GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / cpufreq / cpufreq.c
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *      Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *      Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38         return cpumask_empty(policy->cpus);
39 }
40
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active)                     \
43         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44                 if ((__active) == !policy_is_inactive(__policy))
45
46 #define for_each_active_policy(__policy)                \
47         for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy)              \
49         for_each_suitable_policy(__policy, false)
50
51 #define for_each_policy(__policy)                       \
52         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor)                           \
57         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58
59 /**
60  * The "cpufreq driver" - the arch- or hardware-dependent low
61  * level driver of CPUFreq support, and its spinlock. This lock
62  * also protects the cpufreq_cpu_data array.
63  */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73         return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83
84 /**
85  * Two notifier lists: the "policy" list is involved in the
86  * validation process for a new CPU frequency policy; the
87  * "transition" list for kernel code that needs to handle
88  * changes to devices when the CPU clock speed changes.
89  * The mutex locks both lists.
90  */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
93
94 static int off __read_mostly;
95 static int cpufreq_disabled(void)
96 {
97         return off;
98 }
99 void disable_cpufreq(void)
100 {
101         off = 1;
102 }
103 static DEFINE_MUTEX(cpufreq_governor_mutex);
104
105 bool have_governor_per_policy(void)
106 {
107         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
108 }
109 EXPORT_SYMBOL_GPL(have_governor_per_policy);
110
111 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
112 {
113         if (have_governor_per_policy())
114                 return &policy->kobj;
115         else
116                 return cpufreq_global_kobject;
117 }
118 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
119
120 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
121 {
122         u64 idle_time;
123         u64 cur_wall_time;
124         u64 busy_time;
125
126         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127
128         busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
129         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
130         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
131         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
132         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
133         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
134
135         idle_time = cur_wall_time - busy_time;
136         if (wall)
137                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
138
139         return div_u64(idle_time, NSEC_PER_USEC);
140 }
141
142 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
143 {
144         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
145
146         if (idle_time == -1ULL)
147                 return get_cpu_idle_time_jiffy(cpu, wall);
148         else if (!io_busy)
149                 idle_time += get_cpu_iowait_time_us(cpu, wall);
150
151         return idle_time;
152 }
153 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
154
155 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
156                 unsigned long max_freq)
157 {
158 }
159 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
160
161 /*
162  * This is a generic cpufreq init() routine which can be used by cpufreq
163  * drivers of SMP systems. It will do following:
164  * - validate & show freq table passed
165  * - set policies transition latency
166  * - policy->cpus with all possible CPUs
167  */
168 int cpufreq_generic_init(struct cpufreq_policy *policy,
169                 struct cpufreq_frequency_table *table,
170                 unsigned int transition_latency)
171 {
172         policy->freq_table = table;
173         policy->cpuinfo.transition_latency = transition_latency;
174
175         /*
176          * The driver only supports the SMP configuration where all processors
177          * share the clock and voltage and clock.
178          */
179         cpumask_setall(policy->cpus);
180
181         return 0;
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184
185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188
189         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192
193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196
197         if (!policy || IS_ERR(policy->clk)) {
198                 pr_err("%s: No %s associated to cpu: %d\n",
199                        __func__, policy ? "clk" : "policy", cpu);
200                 return 0;
201         }
202
203         return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206
207 /**
208  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
209  *
210  * @cpu: cpu to find policy for.
211  *
212  * This returns policy for 'cpu', returns NULL if it doesn't exist.
213  * It also increments the kobject reference count to mark it busy and so would
214  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
215  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
216  * freed as that depends on the kobj count.
217  *
218  * Return: A valid policy on success, otherwise NULL on failure.
219  */
220 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
221 {
222         struct cpufreq_policy *policy = NULL;
223         unsigned long flags;
224
225         if (WARN_ON(cpu >= nr_cpu_ids))
226                 return NULL;
227
228         /* get the cpufreq driver */
229         read_lock_irqsave(&cpufreq_driver_lock, flags);
230
231         if (cpufreq_driver) {
232                 /* get the CPU */
233                 policy = cpufreq_cpu_get_raw(cpu);
234                 if (policy)
235                         kobject_get(&policy->kobj);
236         }
237
238         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
239
240         return policy;
241 }
242 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
243
244 /**
245  * cpufreq_cpu_put: Decrements the usage count of a policy
246  *
247  * @policy: policy earlier returned by cpufreq_cpu_get().
248  *
249  * This decrements the kobject reference count incremented earlier by calling
250  * cpufreq_cpu_get().
251  */
252 void cpufreq_cpu_put(struct cpufreq_policy *policy)
253 {
254         kobject_put(&policy->kobj);
255 }
256 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
257
258 /*********************************************************************
259  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
260  *********************************************************************/
261
262 /**
263  * adjust_jiffies - adjust the system "loops_per_jiffy"
264  *
265  * This function alters the system "loops_per_jiffy" for the clock
266  * speed change. Note that loops_per_jiffy cannot be updated on SMP
267  * systems as each CPU might be scaled differently. So, use the arch
268  * per-CPU loops_per_jiffy value wherever possible.
269  */
270 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
271 {
272 #ifndef CONFIG_SMP
273         static unsigned long l_p_j_ref;
274         static unsigned int l_p_j_ref_freq;
275
276         if (ci->flags & CPUFREQ_CONST_LOOPS)
277                 return;
278
279         if (!l_p_j_ref_freq) {
280                 l_p_j_ref = loops_per_jiffy;
281                 l_p_j_ref_freq = ci->old;
282                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
283                          l_p_j_ref, l_p_j_ref_freq);
284         }
285         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
286                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
287                                                                 ci->new);
288                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
289                          loops_per_jiffy, ci->new);
290         }
291 #endif
292 }
293
294 /**
295  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
296  * @policy: cpufreq policy to enable fast frequency switching for.
297  * @freqs: contain details of the frequency update.
298  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
299  *
300  * This function calls the transition notifiers and the "adjust_jiffies"
301  * function. It is called twice on all CPU frequency changes that have
302  * external effects.
303  */
304 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
305                                       struct cpufreq_freqs *freqs,
306                                       unsigned int state)
307 {
308         BUG_ON(irqs_disabled());
309
310         if (cpufreq_disabled())
311                 return;
312
313         freqs->flags = cpufreq_driver->flags;
314         pr_debug("notification %u of frequency transition to %u kHz\n",
315                  state, freqs->new);
316
317         switch (state) {
318         case CPUFREQ_PRECHANGE:
319                 /*
320                  * Detect if the driver reported a value as "old frequency"
321                  * which is not equal to what the cpufreq core thinks is
322                  * "old frequency".
323                  */
324                 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
325                         if (policy->cur && (policy->cur != freqs->old)) {
326                                 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
327                                          freqs->old, policy->cur);
328                                 freqs->old = policy->cur;
329                         }
330                 }
331
332                 for_each_cpu(freqs->cpu, policy->cpus) {
333                         srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
334                                                  CPUFREQ_PRECHANGE, freqs);
335                 }
336
337                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
338                 break;
339
340         case CPUFREQ_POSTCHANGE:
341                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
342                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
343                          cpumask_pr_args(policy->cpus));
344
345                 for_each_cpu(freqs->cpu, policy->cpus) {
346                         trace_cpu_frequency(freqs->new, freqs->cpu);
347                         srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
348                                                  CPUFREQ_POSTCHANGE, freqs);
349                 }
350
351                 cpufreq_stats_record_transition(policy, freqs->new);
352                 policy->cur = freqs->new;
353         }
354 }
355
356 /* Do post notifications when there are chances that transition has failed */
357 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
358                 struct cpufreq_freqs *freqs, int transition_failed)
359 {
360         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
361         if (!transition_failed)
362                 return;
363
364         swap(freqs->old, freqs->new);
365         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
366         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
367 }
368
369 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
370                 struct cpufreq_freqs *freqs)
371 {
372
373         /*
374          * Catch double invocations of _begin() which lead to self-deadlock.
375          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
376          * doesn't invoke _begin() on their behalf, and hence the chances of
377          * double invocations are very low. Moreover, there are scenarios
378          * where these checks can emit false-positive warnings in these
379          * drivers; so we avoid that by skipping them altogether.
380          */
381         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
382                                 && current == policy->transition_task);
383
384 wait:
385         wait_event(policy->transition_wait, !policy->transition_ongoing);
386
387         spin_lock(&policy->transition_lock);
388
389         if (unlikely(policy->transition_ongoing)) {
390                 spin_unlock(&policy->transition_lock);
391                 goto wait;
392         }
393
394         policy->transition_ongoing = true;
395         policy->transition_task = current;
396
397         spin_unlock(&policy->transition_lock);
398
399         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
400 }
401 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
402
403 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
404                 struct cpufreq_freqs *freqs, int transition_failed)
405 {
406         if (unlikely(WARN_ON(!policy->transition_ongoing)))
407                 return;
408
409         cpufreq_notify_post_transition(policy, freqs, transition_failed);
410
411         policy->transition_ongoing = false;
412         policy->transition_task = NULL;
413
414         wake_up(&policy->transition_wait);
415 }
416 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
417
418 /*
419  * Fast frequency switching status count.  Positive means "enabled", negative
420  * means "disabled" and 0 means "not decided yet".
421  */
422 static int cpufreq_fast_switch_count;
423 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
424
425 static void cpufreq_list_transition_notifiers(void)
426 {
427         struct notifier_block *nb;
428
429         pr_info("Registered transition notifiers:\n");
430
431         mutex_lock(&cpufreq_transition_notifier_list.mutex);
432
433         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
434                 pr_info("%pF\n", nb->notifier_call);
435
436         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
437 }
438
439 /**
440  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
441  * @policy: cpufreq policy to enable fast frequency switching for.
442  *
443  * Try to enable fast frequency switching for @policy.
444  *
445  * The attempt will fail if there is at least one transition notifier registered
446  * at this point, as fast frequency switching is quite fundamentally at odds
447  * with transition notifiers.  Thus if successful, it will make registration of
448  * transition notifiers fail going forward.
449  */
450 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
451 {
452         lockdep_assert_held(&policy->rwsem);
453
454         if (!policy->fast_switch_possible)
455                 return;
456
457         mutex_lock(&cpufreq_fast_switch_lock);
458         if (cpufreq_fast_switch_count >= 0) {
459                 cpufreq_fast_switch_count++;
460                 policy->fast_switch_enabled = true;
461         } else {
462                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
463                         policy->cpu);
464                 cpufreq_list_transition_notifiers();
465         }
466         mutex_unlock(&cpufreq_fast_switch_lock);
467 }
468 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
469
470 /**
471  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
472  * @policy: cpufreq policy to disable fast frequency switching for.
473  */
474 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
475 {
476         mutex_lock(&cpufreq_fast_switch_lock);
477         if (policy->fast_switch_enabled) {
478                 policy->fast_switch_enabled = false;
479                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
480                         cpufreq_fast_switch_count--;
481         }
482         mutex_unlock(&cpufreq_fast_switch_lock);
483 }
484 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
485
486 /**
487  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
488  * one.
489  * @target_freq: target frequency to resolve.
490  *
491  * The target to driver frequency mapping is cached in the policy.
492  *
493  * Return: Lowest driver-supported frequency greater than or equal to the
494  * given target_freq, subject to policy (min/max) and driver limitations.
495  */
496 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
497                                          unsigned int target_freq)
498 {
499         target_freq = clamp_val(target_freq, policy->min, policy->max);
500         policy->cached_target_freq = target_freq;
501
502         if (cpufreq_driver->target_index) {
503                 int idx;
504
505                 idx = cpufreq_frequency_table_target(policy, target_freq,
506                                                      CPUFREQ_RELATION_L);
507                 policy->cached_resolved_idx = idx;
508                 return policy->freq_table[idx].frequency;
509         }
510
511         if (cpufreq_driver->resolve_freq)
512                 return cpufreq_driver->resolve_freq(policy, target_freq);
513
514         return target_freq;
515 }
516 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
517
518 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
519 {
520         unsigned int latency;
521
522         if (policy->transition_delay_us)
523                 return policy->transition_delay_us;
524
525         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
526         if (latency) {
527                 /*
528                  * For platforms that can change the frequency very fast (< 10
529                  * us), the above formula gives a decent transition delay. But
530                  * for platforms where transition_latency is in milliseconds, it
531                  * ends up giving unrealistic values.
532                  *
533                  * Cap the default transition delay to 10 ms, which seems to be
534                  * a reasonable amount of time after which we should reevaluate
535                  * the frequency.
536                  */
537                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
538         }
539
540         return LATENCY_MULTIPLIER;
541 }
542 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
543
544 /*********************************************************************
545  *                          SYSFS INTERFACE                          *
546  *********************************************************************/
547 static ssize_t show_boost(struct kobject *kobj,
548                           struct kobj_attribute *attr, char *buf)
549 {
550         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
551 }
552
553 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
554                            const char *buf, size_t count)
555 {
556         int ret, enable;
557
558         ret = sscanf(buf, "%d", &enable);
559         if (ret != 1 || enable < 0 || enable > 1)
560                 return -EINVAL;
561
562         if (cpufreq_boost_trigger_state(enable)) {
563                 pr_err("%s: Cannot %s BOOST!\n",
564                        __func__, enable ? "enable" : "disable");
565                 return -EINVAL;
566         }
567
568         pr_debug("%s: cpufreq BOOST %s\n",
569                  __func__, enable ? "enabled" : "disabled");
570
571         return count;
572 }
573 define_one_global_rw(boost);
574
575 static struct cpufreq_governor *find_governor(const char *str_governor)
576 {
577         struct cpufreq_governor *t;
578
579         for_each_governor(t)
580                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
581                         return t;
582
583         return NULL;
584 }
585
586 /**
587  * cpufreq_parse_governor - parse a governor string
588  */
589 static int cpufreq_parse_governor(char *str_governor,
590                                   struct cpufreq_policy *policy)
591 {
592         if (cpufreq_driver->setpolicy) {
593                 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
594                         policy->policy = CPUFREQ_POLICY_PERFORMANCE;
595                         return 0;
596                 }
597
598                 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
599                         policy->policy = CPUFREQ_POLICY_POWERSAVE;
600                         return 0;
601                 }
602         } else {
603                 struct cpufreq_governor *t;
604
605                 mutex_lock(&cpufreq_governor_mutex);
606
607                 t = find_governor(str_governor);
608                 if (!t) {
609                         int ret;
610
611                         mutex_unlock(&cpufreq_governor_mutex);
612
613                         ret = request_module("cpufreq_%s", str_governor);
614                         if (ret)
615                                 return -EINVAL;
616
617                         mutex_lock(&cpufreq_governor_mutex);
618
619                         t = find_governor(str_governor);
620                 }
621                 if (t && !try_module_get(t->owner))
622                         t = NULL;
623
624                 mutex_unlock(&cpufreq_governor_mutex);
625
626                 if (t) {
627                         policy->governor = t;
628                         return 0;
629                 }
630         }
631
632         return -EINVAL;
633 }
634
635 /**
636  * cpufreq_per_cpu_attr_read() / show_##file_name() -
637  * print out cpufreq information
638  *
639  * Write out information from cpufreq_driver->policy[cpu]; object must be
640  * "unsigned int".
641  */
642
643 #define show_one(file_name, object)                     \
644 static ssize_t show_##file_name                         \
645 (struct cpufreq_policy *policy, char *buf)              \
646 {                                                       \
647         return sprintf(buf, "%u\n", policy->object);    \
648 }
649
650 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
651 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
652 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
653 show_one(scaling_min_freq, min);
654 show_one(scaling_max_freq, max);
655
656 __weak unsigned int arch_freq_get_on_cpu(int cpu)
657 {
658         return 0;
659 }
660
661 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
662 {
663         ssize_t ret;
664         unsigned int freq;
665
666         freq = arch_freq_get_on_cpu(policy->cpu);
667         if (freq)
668                 ret = sprintf(buf, "%u\n", freq);
669         else if (cpufreq_driver && cpufreq_driver->setpolicy &&
670                         cpufreq_driver->get)
671                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
672         else
673                 ret = sprintf(buf, "%u\n", policy->cur);
674         return ret;
675 }
676
677 static int cpufreq_set_policy(struct cpufreq_policy *policy,
678                                 struct cpufreq_policy *new_policy);
679
680 /**
681  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
682  */
683 #define store_one(file_name, object)                    \
684 static ssize_t store_##file_name                                        \
685 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
686 {                                                                       \
687         int ret, temp;                                                  \
688         struct cpufreq_policy new_policy;                               \
689                                                                         \
690         memcpy(&new_policy, policy, sizeof(*policy));                   \
691         new_policy.min = policy->user_policy.min;                       \
692         new_policy.max = policy->user_policy.max;                       \
693                                                                         \
694         ret = sscanf(buf, "%u", &new_policy.object);                    \
695         if (ret != 1)                                                   \
696                 return -EINVAL;                                         \
697                                                                         \
698         temp = new_policy.object;                                       \
699         ret = cpufreq_set_policy(policy, &new_policy);          \
700         if (!ret)                                                       \
701                 policy->user_policy.object = temp;                      \
702                                                                         \
703         return ret ? ret : count;                                       \
704 }
705
706 store_one(scaling_min_freq, min);
707 store_one(scaling_max_freq, max);
708
709 /**
710  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
711  */
712 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
713                                         char *buf)
714 {
715         unsigned int cur_freq = __cpufreq_get(policy);
716
717         if (cur_freq)
718                 return sprintf(buf, "%u\n", cur_freq);
719
720         return sprintf(buf, "<unknown>\n");
721 }
722
723 /**
724  * show_scaling_governor - show the current policy for the specified CPU
725  */
726 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
727 {
728         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
729                 return sprintf(buf, "powersave\n");
730         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
731                 return sprintf(buf, "performance\n");
732         else if (policy->governor)
733                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
734                                 policy->governor->name);
735         return -EINVAL;
736 }
737
738 /**
739  * store_scaling_governor - store policy for the specified CPU
740  */
741 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
742                                         const char *buf, size_t count)
743 {
744         int ret;
745         char    str_governor[16];
746         struct cpufreq_policy new_policy;
747
748         memcpy(&new_policy, policy, sizeof(*policy));
749
750         ret = sscanf(buf, "%15s", str_governor);
751         if (ret != 1)
752                 return -EINVAL;
753
754         if (cpufreq_parse_governor(str_governor, &new_policy))
755                 return -EINVAL;
756
757         ret = cpufreq_set_policy(policy, &new_policy);
758
759         if (new_policy.governor)
760                 module_put(new_policy.governor->owner);
761
762         return ret ? ret : count;
763 }
764
765 /**
766  * show_scaling_driver - show the cpufreq driver currently loaded
767  */
768 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
769 {
770         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
771 }
772
773 /**
774  * show_scaling_available_governors - show the available CPUfreq governors
775  */
776 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
777                                                 char *buf)
778 {
779         ssize_t i = 0;
780         struct cpufreq_governor *t;
781
782         if (!has_target()) {
783                 i += sprintf(buf, "performance powersave");
784                 goto out;
785         }
786
787         for_each_governor(t) {
788                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
789                     - (CPUFREQ_NAME_LEN + 2)))
790                         goto out;
791                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
792         }
793 out:
794         i += sprintf(&buf[i], "\n");
795         return i;
796 }
797
798 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
799 {
800         ssize_t i = 0;
801         unsigned int cpu;
802
803         for_each_cpu(cpu, mask) {
804                 if (i)
805                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
806                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
807                 if (i >= (PAGE_SIZE - 5))
808                         break;
809         }
810         i += sprintf(&buf[i], "\n");
811         return i;
812 }
813 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
814
815 /**
816  * show_related_cpus - show the CPUs affected by each transition even if
817  * hw coordination is in use
818  */
819 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
820 {
821         return cpufreq_show_cpus(policy->related_cpus, buf);
822 }
823
824 /**
825  * show_affected_cpus - show the CPUs affected by each transition
826  */
827 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
828 {
829         return cpufreq_show_cpus(policy->cpus, buf);
830 }
831
832 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
833                                         const char *buf, size_t count)
834 {
835         unsigned int freq = 0;
836         unsigned int ret;
837
838         if (!policy->governor || !policy->governor->store_setspeed)
839                 return -EINVAL;
840
841         ret = sscanf(buf, "%u", &freq);
842         if (ret != 1)
843                 return -EINVAL;
844
845         policy->governor->store_setspeed(policy, freq);
846
847         return count;
848 }
849
850 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
851 {
852         if (!policy->governor || !policy->governor->show_setspeed)
853                 return sprintf(buf, "<unsupported>\n");
854
855         return policy->governor->show_setspeed(policy, buf);
856 }
857
858 /**
859  * show_bios_limit - show the current cpufreq HW/BIOS limitation
860  */
861 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
862 {
863         unsigned int limit;
864         int ret;
865         if (cpufreq_driver->bios_limit) {
866                 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
867                 if (!ret)
868                         return sprintf(buf, "%u\n", limit);
869         }
870         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
871 }
872
873 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
874 cpufreq_freq_attr_ro(cpuinfo_min_freq);
875 cpufreq_freq_attr_ro(cpuinfo_max_freq);
876 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
877 cpufreq_freq_attr_ro(scaling_available_governors);
878 cpufreq_freq_attr_ro(scaling_driver);
879 cpufreq_freq_attr_ro(scaling_cur_freq);
880 cpufreq_freq_attr_ro(bios_limit);
881 cpufreq_freq_attr_ro(related_cpus);
882 cpufreq_freq_attr_ro(affected_cpus);
883 cpufreq_freq_attr_rw(scaling_min_freq);
884 cpufreq_freq_attr_rw(scaling_max_freq);
885 cpufreq_freq_attr_rw(scaling_governor);
886 cpufreq_freq_attr_rw(scaling_setspeed);
887
888 static struct attribute *default_attrs[] = {
889         &cpuinfo_min_freq.attr,
890         &cpuinfo_max_freq.attr,
891         &cpuinfo_transition_latency.attr,
892         &scaling_min_freq.attr,
893         &scaling_max_freq.attr,
894         &affected_cpus.attr,
895         &related_cpus.attr,
896         &scaling_governor.attr,
897         &scaling_driver.attr,
898         &scaling_available_governors.attr,
899         &scaling_setspeed.attr,
900         NULL
901 };
902
903 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
904 #define to_attr(a) container_of(a, struct freq_attr, attr)
905
906 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
907 {
908         struct cpufreq_policy *policy = to_policy(kobj);
909         struct freq_attr *fattr = to_attr(attr);
910         ssize_t ret;
911
912         if (!fattr->show)
913                 return -EIO;
914
915         down_read(&policy->rwsem);
916         ret = fattr->show(policy, buf);
917         up_read(&policy->rwsem);
918
919         return ret;
920 }
921
922 static ssize_t store(struct kobject *kobj, struct attribute *attr,
923                      const char *buf, size_t count)
924 {
925         struct cpufreq_policy *policy = to_policy(kobj);
926         struct freq_attr *fattr = to_attr(attr);
927         ssize_t ret = -EINVAL;
928
929         if (!fattr->store)
930                 return -EIO;
931
932         /*
933          * cpus_read_trylock() is used here to work around a circular lock
934          * dependency problem with respect to the cpufreq_register_driver().
935          */
936         if (!cpus_read_trylock())
937                 return -EBUSY;
938
939         if (cpu_online(policy->cpu)) {
940                 down_write(&policy->rwsem);
941                 ret = fattr->store(policy, buf, count);
942                 up_write(&policy->rwsem);
943         }
944
945         cpus_read_unlock();
946
947         return ret;
948 }
949
950 static void cpufreq_sysfs_release(struct kobject *kobj)
951 {
952         struct cpufreq_policy *policy = to_policy(kobj);
953         pr_debug("last reference is dropped\n");
954         complete(&policy->kobj_unregister);
955 }
956
957 static const struct sysfs_ops sysfs_ops = {
958         .show   = show,
959         .store  = store,
960 };
961
962 static struct kobj_type ktype_cpufreq = {
963         .sysfs_ops      = &sysfs_ops,
964         .default_attrs  = default_attrs,
965         .release        = cpufreq_sysfs_release,
966 };
967
968 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
969 {
970         struct device *dev = get_cpu_device(cpu);
971
972         if (!dev)
973                 return;
974
975         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
976                 return;
977
978         dev_dbg(dev, "%s: Adding symlink\n", __func__);
979         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
980                 dev_err(dev, "cpufreq symlink creation failed\n");
981 }
982
983 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
984                                    struct device *dev)
985 {
986         dev_dbg(dev, "%s: Removing symlink\n", __func__);
987         sysfs_remove_link(&dev->kobj, "cpufreq");
988 }
989
990 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
991 {
992         struct freq_attr **drv_attr;
993         int ret = 0;
994
995         /* set up files for this cpu device */
996         drv_attr = cpufreq_driver->attr;
997         while (drv_attr && *drv_attr) {
998                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
999                 if (ret)
1000                         return ret;
1001                 drv_attr++;
1002         }
1003         if (cpufreq_driver->get) {
1004                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1005                 if (ret)
1006                         return ret;
1007         }
1008
1009         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1010         if (ret)
1011                 return ret;
1012
1013         if (cpufreq_driver->bios_limit) {
1014                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1015                 if (ret)
1016                         return ret;
1017         }
1018
1019         return 0;
1020 }
1021
1022 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1023 {
1024         return NULL;
1025 }
1026
1027 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1028 {
1029         struct cpufreq_governor *gov = NULL;
1030         struct cpufreq_policy new_policy;
1031
1032         memcpy(&new_policy, policy, sizeof(*policy));
1033
1034         /* Update governor of new_policy to the governor used before hotplug */
1035         gov = find_governor(policy->last_governor);
1036         if (gov) {
1037                 pr_debug("Restoring governor %s for cpu %d\n",
1038                                 policy->governor->name, policy->cpu);
1039         } else {
1040                 gov = cpufreq_default_governor();
1041                 if (!gov)
1042                         return -ENODATA;
1043         }
1044
1045         new_policy.governor = gov;
1046
1047         /* Use the default policy if there is no last_policy. */
1048         if (cpufreq_driver->setpolicy) {
1049                 if (policy->last_policy)
1050                         new_policy.policy = policy->last_policy;
1051                 else
1052                         cpufreq_parse_governor(gov->name, &new_policy);
1053         }
1054         /* set default policy */
1055         return cpufreq_set_policy(policy, &new_policy);
1056 }
1057
1058 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1059 {
1060         int ret = 0;
1061
1062         /* Has this CPU been taken care of already? */
1063         if (cpumask_test_cpu(cpu, policy->cpus))
1064                 return 0;
1065
1066         down_write(&policy->rwsem);
1067         if (has_target())
1068                 cpufreq_stop_governor(policy);
1069
1070         cpumask_set_cpu(cpu, policy->cpus);
1071
1072         if (has_target()) {
1073                 ret = cpufreq_start_governor(policy);
1074                 if (ret)
1075                         pr_err("%s: Failed to start governor\n", __func__);
1076         }
1077         up_write(&policy->rwsem);
1078         return ret;
1079 }
1080
1081 static void handle_update(struct work_struct *work)
1082 {
1083         struct cpufreq_policy *policy =
1084                 container_of(work, struct cpufreq_policy, update);
1085         unsigned int cpu = policy->cpu;
1086         pr_debug("handle_update for cpu %u called\n", cpu);
1087         cpufreq_update_policy(cpu);
1088 }
1089
1090 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1091 {
1092         struct cpufreq_policy *policy;
1093         int ret;
1094
1095         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1096         if (!policy)
1097                 return NULL;
1098
1099         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1100                 goto err_free_policy;
1101
1102         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1103                 goto err_free_cpumask;
1104
1105         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1106                 goto err_free_rcpumask;
1107
1108         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1109                                    cpufreq_global_kobject, "policy%u", cpu);
1110         if (ret) {
1111                 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1112                 kobject_put(&policy->kobj);
1113                 goto err_free_real_cpus;
1114         }
1115
1116         INIT_LIST_HEAD(&policy->policy_list);
1117         init_rwsem(&policy->rwsem);
1118         spin_lock_init(&policy->transition_lock);
1119         init_waitqueue_head(&policy->transition_wait);
1120         init_completion(&policy->kobj_unregister);
1121         INIT_WORK(&policy->update, handle_update);
1122
1123         policy->cpu = cpu;
1124         return policy;
1125
1126 err_free_real_cpus:
1127         free_cpumask_var(policy->real_cpus);
1128 err_free_rcpumask:
1129         free_cpumask_var(policy->related_cpus);
1130 err_free_cpumask:
1131         free_cpumask_var(policy->cpus);
1132 err_free_policy:
1133         kfree(policy);
1134
1135         return NULL;
1136 }
1137
1138 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1139 {
1140         struct kobject *kobj;
1141         struct completion *cmp;
1142
1143         down_write(&policy->rwsem);
1144         cpufreq_stats_free_table(policy);
1145         kobj = &policy->kobj;
1146         cmp = &policy->kobj_unregister;
1147         up_write(&policy->rwsem);
1148         kobject_put(kobj);
1149
1150         /*
1151          * We need to make sure that the underlying kobj is
1152          * actually not referenced anymore by anybody before we
1153          * proceed with unloading.
1154          */
1155         pr_debug("waiting for dropping of refcount\n");
1156         wait_for_completion(cmp);
1157         pr_debug("wait complete\n");
1158 }
1159
1160 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1161 {
1162         unsigned long flags;
1163         int cpu;
1164
1165         /* Remove policy from list */
1166         write_lock_irqsave(&cpufreq_driver_lock, flags);
1167         list_del(&policy->policy_list);
1168
1169         for_each_cpu(cpu, policy->related_cpus)
1170                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1171         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1172
1173         cpufreq_policy_put_kobj(policy);
1174         free_cpumask_var(policy->real_cpus);
1175         free_cpumask_var(policy->related_cpus);
1176         free_cpumask_var(policy->cpus);
1177         kfree(policy);
1178 }
1179
1180 static int cpufreq_online(unsigned int cpu)
1181 {
1182         struct cpufreq_policy *policy;
1183         bool new_policy;
1184         unsigned long flags;
1185         unsigned int j;
1186         int ret;
1187
1188         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1189
1190         /* Check if this CPU already has a policy to manage it */
1191         policy = per_cpu(cpufreq_cpu_data, cpu);
1192         if (policy) {
1193                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1194                 if (!policy_is_inactive(policy))
1195                         return cpufreq_add_policy_cpu(policy, cpu);
1196
1197                 /* This is the only online CPU for the policy.  Start over. */
1198                 new_policy = false;
1199                 down_write(&policy->rwsem);
1200                 policy->cpu = cpu;
1201                 policy->governor = NULL;
1202                 up_write(&policy->rwsem);
1203         } else {
1204                 new_policy = true;
1205                 policy = cpufreq_policy_alloc(cpu);
1206                 if (!policy)
1207                         return -ENOMEM;
1208         }
1209
1210         cpumask_copy(policy->cpus, cpumask_of(cpu));
1211
1212         /* call driver. From then on the cpufreq must be able
1213          * to accept all calls to ->verify and ->setpolicy for this CPU
1214          */
1215         ret = cpufreq_driver->init(policy);
1216         if (ret) {
1217                 pr_debug("initialization failed\n");
1218                 goto out_free_policy;
1219         }
1220
1221         ret = cpufreq_table_validate_and_sort(policy);
1222         if (ret)
1223                 goto out_exit_policy;
1224
1225         down_write(&policy->rwsem);
1226
1227         if (new_policy) {
1228                 /* related_cpus should at least include policy->cpus. */
1229                 cpumask_copy(policy->related_cpus, policy->cpus);
1230         }
1231
1232         /*
1233          * affected cpus must always be the one, which are online. We aren't
1234          * managing offline cpus here.
1235          */
1236         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1237
1238         if (new_policy) {
1239                 policy->user_policy.min = policy->min;
1240                 policy->user_policy.max = policy->max;
1241
1242                 for_each_cpu(j, policy->related_cpus) {
1243                         per_cpu(cpufreq_cpu_data, j) = policy;
1244                         add_cpu_dev_symlink(policy, j);
1245                 }
1246         } else {
1247                 policy->min = policy->user_policy.min;
1248                 policy->max = policy->user_policy.max;
1249         }
1250
1251         if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1252                 policy->cur = cpufreq_driver->get(policy->cpu);
1253                 if (!policy->cur) {
1254                         pr_err("%s: ->get() failed\n", __func__);
1255                         goto out_destroy_policy;
1256                 }
1257         }
1258
1259         /*
1260          * Sometimes boot loaders set CPU frequency to a value outside of
1261          * frequency table present with cpufreq core. In such cases CPU might be
1262          * unstable if it has to run on that frequency for long duration of time
1263          * and so its better to set it to a frequency which is specified in
1264          * freq-table. This also makes cpufreq stats inconsistent as
1265          * cpufreq-stats would fail to register because current frequency of CPU
1266          * isn't found in freq-table.
1267          *
1268          * Because we don't want this change to effect boot process badly, we go
1269          * for the next freq which is >= policy->cur ('cur' must be set by now,
1270          * otherwise we will end up setting freq to lowest of the table as 'cur'
1271          * is initialized to zero).
1272          *
1273          * We are passing target-freq as "policy->cur - 1" otherwise
1274          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1275          * equal to target-freq.
1276          */
1277         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1278             && has_target()) {
1279                 /* Are we running at unknown frequency ? */
1280                 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1281                 if (ret == -EINVAL) {
1282                         /* Warn user and fix it */
1283                         pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1284                                 __func__, policy->cpu, policy->cur);
1285                         ret = __cpufreq_driver_target(policy, policy->cur - 1,
1286                                 CPUFREQ_RELATION_L);
1287
1288                         /*
1289                          * Reaching here after boot in a few seconds may not
1290                          * mean that system will remain stable at "unknown"
1291                          * frequency for longer duration. Hence, a BUG_ON().
1292                          */
1293                         BUG_ON(ret);
1294                         pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1295                                 __func__, policy->cpu, policy->cur);
1296                 }
1297         }
1298
1299         if (new_policy) {
1300                 ret = cpufreq_add_dev_interface(policy);
1301                 if (ret)
1302                         goto out_destroy_policy;
1303
1304                 cpufreq_stats_create_table(policy);
1305
1306                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1307                 list_add(&policy->policy_list, &cpufreq_policy_list);
1308                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1309         }
1310
1311         ret = cpufreq_init_policy(policy);
1312         if (ret) {
1313                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1314                        __func__, cpu, ret);
1315                 /* cpufreq_policy_free() will notify based on this */
1316                 new_policy = false;
1317                 goto out_destroy_policy;
1318         }
1319
1320         up_write(&policy->rwsem);
1321
1322         kobject_uevent(&policy->kobj, KOBJ_ADD);
1323
1324         /* Callback for handling stuff after policy is ready */
1325         if (cpufreq_driver->ready)
1326                 cpufreq_driver->ready(policy);
1327
1328         pr_debug("initialization complete\n");
1329
1330         return 0;
1331
1332 out_destroy_policy:
1333         for_each_cpu(j, policy->real_cpus)
1334                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1335
1336         up_write(&policy->rwsem);
1337
1338 out_exit_policy:
1339         if (cpufreq_driver->exit)
1340                 cpufreq_driver->exit(policy);
1341
1342 out_free_policy:
1343         cpufreq_policy_free(policy);
1344         return ret;
1345 }
1346
1347 /**
1348  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1349  * @dev: CPU device.
1350  * @sif: Subsystem interface structure pointer (not used)
1351  */
1352 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1353 {
1354         struct cpufreq_policy *policy;
1355         unsigned cpu = dev->id;
1356         int ret;
1357
1358         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1359
1360         if (cpu_online(cpu)) {
1361                 ret = cpufreq_online(cpu);
1362                 if (ret)
1363                         return ret;
1364         }
1365
1366         /* Create sysfs link on CPU registration */
1367         policy = per_cpu(cpufreq_cpu_data, cpu);
1368         if (policy)
1369                 add_cpu_dev_symlink(policy, cpu);
1370
1371         return 0;
1372 }
1373
1374 static int cpufreq_offline(unsigned int cpu)
1375 {
1376         struct cpufreq_policy *policy;
1377         int ret;
1378
1379         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1380
1381         policy = cpufreq_cpu_get_raw(cpu);
1382         if (!policy) {
1383                 pr_debug("%s: No cpu_data found\n", __func__);
1384                 return 0;
1385         }
1386
1387         down_write(&policy->rwsem);
1388         if (has_target())
1389                 cpufreq_stop_governor(policy);
1390
1391         cpumask_clear_cpu(cpu, policy->cpus);
1392
1393         if (policy_is_inactive(policy)) {
1394                 if (has_target())
1395                         strncpy(policy->last_governor, policy->governor->name,
1396                                 CPUFREQ_NAME_LEN);
1397                 else
1398                         policy->last_policy = policy->policy;
1399         } else if (cpu == policy->cpu) {
1400                 /* Nominate new CPU */
1401                 policy->cpu = cpumask_any(policy->cpus);
1402         }
1403
1404         /* Start governor again for active policy */
1405         if (!policy_is_inactive(policy)) {
1406                 if (has_target()) {
1407                         ret = cpufreq_start_governor(policy);
1408                         if (ret)
1409                                 pr_err("%s: Failed to start governor\n", __func__);
1410                 }
1411
1412                 goto unlock;
1413         }
1414
1415         if (cpufreq_driver->stop_cpu)
1416                 cpufreq_driver->stop_cpu(policy);
1417
1418         if (has_target())
1419                 cpufreq_exit_governor(policy);
1420
1421         /*
1422          * Perform the ->exit() even during light-weight tear-down,
1423          * since this is a core component, and is essential for the
1424          * subsequent light-weight ->init() to succeed.
1425          */
1426         if (cpufreq_driver->exit) {
1427                 cpufreq_driver->exit(policy);
1428                 policy->freq_table = NULL;
1429         }
1430
1431 unlock:
1432         up_write(&policy->rwsem);
1433         return 0;
1434 }
1435
1436 /**
1437  * cpufreq_remove_dev - remove a CPU device
1438  *
1439  * Removes the cpufreq interface for a CPU device.
1440  */
1441 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1442 {
1443         unsigned int cpu = dev->id;
1444         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1445
1446         if (!policy)
1447                 return;
1448
1449         if (cpu_online(cpu))
1450                 cpufreq_offline(cpu);
1451
1452         cpumask_clear_cpu(cpu, policy->real_cpus);
1453         remove_cpu_dev_symlink(policy, dev);
1454
1455         if (cpumask_empty(policy->real_cpus))
1456                 cpufreq_policy_free(policy);
1457 }
1458
1459 /**
1460  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1461  *      in deep trouble.
1462  *      @policy: policy managing CPUs
1463  *      @new_freq: CPU frequency the CPU actually runs at
1464  *
1465  *      We adjust to current frequency first, and need to clean up later.
1466  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1467  */
1468 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1469                                 unsigned int new_freq)
1470 {
1471         struct cpufreq_freqs freqs;
1472
1473         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1474                  policy->cur, new_freq);
1475
1476         freqs.old = policy->cur;
1477         freqs.new = new_freq;
1478
1479         cpufreq_freq_transition_begin(policy, &freqs);
1480         cpufreq_freq_transition_end(policy, &freqs, 0);
1481 }
1482
1483 /**
1484  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1485  * @cpu: CPU number
1486  *
1487  * This is the last known freq, without actually getting it from the driver.
1488  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1489  */
1490 unsigned int cpufreq_quick_get(unsigned int cpu)
1491 {
1492         struct cpufreq_policy *policy;
1493         unsigned int ret_freq = 0;
1494         unsigned long flags;
1495
1496         read_lock_irqsave(&cpufreq_driver_lock, flags);
1497
1498         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1499                 ret_freq = cpufreq_driver->get(cpu);
1500                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1501                 return ret_freq;
1502         }
1503
1504         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1505
1506         policy = cpufreq_cpu_get(cpu);
1507         if (policy) {
1508                 ret_freq = policy->cur;
1509                 cpufreq_cpu_put(policy);
1510         }
1511
1512         return ret_freq;
1513 }
1514 EXPORT_SYMBOL(cpufreq_quick_get);
1515
1516 /**
1517  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1518  * @cpu: CPU number
1519  *
1520  * Just return the max possible frequency for a given CPU.
1521  */
1522 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1523 {
1524         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1525         unsigned int ret_freq = 0;
1526
1527         if (policy) {
1528                 ret_freq = policy->max;
1529                 cpufreq_cpu_put(policy);
1530         }
1531
1532         return ret_freq;
1533 }
1534 EXPORT_SYMBOL(cpufreq_quick_get_max);
1535
1536 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1537 {
1538         unsigned int ret_freq = 0;
1539
1540         if (unlikely(policy_is_inactive(policy)) || !cpufreq_driver->get)
1541                 return ret_freq;
1542
1543         ret_freq = cpufreq_driver->get(policy->cpu);
1544
1545         /*
1546          * If fast frequency switching is used with the given policy, the check
1547          * against policy->cur is pointless, so skip it in that case too.
1548          */
1549         if (policy->fast_switch_enabled)
1550                 return ret_freq;
1551
1552         if (ret_freq && policy->cur &&
1553                 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1554                 /* verify no discrepancy between actual and
1555                                         saved value exists */
1556                 if (unlikely(ret_freq != policy->cur)) {
1557                         cpufreq_out_of_sync(policy, ret_freq);
1558                         schedule_work(&policy->update);
1559                 }
1560         }
1561
1562         return ret_freq;
1563 }
1564
1565 /**
1566  * cpufreq_get - get the current CPU frequency (in kHz)
1567  * @cpu: CPU number
1568  *
1569  * Get the CPU current (static) CPU frequency
1570  */
1571 unsigned int cpufreq_get(unsigned int cpu)
1572 {
1573         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1574         unsigned int ret_freq = 0;
1575
1576         if (policy) {
1577                 down_read(&policy->rwsem);
1578                 ret_freq = __cpufreq_get(policy);
1579                 up_read(&policy->rwsem);
1580
1581                 cpufreq_cpu_put(policy);
1582         }
1583
1584         return ret_freq;
1585 }
1586 EXPORT_SYMBOL(cpufreq_get);
1587
1588 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1589 {
1590         unsigned int new_freq;
1591
1592         new_freq = cpufreq_driver->get(policy->cpu);
1593         if (!new_freq)
1594                 return 0;
1595
1596         if (!policy->cur) {
1597                 pr_debug("cpufreq: Driver did not initialize current freq\n");
1598                 policy->cur = new_freq;
1599         } else if (policy->cur != new_freq && has_target()) {
1600                 cpufreq_out_of_sync(policy, new_freq);
1601         }
1602
1603         return new_freq;
1604 }
1605
1606 static struct subsys_interface cpufreq_interface = {
1607         .name           = "cpufreq",
1608         .subsys         = &cpu_subsys,
1609         .add_dev        = cpufreq_add_dev,
1610         .remove_dev     = cpufreq_remove_dev,
1611 };
1612
1613 /*
1614  * In case platform wants some specific frequency to be configured
1615  * during suspend..
1616  */
1617 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1618 {
1619         int ret;
1620
1621         if (!policy->suspend_freq) {
1622                 pr_debug("%s: suspend_freq not defined\n", __func__);
1623                 return 0;
1624         }
1625
1626         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1627                         policy->suspend_freq);
1628
1629         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1630                         CPUFREQ_RELATION_H);
1631         if (ret)
1632                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1633                                 __func__, policy->suspend_freq, ret);
1634
1635         return ret;
1636 }
1637 EXPORT_SYMBOL(cpufreq_generic_suspend);
1638
1639 /**
1640  * cpufreq_suspend() - Suspend CPUFreq governors
1641  *
1642  * Called during system wide Suspend/Hibernate cycles for suspending governors
1643  * as some platforms can't change frequency after this point in suspend cycle.
1644  * Because some of the devices (like: i2c, regulators, etc) they use for
1645  * changing frequency are suspended quickly after this point.
1646  */
1647 void cpufreq_suspend(void)
1648 {
1649         struct cpufreq_policy *policy;
1650
1651         if (!cpufreq_driver)
1652                 return;
1653
1654         if (!has_target() && !cpufreq_driver->suspend)
1655                 goto suspend;
1656
1657         pr_debug("%s: Suspending Governors\n", __func__);
1658
1659         for_each_active_policy(policy) {
1660                 if (has_target()) {
1661                         down_write(&policy->rwsem);
1662                         cpufreq_stop_governor(policy);
1663                         up_write(&policy->rwsem);
1664                 }
1665
1666                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1667                         pr_err("%s: Failed to suspend driver: %p\n", __func__,
1668                                 policy);
1669         }
1670
1671 suspend:
1672         cpufreq_suspended = true;
1673 }
1674
1675 /**
1676  * cpufreq_resume() - Resume CPUFreq governors
1677  *
1678  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1679  * are suspended with cpufreq_suspend().
1680  */
1681 void cpufreq_resume(void)
1682 {
1683         struct cpufreq_policy *policy;
1684         int ret;
1685
1686         if (!cpufreq_driver)
1687                 return;
1688
1689         if (unlikely(!cpufreq_suspended))
1690                 return;
1691
1692         cpufreq_suspended = false;
1693
1694         if (!has_target() && !cpufreq_driver->resume)
1695                 return;
1696
1697         pr_debug("%s: Resuming Governors\n", __func__);
1698
1699         for_each_active_policy(policy) {
1700                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1701                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1702                                 policy);
1703                 } else if (has_target()) {
1704                         down_write(&policy->rwsem);
1705                         ret = cpufreq_start_governor(policy);
1706                         up_write(&policy->rwsem);
1707
1708                         if (ret)
1709                                 pr_err("%s: Failed to start governor for policy: %p\n",
1710                                        __func__, policy);
1711                 }
1712         }
1713 }
1714
1715 /**
1716  *      cpufreq_get_current_driver - return current driver's name
1717  *
1718  *      Return the name string of the currently loaded cpufreq driver
1719  *      or NULL, if none.
1720  */
1721 const char *cpufreq_get_current_driver(void)
1722 {
1723         if (cpufreq_driver)
1724                 return cpufreq_driver->name;
1725
1726         return NULL;
1727 }
1728 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1729
1730 /**
1731  *      cpufreq_get_driver_data - return current driver data
1732  *
1733  *      Return the private data of the currently loaded cpufreq
1734  *      driver, or NULL if no cpufreq driver is loaded.
1735  */
1736 void *cpufreq_get_driver_data(void)
1737 {
1738         if (cpufreq_driver)
1739                 return cpufreq_driver->driver_data;
1740
1741         return NULL;
1742 }
1743 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1744
1745 /*********************************************************************
1746  *                     NOTIFIER LISTS INTERFACE                      *
1747  *********************************************************************/
1748
1749 /**
1750  *      cpufreq_register_notifier - register a driver with cpufreq
1751  *      @nb: notifier function to register
1752  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1753  *
1754  *      Add a driver to one of two lists: either a list of drivers that
1755  *      are notified about clock rate changes (once before and once after
1756  *      the transition), or a list of drivers that are notified about
1757  *      changes in cpufreq policy.
1758  *
1759  *      This function may sleep, and has the same return conditions as
1760  *      blocking_notifier_chain_register.
1761  */
1762 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1763 {
1764         int ret;
1765
1766         if (cpufreq_disabled())
1767                 return -EINVAL;
1768
1769         switch (list) {
1770         case CPUFREQ_TRANSITION_NOTIFIER:
1771                 mutex_lock(&cpufreq_fast_switch_lock);
1772
1773                 if (cpufreq_fast_switch_count > 0) {
1774                         mutex_unlock(&cpufreq_fast_switch_lock);
1775                         return -EBUSY;
1776                 }
1777                 ret = srcu_notifier_chain_register(
1778                                 &cpufreq_transition_notifier_list, nb);
1779                 if (!ret)
1780                         cpufreq_fast_switch_count--;
1781
1782                 mutex_unlock(&cpufreq_fast_switch_lock);
1783                 break;
1784         case CPUFREQ_POLICY_NOTIFIER:
1785                 ret = blocking_notifier_chain_register(
1786                                 &cpufreq_policy_notifier_list, nb);
1787                 break;
1788         default:
1789                 ret = -EINVAL;
1790         }
1791
1792         return ret;
1793 }
1794 EXPORT_SYMBOL(cpufreq_register_notifier);
1795
1796 /**
1797  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1798  *      @nb: notifier block to be unregistered
1799  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1800  *
1801  *      Remove a driver from the CPU frequency notifier list.
1802  *
1803  *      This function may sleep, and has the same return conditions as
1804  *      blocking_notifier_chain_unregister.
1805  */
1806 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1807 {
1808         int ret;
1809
1810         if (cpufreq_disabled())
1811                 return -EINVAL;
1812
1813         switch (list) {
1814         case CPUFREQ_TRANSITION_NOTIFIER:
1815                 mutex_lock(&cpufreq_fast_switch_lock);
1816
1817                 ret = srcu_notifier_chain_unregister(
1818                                 &cpufreq_transition_notifier_list, nb);
1819                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1820                         cpufreq_fast_switch_count++;
1821
1822                 mutex_unlock(&cpufreq_fast_switch_lock);
1823                 break;
1824         case CPUFREQ_POLICY_NOTIFIER:
1825                 ret = blocking_notifier_chain_unregister(
1826                                 &cpufreq_policy_notifier_list, nb);
1827                 break;
1828         default:
1829                 ret = -EINVAL;
1830         }
1831
1832         return ret;
1833 }
1834 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1835
1836
1837 /*********************************************************************
1838  *                              GOVERNORS                            *
1839  *********************************************************************/
1840
1841 /**
1842  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1843  * @policy: cpufreq policy to switch the frequency for.
1844  * @target_freq: New frequency to set (may be approximate).
1845  *
1846  * Carry out a fast frequency switch without sleeping.
1847  *
1848  * The driver's ->fast_switch() callback invoked by this function must be
1849  * suitable for being called from within RCU-sched read-side critical sections
1850  * and it is expected to select the minimum available frequency greater than or
1851  * equal to @target_freq (CPUFREQ_RELATION_L).
1852  *
1853  * This function must not be called if policy->fast_switch_enabled is unset.
1854  *
1855  * Governors calling this function must guarantee that it will never be invoked
1856  * twice in parallel for the same policy and that it will never be called in
1857  * parallel with either ->target() or ->target_index() for the same policy.
1858  *
1859  * Returns the actual frequency set for the CPU.
1860  *
1861  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1862  * error condition, the hardware configuration must be preserved.
1863  */
1864 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1865                                         unsigned int target_freq)
1866 {
1867         target_freq = clamp_val(target_freq, policy->min, policy->max);
1868
1869         return cpufreq_driver->fast_switch(policy, target_freq);
1870 }
1871 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1872
1873 /* Must set freqs->new to intermediate frequency */
1874 static int __target_intermediate(struct cpufreq_policy *policy,
1875                                  struct cpufreq_freqs *freqs, int index)
1876 {
1877         int ret;
1878
1879         freqs->new = cpufreq_driver->get_intermediate(policy, index);
1880
1881         /* We don't need to switch to intermediate freq */
1882         if (!freqs->new)
1883                 return 0;
1884
1885         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1886                  __func__, policy->cpu, freqs->old, freqs->new);
1887
1888         cpufreq_freq_transition_begin(policy, freqs);
1889         ret = cpufreq_driver->target_intermediate(policy, index);
1890         cpufreq_freq_transition_end(policy, freqs, ret);
1891
1892         if (ret)
1893                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1894                        __func__, ret);
1895
1896         return ret;
1897 }
1898
1899 static int __target_index(struct cpufreq_policy *policy, int index)
1900 {
1901         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1902         unsigned int intermediate_freq = 0;
1903         unsigned int newfreq = policy->freq_table[index].frequency;
1904         int retval = -EINVAL;
1905         bool notify;
1906
1907         if (newfreq == policy->cur)
1908                 return 0;
1909
1910         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1911         if (notify) {
1912                 /* Handle switching to intermediate frequency */
1913                 if (cpufreq_driver->get_intermediate) {
1914                         retval = __target_intermediate(policy, &freqs, index);
1915                         if (retval)
1916                                 return retval;
1917
1918                         intermediate_freq = freqs.new;
1919                         /* Set old freq to intermediate */
1920                         if (intermediate_freq)
1921                                 freqs.old = freqs.new;
1922                 }
1923
1924                 freqs.new = newfreq;
1925                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1926                          __func__, policy->cpu, freqs.old, freqs.new);
1927
1928                 cpufreq_freq_transition_begin(policy, &freqs);
1929         }
1930
1931         retval = cpufreq_driver->target_index(policy, index);
1932         if (retval)
1933                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1934                        retval);
1935
1936         if (notify) {
1937                 cpufreq_freq_transition_end(policy, &freqs, retval);
1938
1939                 /*
1940                  * Failed after setting to intermediate freq? Driver should have
1941                  * reverted back to initial frequency and so should we. Check
1942                  * here for intermediate_freq instead of get_intermediate, in
1943                  * case we haven't switched to intermediate freq at all.
1944                  */
1945                 if (unlikely(retval && intermediate_freq)) {
1946                         freqs.old = intermediate_freq;
1947                         freqs.new = policy->restore_freq;
1948                         cpufreq_freq_transition_begin(policy, &freqs);
1949                         cpufreq_freq_transition_end(policy, &freqs, 0);
1950                 }
1951         }
1952
1953         return retval;
1954 }
1955
1956 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1957                             unsigned int target_freq,
1958                             unsigned int relation)
1959 {
1960         unsigned int old_target_freq = target_freq;
1961         int index;
1962
1963         if (cpufreq_disabled())
1964                 return -ENODEV;
1965
1966         /* Make sure that target_freq is within supported range */
1967         target_freq = clamp_val(target_freq, policy->min, policy->max);
1968
1969         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1970                  policy->cpu, target_freq, relation, old_target_freq);
1971
1972         /*
1973          * This might look like a redundant call as we are checking it again
1974          * after finding index. But it is left intentionally for cases where
1975          * exactly same freq is called again and so we can save on few function
1976          * calls.
1977          */
1978         if (target_freq == policy->cur)
1979                 return 0;
1980
1981         /* Save last value to restore later on errors */
1982         policy->restore_freq = policy->cur;
1983
1984         if (cpufreq_driver->target)
1985                 return cpufreq_driver->target(policy, target_freq, relation);
1986
1987         if (!cpufreq_driver->target_index)
1988                 return -EINVAL;
1989
1990         index = cpufreq_frequency_table_target(policy, target_freq, relation);
1991
1992         return __target_index(policy, index);
1993 }
1994 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1995
1996 int cpufreq_driver_target(struct cpufreq_policy *policy,
1997                           unsigned int target_freq,
1998                           unsigned int relation)
1999 {
2000         int ret = -EINVAL;
2001
2002         down_write(&policy->rwsem);
2003
2004         ret = __cpufreq_driver_target(policy, target_freq, relation);
2005
2006         up_write(&policy->rwsem);
2007
2008         return ret;
2009 }
2010 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2011
2012 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2013 {
2014         return NULL;
2015 }
2016
2017 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2018 {
2019         int ret;
2020
2021         /* Don't start any governor operations if we are entering suspend */
2022         if (cpufreq_suspended)
2023                 return 0;
2024         /*
2025          * Governor might not be initiated here if ACPI _PPC changed
2026          * notification happened, so check it.
2027          */
2028         if (!policy->governor)
2029                 return -EINVAL;
2030
2031         /* Platform doesn't want dynamic frequency switching ? */
2032         if (policy->governor->dynamic_switching &&
2033             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2034                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2035
2036                 if (gov) {
2037                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2038                                 policy->governor->name, gov->name);
2039                         policy->governor = gov;
2040                 } else {
2041                         return -EINVAL;
2042                 }
2043         }
2044
2045         if (!try_module_get(policy->governor->owner))
2046                 return -EINVAL;
2047
2048         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2049
2050         if (policy->governor->init) {
2051                 ret = policy->governor->init(policy);
2052                 if (ret) {
2053                         module_put(policy->governor->owner);
2054                         return ret;
2055                 }
2056         }
2057
2058         return 0;
2059 }
2060
2061 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2062 {
2063         if (cpufreq_suspended || !policy->governor)
2064                 return;
2065
2066         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2067
2068         if (policy->governor->exit)
2069                 policy->governor->exit(policy);
2070
2071         module_put(policy->governor->owner);
2072 }
2073
2074 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2075 {
2076         int ret;
2077
2078         if (cpufreq_suspended)
2079                 return 0;
2080
2081         if (!policy->governor)
2082                 return -EINVAL;
2083
2084         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2085
2086         if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2087                 cpufreq_update_current_freq(policy);
2088
2089         if (policy->governor->start) {
2090                 ret = policy->governor->start(policy);
2091                 if (ret)
2092                         return ret;
2093         }
2094
2095         if (policy->governor->limits)
2096                 policy->governor->limits(policy);
2097
2098         return 0;
2099 }
2100
2101 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2102 {
2103         if (cpufreq_suspended || !policy->governor)
2104                 return;
2105
2106         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2107
2108         if (policy->governor->stop)
2109                 policy->governor->stop(policy);
2110 }
2111
2112 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2113 {
2114         if (cpufreq_suspended || !policy->governor)
2115                 return;
2116
2117         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2118
2119         if (policy->governor->limits)
2120                 policy->governor->limits(policy);
2121 }
2122
2123 int cpufreq_register_governor(struct cpufreq_governor *governor)
2124 {
2125         int err;
2126
2127         if (!governor)
2128                 return -EINVAL;
2129
2130         if (cpufreq_disabled())
2131                 return -ENODEV;
2132
2133         mutex_lock(&cpufreq_governor_mutex);
2134
2135         err = -EBUSY;
2136         if (!find_governor(governor->name)) {
2137                 err = 0;
2138                 list_add(&governor->governor_list, &cpufreq_governor_list);
2139         }
2140
2141         mutex_unlock(&cpufreq_governor_mutex);
2142         return err;
2143 }
2144 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2145
2146 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2147 {
2148         struct cpufreq_policy *policy;
2149         unsigned long flags;
2150
2151         if (!governor)
2152                 return;
2153
2154         if (cpufreq_disabled())
2155                 return;
2156
2157         /* clear last_governor for all inactive policies */
2158         read_lock_irqsave(&cpufreq_driver_lock, flags);
2159         for_each_inactive_policy(policy) {
2160                 if (!strcmp(policy->last_governor, governor->name)) {
2161                         policy->governor = NULL;
2162                         strcpy(policy->last_governor, "\0");
2163                 }
2164         }
2165         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2166
2167         mutex_lock(&cpufreq_governor_mutex);
2168         list_del(&governor->governor_list);
2169         mutex_unlock(&cpufreq_governor_mutex);
2170 }
2171 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2172
2173
2174 /*********************************************************************
2175  *                          POLICY INTERFACE                         *
2176  *********************************************************************/
2177
2178 /**
2179  * cpufreq_get_policy - get the current cpufreq_policy
2180  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2181  *      is written
2182  *
2183  * Reads the current cpufreq policy.
2184  */
2185 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2186 {
2187         struct cpufreq_policy *cpu_policy;
2188         if (!policy)
2189                 return -EINVAL;
2190
2191         cpu_policy = cpufreq_cpu_get(cpu);
2192         if (!cpu_policy)
2193                 return -EINVAL;
2194
2195         memcpy(policy, cpu_policy, sizeof(*policy));
2196
2197         cpufreq_cpu_put(cpu_policy);
2198         return 0;
2199 }
2200 EXPORT_SYMBOL(cpufreq_get_policy);
2201
2202 /*
2203  * policy : current policy.
2204  * new_policy: policy to be set.
2205  */
2206 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2207                                 struct cpufreq_policy *new_policy)
2208 {
2209         struct cpufreq_governor *old_gov;
2210         int ret;
2211
2212         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2213                  new_policy->cpu, new_policy->min, new_policy->max);
2214
2215         memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2216
2217         /*
2218         * This check works well when we store new min/max freq attributes,
2219         * because new_policy is a copy of policy with one field updated.
2220         */
2221         if (new_policy->min > new_policy->max)
2222                 return -EINVAL;
2223
2224         /* verify the cpu speed can be set within this limit */
2225         ret = cpufreq_driver->verify(new_policy);
2226         if (ret)
2227                 return ret;
2228
2229         /* adjust if necessary - all reasons */
2230         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2231                         CPUFREQ_ADJUST, new_policy);
2232
2233         /*
2234          * verify the cpu speed can be set within this limit, which might be
2235          * different to the first one
2236          */
2237         ret = cpufreq_driver->verify(new_policy);
2238         if (ret)
2239                 return ret;
2240
2241         /* notification of the new policy */
2242         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2243                         CPUFREQ_NOTIFY, new_policy);
2244
2245         policy->min = new_policy->min;
2246         policy->max = new_policy->max;
2247         trace_cpu_frequency_limits(policy);
2248
2249         policy->cached_target_freq = UINT_MAX;
2250
2251         pr_debug("new min and max freqs are %u - %u kHz\n",
2252                  policy->min, policy->max);
2253
2254         if (cpufreq_driver->setpolicy) {
2255                 policy->policy = new_policy->policy;
2256                 pr_debug("setting range\n");
2257                 return cpufreq_driver->setpolicy(new_policy);
2258         }
2259
2260         if (new_policy->governor == policy->governor) {
2261                 pr_debug("cpufreq: governor limits update\n");
2262                 cpufreq_governor_limits(policy);
2263                 return 0;
2264         }
2265
2266         pr_debug("governor switch\n");
2267
2268         /* save old, working values */
2269         old_gov = policy->governor;
2270         /* end old governor */
2271         if (old_gov) {
2272                 cpufreq_stop_governor(policy);
2273                 cpufreq_exit_governor(policy);
2274         }
2275
2276         /* start new governor */
2277         policy->governor = new_policy->governor;
2278         ret = cpufreq_init_governor(policy);
2279         if (!ret) {
2280                 ret = cpufreq_start_governor(policy);
2281                 if (!ret) {
2282                         pr_debug("cpufreq: governor change\n");
2283                         return 0;
2284                 }
2285                 cpufreq_exit_governor(policy);
2286         }
2287
2288         /* new governor failed, so re-start old one */
2289         pr_debug("starting governor %s failed\n", policy->governor->name);
2290         if (old_gov) {
2291                 policy->governor = old_gov;
2292                 if (cpufreq_init_governor(policy))
2293                         policy->governor = NULL;
2294                 else
2295                         cpufreq_start_governor(policy);
2296         }
2297
2298         return ret;
2299 }
2300
2301 /**
2302  *      cpufreq_update_policy - re-evaluate an existing cpufreq policy
2303  *      @cpu: CPU which shall be re-evaluated
2304  *
2305  *      Useful for policy notifiers which have different necessities
2306  *      at different times.
2307  */
2308 void cpufreq_update_policy(unsigned int cpu)
2309 {
2310         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2311         struct cpufreq_policy new_policy;
2312
2313         if (!policy)
2314                 return;
2315
2316         down_write(&policy->rwsem);
2317
2318         if (policy_is_inactive(policy))
2319                 goto unlock;
2320
2321         pr_debug("updating policy for CPU %u\n", cpu);
2322         memcpy(&new_policy, policy, sizeof(*policy));
2323         new_policy.min = policy->user_policy.min;
2324         new_policy.max = policy->user_policy.max;
2325
2326         /*
2327          * BIOS might change freq behind our back
2328          * -> ask driver for current freq and notify governors about a change
2329          */
2330         if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2331                 if (cpufreq_suspended)
2332                         goto unlock;
2333
2334                 new_policy.cur = cpufreq_update_current_freq(policy);
2335                 if (WARN_ON(!new_policy.cur))
2336                         goto unlock;
2337         }
2338
2339         cpufreq_set_policy(policy, &new_policy);
2340
2341 unlock:
2342         up_write(&policy->rwsem);
2343
2344         cpufreq_cpu_put(policy);
2345 }
2346 EXPORT_SYMBOL(cpufreq_update_policy);
2347
2348 /*********************************************************************
2349  *               BOOST                                               *
2350  *********************************************************************/
2351 static int cpufreq_boost_set_sw(int state)
2352 {
2353         struct cpufreq_policy *policy;
2354         int ret = -EINVAL;
2355
2356         for_each_active_policy(policy) {
2357                 if (!policy->freq_table)
2358                         continue;
2359
2360                 ret = cpufreq_frequency_table_cpuinfo(policy,
2361                                                       policy->freq_table);
2362                 if (ret) {
2363                         pr_err("%s: Policy frequency update failed\n",
2364                                __func__);
2365                         break;
2366                 }
2367
2368                 down_write(&policy->rwsem);
2369                 policy->user_policy.max = policy->max;
2370                 cpufreq_governor_limits(policy);
2371                 up_write(&policy->rwsem);
2372         }
2373
2374         return ret;
2375 }
2376
2377 int cpufreq_boost_trigger_state(int state)
2378 {
2379         unsigned long flags;
2380         int ret = 0;
2381
2382         if (cpufreq_driver->boost_enabled == state)
2383                 return 0;
2384
2385         write_lock_irqsave(&cpufreq_driver_lock, flags);
2386         cpufreq_driver->boost_enabled = state;
2387         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2388
2389         ret = cpufreq_driver->set_boost(state);
2390         if (ret) {
2391                 write_lock_irqsave(&cpufreq_driver_lock, flags);
2392                 cpufreq_driver->boost_enabled = !state;
2393                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2394
2395                 pr_err("%s: Cannot %s BOOST\n",
2396                        __func__, state ? "enable" : "disable");
2397         }
2398
2399         return ret;
2400 }
2401
2402 static bool cpufreq_boost_supported(void)
2403 {
2404         return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2405 }
2406
2407 static int create_boost_sysfs_file(void)
2408 {
2409         int ret;
2410
2411         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2412         if (ret)
2413                 pr_err("%s: cannot register global BOOST sysfs file\n",
2414                        __func__);
2415
2416         return ret;
2417 }
2418
2419 static void remove_boost_sysfs_file(void)
2420 {
2421         if (cpufreq_boost_supported())
2422                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2423 }
2424
2425 int cpufreq_enable_boost_support(void)
2426 {
2427         if (!cpufreq_driver)
2428                 return -EINVAL;
2429
2430         if (cpufreq_boost_supported())
2431                 return 0;
2432
2433         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2434
2435         /* This will get removed on driver unregister */
2436         return create_boost_sysfs_file();
2437 }
2438 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2439
2440 int cpufreq_boost_enabled(void)
2441 {
2442         return cpufreq_driver->boost_enabled;
2443 }
2444 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2445
2446 /*********************************************************************
2447  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2448  *********************************************************************/
2449 static enum cpuhp_state hp_online;
2450
2451 static int cpuhp_cpufreq_online(unsigned int cpu)
2452 {
2453         cpufreq_online(cpu);
2454
2455         return 0;
2456 }
2457
2458 static int cpuhp_cpufreq_offline(unsigned int cpu)
2459 {
2460         cpufreq_offline(cpu);
2461
2462         return 0;
2463 }
2464
2465 /**
2466  * cpufreq_register_driver - register a CPU Frequency driver
2467  * @driver_data: A struct cpufreq_driver containing the values#
2468  * submitted by the CPU Frequency driver.
2469  *
2470  * Registers a CPU Frequency driver to this core code. This code
2471  * returns zero on success, -EEXIST when another driver got here first
2472  * (and isn't unregistered in the meantime).
2473  *
2474  */
2475 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2476 {
2477         unsigned long flags;
2478         int ret;
2479
2480         if (cpufreq_disabled())
2481                 return -ENODEV;
2482
2483         /*
2484          * The cpufreq core depends heavily on the availability of device
2485          * structure, make sure they are available before proceeding further.
2486          */
2487         if (!get_cpu_device(0))
2488                 return -EPROBE_DEFER;
2489
2490         if (!driver_data || !driver_data->verify || !driver_data->init ||
2491             !(driver_data->setpolicy || driver_data->target_index ||
2492                     driver_data->target) ||
2493              (driver_data->setpolicy && (driver_data->target_index ||
2494                     driver_data->target)) ||
2495              (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2496                 return -EINVAL;
2497
2498         pr_debug("trying to register driver %s\n", driver_data->name);
2499
2500         /* Protect against concurrent CPU online/offline. */
2501         cpus_read_lock();
2502
2503         write_lock_irqsave(&cpufreq_driver_lock, flags);
2504         if (cpufreq_driver) {
2505                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2506                 ret = -EEXIST;
2507                 goto out;
2508         }
2509         cpufreq_driver = driver_data;
2510         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2511
2512         if (driver_data->setpolicy)
2513                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2514
2515         if (cpufreq_boost_supported()) {
2516                 ret = create_boost_sysfs_file();
2517                 if (ret)
2518                         goto err_null_driver;
2519         }
2520
2521         ret = subsys_interface_register(&cpufreq_interface);
2522         if (ret)
2523                 goto err_boost_unreg;
2524
2525         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2526             list_empty(&cpufreq_policy_list)) {
2527                 /* if all ->init() calls failed, unregister */
2528                 ret = -ENODEV;
2529                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2530                          driver_data->name);
2531                 goto err_if_unreg;
2532         }
2533
2534         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2535                                                    "cpufreq:online",
2536                                                    cpuhp_cpufreq_online,
2537                                                    cpuhp_cpufreq_offline);
2538         if (ret < 0)
2539                 goto err_if_unreg;
2540         hp_online = ret;
2541         ret = 0;
2542
2543         pr_debug("driver %s up and running\n", driver_data->name);
2544         goto out;
2545
2546 err_if_unreg:
2547         subsys_interface_unregister(&cpufreq_interface);
2548 err_boost_unreg:
2549         remove_boost_sysfs_file();
2550 err_null_driver:
2551         write_lock_irqsave(&cpufreq_driver_lock, flags);
2552         cpufreq_driver = NULL;
2553         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2554 out:
2555         cpus_read_unlock();
2556         return ret;
2557 }
2558 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2559
2560 /**
2561  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2562  *
2563  * Unregister the current CPUFreq driver. Only call this if you have
2564  * the right to do so, i.e. if you have succeeded in initialising before!
2565  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2566  * currently not initialised.
2567  */
2568 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2569 {
2570         unsigned long flags;
2571
2572         if (!cpufreq_driver || (driver != cpufreq_driver))
2573                 return -EINVAL;
2574
2575         pr_debug("unregistering driver %s\n", driver->name);
2576
2577         /* Protect against concurrent cpu hotplug */
2578         cpus_read_lock();
2579         subsys_interface_unregister(&cpufreq_interface);
2580         remove_boost_sysfs_file();
2581         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2582
2583         write_lock_irqsave(&cpufreq_driver_lock, flags);
2584
2585         cpufreq_driver = NULL;
2586
2587         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2588         cpus_read_unlock();
2589
2590         return 0;
2591 }
2592 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2593
2594 struct kobject *cpufreq_global_kobject;
2595 EXPORT_SYMBOL(cpufreq_global_kobject);
2596
2597 static int __init cpufreq_core_init(void)
2598 {
2599         if (cpufreq_disabled())
2600                 return -ENODEV;
2601
2602         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2603         BUG_ON(!cpufreq_global_kobject);
2604
2605         return 0;
2606 }
2607 module_param(off, int, 0444);
2608 core_initcall(cpufreq_core_init);