GNU Linux-libre 4.14.251-gnu1
[releases.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include <linux/sched/cpufreq.h>
20
21 #include "cpufreq_ondemand.h"
22
23 /* On-demand governor macros */
24 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
25 #define DEF_SAMPLING_DOWN_FACTOR                (1)
26 #define MAX_SAMPLING_DOWN_FACTOR                (100000)
27 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
28 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
29 #define MIN_FREQUENCY_UP_THRESHOLD              (1)
30 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
31
32 static struct od_ops od_ops;
33
34 static unsigned int default_powersave_bias;
35
36 /*
37  * Not all CPUs want IO time to be accounted as busy; this depends on how
38  * efficient idling at a higher frequency/voltage is.
39  * Pavel Machek says this is not so for various generations of AMD and old
40  * Intel systems.
41  * Mike Chan (android.com) claims this is also not true for ARM.
42  * Because of this, whitelist specific known (series) of CPUs by default, and
43  * leave all others up to the user.
44  */
45 static int should_io_be_busy(void)
46 {
47 #if defined(CONFIG_X86)
48         /*
49          * For Intel, Core 2 (model 15) and later have an efficient idle.
50          */
51         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
52                         boot_cpu_data.x86 == 6 &&
53                         boot_cpu_data.x86_model >= 15)
54                 return 1;
55 #endif
56         return 0;
57 }
58
59 /*
60  * Find right freq to be set now with powersave_bias on.
61  * Returns the freq_hi to be used right now and will set freq_hi_delay_us,
62  * freq_lo, and freq_lo_delay_us in percpu area for averaging freqs.
63  */
64 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
65                 unsigned int freq_next, unsigned int relation)
66 {
67         unsigned int freq_req, freq_reduc, freq_avg;
68         unsigned int freq_hi, freq_lo;
69         unsigned int index;
70         unsigned int delay_hi_us;
71         struct policy_dbs_info *policy_dbs = policy->governor_data;
72         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
73         struct dbs_data *dbs_data = policy_dbs->dbs_data;
74         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
75         struct cpufreq_frequency_table *freq_table = policy->freq_table;
76
77         if (!freq_table) {
78                 dbs_info->freq_lo = 0;
79                 dbs_info->freq_lo_delay_us = 0;
80                 return freq_next;
81         }
82
83         index = cpufreq_frequency_table_target(policy, freq_next, relation);
84         freq_req = freq_table[index].frequency;
85         freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
86         freq_avg = freq_req - freq_reduc;
87
88         /* Find freq bounds for freq_avg in freq_table */
89         index = cpufreq_table_find_index_h(policy, freq_avg);
90         freq_lo = freq_table[index].frequency;
91         index = cpufreq_table_find_index_l(policy, freq_avg);
92         freq_hi = freq_table[index].frequency;
93
94         /* Find out how long we have to be in hi and lo freqs */
95         if (freq_hi == freq_lo) {
96                 dbs_info->freq_lo = 0;
97                 dbs_info->freq_lo_delay_us = 0;
98                 return freq_lo;
99         }
100         delay_hi_us = (freq_avg - freq_lo) * dbs_data->sampling_rate;
101         delay_hi_us += (freq_hi - freq_lo) / 2;
102         delay_hi_us /= freq_hi - freq_lo;
103         dbs_info->freq_hi_delay_us = delay_hi_us;
104         dbs_info->freq_lo = freq_lo;
105         dbs_info->freq_lo_delay_us = dbs_data->sampling_rate - delay_hi_us;
106         return freq_hi;
107 }
108
109 static void ondemand_powersave_bias_init(struct cpufreq_policy *policy)
110 {
111         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
112
113         dbs_info->freq_lo = 0;
114 }
115
116 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
117 {
118         struct policy_dbs_info *policy_dbs = policy->governor_data;
119         struct dbs_data *dbs_data = policy_dbs->dbs_data;
120         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
121
122         if (od_tuners->powersave_bias)
123                 freq = od_ops.powersave_bias_target(policy, freq,
124                                 CPUFREQ_RELATION_H);
125         else if (policy->cur == policy->max)
126                 return;
127
128         __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
129                         CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
130 }
131
132 /*
133  * Every sampling_rate, we check, if current idle time is less than 20%
134  * (default), then we try to increase frequency. Else, we adjust the frequency
135  * proportional to load.
136  */
137 static void od_update(struct cpufreq_policy *policy)
138 {
139         struct policy_dbs_info *policy_dbs = policy->governor_data;
140         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
141         struct dbs_data *dbs_data = policy_dbs->dbs_data;
142         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
143         unsigned int load = dbs_update(policy);
144
145         dbs_info->freq_lo = 0;
146
147         /* Check for frequency increase */
148         if (load > dbs_data->up_threshold) {
149                 /* If switching to max speed, apply sampling_down_factor */
150                 if (policy->cur < policy->max)
151                         policy_dbs->rate_mult = dbs_data->sampling_down_factor;
152                 dbs_freq_increase(policy, policy->max);
153         } else {
154                 /* Calculate the next frequency proportional to load */
155                 unsigned int freq_next, min_f, max_f;
156
157                 min_f = policy->cpuinfo.min_freq;
158                 max_f = policy->cpuinfo.max_freq;
159                 freq_next = min_f + load * (max_f - min_f) / 100;
160
161                 /* No longer fully busy, reset rate_mult */
162                 policy_dbs->rate_mult = 1;
163
164                 if (od_tuners->powersave_bias)
165                         freq_next = od_ops.powersave_bias_target(policy,
166                                                                  freq_next,
167                                                                  CPUFREQ_RELATION_L);
168
169                 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
170         }
171 }
172
173 static unsigned int od_dbs_update(struct cpufreq_policy *policy)
174 {
175         struct policy_dbs_info *policy_dbs = policy->governor_data;
176         struct dbs_data *dbs_data = policy_dbs->dbs_data;
177         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
178         int sample_type = dbs_info->sample_type;
179
180         /* Common NORMAL_SAMPLE setup */
181         dbs_info->sample_type = OD_NORMAL_SAMPLE;
182         /*
183          * OD_SUB_SAMPLE doesn't make sense if sample_delay_ns is 0, so ignore
184          * it then.
185          */
186         if (sample_type == OD_SUB_SAMPLE && policy_dbs->sample_delay_ns > 0) {
187                 __cpufreq_driver_target(policy, dbs_info->freq_lo,
188                                         CPUFREQ_RELATION_H);
189                 return dbs_info->freq_lo_delay_us;
190         }
191
192         od_update(policy);
193
194         if (dbs_info->freq_lo) {
195                 /* Setup SUB_SAMPLE */
196                 dbs_info->sample_type = OD_SUB_SAMPLE;
197                 return dbs_info->freq_hi_delay_us;
198         }
199
200         return dbs_data->sampling_rate * policy_dbs->rate_mult;
201 }
202
203 /************************** sysfs interface ************************/
204 static struct dbs_governor od_dbs_gov;
205
206 static ssize_t store_io_is_busy(struct gov_attr_set *attr_set, const char *buf,
207                                 size_t count)
208 {
209         struct dbs_data *dbs_data = to_dbs_data(attr_set);
210         unsigned int input;
211         int ret;
212
213         ret = sscanf(buf, "%u", &input);
214         if (ret != 1)
215                 return -EINVAL;
216         dbs_data->io_is_busy = !!input;
217
218         /* we need to re-evaluate prev_cpu_idle */
219         gov_update_cpu_data(dbs_data);
220
221         return count;
222 }
223
224 static ssize_t store_up_threshold(struct gov_attr_set *attr_set,
225                                   const char *buf, size_t count)
226 {
227         struct dbs_data *dbs_data = to_dbs_data(attr_set);
228         unsigned int input;
229         int ret;
230         ret = sscanf(buf, "%u", &input);
231
232         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
233                         input < MIN_FREQUENCY_UP_THRESHOLD) {
234                 return -EINVAL;
235         }
236
237         dbs_data->up_threshold = input;
238         return count;
239 }
240
241 static ssize_t store_sampling_down_factor(struct gov_attr_set *attr_set,
242                                           const char *buf, size_t count)
243 {
244         struct dbs_data *dbs_data = to_dbs_data(attr_set);
245         struct policy_dbs_info *policy_dbs;
246         unsigned int input;
247         int ret;
248         ret = sscanf(buf, "%u", &input);
249
250         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
251                 return -EINVAL;
252
253         dbs_data->sampling_down_factor = input;
254
255         /* Reset down sampling multiplier in case it was active */
256         list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
257                 /*
258                  * Doing this without locking might lead to using different
259                  * rate_mult values in od_update() and od_dbs_update().
260                  */
261                 mutex_lock(&policy_dbs->update_mutex);
262                 policy_dbs->rate_mult = 1;
263                 mutex_unlock(&policy_dbs->update_mutex);
264         }
265
266         return count;
267 }
268
269 static ssize_t store_ignore_nice_load(struct gov_attr_set *attr_set,
270                                       const char *buf, size_t count)
271 {
272         struct dbs_data *dbs_data = to_dbs_data(attr_set);
273         unsigned int input;
274         int ret;
275
276         ret = sscanf(buf, "%u", &input);
277         if (ret != 1)
278                 return -EINVAL;
279
280         if (input > 1)
281                 input = 1;
282
283         if (input == dbs_data->ignore_nice_load) { /* nothing to do */
284                 return count;
285         }
286         dbs_data->ignore_nice_load = input;
287
288         /* we need to re-evaluate prev_cpu_idle */
289         gov_update_cpu_data(dbs_data);
290
291         return count;
292 }
293
294 static ssize_t store_powersave_bias(struct gov_attr_set *attr_set,
295                                     const char *buf, size_t count)
296 {
297         struct dbs_data *dbs_data = to_dbs_data(attr_set);
298         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
299         struct policy_dbs_info *policy_dbs;
300         unsigned int input;
301         int ret;
302         ret = sscanf(buf, "%u", &input);
303
304         if (ret != 1)
305                 return -EINVAL;
306
307         if (input > 1000)
308                 input = 1000;
309
310         od_tuners->powersave_bias = input;
311
312         list_for_each_entry(policy_dbs, &attr_set->policy_list, list)
313                 ondemand_powersave_bias_init(policy_dbs->policy);
314
315         return count;
316 }
317
318 gov_show_one_common(sampling_rate);
319 gov_show_one_common(up_threshold);
320 gov_show_one_common(sampling_down_factor);
321 gov_show_one_common(ignore_nice_load);
322 gov_show_one_common(io_is_busy);
323 gov_show_one(od, powersave_bias);
324
325 gov_attr_rw(sampling_rate);
326 gov_attr_rw(io_is_busy);
327 gov_attr_rw(up_threshold);
328 gov_attr_rw(sampling_down_factor);
329 gov_attr_rw(ignore_nice_load);
330 gov_attr_rw(powersave_bias);
331
332 static struct attribute *od_attributes[] = {
333         &sampling_rate.attr,
334         &up_threshold.attr,
335         &sampling_down_factor.attr,
336         &ignore_nice_load.attr,
337         &powersave_bias.attr,
338         &io_is_busy.attr,
339         NULL
340 };
341
342 /************************** sysfs end ************************/
343
344 static struct policy_dbs_info *od_alloc(void)
345 {
346         struct od_policy_dbs_info *dbs_info;
347
348         dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
349         return dbs_info ? &dbs_info->policy_dbs : NULL;
350 }
351
352 static void od_free(struct policy_dbs_info *policy_dbs)
353 {
354         kfree(to_dbs_info(policy_dbs));
355 }
356
357 static int od_init(struct dbs_data *dbs_data)
358 {
359         struct od_dbs_tuners *tuners;
360         u64 idle_time;
361         int cpu;
362
363         tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
364         if (!tuners)
365                 return -ENOMEM;
366
367         cpu = get_cpu();
368         idle_time = get_cpu_idle_time_us(cpu, NULL);
369         put_cpu();
370         if (idle_time != -1ULL) {
371                 /* Idle micro accounting is supported. Use finer thresholds */
372                 dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
373         } else {
374                 dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
375         }
376
377         dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
378         dbs_data->ignore_nice_load = 0;
379         tuners->powersave_bias = default_powersave_bias;
380         dbs_data->io_is_busy = should_io_be_busy();
381
382         dbs_data->tuners = tuners;
383         return 0;
384 }
385
386 static void od_exit(struct dbs_data *dbs_data)
387 {
388         kfree(dbs_data->tuners);
389 }
390
391 static void od_start(struct cpufreq_policy *policy)
392 {
393         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
394
395         dbs_info->sample_type = OD_NORMAL_SAMPLE;
396         ondemand_powersave_bias_init(policy);
397 }
398
399 static struct od_ops od_ops = {
400         .powersave_bias_target = generic_powersave_bias_target,
401 };
402
403 static struct dbs_governor od_dbs_gov = {
404         .gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("ondemand"),
405         .kobj_type = { .default_attrs = od_attributes },
406         .gov_dbs_update = od_dbs_update,
407         .alloc = od_alloc,
408         .free = od_free,
409         .init = od_init,
410         .exit = od_exit,
411         .start = od_start,
412 };
413
414 #define CPU_FREQ_GOV_ONDEMAND   (&od_dbs_gov.gov)
415
416 static void od_set_powersave_bias(unsigned int powersave_bias)
417 {
418         unsigned int cpu;
419         cpumask_t done;
420
421         default_powersave_bias = powersave_bias;
422         cpumask_clear(&done);
423
424         get_online_cpus();
425         for_each_online_cpu(cpu) {
426                 struct cpufreq_policy *policy;
427                 struct policy_dbs_info *policy_dbs;
428                 struct dbs_data *dbs_data;
429                 struct od_dbs_tuners *od_tuners;
430
431                 if (cpumask_test_cpu(cpu, &done))
432                         continue;
433
434                 policy = cpufreq_cpu_get_raw(cpu);
435                 if (!policy || policy->governor != CPU_FREQ_GOV_ONDEMAND)
436                         continue;
437
438                 policy_dbs = policy->governor_data;
439                 if (!policy_dbs)
440                         continue;
441
442                 cpumask_or(&done, &done, policy->cpus);
443
444                 dbs_data = policy_dbs->dbs_data;
445                 od_tuners = dbs_data->tuners;
446                 od_tuners->powersave_bias = default_powersave_bias;
447         }
448         put_online_cpus();
449 }
450
451 void od_register_powersave_bias_handler(unsigned int (*f)
452                 (struct cpufreq_policy *, unsigned int, unsigned int),
453                 unsigned int powersave_bias)
454 {
455         od_ops.powersave_bias_target = f;
456         od_set_powersave_bias(powersave_bias);
457 }
458 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
459
460 void od_unregister_powersave_bias_handler(void)
461 {
462         od_ops.powersave_bias_target = generic_powersave_bias_target;
463         od_set_powersave_bias(0);
464 }
465 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
466
467 static int __init cpufreq_gov_dbs_init(void)
468 {
469         return cpufreq_register_governor(CPU_FREQ_GOV_ONDEMAND);
470 }
471
472 static void __exit cpufreq_gov_dbs_exit(void)
473 {
474         cpufreq_unregister_governor(CPU_FREQ_GOV_ONDEMAND);
475 }
476
477 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
478 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
479 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
480         "Low Latency Frequency Transition capable processors");
481 MODULE_LICENSE("GPL");
482
483 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
484 struct cpufreq_governor *cpufreq_default_governor(void)
485 {
486         return CPU_FREQ_GOV_ONDEMAND;
487 }
488
489 fs_initcall(cpufreq_gov_dbs_init);
490 #else
491 module_init(cpufreq_gov_dbs_init);
492 #endif
493 module_exit(cpufreq_gov_dbs_exit);