655         crypto4xx_destroy_sdr(core_dev->dev);
656         iounmap(core_dev->dev->ce_base);
657         kfree(core_dev->dev);
658         kfree(core_dev);
659 }
660
661 static u32 get_next_gd(u32 current)
662 {
663         if (current != PPC4XX_LAST_GD)
664                 return current + 1;
665         else
666                 return 0;
667 }
668
669 static u32 get_next_sd(u32 current)
670 {
671         if (current != PPC4XX_LAST_SD)
672                 return current + 1;
673         else
674                 return 0;
675 }
676
677 int crypto4xx_build_pd(struct crypto_async_request *req,
678                        struct crypto4xx_ctx *ctx,
679                        struct scatterlist *src,
680                        struct scatterlist *dst,
681                        const unsigned int datalen,
682                        const __le32 *iv, const u32 iv_len,
683                        const struct dynamic_sa_ctl *req_sa,
684                        const unsigned int sa_len,
685                        const unsigned int assoclen,
686                        struct scatterlist *_dst)
687 {
688         struct crypto4xx_device *dev = ctx->dev;
689         struct dynamic_sa_ctl *sa;
690         struct ce_gd *gd;
691         struct ce_pd *pd;
692         u32 num_gd, num_sd;
693         u32 fst_gd = 0xffffffff;
694         u32 fst_sd = 0xffffffff;
695         u32 pd_entry;
696         unsigned long flags;
697         struct pd_uinfo *pd_uinfo;
698         unsigned int nbytes = datalen;
699         size_t offset_to_sr_ptr;
700         u32 gd_idx = 0;
701         int tmp;
702         bool is_busy, force_sd;
703
704         /*
705          * There's a very subtile/disguised "bug" in the hardware that
706          * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
707          * of the hardware spec:
708          * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
709          * operation modes for >>> "Block ciphers" <<<.
710          *
711          * To workaround this issue and stop the hardware from causing
712          * "overran dst buffer" on crypttexts that are not a multiple
713          * of 16 (AES_BLOCK_SIZE), we force the driver to use the
714          * scatter buffers.
715          */
716         force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
717                 || req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
718                 && (datalen % AES_BLOCK_SIZE);
719
720         /* figure how many gd are needed */
721         tmp = sg_nents_for_len(src, assoclen + datalen);
722         if (tmp < 0) {
723                 dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
724                 return tmp;
725         }
726         if (tmp == 1)
727                 tmp = 0;
728         num_gd = tmp;
729
730         if (assoclen) {
731                 nbytes += assoclen;
732                 dst = scatterwalk_ffwd(_dst, dst, assoclen);
733         }
734
735         /* figure how many sd are needed */
736         if (sg_is_last(dst) && force_sd == false) {
737                 num_sd = 0;
738         } else {
739                 if (datalen > PPC4XX_SD_BUFFER_SIZE) {
740                         num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
741                         if (datalen % PPC4XX_SD_BUFFER_SIZE)
742                                 num_sd++;
743                 } else {
744                         num_sd = 1;
745                 }
746         }
747
748         /*
749          * The follow section of code needs to be protected
750          * The gather ring and scatter ring needs to be consecutive
751          * In case of run out of any kind of descriptor, the descriptor
752          * already got must be return the original place.
753          */
754         spin_lock_irqsave(&dev->core_dev->lock, flags);
755         /*
756          * Let the caller know to slow down, once more than 13/16ths = 81%
757          * of the available data contexts are being used simultaneously.
758          *
759          * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
760          * 31 more contexts. Before new requests have to be rejected.
761          */
762         if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
763                 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
764                         ((PPC4XX_NUM_PD * 13) / 16);
765         } else {
766                 /*
767                  * To fix contention issues between ipsec (no blacklog) and
768                  * dm-crypto (backlog) reserve 32 entries for "no backlog"
769                  * data contexts.
770                  */
771                 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
772                         ((PPC4XX_NUM_PD * 15) / 16);
773
774                 if (is_busy) {
775                         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
776                         return -EBUSY;
777                 }
778         }
779
780         if (num_gd) {
781                 fst_gd = crypto4xx_get_n_gd(dev, num_gd);
782                 if (fst_gd == ERING_WAS_FULL) {
783                         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
784                         return -EAGAIN;
785                 }
786         }
787         if (num_sd) {
788                 fst_sd = crypto4xx_get_n_sd(dev, num_sd);
789                 if (fst_sd == ERING_WAS_FULL) {
790                         if (num_gd)
791                                 dev->gdr_head = fst_gd;
792                         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
793                         return -EAGAIN;
794                 }
795         }
796         pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
797         if (pd_entry == ERING_WAS_FULL) {
798                 if (num_gd)
799                         dev->gdr_head = fst_gd;
800                 if (num_sd)
801                         dev->sdr_head = fst_sd;
802                 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
803                 return -EAGAIN;
804         }
805         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
806
807         pd = &dev->pdr[pd_entry];
808         pd->sa_len = sa_len;
809
810         pd_uinfo = &dev->pdr_uinfo[pd_entry];
811         pd_uinfo->num_gd = num_gd;
812         pd_uinfo->num_sd = num_sd;
813         pd_uinfo->dest_va = dst;
814         pd_uinfo->async_req = req;
815
816         if (iv_len)
817                 memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
818
819         sa = pd_uinfo->sa_va;
820         memcpy(sa, req_sa, sa_len * 4);
821
822         sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
823         offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
824         *(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
825
826         if (num_gd) {
827                 dma_addr_t gd_dma;
828                 struct scatterlist *sg;
829
830                 /* get first gd we are going to use */
831                 gd_idx = fst_gd;
832                 pd_uinfo->first_gd = fst_gd;
833                 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
834                 pd->src = gd_dma;
835                 /* enable gather */
836                 sa->sa_command_0.bf.gather = 1;
837                 /* walk the sg, and setup gather array */
838
839                 sg = src;
840                 while (nbytes) {
841                         size_t len;
842
843                         len = min(sg->length, nbytes);
844                         gd->ptr = dma_map_page(dev->core_dev->device,
845                                 sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
846                         gd->ctl_len.len = len;
847                         gd->ctl_len.done = 0;
848                         gd->ctl_len.ready = 1;
849                         if (len >= nbytes)
850                                 break;
851
852                         nbytes -= sg->length;
853                         gd_idx = get_next_gd(gd_idx);
854                         gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
855                         sg = sg_next(sg);
856                 }
857         } else {
858                 pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
859                                 src->offset, min(nbytes, src->length),
860                                 DMA_TO_DEVICE);
861                 /*
862                  * Disable gather in sa command
863                  */
864                 sa->sa_command_0.bf.gather = 0;
865                 /*
866                  * Indicate gather array is not used
867                  */
868                 pd_uinfo->first_gd = 0xffffffff;
869         }
870         if (!num_sd) {
871                 /*
872                  * we know application give us dst a whole piece of memory
873                  * no need to use scatter ring.
874                  */
875                 pd_uinfo->first_sd = 0xffffffff;
876                 sa->sa_command_0.bf.scatter = 0;
877                 pd->dest = (u32)dma_map_page(dev->core_dev->device,
878                                              sg_page(dst), dst->offset,
879                                              min(datalen, dst->length),
880                                              DMA_TO_DEVICE);
881         } else {
882                 dma_addr_t sd_dma;
883                 struct ce_sd *sd = NULL;
884
885                 u32 sd_idx = fst_sd;
886                 nbytes = datalen;
887                 sa->sa_command_0.bf.scatter = 1;
888                 pd_uinfo->first_sd = fst_sd;
889                 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
890                 pd->dest = sd_dma;
891                 /* setup scatter descriptor */
892                 sd->ctl.done = 0;
893                 sd->ctl.rdy = 1;
894                 /* sd->ptr should be setup by sd_init routine*/
895                 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
896                         nbytes -= PPC4XX_SD_BUFFER_SIZE;
897                 else
898                         nbytes = 0;
899                 while (nbytes) {
900                         sd_idx = get_next_sd(sd_idx);
901                         sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
902                         /* setup scatter descriptor */
903                         sd->ctl.done = 0;
904                         sd->ctl.rdy = 1;
905                         if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
906                                 nbytes -= PPC4XX_SD_BUFFER_SIZE;
907                         } else {
908                                 /*
909                                  * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
910                                  * which is more than nbytes, so done.
911                                  */
912                                 nbytes = 0;
913                         }
914                 }
915         }
916
917         pd->pd_ctl.w = PD_CTL_HOST_READY |
918                 ((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) ||
919                  (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
920                         PD_CTL_HASH_FINAL : 0);
921         pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
922         pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
923
924         wmb();
925         /* write any value to push engine to read a pd */
926         writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
927         writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
928         return is_busy ? -EBUSY : -EINPROGRESS;
929 }
930
931 /*
932  * Algorithm Registration Functions
933  */
934 static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
935                                struct crypto4xx_ctx *ctx)
936 {
937         ctx->dev = amcc_alg->dev;
938         ctx->sa_in = NULL;
939         ctx->sa_out = NULL;
940         ctx->sa_len = 0;
941 }
942
943 static int crypto4xx_sk_init(struct crypto_skcipher *sk)
944 {
945         struct skcipher_alg *alg = crypto_skcipher_alg(sk);
946         struct crypto4xx_alg *amcc_alg;
947         struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
948
949         if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
950                 ctx->sw_cipher.cipher =
951                         crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
952                                               CRYPTO_ALG_NEED_FALLBACK);
953                 if (IS_ERR(ctx->sw_cipher.cipher))
954                         return PTR_ERR(ctx->sw_cipher.cipher);
955         }
956
957         amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
958         crypto4xx_ctx_init(amcc_alg, ctx);
959         return 0;
960 }
961
962 static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
963 {
964         crypto4xx_free_sa(ctx);
965 }
966
967 static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
968 {
969         struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
970
971         crypto4xx_common_exit(ctx);
972         if (ctx->sw_cipher.cipher)
973                 crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
974 }
975
976 static int crypto4xx_aead_init(struct crypto_aead *tfm)
977 {
978         struct aead_alg *alg = crypto_aead_alg(tfm);
979         struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
980         struct crypto4xx_alg *amcc_alg;
981
982         ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
983                                                 CRYPTO_ALG_NEED_FALLBACK |
984                                                 CRYPTO_ALG_ASYNC);
985         if (IS_ERR(ctx->sw_cipher.aead))
986                 return PTR_ERR(ctx->sw_cipher.aead);
987
988         amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
989         crypto4xx_ctx_init(amcc_alg, ctx);
990         crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
991                                 crypto_aead_reqsize(ctx->sw_cipher.aead),
992                                 sizeof(struct crypto4xx_aead_reqctx)));
993         return 0;
994 }
995
996 static void crypto4xx_aead_exit(struct crypto_aead *tfm)
997 {
998         struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
999
1000         crypto4xx_common_exit(ctx);
1001         crypto_free_aead(ctx->sw_cipher.aead);
1002 }
1003
1004 static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1005                                   struct crypto4xx_alg_common *crypto_alg,
1006                                   int array_size)
1007 {
1008         struct crypto4xx_alg *alg;
1009         int i;
1010         int rc = 0;
1011
1012         for (i = 0; i < array_size; i++) {
1013                 alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1014                 if (!alg)
1015                         return -ENOMEM;
1016
1017                 alg->alg = crypto_alg[i];
1018                 alg->dev = sec_dev;
1019
1020                 switch (alg->alg.type) {
1021                 case CRYPTO_ALG_TYPE_AEAD:
1022                         rc = crypto_register_aead(&alg->alg.u.aead);
1023                         break;
1024
1025                 case CRYPTO_ALG_TYPE_AHASH:
1026                         rc = crypto_register_ahash(&alg->alg.u.hash);
1027                         break;
1028
1029                 case CRYPTO_ALG_TYPE_RNG:
1030                         rc = crypto_register_rng(&alg->alg.u.rng);
1031                         break;
1032
1033                 default:
1034                         rc = crypto_register_skcipher(&alg->alg.u.cipher);
1035                         break;
1036                 }
1037
1038                 if (rc)
1039                         kfree(alg);
1040                 else
1041                         list_add_tail(&alg->entry, &sec_dev->alg_list);
1042         }
1043
1044         return 0;
1045 }
1046
1047 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1048 {
1049         struct crypto4xx_alg *alg, *tmp;
1050
1051         list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1052                 list_del(&alg->entry);
1053                 switch (alg->alg.type) {
1054                 case CRYPTO_ALG_TYPE_AHASH:
1055                         crypto_unregister_ahash(&alg->alg.u.hash);
1056                         break;
1057
1058                 case CRYPTO_ALG_TYPE_AEAD:
1059                         crypto_unregister_aead(&alg->alg.u.aead);
1060                         break;
1061
1062                 case CRYPTO_ALG_TYPE_RNG:
1063                         crypto_unregister_rng(&alg->alg.u.rng);
1064                         break;
1065
1066                 default:
1067                         crypto_unregister_skcipher(&alg->alg.u.cipher);
1068                 }
1069                 kfree(alg);
1070         }
1071 }
1072
1073 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1074 {
1075         struct device *dev = (struct device *)data;
1076         struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1077         struct pd_uinfo *pd_uinfo;
1078         struct ce_pd *pd;
1079         u32 tail = core_dev->dev->pdr_tail;
1080         u32 head = core_dev->dev->pdr_head;
1081
1082         do {
1083                 pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1084                 pd = &core_dev->dev->pdr[tail];
1085                 if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1086                      ((READ_ONCE(pd->pd_ctl.w) &
1087                        (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1088                        PD_CTL_PE_DONE)) {
1089                         crypto4xx_pd_done(core_dev->dev, tail);
1090                         tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1091                 } else {
1092                         /* if tail not done, break */
1093                         break;
1094                 }
1095         } while (head != tail);
1096 }
1097
1098 /*
1099  * Top Half of isr.
1100  */
1101 static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1102                                                       u32 clr_val)
1103 {
1104         struct device *dev = data;
1105         struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1106
1107         writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1108         tasklet_schedule(&core_dev->tasklet);
1109
1110         return IRQ_HANDLED;
1111 }
1112
1113 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1114 {
1115         return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1116 }
1117
1118 static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1119 {
1120         return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1121                 PPC4XX_TMO_ERR_INT);
1122 }
1123
1124 static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1125                                  u8 *data, unsigned int max)
1126 {
1127         unsigned int i, curr = 0;
1128         u32 val[2];
1129
1130         do {
1131                 /* trigger PRN generation */
1132                 writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1133                        dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1134
1135                 for (i = 0; i < 1024; i++) {
1136                         /* usually 19 iterations are enough */
1137                         if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1138                              CRYPTO4XX_PRNG_STAT_BUSY))
1139                                 continue;
1140
1141                         val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1142                         val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1143                         break;
1144                 }
1145                 if (i == 1024)
1146                         return -ETIMEDOUT;
1147
1148                 if ((max - curr) >= 8) {
1149                         memcpy(data, &val, 8);
1150                         data += 8;
1151                         curr += 8;
1152                 } else {
1153                         /* copy only remaining bytes */
1154                         memcpy(data, &val, max - curr);
1155                         break;
1156                 }
1157         } while (curr < max);
1158
1159         return curr;
1160 }
1161
1162 static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1163                                    const u8 *src, unsigned int slen,
1164                                    u8 *dstn, unsigned int dlen)
1165 {
1166         struct rng_alg *alg = crypto_rng_alg(tfm);
1167         struct crypto4xx_alg *amcc_alg;
1168         struct crypto4xx_device *dev;
1169         int ret;
1170
1171         amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1172         dev = amcc_alg->dev;
1173
1174         mutex_lock(&dev->core_dev->rng_lock);
1175         ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1176         mutex_unlock(&dev->core_dev->rng_lock);
1177         return ret;
1178 }
1179
1180
1181 static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1182                         unsigned int slen)
1183 {
1184         return 0;
1185 }
1186
1187 /*
1188  * Supported Crypto Algorithms
1189  */
1190 static struct crypto4xx_alg_common crypto4xx_alg[] = {
1191         /* Crypto AES modes */
1192         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1193                 .base = {
1194                         .cra_name = "cbc(aes)",
1195                         .cra_driver_name = "cbc-aes-ppc4xx",
1196                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1197                         .cra_flags = CRYPTO_ALG_ASYNC |
1198                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1199                         .cra_blocksize = AES_BLOCK_SIZE,
1200                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1201                         .cra_module = THIS_MODULE,
1202                 },
1203                 .min_keysize = AES_MIN_KEY_SIZE,
1204                 .max_keysize = AES_MAX_KEY_SIZE,
1205                 .ivsize = AES_IV_SIZE,
1206                 .setkey = crypto4xx_setkey_aes_cbc,
1207                 .encrypt = crypto4xx_encrypt_iv_block,
1208                 .decrypt = crypto4xx_decrypt_iv_block,
1209                 .init = crypto4xx_sk_init,
1210                 .exit = crypto4xx_sk_exit,
1211         } },
1212         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1213                 .base = {
1214                         .cra_name = "cfb(aes)",
1215                         .cra_driver_name = "cfb-aes-ppc4xx",
1216                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1217                         .cra_flags = CRYPTO_ALG_ASYNC |
1218                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1219                         .cra_blocksize = 1,
1220                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1221                         .cra_module = THIS_MODULE,
1222                 },
1223                 .min_keysize = AES_MIN_KEY_SIZE,
1224                 .max_keysize = AES_MAX_KEY_SIZE,
1225                 .ivsize = AES_IV_SIZE,
1226                 .setkey = crypto4xx_setkey_aes_cfb,
1227                 .encrypt = crypto4xx_encrypt_iv_stream,
1228                 .decrypt = crypto4xx_decrypt_iv_stream,
1229                 .init = crypto4xx_sk_init,
1230                 .exit = crypto4xx_sk_exit,
1231         } },
1232         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1233                 .base = {
1234                         .cra_name = "ctr(aes)",
1235                         .cra_driver_name = "ctr-aes-ppc4xx",
1236                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1237                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1238                                 CRYPTO_ALG_ASYNC |
1239                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1240                         .cra_blocksize = 1,
1241                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1242                         .cra_module = THIS_MODULE,
1243                 },
1244                 .min_keysize = AES_MIN_KEY_SIZE,
1245                 .max_keysize = AES_MAX_KEY_SIZE,
1246                 .ivsize = AES_IV_SIZE,
1247                 .setkey = crypto4xx_setkey_aes_ctr,
1248                 .encrypt = crypto4xx_encrypt_ctr,
1249                 .decrypt = crypto4xx_decrypt_ctr,
1250                 .init = crypto4xx_sk_init,
1251                 .exit = crypto4xx_sk_exit,
1252         } },
1253         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1254                 .base = {
1255                         .cra_name = "rfc3686(ctr(aes))",
1256                         .cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1257                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1258                         .cra_flags = CRYPTO_ALG_ASYNC |
1259                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1260                         .cra_blocksize = 1,
1261                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1262                         .cra_module = THIS_MODULE,
1263                 },
1264                 .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1265                 .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1266                 .ivsize = CTR_RFC3686_IV_SIZE,
1267                 .setkey = crypto4xx_setkey_rfc3686,
1268                 .encrypt = crypto4xx_rfc3686_encrypt,
1269                 .decrypt = crypto4xx_rfc3686_decrypt,
1270                 .init = crypto4xx_sk_init,
1271                 .exit = crypto4xx_sk_exit,
1272         } },
1273         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1274                 .base = {
1275                         .cra_name = "ecb(aes)",
1276                         .cra_driver_name = "ecb-aes-ppc4xx",
1277                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1278                         .cra_flags = CRYPTO_ALG_ASYNC |
1279                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1280                         .cra_blocksize = AES_BLOCK_SIZE,
1281                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1282                         .cra_module = THIS_MODULE,
1283                 },
1284                 .min_keysize = AES_MIN_KEY_SIZE,
1285                 .max_keysize = AES_MAX_KEY_SIZE,
1286                 .setkey = crypto4xx_setkey_aes_ecb,
1287                 .encrypt = crypto4xx_encrypt_noiv_block,
1288                 .decrypt = crypto4xx_decrypt_noiv_block,
1289                 .init = crypto4xx_sk_init,
1290                 .exit = crypto4xx_sk_exit,
1291         } },
1292         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1293                 .base = {
1294                         .cra_name = "ofb(aes)",
1295                         .cra_driver_name = "ofb-aes-ppc4xx",
1296                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1297                         .cra_flags = CRYPTO_ALG_ASYNC |
1298                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1299                         .cra_blocksize = 1,
1300                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1301                         .cra_module = THIS_MODULE,
1302                 },
1303                 .min_keysize = AES_MIN_KEY_SIZE,
1304                 .max_keysize = AES_MAX_KEY_SIZE,
1305                 .ivsize = AES_IV_SIZE,
1306                 .setkey = crypto4xx_setkey_aes_ofb,
1307                 .encrypt = crypto4xx_encrypt_iv_stream,
1308                 .decrypt = crypto4xx_decrypt_iv_stream,
1309                 .init = crypto4xx_sk_init,
1310                 .exit = crypto4xx_sk_exit,
1311         } },
1312
1313         /* AEAD */
1314         { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1315                 .setkey         = crypto4xx_setkey_aes_ccm,
1316                 .setauthsize    = crypto4xx_setauthsize_aead,
1317                 .encrypt        = crypto4xx_encrypt_aes_ccm,
1318                 .decrypt        = crypto4xx_decrypt_aes_ccm,
1319                 .init           = crypto4xx_aead_init,
1320                 .exit           = crypto4xx_aead_exit,
1321                 .ivsize         = AES_BLOCK_SIZE,
1322                 .maxauthsize    = 16,
1323                 .base = {
1324                         .cra_name       = "ccm(aes)",
1325                         .cra_driver_name = "ccm-aes-ppc4xx",
1326                         .cra_priority   = CRYPTO4XX_CRYPTO_PRIORITY,
1327                         .cra_flags      = CRYPTO_ALG_ASYNC |
1328                                           CRYPTO_ALG_NEED_FALLBACK |
1329                                           CRYPTO_ALG_KERN_DRIVER_ONLY,
1330                         .cra_blocksize  = 1,
1331                         .cra_ctxsize    = sizeof(struct crypto4xx_ctx),
1332                         .cra_module     = THIS_MODULE,
1333                 },
1334         } },
1335         { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1336                 .setkey         = crypto4xx_setkey_aes_gcm,
1337                 .setauthsize    = crypto4xx_setauthsize_aead,
1338                 .encrypt        = crypto4xx_encrypt_aes_gcm,
1339                 .decrypt        = crypto4xx_decrypt_aes_gcm,
1340                 .init           = crypto4xx_aead_init,
1341                 .exit           = crypto4xx_aead_exit,
1342                 .ivsize         = GCM_AES_IV_SIZE,
1343                 .maxauthsize    = 16,
1344                 .base = {
1345                         .cra_name       = "gcm(aes)",
1346                         .cra_driver_name = "gcm-aes-ppc4xx",
1347                         .cra_priority   = CRYPTO4XX_CRYPTO_PRIORITY,
1348                         .cra_flags      = CRYPTO_ALG_ASYNC |
1349                                           CRYPTO_ALG_NEED_FALLBACK |
1350                                           CRYPTO_ALG_KERN_DRIVER_ONLY,
1351                         .cra_blocksize  = 1,
1352                         .cra_ctxsize    = sizeof(struct crypto4xx_ctx),
1353                         .cra_module     = THIS_MODULE,
1354                 },
1355         } },
1356         { .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1357                 .base = {
1358                         .cra_name               = "stdrng",
1359                         .cra_driver_name        = "crypto4xx_rng",
1360                         .cra_priority           = 300,
1361                         .cra_ctxsize            = 0,
1362                         .cra_module             = THIS_MODULE,
1363                 },
1364                 .generate               = crypto4xx_prng_generate,
1365                 .seed                   = crypto4xx_prng_seed,
1366                 .seedsize               = 0,
1367         } },
1368 };
1369
1370 /*
1371  * Module Initialization Routine
1372  */
1373 static int crypto4xx_probe(struct platform_device *ofdev)
1374 {
1375         int rc;
1376         struct resource res;
1377         struct device *dev = &ofdev->dev;
1378         struct crypto4xx_core_device *core_dev;
1379         struct device_node *np;
1380         u32 pvr;
1381         bool is_revb = true;
1382
1383         rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1384         if (rc)
1385                 return -ENODEV;
1386
1387         np = of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto");
1388         if (np) {
1389                 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1390                        mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1391                 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1392                        mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1393         } else {
1394                 np = of_find_compatible_node(NULL, NULL, "amcc,ppc405ex-crypto");
1395                 if (np) {
1396                         mtdcri(SDR0, PPC405EX_SDR0_SRST,
1397                                    mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1398                         mtdcri(SDR0, PPC405EX_SDR0_SRST,
1399                                    mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1400                         is_revb = false;
1401                 } else {
1402                         np = of_find_compatible_node(NULL, NULL, "amcc,ppc460sx-crypto");
1403                         if (np) {
1404                                 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1405                                         mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1406                                 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1407                                         mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1408                         } else {
1409                                 printk(KERN_ERR "Crypto Function Not supported!\n");
1410                                 return -EINVAL;
1411                         }
1412                 }
1413         }
1414
1415         of_node_put(np);
1416
1417         core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1418         if (!core_dev)
1419                 return -ENOMEM;
1420
1421         dev_set_drvdata(dev, core_dev);
1422         core_dev->ofdev = ofdev;
1423         core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1424         rc = -ENOMEM;
1425         if (!core_dev->dev)
1426                 goto err_alloc_dev;
1427
1428         /*
1429          * Older version of 460EX/GT have a hardware bug.
1430          * Hence they do not support H/W based security intr coalescing
1431          */
1432         pvr = mfspr(SPRN_PVR);
1433         if (is_revb && ((pvr >> 4) == 0x130218A)) {
1434                 u32 min = PVR_MIN(pvr);
1435
1436                 if (min < 4) {
1437                         dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1438                         is_revb = false;
1439                 }
1440         }
1441
1442         core_dev->dev->core_dev = core_dev;
1443         core_dev->dev->is_revb = is_revb;
1444         core_dev->device = dev;
1445         mutex_init(&core_dev->rng_lock);
1446         spin_lock_init(&core_dev->lock);
1447         INIT_LIST_HEAD(&core_dev->dev->alg_list);
1448         ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1449         rc = crypto4xx_build_sdr(core_dev->dev);
1450         if (rc)
1451                 goto err_build_sdr;
1452         rc = crypto4xx_build_pdr(core_dev->dev);
1453         if (rc)
1454                 goto err_build_sdr;
1455
1456         rc = crypto4xx_build_gdr(core_dev->dev);
1457         if (rc)
1458                 goto err_build_sdr;
1459
1460         /* Init tasklet for bottom half processing */
1461         tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1462                      (unsigned long) dev);
1463
1464         core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1465         if (!core_dev->dev->ce_base) {
1466                 dev_err(dev, "failed to of_iomap\n");
1467                 rc = -ENOMEM;
1468                 goto err_iomap;
1469         }
1470
1471         /* Register for Crypto isr, Crypto Engine IRQ */
1472         core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1473         rc = request_irq(core_dev->irq, is_revb ?
1474                          crypto4xx_ce_interrupt_handler_revb :
1475                          crypto4xx_ce_interrupt_handler, 0,
1476                          KBUILD_MODNAME, dev);
1477         if (rc)
1478                 goto err_request_irq;
1479
1480         /* need to setup pdr, rdr, gdr and sdr before this */
1481         crypto4xx_hw_init(core_dev->dev);
1482
1483         /* Register security algorithms with Linux CryptoAPI */
1484         rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1485                                ARRAY_SIZE(crypto4xx_alg));
1486         if (rc)
1487                 goto err_start_dev;
1488
1489         ppc4xx_trng_probe(core_dev);
1490         return 0;
1491
1492 err_start_dev:
1493         free_irq(core_dev->irq, dev);
1494 err_request_irq:
1495         irq_dispose_mapping(core_dev->irq);
1496         iounmap(core_dev->dev->ce_base);
1497 err_iomap:
1498         tasklet_kill(&core_dev->tasklet);
1499 err_build_sdr:
1500         crypto4xx_destroy_sdr(core_dev->dev);
1501         crypto4xx_destroy_gdr(core_dev->dev);
1502         crypto4xx_destroy_pdr(core_dev->dev);
1503         kfree(core_dev->dev);
1504 err_alloc_dev:
1505         kfree(core_dev);
1506
1507         return rc;
1508 }
1509
1510 static void crypto4xx_remove(struct platform_device *ofdev)
1511 {
1512         struct device *dev = &ofdev->dev;
1513         struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1514
1515         ppc4xx_trng_remove(core_dev);
1516
1517         free_irq(core_dev->irq, dev);
1518         irq_dispose_mapping(core_dev->irq);
1519
1520         tasklet_kill(&core_dev->tasklet);
1521         /* Un-register with Linux CryptoAPI */
1522         crypto4xx_unregister_alg(core_dev->dev);
1523         mutex_destroy(&core_dev->rng_lock);
1524         /* Free all allocated memory */
1525         crypto4xx_stop_all(core_dev);
1526 }
1527
1528 static const struct of_device_id crypto4xx_match[] = {
1529         { .compatible      = "amcc,ppc4xx-crypto",},
1530         { },
1531 };
1532 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1533
1534 static struct platform_driver crypto4xx_driver = {
1535         .driver = {
1536                 .name = KBUILD_MODNAME,
1537                 .of_match_table = crypto4xx_match,
1538         },
1539         .probe          = crypto4xx_probe,
1540         .remove_new     = crypto4xx_remove,
1541 };
1542
1543 module_platform_driver(crypto4xx_driver);
1544
1545 MODULE_LICENSE("GPL");
1546 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1547 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");