GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35
36 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
37
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
41
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50
51 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65         return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67
68 static inline int ceiling_fp(int32_t x)
69 {
70         int mask, ret;
71
72         ret = fp_toint(x);
73         mask = (1 << FRAC_BITS) - 1;
74         if (x & mask)
75                 ret += 1;
76         return ret;
77 }
78
79 static inline int32_t percent_fp(int percent)
80 {
81         return div_fp(percent, 100);
82 }
83
84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86         return (x * y) >> EXT_FRAC_BITS;
87 }
88
89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91         return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93
94 static inline int32_t percent_ext_fp(int percent)
95 {
96         return div_ext_fp(percent, 100);
97 }
98
99 /**
100  * struct sample -      Store performance sample
101  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
102  *                      performance during last sample period
103  * @busy_scaled:        Scaled busy value which is used to calculate next
104  *                      P state. This can be different than core_avg_perf
105  *                      to account for cpu idle period
106  * @aperf:              Difference of actual performance frequency clock count
107  *                      read from APERF MSR between last and current sample
108  * @mperf:              Difference of maximum performance frequency clock count
109  *                      read from MPERF MSR between last and current sample
110  * @tsc:                Difference of time stamp counter between last and
111  *                      current sample
112  * @time:               Current time from scheduler
113  *
114  * This structure is used in the cpudata structure to store performance sample
115  * data for choosing next P State.
116  */
117 struct sample {
118         int32_t core_avg_perf;
119         int32_t busy_scaled;
120         u64 aperf;
121         u64 mperf;
122         u64 tsc;
123         u64 time;
124 };
125
126 /**
127  * struct pstate_data - Store P state data
128  * @current_pstate:     Current requested P state
129  * @min_pstate:         Min P state possible for this platform
130  * @max_pstate:         Max P state possible for this platform
131  * @max_pstate_physical:This is physical Max P state for a processor
132  *                      This can be higher than the max_pstate which can
133  *                      be limited by platform thermal design power limits
134  * @scaling:            Scaling factor to  convert frequency to cpufreq
135  *                      frequency units
136  * @turbo_pstate:       Max Turbo P state possible for this platform
137  * @max_freq:           @max_pstate frequency in cpufreq units
138  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
139  *
140  * Stores the per cpu model P state limits and current P state.
141  */
142 struct pstate_data {
143         int     current_pstate;
144         int     min_pstate;
145         int     max_pstate;
146         int     max_pstate_physical;
147         int     scaling;
148         int     turbo_pstate;
149         unsigned int max_freq;
150         unsigned int turbo_freq;
151 };
152
153 /**
154  * struct vid_data -    Stores voltage information data
155  * @min:                VID data for this platform corresponding to
156  *                      the lowest P state
157  * @max:                VID data corresponding to the highest P State.
158  * @turbo:              VID data for turbo P state
159  * @ratio:              Ratio of (vid max - vid min) /
160  *                      (max P state - Min P State)
161  *
162  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163  * This data is used in Atom platforms, where in addition to target P state,
164  * the voltage data needs to be specified to select next P State.
165  */
166 struct vid_data {
167         int min;
168         int max;
169         int turbo;
170         int32_t ratio;
171 };
172
173 /**
174  * struct global_params - Global parameters, mostly tunable via sysfs.
175  * @no_turbo:           Whether or not to use turbo P-states.
176  * @turbo_disabled:     Whether or not turbo P-states are available at all,
177  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
178  *                      not the maximum reported turbo P-state is different from
179  *                      the maximum reported non-turbo one.
180  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
181  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
182  *                      P-state capacity.
183  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
184  *                      P-state capacity.
185  */
186 struct global_params {
187         bool no_turbo;
188         bool turbo_disabled;
189         bool turbo_disabled_mf;
190         int max_perf_pct;
191         int min_perf_pct;
192 };
193
194 /**
195  * struct cpudata -     Per CPU instance data storage
196  * @cpu:                CPU number for this instance data
197  * @policy:             CPUFreq policy value
198  * @update_util:        CPUFreq utility callback information
199  * @update_util_set:    CPUFreq utility callback is set
200  * @iowait_boost:       iowait-related boost fraction
201  * @last_update:        Time of the last update.
202  * @pstate:             Stores P state limits for this CPU
203  * @vid:                Stores VID limits for this CPU
204  * @last_sample_time:   Last Sample time
205  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
206  * @prev_aperf:         Last APERF value read from APERF MSR
207  * @prev_mperf:         Last MPERF value read from MPERF MSR
208  * @prev_tsc:           Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *                      current sample
211  * @sample:             Storage for storing last Sample data
212  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
215  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:      Last saved HWP energy performance preference
217  *                      (EPP) or energy performance bias (EPB),
218  *                      when policy switched to performance
219  * @epp_policy:         Last saved policy used to set EPP/EPB
220  * @epp_default:        Power on default HWP energy performance
221  *                      preference/bias
222  * @epp_cached          Cached HWP energy-performance preference value
223  * @hwp_req_cached:     Cached value of the last HWP Request MSR
224  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
225  * @last_io_update:     Last time when IO wake flag was set
226  * @sched_flags:        Store scheduler flags for possible cross CPU update
227  * @hwp_boost_min:      Last HWP boosted min performance
228  * @suspended:          Whether or not the driver has been suspended.
229  *
230  * This structure stores per CPU instance data for all CPUs.
231  */
232 struct cpudata {
233         int cpu;
234
235         unsigned int policy;
236         struct update_util_data update_util;
237         bool   update_util_set;
238
239         struct pstate_data pstate;
240         struct vid_data vid;
241
242         u64     last_update;
243         u64     last_sample_time;
244         u64     aperf_mperf_shift;
245         u64     prev_aperf;
246         u64     prev_mperf;
247         u64     prev_tsc;
248         u64     prev_cummulative_iowait;
249         struct sample sample;
250         int32_t min_perf_ratio;
251         int32_t max_perf_ratio;
252 #ifdef CONFIG_ACPI
253         struct acpi_processor_performance acpi_perf_data;
254         bool valid_pss_table;
255 #endif
256         unsigned int iowait_boost;
257         s16 epp_powersave;
258         s16 epp_policy;
259         s16 epp_default;
260         s16 epp_cached;
261         u64 hwp_req_cached;
262         u64 hwp_cap_cached;
263         u64 last_io_update;
264         unsigned int sched_flags;
265         u32 hwp_boost_min;
266         bool suspended;
267 };
268
269 static struct cpudata **all_cpu_data;
270
271 /**
272  * struct pstate_funcs - Per CPU model specific callbacks
273  * @get_max:            Callback to get maximum non turbo effective P state
274  * @get_max_physical:   Callback to get maximum non turbo physical P state
275  * @get_min:            Callback to get minimum P state
276  * @get_turbo:          Callback to get turbo P state
277  * @get_scaling:        Callback to get frequency scaling factor
278  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
279  * @get_val:            Callback to convert P state to actual MSR write value
280  * @get_vid:            Callback to get VID data for Atom platforms
281  *
282  * Core and Atom CPU models have different way to get P State limits. This
283  * structure is used to store those callbacks.
284  */
285 struct pstate_funcs {
286         int (*get_max)(void);
287         int (*get_max_physical)(void);
288         int (*get_min)(void);
289         int (*get_turbo)(void);
290         int (*get_scaling)(void);
291         int (*get_aperf_mperf_shift)(void);
292         u64 (*get_val)(struct cpudata*, int pstate);
293         void (*get_vid)(struct cpudata *);
294 };
295
296 static struct pstate_funcs pstate_funcs __read_mostly;
297
298 static int hwp_active __read_mostly;
299 static int hwp_mode_bdw __read_mostly;
300 static bool per_cpu_limits __read_mostly;
301 static bool hwp_boost __read_mostly;
302
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304
305 #ifdef CONFIG_ACPI
306 static bool acpi_ppc;
307 #endif
308
309 static struct global_params global;
310
311 static DEFINE_MUTEX(intel_pstate_driver_lock);
312 static DEFINE_MUTEX(intel_pstate_limits_lock);
313
314 #ifdef CONFIG_ACPI
315
316 static bool intel_pstate_acpi_pm_profile_server(void)
317 {
318         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
319             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
320                 return true;
321
322         return false;
323 }
324
325 static bool intel_pstate_get_ppc_enable_status(void)
326 {
327         if (intel_pstate_acpi_pm_profile_server())
328                 return true;
329
330         return acpi_ppc;
331 }
332
333 #ifdef CONFIG_ACPI_CPPC_LIB
334
335 /* The work item is needed to avoid CPU hotplug locking issues */
336 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
337 {
338         sched_set_itmt_support();
339 }
340
341 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
342
343 static void intel_pstate_set_itmt_prio(int cpu)
344 {
345         struct cppc_perf_caps cppc_perf;
346         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
347         int ret;
348
349         ret = cppc_get_perf_caps(cpu, &cppc_perf);
350         if (ret)
351                 return;
352
353         /*
354          * The priorities can be set regardless of whether or not
355          * sched_set_itmt_support(true) has been called and it is valid to
356          * update them at any time after it has been called.
357          */
358         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
359
360         if (max_highest_perf <= min_highest_perf) {
361                 if (cppc_perf.highest_perf > max_highest_perf)
362                         max_highest_perf = cppc_perf.highest_perf;
363
364                 if (cppc_perf.highest_perf < min_highest_perf)
365                         min_highest_perf = cppc_perf.highest_perf;
366
367                 if (max_highest_perf > min_highest_perf) {
368                         /*
369                          * This code can be run during CPU online under the
370                          * CPU hotplug locks, so sched_set_itmt_support()
371                          * cannot be called from here.  Queue up a work item
372                          * to invoke it.
373                          */
374                         schedule_work(&sched_itmt_work);
375                 }
376         }
377 }
378
379 static int intel_pstate_get_cppc_guranteed(int cpu)
380 {
381         struct cppc_perf_caps cppc_perf;
382         int ret;
383
384         ret = cppc_get_perf_caps(cpu, &cppc_perf);
385         if (ret)
386                 return ret;
387
388         if (cppc_perf.guaranteed_perf)
389                 return cppc_perf.guaranteed_perf;
390
391         return cppc_perf.nominal_perf;
392 }
393
394 #else /* CONFIG_ACPI_CPPC_LIB */
395 static void intel_pstate_set_itmt_prio(int cpu)
396 {
397 }
398 #endif /* CONFIG_ACPI_CPPC_LIB */
399
400 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
401 {
402         struct cpudata *cpu;
403         int ret;
404         int i;
405
406         if (hwp_active) {
407                 intel_pstate_set_itmt_prio(policy->cpu);
408                 return;
409         }
410
411         if (!intel_pstate_get_ppc_enable_status())
412                 return;
413
414         cpu = all_cpu_data[policy->cpu];
415
416         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
417                                                   policy->cpu);
418         if (ret)
419                 return;
420
421         /*
422          * Check if the control value in _PSS is for PERF_CTL MSR, which should
423          * guarantee that the states returned by it map to the states in our
424          * list directly.
425          */
426         if (cpu->acpi_perf_data.control_register.space_id !=
427                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
428                 goto err;
429
430         /*
431          * If there is only one entry _PSS, simply ignore _PSS and continue as
432          * usual without taking _PSS into account
433          */
434         if (cpu->acpi_perf_data.state_count < 2)
435                 goto err;
436
437         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
438         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
439                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
440                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
441                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
442                          (u32) cpu->acpi_perf_data.states[i].power,
443                          (u32) cpu->acpi_perf_data.states[i].control);
444         }
445
446         cpu->valid_pss_table = true;
447         pr_debug("_PPC limits will be enforced\n");
448
449         return;
450
451  err:
452         cpu->valid_pss_table = false;
453         acpi_processor_unregister_performance(policy->cpu);
454 }
455
456 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
457 {
458         struct cpudata *cpu;
459
460         cpu = all_cpu_data[policy->cpu];
461         if (!cpu->valid_pss_table)
462                 return;
463
464         acpi_processor_unregister_performance(policy->cpu);
465 }
466 #else /* CONFIG_ACPI */
467 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
468 {
469 }
470
471 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
472 {
473 }
474
475 static inline bool intel_pstate_acpi_pm_profile_server(void)
476 {
477         return false;
478 }
479 #endif /* CONFIG_ACPI */
480
481 #ifndef CONFIG_ACPI_CPPC_LIB
482 static int intel_pstate_get_cppc_guranteed(int cpu)
483 {
484         return -ENOTSUPP;
485 }
486 #endif /* CONFIG_ACPI_CPPC_LIB */
487
488 static inline void update_turbo_state(void)
489 {
490         u64 misc_en;
491         struct cpudata *cpu;
492
493         cpu = all_cpu_data[0];
494         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
495         global.turbo_disabled =
496                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
497                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
498 }
499
500 static int min_perf_pct_min(void)
501 {
502         struct cpudata *cpu = all_cpu_data[0];
503         int turbo_pstate = cpu->pstate.turbo_pstate;
504
505         return turbo_pstate ?
506                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
507 }
508
509 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
510 {
511         u64 epb;
512         int ret;
513
514         if (!boot_cpu_has(X86_FEATURE_EPB))
515                 return -ENXIO;
516
517         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
518         if (ret)
519                 return (s16)ret;
520
521         return (s16)(epb & 0x0f);
522 }
523
524 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
525 {
526         s16 epp;
527
528         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
529                 /*
530                  * When hwp_req_data is 0, means that caller didn't read
531                  * MSR_HWP_REQUEST, so need to read and get EPP.
532                  */
533                 if (!hwp_req_data) {
534                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
535                                             &hwp_req_data);
536                         if (epp)
537                                 return epp;
538                 }
539                 epp = (hwp_req_data >> 24) & 0xff;
540         } else {
541                 /* When there is no EPP present, HWP uses EPB settings */
542                 epp = intel_pstate_get_epb(cpu_data);
543         }
544
545         return epp;
546 }
547
548 static int intel_pstate_set_epb(int cpu, s16 pref)
549 {
550         u64 epb;
551         int ret;
552
553         if (!boot_cpu_has(X86_FEATURE_EPB))
554                 return -ENXIO;
555
556         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
557         if (ret)
558                 return ret;
559
560         epb = (epb & ~0x0f) | pref;
561         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
562
563         return 0;
564 }
565
566 /*
567  * EPP/EPB display strings corresponding to EPP index in the
568  * energy_perf_strings[]
569  *      index           String
570  *-------------------------------------
571  *      0               default
572  *      1               performance
573  *      2               balance_performance
574  *      3               balance_power
575  *      4               power
576  */
577 static const char * const energy_perf_strings[] = {
578         "default",
579         "performance",
580         "balance_performance",
581         "balance_power",
582         "power",
583         NULL
584 };
585 static const unsigned int epp_values[] = {
586         HWP_EPP_PERFORMANCE,
587         HWP_EPP_BALANCE_PERFORMANCE,
588         HWP_EPP_BALANCE_POWERSAVE,
589         HWP_EPP_POWERSAVE
590 };
591
592 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
593 {
594         s16 epp;
595         int index = -EINVAL;
596
597         *raw_epp = 0;
598         epp = intel_pstate_get_epp(cpu_data, 0);
599         if (epp < 0)
600                 return epp;
601
602         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
603                 if (epp == HWP_EPP_PERFORMANCE)
604                         return 1;
605                 if (epp == HWP_EPP_BALANCE_PERFORMANCE)
606                         return 2;
607                 if (epp == HWP_EPP_BALANCE_POWERSAVE)
608                         return 3;
609                 if (epp == HWP_EPP_POWERSAVE)
610                         return 4;
611                 *raw_epp = epp;
612                 return 0;
613         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
614                 /*
615                  * Range:
616                  *      0x00-0x03       :       Performance
617                  *      0x04-0x07       :       Balance performance
618                  *      0x08-0x0B       :       Balance power
619                  *      0x0C-0x0F       :       Power
620                  * The EPB is a 4 bit value, but our ranges restrict the
621                  * value which can be set. Here only using top two bits
622                  * effectively.
623                  */
624                 index = (epp >> 2) + 1;
625         }
626
627         return index;
628 }
629
630 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
631 {
632         int ret;
633
634         /*
635          * Use the cached HWP Request MSR value, because in the active mode the
636          * register itself may be updated by intel_pstate_hwp_boost_up() or
637          * intel_pstate_hwp_boost_down() at any time.
638          */
639         u64 value = READ_ONCE(cpu->hwp_req_cached);
640
641         value &= ~GENMASK_ULL(31, 24);
642         value |= (u64)epp << 24;
643         /*
644          * The only other updater of hwp_req_cached in the active mode,
645          * intel_pstate_hwp_set(), is called under the same lock as this
646          * function, so it cannot run in parallel with the update below.
647          */
648         WRITE_ONCE(cpu->hwp_req_cached, value);
649         ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
650         if (!ret)
651                 cpu->epp_cached = epp;
652
653         return ret;
654 }
655
656 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
657                                               int pref_index, bool use_raw,
658                                               u32 raw_epp)
659 {
660         int epp = -EINVAL;
661         int ret;
662
663         if (!pref_index)
664                 epp = cpu_data->epp_default;
665
666         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
667                 if (use_raw)
668                         epp = raw_epp;
669                 else if (epp == -EINVAL)
670                         epp = epp_values[pref_index - 1];
671
672                 /*
673                  * To avoid confusion, refuse to set EPP to any values different
674                  * from 0 (performance) if the current policy is "performance",
675                  * because those values would be overridden.
676                  */
677                 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
678                         return -EBUSY;
679
680                 ret = intel_pstate_set_epp(cpu_data, epp);
681         } else {
682                 if (epp == -EINVAL)
683                         epp = (pref_index - 1) << 2;
684                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
685         }
686
687         return ret;
688 }
689
690 static ssize_t show_energy_performance_available_preferences(
691                                 struct cpufreq_policy *policy, char *buf)
692 {
693         int i = 0;
694         int ret = 0;
695
696         while (energy_perf_strings[i] != NULL)
697                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
698
699         ret += sprintf(&buf[ret], "\n");
700
701         return ret;
702 }
703
704 cpufreq_freq_attr_ro(energy_performance_available_preferences);
705
706 static struct cpufreq_driver intel_pstate;
707
708 static ssize_t store_energy_performance_preference(
709                 struct cpufreq_policy *policy, const char *buf, size_t count)
710 {
711         struct cpudata *cpu = all_cpu_data[policy->cpu];
712         char str_preference[21];
713         bool raw = false;
714         ssize_t ret;
715         u32 epp = 0;
716
717         ret = sscanf(buf, "%20s", str_preference);
718         if (ret != 1)
719                 return -EINVAL;
720
721         ret = match_string(energy_perf_strings, -1, str_preference);
722         if (ret < 0) {
723                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
724                         return ret;
725
726                 ret = kstrtouint(buf, 10, &epp);
727                 if (ret)
728                         return ret;
729
730                 if (epp > 255)
731                         return -EINVAL;
732
733                 raw = true;
734         }
735
736         /*
737          * This function runs with the policy R/W semaphore held, which
738          * guarantees that the driver pointer will not change while it is
739          * running.
740          */
741         if (!intel_pstate_driver)
742                 return -EAGAIN;
743
744         mutex_lock(&intel_pstate_limits_lock);
745
746         if (intel_pstate_driver == &intel_pstate) {
747                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
748         } else {
749                 /*
750                  * In the passive mode the governor needs to be stopped on the
751                  * target CPU before the EPP update and restarted after it,
752                  * which is super-heavy-weight, so make sure it is worth doing
753                  * upfront.
754                  */
755                 if (!raw)
756                         epp = ret ? epp_values[ret - 1] : cpu->epp_default;
757
758                 if (cpu->epp_cached != epp) {
759                         int err;
760
761                         cpufreq_stop_governor(policy);
762                         ret = intel_pstate_set_epp(cpu, epp);
763                         err = cpufreq_start_governor(policy);
764                         if (!ret)
765                                 ret = err;
766                 } else {
767                         ret = 0;
768                 }
769         }
770
771         mutex_unlock(&intel_pstate_limits_lock);
772
773         return ret ?: count;
774 }
775
776 static ssize_t show_energy_performance_preference(
777                                 struct cpufreq_policy *policy, char *buf)
778 {
779         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
780         int preference, raw_epp;
781
782         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
783         if (preference < 0)
784                 return preference;
785
786         if (raw_epp)
787                 return  sprintf(buf, "%d\n", raw_epp);
788         else
789                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
790 }
791
792 cpufreq_freq_attr_rw(energy_performance_preference);
793
794 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
795 {
796         struct cpudata *cpu;
797         u64 cap;
798         int ratio;
799
800         ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
801         if (ratio <= 0) {
802                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
803                 ratio = HWP_GUARANTEED_PERF(cap);
804         }
805
806         cpu = all_cpu_data[policy->cpu];
807
808         return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
809 }
810
811 cpufreq_freq_attr_ro(base_frequency);
812
813 static struct freq_attr *hwp_cpufreq_attrs[] = {
814         &energy_performance_preference,
815         &energy_performance_available_preferences,
816         &base_frequency,
817         NULL,
818 };
819
820 static void intel_pstate_get_hwp_max(struct cpudata *cpu, int *phy_max,
821                                      int *current_max)
822 {
823         u64 cap;
824
825         rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
826         WRITE_ONCE(cpu->hwp_cap_cached, cap);
827         if (global.no_turbo || global.turbo_disabled)
828                 *current_max = HWP_GUARANTEED_PERF(cap);
829         else
830                 *current_max = HWP_HIGHEST_PERF(cap);
831
832         *phy_max = HWP_HIGHEST_PERF(cap);
833 }
834
835 static void intel_pstate_hwp_set(unsigned int cpu)
836 {
837         struct cpudata *cpu_data = all_cpu_data[cpu];
838         int max, min;
839         u64 value;
840         s16 epp;
841
842         max = cpu_data->max_perf_ratio;
843         min = cpu_data->min_perf_ratio;
844
845         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
846                 min = max;
847
848         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
849
850         value &= ~HWP_MIN_PERF(~0L);
851         value |= HWP_MIN_PERF(min);
852
853         value &= ~HWP_MAX_PERF(~0L);
854         value |= HWP_MAX_PERF(max);
855
856         if (cpu_data->epp_policy == cpu_data->policy)
857                 goto skip_epp;
858
859         cpu_data->epp_policy = cpu_data->policy;
860
861         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
862                 epp = intel_pstate_get_epp(cpu_data, value);
863                 cpu_data->epp_powersave = epp;
864                 /* If EPP read was failed, then don't try to write */
865                 if (epp < 0)
866                         goto skip_epp;
867
868                 epp = 0;
869         } else {
870                 /* skip setting EPP, when saved value is invalid */
871                 if (cpu_data->epp_powersave < 0)
872                         goto skip_epp;
873
874                 /*
875                  * No need to restore EPP when it is not zero. This
876                  * means:
877                  *  - Policy is not changed
878                  *  - user has manually changed
879                  *  - Error reading EPB
880                  */
881                 epp = intel_pstate_get_epp(cpu_data, value);
882                 if (epp)
883                         goto skip_epp;
884
885                 epp = cpu_data->epp_powersave;
886         }
887         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
888                 value &= ~GENMASK_ULL(31, 24);
889                 value |= (u64)epp << 24;
890         } else {
891                 intel_pstate_set_epb(cpu, epp);
892         }
893 skip_epp:
894         WRITE_ONCE(cpu_data->hwp_req_cached, value);
895         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
896 }
897
898 static void intel_pstate_hwp_offline(struct cpudata *cpu)
899 {
900         u64 value = READ_ONCE(cpu->hwp_req_cached);
901         int min_perf;
902
903         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
904                 /*
905                  * In case the EPP has been set to "performance" by the
906                  * active mode "performance" scaling algorithm, replace that
907                  * temporary value with the cached EPP one.
908                  */
909                 value &= ~GENMASK_ULL(31, 24);
910                 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
911                 WRITE_ONCE(cpu->hwp_req_cached, value);
912         }
913
914         value &= ~GENMASK_ULL(31, 0);
915         min_perf = HWP_LOWEST_PERF(cpu->hwp_cap_cached);
916
917         /* Set hwp_max = hwp_min */
918         value |= HWP_MAX_PERF(min_perf);
919         value |= HWP_MIN_PERF(min_perf);
920
921         /* Set EPP to min */
922         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
923                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
924
925         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
926 }
927
928 #define POWER_CTL_EE_ENABLE     1
929 #define POWER_CTL_EE_DISABLE    2
930
931 static int power_ctl_ee_state;
932
933 static void set_power_ctl_ee_state(bool input)
934 {
935         u64 power_ctl;
936
937         mutex_lock(&intel_pstate_driver_lock);
938         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
939         if (input) {
940                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
941                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
942         } else {
943                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
944                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
945         }
946         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
947         mutex_unlock(&intel_pstate_driver_lock);
948 }
949
950 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
951
952 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
953 {
954         intel_pstate_hwp_enable(cpu);
955         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
956 }
957
958 static int intel_pstate_suspend(struct cpufreq_policy *policy)
959 {
960         struct cpudata *cpu = all_cpu_data[policy->cpu];
961
962         pr_debug("CPU %d suspending\n", cpu->cpu);
963
964         cpu->suspended = true;
965
966         return 0;
967 }
968
969 static int intel_pstate_resume(struct cpufreq_policy *policy)
970 {
971         struct cpudata *cpu = all_cpu_data[policy->cpu];
972
973         pr_debug("CPU %d resuming\n", cpu->cpu);
974
975         /* Only restore if the system default is changed */
976         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
977                 set_power_ctl_ee_state(true);
978         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
979                 set_power_ctl_ee_state(false);
980
981         if (cpu->suspended && hwp_active) {
982                 mutex_lock(&intel_pstate_limits_lock);
983
984                 /* Re-enable HWP, because "online" has not done that. */
985                 intel_pstate_hwp_reenable(cpu);
986
987                 mutex_unlock(&intel_pstate_limits_lock);
988         }
989
990         cpu->suspended = false;
991
992         return 0;
993 }
994
995 static void intel_pstate_update_policies(void)
996 {
997         int cpu;
998
999         for_each_possible_cpu(cpu)
1000                 cpufreq_update_policy(cpu);
1001 }
1002
1003 static void intel_pstate_update_max_freq(unsigned int cpu)
1004 {
1005         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1006         struct cpudata *cpudata;
1007
1008         if (!policy)
1009                 return;
1010
1011         cpudata = all_cpu_data[cpu];
1012         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1013                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1014
1015         refresh_frequency_limits(policy);
1016
1017         cpufreq_cpu_release(policy);
1018 }
1019
1020 static void intel_pstate_update_limits(unsigned int cpu)
1021 {
1022         mutex_lock(&intel_pstate_driver_lock);
1023
1024         update_turbo_state();
1025         /*
1026          * If turbo has been turned on or off globally, policy limits for
1027          * all CPUs need to be updated to reflect that.
1028          */
1029         if (global.turbo_disabled_mf != global.turbo_disabled) {
1030                 global.turbo_disabled_mf = global.turbo_disabled;
1031                 arch_set_max_freq_ratio(global.turbo_disabled);
1032                 for_each_possible_cpu(cpu)
1033                         intel_pstate_update_max_freq(cpu);
1034         } else {
1035                 cpufreq_update_policy(cpu);
1036         }
1037
1038         mutex_unlock(&intel_pstate_driver_lock);
1039 }
1040
1041 /************************** sysfs begin ************************/
1042 #define show_one(file_name, object)                                     \
1043         static ssize_t show_##file_name                                 \
1044         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1045         {                                                               \
1046                 return sprintf(buf, "%u\n", global.object);             \
1047         }
1048
1049 static ssize_t intel_pstate_show_status(char *buf);
1050 static int intel_pstate_update_status(const char *buf, size_t size);
1051
1052 static ssize_t show_status(struct kobject *kobj,
1053                            struct kobj_attribute *attr, char *buf)
1054 {
1055         ssize_t ret;
1056
1057         mutex_lock(&intel_pstate_driver_lock);
1058         ret = intel_pstate_show_status(buf);
1059         mutex_unlock(&intel_pstate_driver_lock);
1060
1061         return ret;
1062 }
1063
1064 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1065                             const char *buf, size_t count)
1066 {
1067         char *p = memchr(buf, '\n', count);
1068         int ret;
1069
1070         mutex_lock(&intel_pstate_driver_lock);
1071         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1072         mutex_unlock(&intel_pstate_driver_lock);
1073
1074         return ret < 0 ? ret : count;
1075 }
1076
1077 static ssize_t show_turbo_pct(struct kobject *kobj,
1078                                 struct kobj_attribute *attr, char *buf)
1079 {
1080         struct cpudata *cpu;
1081         int total, no_turbo, turbo_pct;
1082         uint32_t turbo_fp;
1083
1084         mutex_lock(&intel_pstate_driver_lock);
1085
1086         if (!intel_pstate_driver) {
1087                 mutex_unlock(&intel_pstate_driver_lock);
1088                 return -EAGAIN;
1089         }
1090
1091         cpu = all_cpu_data[0];
1092
1093         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1094         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1095         turbo_fp = div_fp(no_turbo, total);
1096         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1097
1098         mutex_unlock(&intel_pstate_driver_lock);
1099
1100         return sprintf(buf, "%u\n", turbo_pct);
1101 }
1102
1103 static ssize_t show_num_pstates(struct kobject *kobj,
1104                                 struct kobj_attribute *attr, char *buf)
1105 {
1106         struct cpudata *cpu;
1107         int total;
1108
1109         mutex_lock(&intel_pstate_driver_lock);
1110
1111         if (!intel_pstate_driver) {
1112                 mutex_unlock(&intel_pstate_driver_lock);
1113                 return -EAGAIN;
1114         }
1115
1116         cpu = all_cpu_data[0];
1117         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1118
1119         mutex_unlock(&intel_pstate_driver_lock);
1120
1121         return sprintf(buf, "%u\n", total);
1122 }
1123
1124 static ssize_t show_no_turbo(struct kobject *kobj,
1125                              struct kobj_attribute *attr, char *buf)
1126 {
1127         ssize_t ret;
1128
1129         mutex_lock(&intel_pstate_driver_lock);
1130
1131         if (!intel_pstate_driver) {
1132                 mutex_unlock(&intel_pstate_driver_lock);
1133                 return -EAGAIN;
1134         }
1135
1136         update_turbo_state();
1137         if (global.turbo_disabled)
1138                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1139         else
1140                 ret = sprintf(buf, "%u\n", global.no_turbo);
1141
1142         mutex_unlock(&intel_pstate_driver_lock);
1143
1144         return ret;
1145 }
1146
1147 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1148                               const char *buf, size_t count)
1149 {
1150         unsigned int input;
1151         int ret;
1152
1153         ret = sscanf(buf, "%u", &input);
1154         if (ret != 1)
1155                 return -EINVAL;
1156
1157         mutex_lock(&intel_pstate_driver_lock);
1158
1159         if (!intel_pstate_driver) {
1160                 mutex_unlock(&intel_pstate_driver_lock);
1161                 return -EAGAIN;
1162         }
1163
1164         mutex_lock(&intel_pstate_limits_lock);
1165
1166         update_turbo_state();
1167         if (global.turbo_disabled) {
1168                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1169                 mutex_unlock(&intel_pstate_limits_lock);
1170                 mutex_unlock(&intel_pstate_driver_lock);
1171                 return -EPERM;
1172         }
1173
1174         global.no_turbo = clamp_t(int, input, 0, 1);
1175
1176         if (global.no_turbo) {
1177                 struct cpudata *cpu = all_cpu_data[0];
1178                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1179
1180                 /* Squash the global minimum into the permitted range. */
1181                 if (global.min_perf_pct > pct)
1182                         global.min_perf_pct = pct;
1183         }
1184
1185         mutex_unlock(&intel_pstate_limits_lock);
1186
1187         intel_pstate_update_policies();
1188
1189         mutex_unlock(&intel_pstate_driver_lock);
1190
1191         return count;
1192 }
1193
1194 static void update_qos_request(enum freq_qos_req_type type)
1195 {
1196         int max_state, turbo_max, freq, i, perf_pct;
1197         struct freq_qos_request *req;
1198         struct cpufreq_policy *policy;
1199
1200         for_each_possible_cpu(i) {
1201                 struct cpudata *cpu = all_cpu_data[i];
1202
1203                 policy = cpufreq_cpu_get(i);
1204                 if (!policy)
1205                         continue;
1206
1207                 req = policy->driver_data;
1208                 cpufreq_cpu_put(policy);
1209
1210                 if (!req)
1211                         continue;
1212
1213                 if (hwp_active)
1214                         intel_pstate_get_hwp_max(cpu, &turbo_max, &max_state);
1215                 else
1216                         turbo_max = cpu->pstate.turbo_pstate;
1217
1218                 if (type == FREQ_QOS_MIN) {
1219                         perf_pct = global.min_perf_pct;
1220                 } else {
1221                         req++;
1222                         perf_pct = global.max_perf_pct;
1223                 }
1224
1225                 freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1226                 freq *= cpu->pstate.scaling;
1227
1228                 if (freq_qos_update_request(req, freq) < 0)
1229                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1230         }
1231 }
1232
1233 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1234                                   const char *buf, size_t count)
1235 {
1236         unsigned int input;
1237         int ret;
1238
1239         ret = sscanf(buf, "%u", &input);
1240         if (ret != 1)
1241                 return -EINVAL;
1242
1243         mutex_lock(&intel_pstate_driver_lock);
1244
1245         if (!intel_pstate_driver) {
1246                 mutex_unlock(&intel_pstate_driver_lock);
1247                 return -EAGAIN;
1248         }
1249
1250         mutex_lock(&intel_pstate_limits_lock);
1251
1252         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1253
1254         mutex_unlock(&intel_pstate_limits_lock);
1255
1256         if (intel_pstate_driver == &intel_pstate)
1257                 intel_pstate_update_policies();
1258         else
1259                 update_qos_request(FREQ_QOS_MAX);
1260
1261         mutex_unlock(&intel_pstate_driver_lock);
1262
1263         return count;
1264 }
1265
1266 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1267                                   const char *buf, size_t count)
1268 {
1269         unsigned int input;
1270         int ret;
1271
1272         ret = sscanf(buf, "%u", &input);
1273         if (ret != 1)
1274                 return -EINVAL;
1275
1276         mutex_lock(&intel_pstate_driver_lock);
1277
1278         if (!intel_pstate_driver) {
1279                 mutex_unlock(&intel_pstate_driver_lock);
1280                 return -EAGAIN;
1281         }
1282
1283         mutex_lock(&intel_pstate_limits_lock);
1284
1285         global.min_perf_pct = clamp_t(int, input,
1286                                       min_perf_pct_min(), global.max_perf_pct);
1287
1288         mutex_unlock(&intel_pstate_limits_lock);
1289
1290         if (intel_pstate_driver == &intel_pstate)
1291                 intel_pstate_update_policies();
1292         else
1293                 update_qos_request(FREQ_QOS_MIN);
1294
1295         mutex_unlock(&intel_pstate_driver_lock);
1296
1297         return count;
1298 }
1299
1300 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1301                                 struct kobj_attribute *attr, char *buf)
1302 {
1303         return sprintf(buf, "%u\n", hwp_boost);
1304 }
1305
1306 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1307                                        struct kobj_attribute *b,
1308                                        const char *buf, size_t count)
1309 {
1310         unsigned int input;
1311         int ret;
1312
1313         ret = kstrtouint(buf, 10, &input);
1314         if (ret)
1315                 return ret;
1316
1317         mutex_lock(&intel_pstate_driver_lock);
1318         hwp_boost = !!input;
1319         intel_pstate_update_policies();
1320         mutex_unlock(&intel_pstate_driver_lock);
1321
1322         return count;
1323 }
1324
1325 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1326                                       char *buf)
1327 {
1328         u64 power_ctl;
1329         int enable;
1330
1331         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1332         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1333         return sprintf(buf, "%d\n", !enable);
1334 }
1335
1336 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1337                                        const char *buf, size_t count)
1338 {
1339         bool input;
1340         int ret;
1341
1342         ret = kstrtobool(buf, &input);
1343         if (ret)
1344                 return ret;
1345
1346         set_power_ctl_ee_state(input);
1347
1348         return count;
1349 }
1350
1351 show_one(max_perf_pct, max_perf_pct);
1352 show_one(min_perf_pct, min_perf_pct);
1353
1354 define_one_global_rw(status);
1355 define_one_global_rw(no_turbo);
1356 define_one_global_rw(max_perf_pct);
1357 define_one_global_rw(min_perf_pct);
1358 define_one_global_ro(turbo_pct);
1359 define_one_global_ro(num_pstates);
1360 define_one_global_rw(hwp_dynamic_boost);
1361 define_one_global_rw(energy_efficiency);
1362
1363 static struct attribute *intel_pstate_attributes[] = {
1364         &status.attr,
1365         &no_turbo.attr,
1366         &turbo_pct.attr,
1367         &num_pstates.attr,
1368         NULL
1369 };
1370
1371 static const struct attribute_group intel_pstate_attr_group = {
1372         .attrs = intel_pstate_attributes,
1373 };
1374
1375 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1376
1377 static struct kobject *intel_pstate_kobject;
1378
1379 static void __init intel_pstate_sysfs_expose_params(void)
1380 {
1381         int rc;
1382
1383         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1384                                                 &cpu_subsys.dev_root->kobj);
1385         if (WARN_ON(!intel_pstate_kobject))
1386                 return;
1387
1388         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1389         if (WARN_ON(rc))
1390                 return;
1391
1392         /*
1393          * If per cpu limits are enforced there are no global limits, so
1394          * return without creating max/min_perf_pct attributes
1395          */
1396         if (per_cpu_limits)
1397                 return;
1398
1399         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1400         WARN_ON(rc);
1401
1402         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1403         WARN_ON(rc);
1404
1405         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1406                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1407                 WARN_ON(rc);
1408         }
1409 }
1410
1411 static void __init intel_pstate_sysfs_remove(void)
1412 {
1413         if (!intel_pstate_kobject)
1414                 return;
1415
1416         sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1417
1418         if (!per_cpu_limits) {
1419                 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1420                 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1421
1422                 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1423                         sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1424         }
1425
1426         kobject_put(intel_pstate_kobject);
1427 }
1428
1429 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1430 {
1431         int rc;
1432
1433         if (!hwp_active)
1434                 return;
1435
1436         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1437         WARN_ON_ONCE(rc);
1438 }
1439
1440 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1441 {
1442         if (!hwp_active)
1443                 return;
1444
1445         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1446 }
1447
1448 /************************** sysfs end ************************/
1449
1450 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1451 {
1452         /* First disable HWP notification interrupt as we don't process them */
1453         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1454                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1455
1456         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1457         if (cpudata->epp_default == -EINVAL)
1458                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1459 }
1460
1461 static int atom_get_min_pstate(void)
1462 {
1463         u64 value;
1464
1465         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1466         return (value >> 8) & 0x7F;
1467 }
1468
1469 static int atom_get_max_pstate(void)
1470 {
1471         u64 value;
1472
1473         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1474         return (value >> 16) & 0x7F;
1475 }
1476
1477 static int atom_get_turbo_pstate(void)
1478 {
1479         u64 value;
1480
1481         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1482         return value & 0x7F;
1483 }
1484
1485 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1486 {
1487         u64 val;
1488         int32_t vid_fp;
1489         u32 vid;
1490
1491         val = (u64)pstate << 8;
1492         if (global.no_turbo && !global.turbo_disabled)
1493                 val |= (u64)1 << 32;
1494
1495         vid_fp = cpudata->vid.min + mul_fp(
1496                 int_tofp(pstate - cpudata->pstate.min_pstate),
1497                 cpudata->vid.ratio);
1498
1499         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1500         vid = ceiling_fp(vid_fp);
1501
1502         if (pstate > cpudata->pstate.max_pstate)
1503                 vid = cpudata->vid.turbo;
1504
1505         return val | vid;
1506 }
1507
1508 static int silvermont_get_scaling(void)
1509 {
1510         u64 value;
1511         int i;
1512         /* Defined in Table 35-6 from SDM (Sept 2015) */
1513         static int silvermont_freq_table[] = {
1514                 83300, 100000, 133300, 116700, 80000};
1515
1516         rdmsrl(MSR_FSB_FREQ, value);
1517         i = value & 0x7;
1518         WARN_ON(i > 4);
1519
1520         return silvermont_freq_table[i];
1521 }
1522
1523 static int airmont_get_scaling(void)
1524 {
1525         u64 value;
1526         int i;
1527         /* Defined in Table 35-10 from SDM (Sept 2015) */
1528         static int airmont_freq_table[] = {
1529                 83300, 100000, 133300, 116700, 80000,
1530                 93300, 90000, 88900, 87500};
1531
1532         rdmsrl(MSR_FSB_FREQ, value);
1533         i = value & 0xF;
1534         WARN_ON(i > 8);
1535
1536         return airmont_freq_table[i];
1537 }
1538
1539 static void atom_get_vid(struct cpudata *cpudata)
1540 {
1541         u64 value;
1542
1543         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1544         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1545         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1546         cpudata->vid.ratio = div_fp(
1547                 cpudata->vid.max - cpudata->vid.min,
1548                 int_tofp(cpudata->pstate.max_pstate -
1549                         cpudata->pstate.min_pstate));
1550
1551         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1552         cpudata->vid.turbo = value & 0x7f;
1553 }
1554
1555 static int core_get_min_pstate(void)
1556 {
1557         u64 value;
1558
1559         rdmsrl(MSR_PLATFORM_INFO, value);
1560         return (value >> 40) & 0xFF;
1561 }
1562
1563 static int core_get_max_pstate_physical(void)
1564 {
1565         u64 value;
1566
1567         rdmsrl(MSR_PLATFORM_INFO, value);
1568         return (value >> 8) & 0xFF;
1569 }
1570
1571 static int core_get_tdp_ratio(u64 plat_info)
1572 {
1573         /* Check how many TDP levels present */
1574         if (plat_info & 0x600000000) {
1575                 u64 tdp_ctrl;
1576                 u64 tdp_ratio;
1577                 int tdp_msr;
1578                 int err;
1579
1580                 /* Get the TDP level (0, 1, 2) to get ratios */
1581                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1582                 if (err)
1583                         return err;
1584
1585                 /* TDP MSR are continuous starting at 0x648 */
1586                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1587                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1588                 if (err)
1589                         return err;
1590
1591                 /* For level 1 and 2, bits[23:16] contain the ratio */
1592                 if (tdp_ctrl & 0x03)
1593                         tdp_ratio >>= 16;
1594
1595                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1596                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1597
1598                 return (int)tdp_ratio;
1599         }
1600
1601         return -ENXIO;
1602 }
1603
1604 static int core_get_max_pstate(void)
1605 {
1606         u64 tar;
1607         u64 plat_info;
1608         int max_pstate;
1609         int tdp_ratio;
1610         int err;
1611
1612         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1613         max_pstate = (plat_info >> 8) & 0xFF;
1614
1615         tdp_ratio = core_get_tdp_ratio(plat_info);
1616         if (tdp_ratio <= 0)
1617                 return max_pstate;
1618
1619         if (hwp_active) {
1620                 /* Turbo activation ratio is not used on HWP platforms */
1621                 return tdp_ratio;
1622         }
1623
1624         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1625         if (!err) {
1626                 int tar_levels;
1627
1628                 /* Do some sanity checking for safety */
1629                 tar_levels = tar & 0xff;
1630                 if (tdp_ratio - 1 == tar_levels) {
1631                         max_pstate = tar_levels;
1632                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1633                 }
1634         }
1635
1636         return max_pstate;
1637 }
1638
1639 static int core_get_turbo_pstate(void)
1640 {
1641         u64 value;
1642         int nont, ret;
1643
1644         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1645         nont = core_get_max_pstate();
1646         ret = (value) & 255;
1647         if (ret <= nont)
1648                 ret = nont;
1649         return ret;
1650 }
1651
1652 static inline int core_get_scaling(void)
1653 {
1654         return 100000;
1655 }
1656
1657 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1658 {
1659         u64 val;
1660
1661         val = (u64)pstate << 8;
1662         if (global.no_turbo && !global.turbo_disabled)
1663                 val |= (u64)1 << 32;
1664
1665         return val;
1666 }
1667
1668 static int knl_get_aperf_mperf_shift(void)
1669 {
1670         return 10;
1671 }
1672
1673 static int knl_get_turbo_pstate(void)
1674 {
1675         u64 value;
1676         int nont, ret;
1677
1678         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1679         nont = core_get_max_pstate();
1680         ret = (((value) >> 8) & 0xFF);
1681         if (ret <= nont)
1682                 ret = nont;
1683         return ret;
1684 }
1685
1686 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1687 {
1688         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1689         cpu->pstate.current_pstate = pstate;
1690         /*
1691          * Generally, there is no guarantee that this code will always run on
1692          * the CPU being updated, so force the register update to run on the
1693          * right CPU.
1694          */
1695         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1696                       pstate_funcs.get_val(cpu, pstate));
1697 }
1698
1699 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1700 {
1701         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1702 }
1703
1704 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1705 {
1706         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1707
1708         update_turbo_state();
1709         intel_pstate_set_pstate(cpu, pstate);
1710 }
1711
1712 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1713 {
1714         cpu->pstate.min_pstate = pstate_funcs.get_min();
1715         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1716         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1717         cpu->pstate.scaling = pstate_funcs.get_scaling();
1718
1719         if (hwp_active && !hwp_mode_bdw) {
1720                 unsigned int phy_max, current_max;
1721
1722                 intel_pstate_get_hwp_max(cpu, &phy_max, &current_max);
1723                 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1724                 cpu->pstate.turbo_pstate = phy_max;
1725                 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(READ_ONCE(cpu->hwp_cap_cached));
1726         } else {
1727                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1728                 cpu->pstate.max_pstate = pstate_funcs.get_max();
1729         }
1730         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1731
1732         if (pstate_funcs.get_aperf_mperf_shift)
1733                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1734
1735         if (pstate_funcs.get_vid)
1736                 pstate_funcs.get_vid(cpu);
1737
1738         intel_pstate_set_min_pstate(cpu);
1739 }
1740
1741 /*
1742  * Long hold time will keep high perf limits for long time,
1743  * which negatively impacts perf/watt for some workloads,
1744  * like specpower. 3ms is based on experiements on some
1745  * workoads.
1746  */
1747 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1748
1749 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1750 {
1751         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1752         u32 max_limit = (hwp_req & 0xff00) >> 8;
1753         u32 min_limit = (hwp_req & 0xff);
1754         u32 boost_level1;
1755
1756         /*
1757          * Cases to consider (User changes via sysfs or boot time):
1758          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1759          *      No boost, return.
1760          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1761          *     Should result in one level boost only for P0.
1762          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1763          *     Should result in two level boost:
1764          *         (min + p1)/2 and P1.
1765          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1766          *     Should result in three level boost:
1767          *        (min + p1)/2, P1 and P0.
1768          */
1769
1770         /* If max and min are equal or already at max, nothing to boost */
1771         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1772                 return;
1773
1774         if (!cpu->hwp_boost_min)
1775                 cpu->hwp_boost_min = min_limit;
1776
1777         /* level at half way mark between min and guranteed */
1778         boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1779
1780         if (cpu->hwp_boost_min < boost_level1)
1781                 cpu->hwp_boost_min = boost_level1;
1782         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1783                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1784         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1785                  max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1786                 cpu->hwp_boost_min = max_limit;
1787         else
1788                 return;
1789
1790         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1791         wrmsrl(MSR_HWP_REQUEST, hwp_req);
1792         cpu->last_update = cpu->sample.time;
1793 }
1794
1795 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1796 {
1797         if (cpu->hwp_boost_min) {
1798                 bool expired;
1799
1800                 /* Check if we are idle for hold time to boost down */
1801                 expired = time_after64(cpu->sample.time, cpu->last_update +
1802                                        hwp_boost_hold_time_ns);
1803                 if (expired) {
1804                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1805                         cpu->hwp_boost_min = 0;
1806                 }
1807         }
1808         cpu->last_update = cpu->sample.time;
1809 }
1810
1811 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1812                                                       u64 time)
1813 {
1814         cpu->sample.time = time;
1815
1816         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1817                 bool do_io = false;
1818
1819                 cpu->sched_flags = 0;
1820                 /*
1821                  * Set iowait_boost flag and update time. Since IO WAIT flag
1822                  * is set all the time, we can't just conclude that there is
1823                  * some IO bound activity is scheduled on this CPU with just
1824                  * one occurrence. If we receive at least two in two
1825                  * consecutive ticks, then we treat as boost candidate.
1826                  */
1827                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1828                         do_io = true;
1829
1830                 cpu->last_io_update = time;
1831
1832                 if (do_io)
1833                         intel_pstate_hwp_boost_up(cpu);
1834
1835         } else {
1836                 intel_pstate_hwp_boost_down(cpu);
1837         }
1838 }
1839
1840 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1841                                                 u64 time, unsigned int flags)
1842 {
1843         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1844
1845         cpu->sched_flags |= flags;
1846
1847         if (smp_processor_id() == cpu->cpu)
1848                 intel_pstate_update_util_hwp_local(cpu, time);
1849 }
1850
1851 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1852 {
1853         struct sample *sample = &cpu->sample;
1854
1855         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1856 }
1857
1858 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1859 {
1860         u64 aperf, mperf;
1861         unsigned long flags;
1862         u64 tsc;
1863
1864         local_irq_save(flags);
1865         rdmsrl(MSR_IA32_APERF, aperf);
1866         rdmsrl(MSR_IA32_MPERF, mperf);
1867         tsc = rdtsc();
1868         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1869                 local_irq_restore(flags);
1870                 return false;
1871         }
1872         local_irq_restore(flags);
1873
1874         cpu->last_sample_time = cpu->sample.time;
1875         cpu->sample.time = time;
1876         cpu->sample.aperf = aperf;
1877         cpu->sample.mperf = mperf;
1878         cpu->sample.tsc =  tsc;
1879         cpu->sample.aperf -= cpu->prev_aperf;
1880         cpu->sample.mperf -= cpu->prev_mperf;
1881         cpu->sample.tsc -= cpu->prev_tsc;
1882
1883         cpu->prev_aperf = aperf;
1884         cpu->prev_mperf = mperf;
1885         cpu->prev_tsc = tsc;
1886         /*
1887          * First time this function is invoked in a given cycle, all of the
1888          * previous sample data fields are equal to zero or stale and they must
1889          * be populated with meaningful numbers for things to work, so assume
1890          * that sample.time will always be reset before setting the utilization
1891          * update hook and make the caller skip the sample then.
1892          */
1893         if (cpu->last_sample_time) {
1894                 intel_pstate_calc_avg_perf(cpu);
1895                 return true;
1896         }
1897         return false;
1898 }
1899
1900 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1901 {
1902         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1903 }
1904
1905 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1906 {
1907         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1908                           cpu->sample.core_avg_perf);
1909 }
1910
1911 static inline int32_t get_target_pstate(struct cpudata *cpu)
1912 {
1913         struct sample *sample = &cpu->sample;
1914         int32_t busy_frac;
1915         int target, avg_pstate;
1916
1917         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1918                            sample->tsc);
1919
1920         if (busy_frac < cpu->iowait_boost)
1921                 busy_frac = cpu->iowait_boost;
1922
1923         sample->busy_scaled = busy_frac * 100;
1924
1925         target = global.no_turbo || global.turbo_disabled ?
1926                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1927         target += target >> 2;
1928         target = mul_fp(target, busy_frac);
1929         if (target < cpu->pstate.min_pstate)
1930                 target = cpu->pstate.min_pstate;
1931
1932         /*
1933          * If the average P-state during the previous cycle was higher than the
1934          * current target, add 50% of the difference to the target to reduce
1935          * possible performance oscillations and offset possible performance
1936          * loss related to moving the workload from one CPU to another within
1937          * a package/module.
1938          */
1939         avg_pstate = get_avg_pstate(cpu);
1940         if (avg_pstate > target)
1941                 target += (avg_pstate - target) >> 1;
1942
1943         return target;
1944 }
1945
1946 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1947 {
1948         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1949         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1950
1951         return clamp_t(int, pstate, min_pstate, max_pstate);
1952 }
1953
1954 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1955 {
1956         if (pstate == cpu->pstate.current_pstate)
1957                 return;
1958
1959         cpu->pstate.current_pstate = pstate;
1960         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1961 }
1962
1963 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1964 {
1965         int from = cpu->pstate.current_pstate;
1966         struct sample *sample;
1967         int target_pstate;
1968
1969         update_turbo_state();
1970
1971         target_pstate = get_target_pstate(cpu);
1972         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1973         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1974         intel_pstate_update_pstate(cpu, target_pstate);
1975
1976         sample = &cpu->sample;
1977         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1978                 fp_toint(sample->busy_scaled),
1979                 from,
1980                 cpu->pstate.current_pstate,
1981                 sample->mperf,
1982                 sample->aperf,
1983                 sample->tsc,
1984                 get_avg_frequency(cpu),
1985                 fp_toint(cpu->iowait_boost * 100));
1986 }
1987
1988 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1989                                      unsigned int flags)
1990 {
1991         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1992         u64 delta_ns;
1993
1994         /* Don't allow remote callbacks */
1995         if (smp_processor_id() != cpu->cpu)
1996                 return;
1997
1998         delta_ns = time - cpu->last_update;
1999         if (flags & SCHED_CPUFREQ_IOWAIT) {
2000                 /* Start over if the CPU may have been idle. */
2001                 if (delta_ns > TICK_NSEC) {
2002                         cpu->iowait_boost = ONE_EIGHTH_FP;
2003                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2004                         cpu->iowait_boost <<= 1;
2005                         if (cpu->iowait_boost > int_tofp(1))
2006                                 cpu->iowait_boost = int_tofp(1);
2007                 } else {
2008                         cpu->iowait_boost = ONE_EIGHTH_FP;
2009                 }
2010         } else if (cpu->iowait_boost) {
2011                 /* Clear iowait_boost if the CPU may have been idle. */
2012                 if (delta_ns > TICK_NSEC)
2013                         cpu->iowait_boost = 0;
2014                 else
2015                         cpu->iowait_boost >>= 1;
2016         }
2017         cpu->last_update = time;
2018         delta_ns = time - cpu->sample.time;
2019         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2020                 return;
2021
2022         if (intel_pstate_sample(cpu, time))
2023                 intel_pstate_adjust_pstate(cpu);
2024 }
2025
2026 static struct pstate_funcs core_funcs = {
2027         .get_max = core_get_max_pstate,
2028         .get_max_physical = core_get_max_pstate_physical,
2029         .get_min = core_get_min_pstate,
2030         .get_turbo = core_get_turbo_pstate,
2031         .get_scaling = core_get_scaling,
2032         .get_val = core_get_val,
2033 };
2034
2035 static const struct pstate_funcs silvermont_funcs = {
2036         .get_max = atom_get_max_pstate,
2037         .get_max_physical = atom_get_max_pstate,
2038         .get_min = atom_get_min_pstate,
2039         .get_turbo = atom_get_turbo_pstate,
2040         .get_val = atom_get_val,
2041         .get_scaling = silvermont_get_scaling,
2042         .get_vid = atom_get_vid,
2043 };
2044
2045 static const struct pstate_funcs airmont_funcs = {
2046         .get_max = atom_get_max_pstate,
2047         .get_max_physical = atom_get_max_pstate,
2048         .get_min = atom_get_min_pstate,
2049         .get_turbo = atom_get_turbo_pstate,
2050         .get_val = atom_get_val,
2051         .get_scaling = airmont_get_scaling,
2052         .get_vid = atom_get_vid,
2053 };
2054
2055 static const struct pstate_funcs knl_funcs = {
2056         .get_max = core_get_max_pstate,
2057         .get_max_physical = core_get_max_pstate_physical,
2058         .get_min = core_get_min_pstate,
2059         .get_turbo = knl_get_turbo_pstate,
2060         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2061         .get_scaling = core_get_scaling,
2062         .get_val = core_get_val,
2063 };
2064
2065 #define X86_MATCH(model, policy)                                         \
2066         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2067                                            X86_FEATURE_APERFMPERF, &policy)
2068
2069 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2070         X86_MATCH(SANDYBRIDGE,          core_funcs),
2071         X86_MATCH(SANDYBRIDGE_X,        core_funcs),
2072         X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
2073         X86_MATCH(IVYBRIDGE,            core_funcs),
2074         X86_MATCH(HASWELL,              core_funcs),
2075         X86_MATCH(BROADWELL,            core_funcs),
2076         X86_MATCH(IVYBRIDGE_X,          core_funcs),
2077         X86_MATCH(HASWELL_X,            core_funcs),
2078         X86_MATCH(HASWELL_L,            core_funcs),
2079         X86_MATCH(HASWELL_G,            core_funcs),
2080         X86_MATCH(BROADWELL_G,          core_funcs),
2081         X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
2082         X86_MATCH(SKYLAKE_L,            core_funcs),
2083         X86_MATCH(BROADWELL_X,          core_funcs),
2084         X86_MATCH(SKYLAKE,              core_funcs),
2085         X86_MATCH(BROADWELL_D,          core_funcs),
2086         X86_MATCH(XEON_PHI_KNL,         knl_funcs),
2087         X86_MATCH(XEON_PHI_KNM,         knl_funcs),
2088         X86_MATCH(ATOM_GOLDMONT,        core_funcs),
2089         X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
2090         X86_MATCH(SKYLAKE_X,            core_funcs),
2091         {}
2092 };
2093 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2094
2095 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2096         X86_MATCH(BROADWELL_D,          core_funcs),
2097         X86_MATCH(BROADWELL_X,          core_funcs),
2098         X86_MATCH(SKYLAKE_X,            core_funcs),
2099         {}
2100 };
2101
2102 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2103         X86_MATCH(KABYLAKE,             core_funcs),
2104         {}
2105 };
2106
2107 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2108         X86_MATCH(SKYLAKE_X,            core_funcs),
2109         X86_MATCH(SKYLAKE,              core_funcs),
2110         {}
2111 };
2112
2113 static int intel_pstate_init_cpu(unsigned int cpunum)
2114 {
2115         struct cpudata *cpu;
2116
2117         cpu = all_cpu_data[cpunum];
2118
2119         if (!cpu) {
2120                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2121                 if (!cpu)
2122                         return -ENOMEM;
2123
2124                 all_cpu_data[cpunum] = cpu;
2125
2126                 cpu->cpu = cpunum;
2127
2128                 cpu->epp_default = -EINVAL;
2129
2130                 if (hwp_active) {
2131                         const struct x86_cpu_id *id;
2132
2133                         intel_pstate_hwp_enable(cpu);
2134
2135                         id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2136                         if (id && intel_pstate_acpi_pm_profile_server())
2137                                 hwp_boost = true;
2138                 }
2139         } else if (hwp_active) {
2140                 /*
2141                  * Re-enable HWP in case this happens after a resume from ACPI
2142                  * S3 if the CPU was offline during the whole system/resume
2143                  * cycle.
2144                  */
2145                 intel_pstate_hwp_reenable(cpu);
2146         }
2147
2148         cpu->epp_powersave = -EINVAL;
2149         cpu->epp_policy = 0;
2150
2151         intel_pstate_get_cpu_pstates(cpu);
2152
2153         pr_debug("controlling: cpu %d\n", cpunum);
2154
2155         return 0;
2156 }
2157
2158 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2159 {
2160         struct cpudata *cpu = all_cpu_data[cpu_num];
2161
2162         if (hwp_active && !hwp_boost)
2163                 return;
2164
2165         if (cpu->update_util_set)
2166                 return;
2167
2168         /* Prevent intel_pstate_update_util() from using stale data. */
2169         cpu->sample.time = 0;
2170         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2171                                      (hwp_active ?
2172                                       intel_pstate_update_util_hwp :
2173                                       intel_pstate_update_util));
2174         cpu->update_util_set = true;
2175 }
2176
2177 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2178 {
2179         struct cpudata *cpu_data = all_cpu_data[cpu];
2180
2181         if (!cpu_data->update_util_set)
2182                 return;
2183
2184         cpufreq_remove_update_util_hook(cpu);
2185         cpu_data->update_util_set = false;
2186         synchronize_rcu();
2187 }
2188
2189 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2190 {
2191         return global.turbo_disabled || global.no_turbo ?
2192                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2193 }
2194
2195 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2196                                             unsigned int policy_min,
2197                                             unsigned int policy_max)
2198 {
2199         int32_t max_policy_perf, min_policy_perf;
2200         int max_state, turbo_max;
2201         int max_freq;
2202
2203         /*
2204          * HWP needs some special consideration, because on BDX the
2205          * HWP_REQUEST uses abstract value to represent performance
2206          * rather than pure ratios.
2207          */
2208         if (hwp_active) {
2209                 intel_pstate_get_hwp_max(cpu, &turbo_max, &max_state);
2210         } else {
2211                 max_state = global.no_turbo || global.turbo_disabled ?
2212                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2213                 turbo_max = cpu->pstate.turbo_pstate;
2214         }
2215         max_freq = max_state * cpu->pstate.scaling;
2216
2217         max_policy_perf = max_state * policy_max / max_freq;
2218         if (policy_max == policy_min) {
2219                 min_policy_perf = max_policy_perf;
2220         } else {
2221                 min_policy_perf = max_state * policy_min / max_freq;
2222                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2223                                           0, max_policy_perf);
2224         }
2225
2226         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2227                  cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2228
2229         /* Normalize user input to [min_perf, max_perf] */
2230         if (per_cpu_limits) {
2231                 cpu->min_perf_ratio = min_policy_perf;
2232                 cpu->max_perf_ratio = max_policy_perf;
2233         } else {
2234                 int32_t global_min, global_max;
2235
2236                 /* Global limits are in percent of the maximum turbo P-state. */
2237                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2238                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2239                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2240
2241                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2242                          global_min, global_max);
2243
2244                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2245                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2246                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2247                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2248
2249                 /* Make sure min_perf <= max_perf */
2250                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2251                                           cpu->max_perf_ratio);
2252
2253         }
2254         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2255                  cpu->max_perf_ratio,
2256                  cpu->min_perf_ratio);
2257 }
2258
2259 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2260 {
2261         struct cpudata *cpu;
2262
2263         if (!policy->cpuinfo.max_freq)
2264                 return -ENODEV;
2265
2266         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2267                  policy->cpuinfo.max_freq, policy->max);
2268
2269         cpu = all_cpu_data[policy->cpu];
2270         cpu->policy = policy->policy;
2271
2272         mutex_lock(&intel_pstate_limits_lock);
2273
2274         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2275
2276         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2277                 /*
2278                  * NOHZ_FULL CPUs need this as the governor callback may not
2279                  * be invoked on them.
2280                  */
2281                 intel_pstate_clear_update_util_hook(policy->cpu);
2282                 intel_pstate_max_within_limits(cpu);
2283         } else {
2284                 intel_pstate_set_update_util_hook(policy->cpu);
2285         }
2286
2287         if (hwp_active) {
2288                 /*
2289                  * When hwp_boost was active before and dynamically it
2290                  * was turned off, in that case we need to clear the
2291                  * update util hook.
2292                  */
2293                 if (!hwp_boost)
2294                         intel_pstate_clear_update_util_hook(policy->cpu);
2295                 intel_pstate_hwp_set(policy->cpu);
2296         }
2297
2298         mutex_unlock(&intel_pstate_limits_lock);
2299
2300         return 0;
2301 }
2302
2303 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2304                                            struct cpufreq_policy_data *policy)
2305 {
2306         if (!hwp_active &&
2307             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2308             policy->max < policy->cpuinfo.max_freq &&
2309             policy->max > cpu->pstate.max_freq) {
2310                 pr_debug("policy->max > max non turbo frequency\n");
2311                 policy->max = policy->cpuinfo.max_freq;
2312         }
2313 }
2314
2315 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2316                                            struct cpufreq_policy_data *policy)
2317 {
2318         int max_freq;
2319
2320         update_turbo_state();
2321         if (hwp_active) {
2322                 int max_state, turbo_max;
2323
2324                 intel_pstate_get_hwp_max(cpu, &turbo_max, &max_state);
2325                 max_freq = max_state * cpu->pstate.scaling;
2326         } else {
2327                 max_freq = intel_pstate_get_max_freq(cpu);
2328         }
2329         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2330
2331         intel_pstate_adjust_policy_max(cpu, policy);
2332 }
2333
2334 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2335 {
2336         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2337
2338         return 0;
2339 }
2340
2341 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2342 {
2343         struct cpudata *cpu = all_cpu_data[policy->cpu];
2344
2345         pr_debug("CPU %d going offline\n", cpu->cpu);
2346
2347         if (cpu->suspended)
2348                 return 0;
2349
2350         /*
2351          * If the CPU is an SMT thread and it goes offline with the performance
2352          * settings different from the minimum, it will prevent its sibling
2353          * from getting to lower performance levels, so force the minimum
2354          * performance on CPU offline to prevent that from happening.
2355          */
2356         if (hwp_active)
2357                 intel_pstate_hwp_offline(cpu);
2358         else
2359                 intel_pstate_set_min_pstate(cpu);
2360
2361         intel_pstate_exit_perf_limits(policy);
2362
2363         return 0;
2364 }
2365
2366 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2367 {
2368         struct cpudata *cpu = all_cpu_data[policy->cpu];
2369
2370         pr_debug("CPU %d going online\n", cpu->cpu);
2371
2372         intel_pstate_init_acpi_perf_limits(policy);
2373
2374         if (hwp_active) {
2375                 /*
2376                  * Re-enable HWP and clear the "suspended" flag to let "resume"
2377                  * know that it need not do that.
2378                  */
2379                 intel_pstate_hwp_reenable(cpu);
2380                 cpu->suspended = false;
2381         }
2382
2383         return 0;
2384 }
2385
2386 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2387 {
2388         pr_debug("CPU %d stopping\n", policy->cpu);
2389
2390         intel_pstate_clear_update_util_hook(policy->cpu);
2391 }
2392
2393 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2394 {
2395         pr_debug("CPU %d exiting\n", policy->cpu);
2396
2397         policy->fast_switch_possible = false;
2398
2399         return 0;
2400 }
2401
2402 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2403 {
2404         struct cpudata *cpu;
2405         int rc;
2406
2407         rc = intel_pstate_init_cpu(policy->cpu);
2408         if (rc)
2409                 return rc;
2410
2411         cpu = all_cpu_data[policy->cpu];
2412
2413         cpu->max_perf_ratio = 0xFF;
2414         cpu->min_perf_ratio = 0;
2415
2416         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2417         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2418
2419         /* cpuinfo and default policy values */
2420         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2421         update_turbo_state();
2422         global.turbo_disabled_mf = global.turbo_disabled;
2423         policy->cpuinfo.max_freq = global.turbo_disabled ?
2424                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2425         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2426
2427         if (hwp_active) {
2428                 unsigned int max_freq;
2429
2430                 max_freq = global.turbo_disabled ?
2431                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2432                 if (max_freq < policy->cpuinfo.max_freq)
2433                         policy->cpuinfo.max_freq = max_freq;
2434         }
2435
2436         intel_pstate_init_acpi_perf_limits(policy);
2437
2438         policy->fast_switch_possible = true;
2439
2440         return 0;
2441 }
2442
2443 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2444 {
2445         int ret = __intel_pstate_cpu_init(policy);
2446
2447         if (ret)
2448                 return ret;
2449
2450         /*
2451          * Set the policy to powersave to provide a valid fallback value in case
2452          * the default cpufreq governor is neither powersave nor performance.
2453          */
2454         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2455
2456         if (hwp_active) {
2457                 struct cpudata *cpu = all_cpu_data[policy->cpu];
2458
2459                 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2460         }
2461
2462         return 0;
2463 }
2464
2465 static struct cpufreq_driver intel_pstate = {
2466         .flags          = CPUFREQ_CONST_LOOPS,
2467         .verify         = intel_pstate_verify_policy,
2468         .setpolicy      = intel_pstate_set_policy,
2469         .suspend        = intel_pstate_suspend,
2470         .resume         = intel_pstate_resume,
2471         .init           = intel_pstate_cpu_init,
2472         .exit           = intel_pstate_cpu_exit,
2473         .stop_cpu       = intel_pstate_stop_cpu,
2474         .offline        = intel_pstate_cpu_offline,
2475         .online         = intel_pstate_cpu_online,
2476         .update_limits  = intel_pstate_update_limits,
2477         .name           = "intel_pstate",
2478 };
2479
2480 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2481 {
2482         struct cpudata *cpu = all_cpu_data[policy->cpu];
2483
2484         intel_pstate_verify_cpu_policy(cpu, policy);
2485         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2486
2487         return 0;
2488 }
2489
2490 /* Use of trace in passive mode:
2491  *
2492  * In passive mode the trace core_busy field (also known as the
2493  * performance field, and lablelled as such on the graphs; also known as
2494  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2495  * driver call was via the normal or fast switch path. Various graphs
2496  * output from the intel_pstate_tracer.py utility that include core_busy
2497  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2498  * so we use 10 to indicate the the normal path through the driver, and
2499  * 90 to indicate the fast switch path through the driver.
2500  * The scaled_busy field is not used, and is set to 0.
2501  */
2502
2503 #define INTEL_PSTATE_TRACE_TARGET 10
2504 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2505
2506 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2507 {
2508         struct sample *sample;
2509
2510         if (!trace_pstate_sample_enabled())
2511                 return;
2512
2513         if (!intel_pstate_sample(cpu, ktime_get()))
2514                 return;
2515
2516         sample = &cpu->sample;
2517         trace_pstate_sample(trace_type,
2518                 0,
2519                 old_pstate,
2520                 cpu->pstate.current_pstate,
2521                 sample->mperf,
2522                 sample->aperf,
2523                 sample->tsc,
2524                 get_avg_frequency(cpu),
2525                 fp_toint(cpu->iowait_boost * 100));
2526 }
2527
2528 static void intel_cpufreq_adjust_hwp(struct cpudata *cpu, u32 target_pstate,
2529                                      bool strict, bool fast_switch)
2530 {
2531         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2532
2533         value &= ~HWP_MIN_PERF(~0L);
2534         value |= HWP_MIN_PERF(target_pstate);
2535
2536         /*
2537          * The entire MSR needs to be updated in order to update the HWP min
2538          * field in it, so opportunistically update the max too if needed.
2539          */
2540         value &= ~HWP_MAX_PERF(~0L);
2541         value |= HWP_MAX_PERF(strict ? target_pstate : cpu->max_perf_ratio);
2542
2543         if (value == prev)
2544                 return;
2545
2546         WRITE_ONCE(cpu->hwp_req_cached, value);
2547         if (fast_switch)
2548                 wrmsrl(MSR_HWP_REQUEST, value);
2549         else
2550                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2551 }
2552
2553 static void intel_cpufreq_adjust_perf_ctl(struct cpudata *cpu,
2554                                           u32 target_pstate, bool fast_switch)
2555 {
2556         if (fast_switch)
2557                 wrmsrl(MSR_IA32_PERF_CTL,
2558                        pstate_funcs.get_val(cpu, target_pstate));
2559         else
2560                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2561                               pstate_funcs.get_val(cpu, target_pstate));
2562 }
2563
2564 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2565                                        int target_pstate, bool fast_switch)
2566 {
2567         struct cpudata *cpu = all_cpu_data[policy->cpu];
2568         int old_pstate = cpu->pstate.current_pstate;
2569
2570         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2571         if (hwp_active) {
2572                 intel_cpufreq_adjust_hwp(cpu, target_pstate,
2573                                          policy->strict_target, fast_switch);
2574                 cpu->pstate.current_pstate = target_pstate;
2575         } else if (target_pstate != old_pstate) {
2576                 intel_cpufreq_adjust_perf_ctl(cpu, target_pstate, fast_switch);
2577                 cpu->pstate.current_pstate = target_pstate;
2578         }
2579
2580         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2581                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
2582
2583         return target_pstate;
2584 }
2585
2586 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2587                                 unsigned int target_freq,
2588                                 unsigned int relation)
2589 {
2590         struct cpudata *cpu = all_cpu_data[policy->cpu];
2591         struct cpufreq_freqs freqs;
2592         int target_pstate;
2593
2594         update_turbo_state();
2595
2596         freqs.old = policy->cur;
2597         freqs.new = target_freq;
2598
2599         cpufreq_freq_transition_begin(policy, &freqs);
2600
2601         switch (relation) {
2602         case CPUFREQ_RELATION_L:
2603                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2604                 break;
2605         case CPUFREQ_RELATION_H:
2606                 target_pstate = freqs.new / cpu->pstate.scaling;
2607                 break;
2608         default:
2609                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2610                 break;
2611         }
2612
2613         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2614
2615         freqs.new = target_pstate * cpu->pstate.scaling;
2616
2617         cpufreq_freq_transition_end(policy, &freqs, false);
2618
2619         return 0;
2620 }
2621
2622 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2623                                               unsigned int target_freq)
2624 {
2625         struct cpudata *cpu = all_cpu_data[policy->cpu];
2626         int target_pstate;
2627
2628         update_turbo_state();
2629
2630         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2631
2632         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2633
2634         return target_pstate * cpu->pstate.scaling;
2635 }
2636
2637 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2638 {
2639         int max_state, turbo_max, min_freq, max_freq, ret;
2640         struct freq_qos_request *req;
2641         struct cpudata *cpu;
2642         struct device *dev;
2643
2644         dev = get_cpu_device(policy->cpu);
2645         if (!dev)
2646                 return -ENODEV;
2647
2648         ret = __intel_pstate_cpu_init(policy);
2649         if (ret)
2650                 return ret;
2651
2652         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2653         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2654         policy->cur = policy->cpuinfo.min_freq;
2655
2656         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2657         if (!req) {
2658                 ret = -ENOMEM;
2659                 goto pstate_exit;
2660         }
2661
2662         cpu = all_cpu_data[policy->cpu];
2663
2664         if (hwp_active) {
2665                 u64 value;
2666
2667                 intel_pstate_get_hwp_max(cpu, &turbo_max, &max_state);
2668                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2669                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2670                 WRITE_ONCE(cpu->hwp_req_cached, value);
2671                 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2672         } else {
2673                 turbo_max = cpu->pstate.turbo_pstate;
2674                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2675         }
2676
2677         min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2678         min_freq *= cpu->pstate.scaling;
2679         max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2680         max_freq *= cpu->pstate.scaling;
2681
2682         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2683                                    min_freq);
2684         if (ret < 0) {
2685                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2686                 goto free_req;
2687         }
2688
2689         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2690                                    max_freq);
2691         if (ret < 0) {
2692                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2693                 goto remove_min_req;
2694         }
2695
2696         policy->driver_data = req;
2697
2698         return 0;
2699
2700 remove_min_req:
2701         freq_qos_remove_request(req);
2702 free_req:
2703         kfree(req);
2704 pstate_exit:
2705         intel_pstate_exit_perf_limits(policy);
2706
2707         return ret;
2708 }
2709
2710 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2711 {
2712         struct freq_qos_request *req;
2713
2714         req = policy->driver_data;
2715
2716         freq_qos_remove_request(req + 1);
2717         freq_qos_remove_request(req);
2718         kfree(req);
2719
2720         return intel_pstate_cpu_exit(policy);
2721 }
2722
2723 static struct cpufreq_driver intel_cpufreq = {
2724         .flags          = CPUFREQ_CONST_LOOPS,
2725         .verify         = intel_cpufreq_verify_policy,
2726         .target         = intel_cpufreq_target,
2727         .fast_switch    = intel_cpufreq_fast_switch,
2728         .init           = intel_cpufreq_cpu_init,
2729         .exit           = intel_cpufreq_cpu_exit,
2730         .offline        = intel_pstate_cpu_offline,
2731         .online         = intel_pstate_cpu_online,
2732         .suspend        = intel_pstate_suspend,
2733         .resume         = intel_pstate_resume,
2734         .update_limits  = intel_pstate_update_limits,
2735         .name           = "intel_cpufreq",
2736 };
2737
2738 static struct cpufreq_driver *default_driver;
2739
2740 static void intel_pstate_driver_cleanup(void)
2741 {
2742         unsigned int cpu;
2743
2744         get_online_cpus();
2745         for_each_online_cpu(cpu) {
2746                 if (all_cpu_data[cpu]) {
2747                         if (intel_pstate_driver == &intel_pstate)
2748                                 intel_pstate_clear_update_util_hook(cpu);
2749
2750                         kfree(all_cpu_data[cpu]);
2751                         all_cpu_data[cpu] = NULL;
2752                 }
2753         }
2754         put_online_cpus();
2755
2756         intel_pstate_driver = NULL;
2757 }
2758
2759 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2760 {
2761         int ret;
2762
2763         if (driver == &intel_pstate)
2764                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
2765
2766         memset(&global, 0, sizeof(global));
2767         global.max_perf_pct = 100;
2768
2769         intel_pstate_driver = driver;
2770         ret = cpufreq_register_driver(intel_pstate_driver);
2771         if (ret) {
2772                 intel_pstate_driver_cleanup();
2773                 return ret;
2774         }
2775
2776         global.min_perf_pct = min_perf_pct_min();
2777
2778         return 0;
2779 }
2780
2781 static ssize_t intel_pstate_show_status(char *buf)
2782 {
2783         if (!intel_pstate_driver)
2784                 return sprintf(buf, "off\n");
2785
2786         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2787                                         "active" : "passive");
2788 }
2789
2790 static int intel_pstate_update_status(const char *buf, size_t size)
2791 {
2792         if (size == 3 && !strncmp(buf, "off", size)) {
2793                 if (!intel_pstate_driver)
2794                         return -EINVAL;
2795
2796                 if (hwp_active)
2797                         return -EBUSY;
2798
2799                 cpufreq_unregister_driver(intel_pstate_driver);
2800                 intel_pstate_driver_cleanup();
2801                 return 0;
2802         }
2803
2804         if (size == 6 && !strncmp(buf, "active", size)) {
2805                 if (intel_pstate_driver) {
2806                         if (intel_pstate_driver == &intel_pstate)
2807                                 return 0;
2808
2809                         cpufreq_unregister_driver(intel_pstate_driver);
2810                 }
2811
2812                 return intel_pstate_register_driver(&intel_pstate);
2813         }
2814
2815         if (size == 7 && !strncmp(buf, "passive", size)) {
2816                 if (intel_pstate_driver) {
2817                         if (intel_pstate_driver == &intel_cpufreq)
2818                                 return 0;
2819
2820                         cpufreq_unregister_driver(intel_pstate_driver);
2821                         intel_pstate_sysfs_hide_hwp_dynamic_boost();
2822                 }
2823
2824                 return intel_pstate_register_driver(&intel_cpufreq);
2825         }
2826
2827         return -EINVAL;
2828 }
2829
2830 static int no_load __initdata;
2831 static int no_hwp __initdata;
2832 static int hwp_only __initdata;
2833 static unsigned int force_load __initdata;
2834
2835 static int __init intel_pstate_msrs_not_valid(void)
2836 {
2837         if (!pstate_funcs.get_max() ||
2838             !pstate_funcs.get_min() ||
2839             !pstate_funcs.get_turbo())
2840                 return -ENODEV;
2841
2842         return 0;
2843 }
2844
2845 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2846 {
2847         pstate_funcs.get_max   = funcs->get_max;
2848         pstate_funcs.get_max_physical = funcs->get_max_physical;
2849         pstate_funcs.get_min   = funcs->get_min;
2850         pstate_funcs.get_turbo = funcs->get_turbo;
2851         pstate_funcs.get_scaling = funcs->get_scaling;
2852         pstate_funcs.get_val   = funcs->get_val;
2853         pstate_funcs.get_vid   = funcs->get_vid;
2854         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2855 }
2856
2857 #ifdef CONFIG_ACPI
2858
2859 static bool __init intel_pstate_no_acpi_pss(void)
2860 {
2861         int i;
2862
2863         for_each_possible_cpu(i) {
2864                 acpi_status status;
2865                 union acpi_object *pss;
2866                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2867                 struct acpi_processor *pr = per_cpu(processors, i);
2868
2869                 if (!pr)
2870                         continue;
2871
2872                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2873                 if (ACPI_FAILURE(status))
2874                         continue;
2875
2876                 pss = buffer.pointer;
2877                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2878                         kfree(pss);
2879                         return false;
2880                 }
2881
2882                 kfree(pss);
2883         }
2884
2885         pr_debug("ACPI _PSS not found\n");
2886         return true;
2887 }
2888
2889 static bool __init intel_pstate_no_acpi_pcch(void)
2890 {
2891         acpi_status status;
2892         acpi_handle handle;
2893
2894         status = acpi_get_handle(NULL, "\\_SB", &handle);
2895         if (ACPI_FAILURE(status))
2896                 goto not_found;
2897
2898         if (acpi_has_method(handle, "PCCH"))
2899                 return false;
2900
2901 not_found:
2902         pr_debug("ACPI PCCH not found\n");
2903         return true;
2904 }
2905
2906 static bool __init intel_pstate_has_acpi_ppc(void)
2907 {
2908         int i;
2909
2910         for_each_possible_cpu(i) {
2911                 struct acpi_processor *pr = per_cpu(processors, i);
2912
2913                 if (!pr)
2914                         continue;
2915                 if (acpi_has_method(pr->handle, "_PPC"))
2916                         return true;
2917         }
2918         pr_debug("ACPI _PPC not found\n");
2919         return false;
2920 }
2921
2922 enum {
2923         PSS,
2924         PPC,
2925 };
2926
2927 /* Hardware vendor-specific info that has its own power management modes */
2928 static struct acpi_platform_list plat_info[] __initdata = {
2929         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
2930         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2931         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2932         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2933         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2934         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2935         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2936         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2937         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2938         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2939         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2940         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2941         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2942         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2943         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2944         { } /* End */
2945 };
2946
2947 #define BITMASK_OOB     (BIT(8) | BIT(18))
2948
2949 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2950 {
2951         const struct x86_cpu_id *id;
2952         u64 misc_pwr;
2953         int idx;
2954
2955         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2956         if (id) {
2957                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2958                 if (misc_pwr & BITMASK_OOB) {
2959                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
2960                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
2961                         return true;
2962                 }
2963         }
2964
2965         idx = acpi_match_platform_list(plat_info);
2966         if (idx < 0)
2967                 return false;
2968
2969         switch (plat_info[idx].data) {
2970         case PSS:
2971                 if (!intel_pstate_no_acpi_pss())
2972                         return false;
2973
2974                 return intel_pstate_no_acpi_pcch();
2975         case PPC:
2976                 return intel_pstate_has_acpi_ppc() && !force_load;
2977         }
2978
2979         return false;
2980 }
2981
2982 static void intel_pstate_request_control_from_smm(void)
2983 {
2984         /*
2985          * It may be unsafe to request P-states control from SMM if _PPC support
2986          * has not been enabled.
2987          */
2988         if (acpi_ppc)
2989                 acpi_processor_pstate_control();
2990 }
2991 #else /* CONFIG_ACPI not enabled */
2992 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2993 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2994 static inline void intel_pstate_request_control_from_smm(void) {}
2995 #endif /* CONFIG_ACPI */
2996
2997 #define INTEL_PSTATE_HWP_BROADWELL      0x01
2998
2999 #define X86_MATCH_HWP(model, hwp_mode)                                  \
3000         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3001                                            X86_FEATURE_HWP, hwp_mode)
3002
3003 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3004         X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
3005         X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
3006         X86_MATCH_HWP(ANY,              0),
3007         {}
3008 };
3009
3010 static bool intel_pstate_hwp_is_enabled(void)
3011 {
3012         u64 value;
3013
3014         rdmsrl(MSR_PM_ENABLE, value);
3015         return !!(value & 0x1);
3016 }
3017
3018 static int __init intel_pstate_init(void)
3019 {
3020         const struct x86_cpu_id *id;
3021         int rc;
3022
3023         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3024                 return -ENODEV;
3025
3026         id = x86_match_cpu(hwp_support_ids);
3027         if (id) {
3028                 bool hwp_forced = intel_pstate_hwp_is_enabled();
3029
3030                 if (hwp_forced)
3031                         pr_info("HWP enabled by BIOS\n");
3032                 else if (no_load)
3033                         return -ENODEV;
3034
3035                 copy_cpu_funcs(&core_funcs);
3036                 /*
3037                  * Avoid enabling HWP for processors without EPP support,
3038                  * because that means incomplete HWP implementation which is a
3039                  * corner case and supporting it is generally problematic.
3040                  *
3041                  * If HWP is enabled already, though, there is no choice but to
3042                  * deal with it.
3043                  */
3044                 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3045                         hwp_active++;
3046                         hwp_mode_bdw = id->driver_data;
3047                         intel_pstate.attr = hwp_cpufreq_attrs;
3048                         intel_cpufreq.attr = hwp_cpufreq_attrs;
3049                         intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3050                         if (!default_driver)
3051                                 default_driver = &intel_pstate;
3052
3053                         goto hwp_cpu_matched;
3054                 }
3055                 pr_info("HWP not enabled\n");
3056         } else {
3057                 if (no_load)
3058                         return -ENODEV;
3059
3060                 id = x86_match_cpu(intel_pstate_cpu_ids);
3061                 if (!id) {
3062                         pr_info("CPU model not supported\n");
3063                         return -ENODEV;
3064                 }
3065
3066                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3067         }
3068
3069         if (intel_pstate_msrs_not_valid()) {
3070                 pr_info("Invalid MSRs\n");
3071                 return -ENODEV;
3072         }
3073         /* Without HWP start in the passive mode. */
3074         if (!default_driver)
3075                 default_driver = &intel_cpufreq;
3076
3077 hwp_cpu_matched:
3078         /*
3079          * The Intel pstate driver will be ignored if the platform
3080          * firmware has its own power management modes.
3081          */
3082         if (intel_pstate_platform_pwr_mgmt_exists()) {
3083                 pr_info("P-states controlled by the platform\n");
3084                 return -ENODEV;
3085         }
3086
3087         if (!hwp_active && hwp_only)
3088                 return -ENOTSUPP;
3089
3090         pr_info("Intel P-state driver initializing\n");
3091
3092         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3093         if (!all_cpu_data)
3094                 return -ENOMEM;
3095
3096         intel_pstate_request_control_from_smm();
3097
3098         intel_pstate_sysfs_expose_params();
3099
3100         mutex_lock(&intel_pstate_driver_lock);
3101         rc = intel_pstate_register_driver(default_driver);
3102         mutex_unlock(&intel_pstate_driver_lock);
3103         if (rc) {
3104                 intel_pstate_sysfs_remove();
3105                 return rc;
3106         }
3107
3108         if (hwp_active) {
3109                 const struct x86_cpu_id *id;
3110
3111                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3112                 if (id) {
3113                         set_power_ctl_ee_state(false);
3114                         pr_info("Disabling energy efficiency optimization\n");
3115                 }
3116
3117                 pr_info("HWP enabled\n");
3118         }
3119
3120         return 0;
3121 }
3122 device_initcall(intel_pstate_init);
3123
3124 static int __init intel_pstate_setup(char *str)
3125 {
3126         if (!str)
3127                 return -EINVAL;
3128
3129         if (!strcmp(str, "disable"))
3130                 no_load = 1;
3131         else if (!strcmp(str, "active"))
3132                 default_driver = &intel_pstate;
3133         else if (!strcmp(str, "passive"))
3134                 default_driver = &intel_cpufreq;
3135
3136         if (!strcmp(str, "no_hwp"))
3137                 no_hwp = 1;
3138
3139         if (!strcmp(str, "force"))
3140                 force_load = 1;
3141         if (!strcmp(str, "hwp_only"))
3142                 hwp_only = 1;
3143         if (!strcmp(str, "per_cpu_perf_limits"))
3144                 per_cpu_limits = true;
3145
3146 #ifdef CONFIG_ACPI
3147         if (!strcmp(str, "support_acpi_ppc"))
3148                 acpi_ppc = true;
3149 #endif
3150
3151         return 0;
3152 }
3153 early_param("intel_pstate", intel_pstate_setup);
3154
3155 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3156 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3157 MODULE_LICENSE("GPL");