GNU Linux-libre 4.9.326-gnu1
[releases.git] / drivers / cpufreq / powernv-cpufreq.c
1 /*
2  * POWERNV cpufreq driver for the IBM POWER processors
3  *
4  * (C) Copyright IBM 2014
5  *
6  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  */
19
20 #define pr_fmt(fmt)     "powernv-cpufreq: " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
28 #include <linux/of.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <trace/events/power.h>
33
34 #include <asm/cputhreads.h>
35 #include <asm/firmware.h>
36 #include <asm/reg.h>
37 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
38 #include <asm/opal.h>
39 #include <linux/timer.h>
40
41 #define POWERNV_MAX_PSTATES     256
42 #define PMSR_PSAFE_ENABLE       (1UL << 30)
43 #define PMSR_SPR_EM_DISABLE     (1UL << 31)
44 #define PMSR_MAX(x)             ((x >> 32) & 0xFF)
45
46 #define MAX_RAMP_DOWN_TIME                              5120
47 /*
48  * On an idle system we want the global pstate to ramp-down from max value to
49  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
50  * then ramp-down rapidly later on.
51  *
52  * This gives a percentage rampdown for time elapsed in milliseconds.
53  * ramp_down_percentage = ((ms * ms) >> 18)
54  *                      ~= 3.8 * (sec * sec)
55  *
56  * At 0 ms      ramp_down_percent = 0
57  * At 5120 ms   ramp_down_percent = 100
58  */
59 #define ramp_down_percent(time)         ((time * time) >> 18)
60
61 /* Interval after which the timer is queued to bring down global pstate */
62 #define GPSTATE_TIMER_INTERVAL                          2000
63
64 /**
65  * struct global_pstate_info -  Per policy data structure to maintain history of
66  *                              global pstates
67  * @highest_lpstate_idx:        The local pstate index from which we are
68  *                              ramping down
69  * @elapsed_time:               Time in ms spent in ramping down from
70  *                              highest_lpstate_idx
71  * @last_sampled_time:          Time from boot in ms when global pstates were
72  *                              last set
73  * @last_lpstate_idx,           Last set value of local pstate and global
74  * last_gpstate_idx             pstate in terms of cpufreq table index
75  * @timer:                      Is used for ramping down if cpu goes idle for
76  *                              a long time with global pstate held high
77  * @gpstate_lock:               A spinlock to maintain synchronization between
78  *                              routines called by the timer handler and
79  *                              governer's target_index calls
80  */
81 struct global_pstate_info {
82         int highest_lpstate_idx;
83         unsigned int elapsed_time;
84         unsigned int last_sampled_time;
85         int last_lpstate_idx;
86         int last_gpstate_idx;
87         spinlock_t gpstate_lock;
88         struct timer_list timer;
89 };
90
91 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
92 static bool rebooting, throttled, occ_reset;
93
94 static const char * const throttle_reason[] = {
95         "No throttling",
96         "Power Cap",
97         "Processor Over Temperature",
98         "Power Supply Failure",
99         "Over Current",
100         "OCC Reset"
101 };
102
103 enum throttle_reason_type {
104         NO_THROTTLE = 0,
105         POWERCAP,
106         CPU_OVERTEMP,
107         POWER_SUPPLY_FAILURE,
108         OVERCURRENT,
109         OCC_RESET_THROTTLE,
110         OCC_MAX_REASON
111 };
112
113 static struct chip {
114         unsigned int id;
115         bool throttled;
116         bool restore;
117         u8 throttle_reason;
118         cpumask_t mask;
119         struct work_struct throttle;
120         int throttle_turbo;
121         int throttle_sub_turbo;
122         int reason[OCC_MAX_REASON];
123 } *chips;
124
125 static int nr_chips;
126 static DEFINE_PER_CPU(struct chip *, chip_info);
127
128 /*
129  * Note:
130  * The set of pstates consists of contiguous integers.
131  * powernv_pstate_info stores the index of the frequency table for
132  * max, min and nominal frequencies. It also stores number of
133  * available frequencies.
134  *
135  * powernv_pstate_info.nominal indicates the index to the highest
136  * non-turbo frequency.
137  */
138 static struct powernv_pstate_info {
139         unsigned int min;
140         unsigned int max;
141         unsigned int nominal;
142         unsigned int nr_pstates;
143 } powernv_pstate_info;
144
145 /* Use following macros for conversions between pstate_id and index */
146 static inline int idx_to_pstate(unsigned int i)
147 {
148         if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
149                 pr_warn_once("index %u is out of bound\n", i);
150                 return powernv_freqs[powernv_pstate_info.nominal].driver_data;
151         }
152
153         return powernv_freqs[i].driver_data;
154 }
155
156 static inline unsigned int pstate_to_idx(int pstate)
157 {
158         int min = powernv_freqs[powernv_pstate_info.min].driver_data;
159         int max = powernv_freqs[powernv_pstate_info.max].driver_data;
160
161         if (min > 0) {
162                 if (unlikely((pstate < max) || (pstate > min))) {
163                         pr_warn_once("pstate %d is out of bound\n", pstate);
164                         return powernv_pstate_info.nominal;
165                 }
166         } else {
167                 if (unlikely((pstate > max) || (pstate < min))) {
168                         pr_warn_once("pstate %d is out of bound\n", pstate);
169                         return powernv_pstate_info.nominal;
170                 }
171         }
172         /*
173          * abs() is deliberately used so that is works with
174          * both monotonically increasing and decreasing
175          * pstate values
176          */
177         return abs(pstate - idx_to_pstate(powernv_pstate_info.max));
178 }
179
180 static inline void reset_gpstates(struct cpufreq_policy *policy)
181 {
182         struct global_pstate_info *gpstates = policy->driver_data;
183
184         gpstates->highest_lpstate_idx = 0;
185         gpstates->elapsed_time = 0;
186         gpstates->last_sampled_time = 0;
187         gpstates->last_lpstate_idx = 0;
188         gpstates->last_gpstate_idx = 0;
189 }
190
191 /*
192  * Initialize the freq table based on data obtained
193  * from the firmware passed via device-tree
194  */
195 static int init_powernv_pstates(void)
196 {
197         struct device_node *power_mgt;
198         int i, nr_pstates = 0;
199         const __be32 *pstate_ids, *pstate_freqs;
200         u32 len_ids, len_freqs;
201         u32 pstate_min, pstate_max, pstate_nominal;
202
203         power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
204         if (!power_mgt) {
205                 pr_warn("power-mgt node not found\n");
206                 return -ENODEV;
207         }
208
209         if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
210                 pr_warn("ibm,pstate-min node not found\n");
211                 return -ENODEV;
212         }
213
214         if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
215                 pr_warn("ibm,pstate-max node not found\n");
216                 return -ENODEV;
217         }
218
219         if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
220                                  &pstate_nominal)) {
221                 pr_warn("ibm,pstate-nominal not found\n");
222                 return -ENODEV;
223         }
224         pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min,
225                 pstate_nominal, pstate_max);
226
227         pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
228         if (!pstate_ids) {
229                 pr_warn("ibm,pstate-ids not found\n");
230                 return -ENODEV;
231         }
232
233         pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
234                                       &len_freqs);
235         if (!pstate_freqs) {
236                 pr_warn("ibm,pstate-frequencies-mhz not found\n");
237                 return -ENODEV;
238         }
239
240         if (len_ids != len_freqs) {
241                 pr_warn("Entries in ibm,pstate-ids and "
242                         "ibm,pstate-frequencies-mhz does not match\n");
243         }
244
245         nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
246         if (!nr_pstates) {
247                 pr_warn("No PStates found\n");
248                 return -ENODEV;
249         }
250
251         powernv_pstate_info.nr_pstates = nr_pstates;
252         pr_debug("NR PStates %d\n", nr_pstates);
253         for (i = 0; i < nr_pstates; i++) {
254                 u32 id = be32_to_cpu(pstate_ids[i]);
255                 u32 freq = be32_to_cpu(pstate_freqs[i]);
256
257                 pr_debug("PState id %d freq %d MHz\n", id, freq);
258                 powernv_freqs[i].frequency = freq * 1000; /* kHz */
259                 powernv_freqs[i].driver_data = id;
260
261                 if (id == pstate_max)
262                         powernv_pstate_info.max = i;
263                 if (id == pstate_nominal)
264                         powernv_pstate_info.nominal = i;
265                 if (id == pstate_min)
266                         powernv_pstate_info.min = i;
267         }
268
269         /* End of list marker entry */
270         powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
271         return 0;
272 }
273
274 /* Returns the CPU frequency corresponding to the pstate_id. */
275 static unsigned int pstate_id_to_freq(int pstate_id)
276 {
277         int i;
278
279         i = pstate_to_idx(pstate_id);
280         if (i >= powernv_pstate_info.nr_pstates || i < 0) {
281                 pr_warn("PState id %d outside of PState table, "
282                         "reporting nominal id %d instead\n",
283                         pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
284                 i = powernv_pstate_info.nominal;
285         }
286
287         return powernv_freqs[i].frequency;
288 }
289
290 /*
291  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
292  * the firmware
293  */
294 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
295                                         char *buf)
296 {
297         return sprintf(buf, "%u\n",
298                 powernv_freqs[powernv_pstate_info.nominal].frequency);
299 }
300
301 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
302         __ATTR_RO(cpuinfo_nominal_freq);
303
304 static struct freq_attr *powernv_cpu_freq_attr[] = {
305         &cpufreq_freq_attr_scaling_available_freqs,
306         &cpufreq_freq_attr_cpuinfo_nominal_freq,
307         NULL,
308 };
309
310 #define throttle_attr(name, member)                                     \
311 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)    \
312 {                                                                       \
313         struct chip *chip = per_cpu(chip_info, policy->cpu);            \
314                                                                         \
315         return sprintf(buf, "%u\n", chip->member);                      \
316 }                                                                       \
317                                                                         \
318 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)          \
319
320 throttle_attr(unthrottle, reason[NO_THROTTLE]);
321 throttle_attr(powercap, reason[POWERCAP]);
322 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
323 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
324 throttle_attr(overcurrent, reason[OVERCURRENT]);
325 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
326 throttle_attr(turbo_stat, throttle_turbo);
327 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
328
329 static struct attribute *throttle_attrs[] = {
330         &throttle_attr_unthrottle.attr,
331         &throttle_attr_powercap.attr,
332         &throttle_attr_overtemp.attr,
333         &throttle_attr_supply_fault.attr,
334         &throttle_attr_overcurrent.attr,
335         &throttle_attr_occ_reset.attr,
336         &throttle_attr_turbo_stat.attr,
337         &throttle_attr_sub_turbo_stat.attr,
338         NULL,
339 };
340
341 static const struct attribute_group throttle_attr_grp = {
342         .name   = "throttle_stats",
343         .attrs  = throttle_attrs,
344 };
345
346 /* Helper routines */
347
348 /* Access helpers to power mgt SPR */
349
350 static inline unsigned long get_pmspr(unsigned long sprn)
351 {
352         switch (sprn) {
353         case SPRN_PMCR:
354                 return mfspr(SPRN_PMCR);
355
356         case SPRN_PMICR:
357                 return mfspr(SPRN_PMICR);
358
359         case SPRN_PMSR:
360                 return mfspr(SPRN_PMSR);
361         }
362         BUG();
363 }
364
365 static inline void set_pmspr(unsigned long sprn, unsigned long val)
366 {
367         switch (sprn) {
368         case SPRN_PMCR:
369                 mtspr(SPRN_PMCR, val);
370                 return;
371
372         case SPRN_PMICR:
373                 mtspr(SPRN_PMICR, val);
374                 return;
375         }
376         BUG();
377 }
378
379 /*
380  * Use objects of this type to query/update
381  * pstates on a remote CPU via smp_call_function.
382  */
383 struct powernv_smp_call_data {
384         unsigned int freq;
385         int pstate_id;
386         int gpstate_id;
387 };
388
389 /*
390  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
391  *
392  * Called via smp_call_function.
393  *
394  * Note: The caller of the smp_call_function should pass an argument of
395  * the type 'struct powernv_smp_call_data *' along with this function.
396  *
397  * The current frequency on this CPU will be returned via
398  * ((struct powernv_smp_call_data *)arg)->freq;
399  */
400 static void powernv_read_cpu_freq(void *arg)
401 {
402         unsigned long pmspr_val;
403         s8 local_pstate_id;
404         struct powernv_smp_call_data *freq_data = arg;
405
406         pmspr_val = get_pmspr(SPRN_PMSR);
407
408         /*
409          * The local pstate id corresponds bits 48..55 in the PMSR.
410          * Note: Watch out for the sign!
411          */
412         local_pstate_id = (pmspr_val >> 48) & 0xFF;
413         freq_data->pstate_id = local_pstate_id;
414         freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
415
416         pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
417                 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
418                 freq_data->freq);
419 }
420
421 /*
422  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
423  * firmware for CPU 'cpu'. This value is reported through the sysfs
424  * file cpuinfo_cur_freq.
425  */
426 static unsigned int powernv_cpufreq_get(unsigned int cpu)
427 {
428         struct powernv_smp_call_data freq_data;
429
430         smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
431                         &freq_data, 1);
432
433         return freq_data.freq;
434 }
435
436 /*
437  * set_pstate: Sets the pstate on this CPU.
438  *
439  * This is called via an smp_call_function.
440  *
441  * The caller must ensure that freq_data is of the type
442  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
443  * on this CPU should be present in freq_data->pstate_id.
444  */
445 static void set_pstate(void *data)
446 {
447         unsigned long val;
448         struct powernv_smp_call_data *freq_data = data;
449         unsigned long pstate_ul = freq_data->pstate_id;
450         unsigned long gpstate_ul = freq_data->gpstate_id;
451
452         val = get_pmspr(SPRN_PMCR);
453         val = val & 0x0000FFFFFFFFFFFFULL;
454
455         pstate_ul = pstate_ul & 0xFF;
456         gpstate_ul = gpstate_ul & 0xFF;
457
458         /* Set both global(bits 56..63) and local(bits 48..55) PStates */
459         val = val | (gpstate_ul << 56) | (pstate_ul << 48);
460
461         pr_debug("Setting cpu %d pmcr to %016lX\n",
462                         raw_smp_processor_id(), val);
463         set_pmspr(SPRN_PMCR, val);
464 }
465
466 /*
467  * get_nominal_index: Returns the index corresponding to the nominal
468  * pstate in the cpufreq table
469  */
470 static inline unsigned int get_nominal_index(void)
471 {
472         return powernv_pstate_info.nominal;
473 }
474
475 static void powernv_cpufreq_throttle_check(void *data)
476 {
477         struct chip *chip;
478         unsigned int cpu = smp_processor_id();
479         unsigned long pmsr;
480         int pmsr_pmax;
481         unsigned int pmsr_pmax_idx;
482
483         pmsr = get_pmspr(SPRN_PMSR);
484         chip = this_cpu_read(chip_info);
485
486         /* Check for Pmax Capping */
487         pmsr_pmax = (s8)PMSR_MAX(pmsr);
488         pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
489         if (pmsr_pmax_idx != powernv_pstate_info.max) {
490                 if (chip->throttled)
491                         goto next;
492                 chip->throttled = true;
493                 if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
494                         pr_warn_once("CPU %d on Chip %u has Pmax(%d) reduced below nominal frequency(%d)\n",
495                                      cpu, chip->id, pmsr_pmax,
496                                      idx_to_pstate(powernv_pstate_info.nominal));
497                         chip->throttle_sub_turbo++;
498                 } else {
499                         chip->throttle_turbo++;
500                 }
501                 trace_powernv_throttle(chip->id,
502                                       throttle_reason[chip->throttle_reason],
503                                       pmsr_pmax);
504         } else if (chip->throttled) {
505                 chip->throttled = false;
506                 trace_powernv_throttle(chip->id,
507                                       throttle_reason[chip->throttle_reason],
508                                       pmsr_pmax);
509         }
510
511         /* Check if Psafe_mode_active is set in PMSR. */
512 next:
513         if (pmsr & PMSR_PSAFE_ENABLE) {
514                 throttled = true;
515                 pr_info("Pstate set to safe frequency\n");
516         }
517
518         /* Check if SPR_EM_DISABLE is set in PMSR */
519         if (pmsr & PMSR_SPR_EM_DISABLE) {
520                 throttled = true;
521                 pr_info("Frequency Control disabled from OS\n");
522         }
523
524         if (throttled) {
525                 pr_info("PMSR = %16lx\n", pmsr);
526                 pr_warn("CPU Frequency could be throttled\n");
527         }
528 }
529
530 /**
531  * calc_global_pstate - Calculate global pstate
532  * @elapsed_time:               Elapsed time in milliseconds
533  * @local_pstate_idx:           New local pstate
534  * @highest_lpstate_idx:        pstate from which its ramping down
535  *
536  * Finds the appropriate global pstate based on the pstate from which its
537  * ramping down and the time elapsed in ramping down. It follows a quadratic
538  * equation which ensures that it reaches ramping down to pmin in 5sec.
539  */
540 static inline int calc_global_pstate(unsigned int elapsed_time,
541                                      int highest_lpstate_idx,
542                                      int local_pstate_idx)
543 {
544         int index_diff;
545
546         /*
547          * Using ramp_down_percent we get the percentage of rampdown
548          * that we are expecting to be dropping. Difference between
549          * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
550          * number of how many pstates we will drop eventually by the end of
551          * 5 seconds, then just scale it get the number pstates to be dropped.
552          */
553         index_diff =  ((int)ramp_down_percent(elapsed_time) *
554                         (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
555
556         /* Ensure that global pstate is >= to local pstate */
557         if (highest_lpstate_idx + index_diff >= local_pstate_idx)
558                 return local_pstate_idx;
559         else
560                 return highest_lpstate_idx + index_diff;
561 }
562
563 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
564 {
565         unsigned int timer_interval;
566
567         /*
568          * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
569          * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
570          * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
571          * seconds of ramp down time.
572          */
573         if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
574              > MAX_RAMP_DOWN_TIME)
575                 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
576         else
577                 timer_interval = GPSTATE_TIMER_INTERVAL;
578
579         mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
580 }
581
582 /**
583  * gpstate_timer_handler
584  *
585  * @data: pointer to cpufreq_policy on which timer was queued
586  *
587  * This handler brings down the global pstate closer to the local pstate
588  * according quadratic equation. Queues a new timer if it is still not equal
589  * to local pstate
590  */
591 void gpstate_timer_handler(unsigned long data)
592 {
593         struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
594         struct global_pstate_info *gpstates = policy->driver_data;
595         int gpstate_idx;
596         unsigned int time_diff = jiffies_to_msecs(jiffies)
597                                         - gpstates->last_sampled_time;
598         struct powernv_smp_call_data freq_data;
599
600         if (!spin_trylock(&gpstates->gpstate_lock))
601                 return;
602         /*
603          * If the timer has migrated to the different cpu then bring
604          * it back to one of the policy->cpus
605          */
606         if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
607                 gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
608                 add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
609                 spin_unlock(&gpstates->gpstate_lock);
610                 return;
611         }
612
613         gpstates->last_sampled_time += time_diff;
614         gpstates->elapsed_time += time_diff;
615         freq_data.pstate_id = idx_to_pstate(gpstates->last_lpstate_idx);
616
617         if ((gpstates->last_gpstate_idx == gpstates->last_lpstate_idx) ||
618             (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME)) {
619                 gpstate_idx = pstate_to_idx(freq_data.pstate_id);
620                 reset_gpstates(policy);
621                 gpstates->highest_lpstate_idx = gpstate_idx;
622         } else {
623                 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
624                                                  gpstates->highest_lpstate_idx,
625                                                  gpstates->last_lpstate_idx);
626         }
627
628         /*
629          * If local pstate is equal to global pstate, rampdown is over
630          * So timer is not required to be queued.
631          */
632         if (gpstate_idx != gpstates->last_lpstate_idx)
633                 queue_gpstate_timer(gpstates);
634
635         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
636         gpstates->last_gpstate_idx = pstate_to_idx(freq_data.gpstate_id);
637         gpstates->last_lpstate_idx = pstate_to_idx(freq_data.pstate_id);
638
639         set_pstate(&freq_data);
640         spin_unlock(&gpstates->gpstate_lock);
641 }
642
643 /*
644  * powernv_cpufreq_target_index: Sets the frequency corresponding to
645  * the cpufreq table entry indexed by new_index on the cpus in the
646  * mask policy->cpus
647  */
648 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
649                                         unsigned int new_index)
650 {
651         struct powernv_smp_call_data freq_data;
652         unsigned int cur_msec, gpstate_idx;
653         struct global_pstate_info *gpstates = policy->driver_data;
654
655         if (unlikely(rebooting) && new_index != get_nominal_index())
656                 return 0;
657
658         if (!throttled) {
659                 /* we don't want to be preempted while
660                  * checking if the CPU frequency has been throttled
661                  */
662                 preempt_disable();
663                 powernv_cpufreq_throttle_check(NULL);
664                 preempt_enable();
665         }
666
667         cur_msec = jiffies_to_msecs(get_jiffies_64());
668
669         spin_lock(&gpstates->gpstate_lock);
670         freq_data.pstate_id = idx_to_pstate(new_index);
671
672         if (!gpstates->last_sampled_time) {
673                 gpstate_idx = new_index;
674                 gpstates->highest_lpstate_idx = new_index;
675                 goto gpstates_done;
676         }
677
678         if (gpstates->last_gpstate_idx < new_index) {
679                 gpstates->elapsed_time += cur_msec -
680                                                  gpstates->last_sampled_time;
681
682                 /*
683                  * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
684                  * we should be resetting all global pstate related data. Set it
685                  * equal to local pstate to start fresh.
686                  */
687                 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
688                         reset_gpstates(policy);
689                         gpstates->highest_lpstate_idx = new_index;
690                         gpstate_idx = new_index;
691                 } else {
692                 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
693                         gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
694                                                          gpstates->highest_lpstate_idx,
695                                                          new_index);
696                 }
697         } else {
698                 reset_gpstates(policy);
699                 gpstates->highest_lpstate_idx = new_index;
700                 gpstate_idx = new_index;
701         }
702
703         /*
704          * If local pstate is equal to global pstate, rampdown is over
705          * So timer is not required to be queued.
706          */
707         if (gpstate_idx != new_index)
708                 queue_gpstate_timer(gpstates);
709         else
710                 del_timer_sync(&gpstates->timer);
711
712 gpstates_done:
713         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
714         gpstates->last_sampled_time = cur_msec;
715         gpstates->last_gpstate_idx = gpstate_idx;
716         gpstates->last_lpstate_idx = new_index;
717
718         spin_unlock(&gpstates->gpstate_lock);
719
720         /*
721          * Use smp_call_function to send IPI and execute the
722          * mtspr on target CPU.  We could do that without IPI
723          * if current CPU is within policy->cpus (core)
724          */
725         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
726         return 0;
727 }
728
729 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
730 {
731         int base, i, ret;
732         struct kernfs_node *kn;
733         struct global_pstate_info *gpstates;
734
735         base = cpu_first_thread_sibling(policy->cpu);
736
737         for (i = 0; i < threads_per_core; i++)
738                 cpumask_set_cpu(base + i, policy->cpus);
739
740         kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
741         if (!kn) {
742                 int ret;
743
744                 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
745                 if (ret) {
746                         pr_info("Failed to create throttle stats directory for cpu %d\n",
747                                 policy->cpu);
748                         return ret;
749                 }
750         } else {
751                 kernfs_put(kn);
752         }
753
754         gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
755         if (!gpstates)
756                 return -ENOMEM;
757
758         policy->driver_data = gpstates;
759
760         /* initialize timer */
761         init_timer_pinned_deferrable(&gpstates->timer);
762         gpstates->timer.data = (unsigned long)policy;
763         gpstates->timer.function = gpstate_timer_handler;
764         gpstates->timer.expires = jiffies +
765                                 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
766         spin_lock_init(&gpstates->gpstate_lock);
767         ret = cpufreq_table_validate_and_show(policy, powernv_freqs);
768
769         if (ret < 0)
770                 kfree(policy->driver_data);
771
772         return ret;
773 }
774
775 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
776 {
777         /* timer is deleted in cpufreq_cpu_stop() */
778         kfree(policy->driver_data);
779
780         return 0;
781 }
782
783 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
784                                 unsigned long action, void *unused)
785 {
786         int cpu;
787         struct cpufreq_policy *cpu_policy;
788
789         rebooting = true;
790         for_each_online_cpu(cpu) {
791                 cpu_policy = cpufreq_cpu_get(cpu);
792                 if (!cpu_policy)
793                         continue;
794                 powernv_cpufreq_target_index(cpu_policy, get_nominal_index());
795                 cpufreq_cpu_put(cpu_policy);
796         }
797
798         return NOTIFY_DONE;
799 }
800
801 static struct notifier_block powernv_cpufreq_reboot_nb = {
802         .notifier_call = powernv_cpufreq_reboot_notifier,
803 };
804
805 void powernv_cpufreq_work_fn(struct work_struct *work)
806 {
807         struct chip *chip = container_of(work, struct chip, throttle);
808         struct cpufreq_policy *policy;
809         unsigned int cpu;
810         cpumask_t mask;
811
812         get_online_cpus();
813         cpumask_and(&mask, &chip->mask, cpu_online_mask);
814         smp_call_function_any(&mask,
815                               powernv_cpufreq_throttle_check, NULL, 0);
816
817         if (!chip->restore)
818                 goto out;
819
820         chip->restore = false;
821         for_each_cpu(cpu, &mask) {
822                 int index;
823
824                 policy = cpufreq_cpu_get(cpu);
825                 if (!policy)
826                         continue;
827                 index = cpufreq_table_find_index_c(policy, policy->cur);
828                 powernv_cpufreq_target_index(policy, index);
829                 cpumask_andnot(&mask, &mask, policy->cpus);
830                 cpufreq_cpu_put(policy);
831         }
832 out:
833         put_online_cpus();
834 }
835
836 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
837                                    unsigned long msg_type, void *_msg)
838 {
839         struct opal_msg *msg = _msg;
840         struct opal_occ_msg omsg;
841         int i;
842
843         if (msg_type != OPAL_MSG_OCC)
844                 return 0;
845
846         omsg.type = be64_to_cpu(msg->params[0]);
847
848         switch (omsg.type) {
849         case OCC_RESET:
850                 occ_reset = true;
851                 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
852                 /*
853                  * powernv_cpufreq_throttle_check() is called in
854                  * target() callback which can detect the throttle state
855                  * for governors like ondemand.
856                  * But static governors will not call target() often thus
857                  * report throttling here.
858                  */
859                 if (!throttled) {
860                         throttled = true;
861                         pr_warn("CPU frequency is throttled for duration\n");
862                 }
863
864                 break;
865         case OCC_LOAD:
866                 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
867                 break;
868         case OCC_THROTTLE:
869                 omsg.chip = be64_to_cpu(msg->params[1]);
870                 omsg.throttle_status = be64_to_cpu(msg->params[2]);
871
872                 if (occ_reset) {
873                         occ_reset = false;
874                         throttled = false;
875                         pr_info("OCC Active, CPU frequency is no longer throttled\n");
876
877                         for (i = 0; i < nr_chips; i++) {
878                                 chips[i].restore = true;
879                                 schedule_work(&chips[i].throttle);
880                         }
881
882                         return 0;
883                 }
884
885                 for (i = 0; i < nr_chips; i++)
886                         if (chips[i].id == omsg.chip)
887                                 break;
888
889                 if (omsg.throttle_status >= 0 &&
890                     omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
891                         chips[i].throttle_reason = omsg.throttle_status;
892                         chips[i].reason[omsg.throttle_status]++;
893                 }
894
895                 if (!omsg.throttle_status)
896                         chips[i].restore = true;
897
898                 schedule_work(&chips[i].throttle);
899         }
900         return 0;
901 }
902
903 static struct notifier_block powernv_cpufreq_opal_nb = {
904         .notifier_call  = powernv_cpufreq_occ_msg,
905         .next           = NULL,
906         .priority       = 0,
907 };
908
909 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
910 {
911         struct powernv_smp_call_data freq_data;
912         struct global_pstate_info *gpstates = policy->driver_data;
913
914         freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
915         freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
916         smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
917         del_timer_sync(&gpstates->timer);
918 }
919
920 static struct cpufreq_driver powernv_cpufreq_driver = {
921         .name           = "powernv-cpufreq",
922         .flags          = CPUFREQ_CONST_LOOPS,
923         .init           = powernv_cpufreq_cpu_init,
924         .exit           = powernv_cpufreq_cpu_exit,
925         .verify         = cpufreq_generic_frequency_table_verify,
926         .target_index   = powernv_cpufreq_target_index,
927         .get            = powernv_cpufreq_get,
928         .stop_cpu       = powernv_cpufreq_stop_cpu,
929         .attr           = powernv_cpu_freq_attr,
930 };
931
932 static int init_chip_info(void)
933 {
934         unsigned int chip[256];
935         unsigned int cpu, i;
936         unsigned int prev_chip_id = UINT_MAX;
937
938         for_each_possible_cpu(cpu) {
939                 unsigned int id = cpu_to_chip_id(cpu);
940
941                 if (prev_chip_id != id) {
942                         prev_chip_id = id;
943                         chip[nr_chips++] = id;
944                 }
945         }
946
947         chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
948         if (!chips)
949                 return -ENOMEM;
950
951         for (i = 0; i < nr_chips; i++) {
952                 chips[i].id = chip[i];
953                 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
954                 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
955                 for_each_cpu(cpu, &chips[i].mask)
956                         per_cpu(chip_info, cpu) =  &chips[i];
957         }
958
959         return 0;
960 }
961
962 static inline void clean_chip_info(void)
963 {
964         int i;
965
966         /* flush any pending work items */
967         if (chips)
968                 for (i = 0; i < nr_chips; i++)
969                         cancel_work_sync(&chips[i].throttle);
970         kfree(chips);
971 }
972
973 static inline void unregister_all_notifiers(void)
974 {
975         opal_message_notifier_unregister(OPAL_MSG_OCC,
976                                          &powernv_cpufreq_opal_nb);
977         unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
978 }
979
980 static int __init powernv_cpufreq_init(void)
981 {
982         int rc = 0;
983
984         /* Don't probe on pseries (guest) platforms */
985         if (!firmware_has_feature(FW_FEATURE_OPAL))
986                 return -ENODEV;
987
988         /* Discover pstates from device tree and init */
989         rc = init_powernv_pstates();
990         if (rc)
991                 goto out;
992
993         /* Populate chip info */
994         rc = init_chip_info();
995         if (rc)
996                 goto out;
997
998         register_reboot_notifier(&powernv_cpufreq_reboot_nb);
999         opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1000
1001         rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1002         if (!rc)
1003                 return 0;
1004
1005         pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1006         unregister_all_notifiers();
1007         clean_chip_info();
1008 out:
1009         pr_info("Platform driver disabled. System does not support PState control\n");
1010         return rc;
1011 }
1012 module_init(powernv_cpufreq_init);
1013
1014 static void __exit powernv_cpufreq_exit(void)
1015 {
1016         cpufreq_unregister_driver(&powernv_cpufreq_driver);
1017         unregister_all_notifiers();
1018         clean_chip_info();
1019 }
1020 module_exit(powernv_cpufreq_exit);
1021
1022 MODULE_LICENSE("GPL");
1023 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");