GNU Linux-libre 5.15.54-gnu
[releases.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <linux/units.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 /* Macros to iterate over CPU policies */
37 #define for_each_suitable_policy(__policy, __active)                     \
38         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39                 if ((__active) == !policy_is_inactive(__policy))
40
41 #define for_each_active_policy(__policy)                \
42         for_each_suitable_policy(__policy, true)
43 #define for_each_inactive_policy(__policy)              \
44         for_each_suitable_policy(__policy, false)
45
46 /* Iterate over governors */
47 static LIST_HEAD(cpufreq_governor_list);
48 #define for_each_governor(__governor)                           \
49         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50
51 static char default_governor[CPUFREQ_NAME_LEN];
52
53 /*
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63 bool cpufreq_supports_freq_invariance(void)
64 {
65         return static_branch_likely(&cpufreq_freq_invariance);
66 }
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73         return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
81 static int cpufreq_set_policy(struct cpufreq_policy *policy,
82                               struct cpufreq_governor *new_gov,
83                               unsigned int new_pol);
84
85 /*
86  * Two notifier lists: the "policy" list is involved in the
87  * validation process for a new CPU frequency policy; the
88  * "transition" list for kernel code that needs to handle
89  * changes to devices when the CPU clock speed changes.
90  * The mutex locks both lists.
91  */
92 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
93 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
94
95 static int off __read_mostly;
96 static int cpufreq_disabled(void)
97 {
98         return off;
99 }
100 void disable_cpufreq(void)
101 {
102         off = 1;
103 }
104 static DEFINE_MUTEX(cpufreq_governor_mutex);
105
106 bool have_governor_per_policy(void)
107 {
108         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
109 }
110 EXPORT_SYMBOL_GPL(have_governor_per_policy);
111
112 static struct kobject *cpufreq_global_kobject;
113
114 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
115 {
116         if (have_governor_per_policy())
117                 return &policy->kobj;
118         else
119                 return cpufreq_global_kobject;
120 }
121 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
122
123 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
124 {
125         struct kernel_cpustat kcpustat;
126         u64 cur_wall_time;
127         u64 idle_time;
128         u64 busy_time;
129
130         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
131
132         kcpustat_cpu_fetch(&kcpustat, cpu);
133
134         busy_time = kcpustat.cpustat[CPUTIME_USER];
135         busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
136         busy_time += kcpustat.cpustat[CPUTIME_IRQ];
137         busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
138         busy_time += kcpustat.cpustat[CPUTIME_STEAL];
139         busy_time += kcpustat.cpustat[CPUTIME_NICE];
140
141         idle_time = cur_wall_time - busy_time;
142         if (wall)
143                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
144
145         return div_u64(idle_time, NSEC_PER_USEC);
146 }
147
148 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
149 {
150         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
151
152         if (idle_time == -1ULL)
153                 return get_cpu_idle_time_jiffy(cpu, wall);
154         else if (!io_busy)
155                 idle_time += get_cpu_iowait_time_us(cpu, wall);
156
157         return idle_time;
158 }
159 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
160
161 /*
162  * This is a generic cpufreq init() routine which can be used by cpufreq
163  * drivers of SMP systems. It will do following:
164  * - validate & show freq table passed
165  * - set policies transition latency
166  * - policy->cpus with all possible CPUs
167  */
168 void cpufreq_generic_init(struct cpufreq_policy *policy,
169                 struct cpufreq_frequency_table *table,
170                 unsigned int transition_latency)
171 {
172         policy->freq_table = table;
173         policy->cpuinfo.transition_latency = transition_latency;
174
175         /*
176          * The driver only supports the SMP configuration where all processors
177          * share the clock and voltage and clock.
178          */
179         cpumask_setall(policy->cpus);
180 }
181 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
182
183 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
184 {
185         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
186
187         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
188 }
189 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
190
191 unsigned int cpufreq_generic_get(unsigned int cpu)
192 {
193         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
194
195         if (!policy || IS_ERR(policy->clk)) {
196                 pr_err("%s: No %s associated to cpu: %d\n",
197                        __func__, policy ? "clk" : "policy", cpu);
198                 return 0;
199         }
200
201         return clk_get_rate(policy->clk) / 1000;
202 }
203 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
204
205 /**
206  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
207  * @cpu: CPU to find the policy for.
208  *
209  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
210  * the kobject reference counter of that policy.  Return a valid policy on
211  * success or NULL on failure.
212  *
213  * The policy returned by this function has to be released with the help of
214  * cpufreq_cpu_put() to balance its kobject reference counter properly.
215  */
216 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
217 {
218         struct cpufreq_policy *policy = NULL;
219         unsigned long flags;
220
221         if (WARN_ON(cpu >= nr_cpu_ids))
222                 return NULL;
223
224         /* get the cpufreq driver */
225         read_lock_irqsave(&cpufreq_driver_lock, flags);
226
227         if (cpufreq_driver) {
228                 /* get the CPU */
229                 policy = cpufreq_cpu_get_raw(cpu);
230                 if (policy)
231                         kobject_get(&policy->kobj);
232         }
233
234         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
235
236         return policy;
237 }
238 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
239
240 /**
241  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
242  * @policy: cpufreq policy returned by cpufreq_cpu_get().
243  */
244 void cpufreq_cpu_put(struct cpufreq_policy *policy)
245 {
246         kobject_put(&policy->kobj);
247 }
248 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
249
250 /**
251  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
252  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
253  */
254 void cpufreq_cpu_release(struct cpufreq_policy *policy)
255 {
256         if (WARN_ON(!policy))
257                 return;
258
259         lockdep_assert_held(&policy->rwsem);
260
261         up_write(&policy->rwsem);
262
263         cpufreq_cpu_put(policy);
264 }
265
266 /**
267  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
268  * @cpu: CPU to find the policy for.
269  *
270  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
271  * if the policy returned by it is not NULL, acquire its rwsem for writing.
272  * Return the policy if it is active or release it and return NULL otherwise.
273  *
274  * The policy returned by this function has to be released with the help of
275  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
276  * counter properly.
277  */
278 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
279 {
280         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
281
282         if (!policy)
283                 return NULL;
284
285         down_write(&policy->rwsem);
286
287         if (policy_is_inactive(policy)) {
288                 cpufreq_cpu_release(policy);
289                 return NULL;
290         }
291
292         return policy;
293 }
294
295 /*********************************************************************
296  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
297  *********************************************************************/
298
299 /**
300  * adjust_jiffies - Adjust the system "loops_per_jiffy".
301  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
302  * @ci: Frequency change information.
303  *
304  * This function alters the system "loops_per_jiffy" for the clock
305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
306  * systems as each CPU might be scaled differently. So, use the arch
307  * per-CPU loops_per_jiffy value wherever possible.
308  */
309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312         static unsigned long l_p_j_ref;
313         static unsigned int l_p_j_ref_freq;
314
315         if (ci->flags & CPUFREQ_CONST_LOOPS)
316                 return;
317
318         if (!l_p_j_ref_freq) {
319                 l_p_j_ref = loops_per_jiffy;
320                 l_p_j_ref_freq = ci->old;
321                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322                          l_p_j_ref, l_p_j_ref_freq);
323         }
324         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326                                                                 ci->new);
327                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328                          loops_per_jiffy, ci->new);
329         }
330 #endif
331 }
332
333 /**
334  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
335  * @policy: cpufreq policy to enable fast frequency switching for.
336  * @freqs: contain details of the frequency update.
337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338  *
339  * This function calls the transition notifiers and adjust_jiffies().
340  *
341  * It is called twice on all CPU frequency changes that have external effects.
342  */
343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344                                       struct cpufreq_freqs *freqs,
345                                       unsigned int state)
346 {
347         int cpu;
348
349         BUG_ON(irqs_disabled());
350
351         if (cpufreq_disabled())
352                 return;
353
354         freqs->policy = policy;
355         freqs->flags = cpufreq_driver->flags;
356         pr_debug("notification %u of frequency transition to %u kHz\n",
357                  state, freqs->new);
358
359         switch (state) {
360         case CPUFREQ_PRECHANGE:
361                 /*
362                  * Detect if the driver reported a value as "old frequency"
363                  * which is not equal to what the cpufreq core thinks is
364                  * "old frequency".
365                  */
366                 if (policy->cur && policy->cur != freqs->old) {
367                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368                                  freqs->old, policy->cur);
369                         freqs->old = policy->cur;
370                 }
371
372                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373                                          CPUFREQ_PRECHANGE, freqs);
374
375                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376                 break;
377
378         case CPUFREQ_POSTCHANGE:
379                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381                          cpumask_pr_args(policy->cpus));
382
383                 for_each_cpu(cpu, policy->cpus)
384                         trace_cpu_frequency(freqs->new, cpu);
385
386                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387                                          CPUFREQ_POSTCHANGE, freqs);
388
389                 cpufreq_stats_record_transition(policy, freqs->new);
390                 policy->cur = freqs->new;
391         }
392 }
393
394 /* Do post notifications when there are chances that transition has failed */
395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396                 struct cpufreq_freqs *freqs, int transition_failed)
397 {
398         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399         if (!transition_failed)
400                 return;
401
402         swap(freqs->old, freqs->new);
403         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406
407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408                 struct cpufreq_freqs *freqs)
409 {
410
411         /*
412          * Catch double invocations of _begin() which lead to self-deadlock.
413          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414          * doesn't invoke _begin() on their behalf, and hence the chances of
415          * double invocations are very low. Moreover, there are scenarios
416          * where these checks can emit false-positive warnings in these
417          * drivers; so we avoid that by skipping them altogether.
418          */
419         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420                                 && current == policy->transition_task);
421
422 wait:
423         wait_event(policy->transition_wait, !policy->transition_ongoing);
424
425         spin_lock(&policy->transition_lock);
426
427         if (unlikely(policy->transition_ongoing)) {
428                 spin_unlock(&policy->transition_lock);
429                 goto wait;
430         }
431
432         policy->transition_ongoing = true;
433         policy->transition_task = current;
434
435         spin_unlock(&policy->transition_lock);
436
437         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440
441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442                 struct cpufreq_freqs *freqs, int transition_failed)
443 {
444         if (WARN_ON(!policy->transition_ongoing))
445                 return;
446
447         cpufreq_notify_post_transition(policy, freqs, transition_failed);
448
449         arch_set_freq_scale(policy->related_cpus,
450                             policy->cur,
451                             policy->cpuinfo.max_freq);
452
453         policy->transition_ongoing = false;
454         policy->transition_task = NULL;
455
456         wake_up(&policy->transition_wait);
457 }
458 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
459
460 /*
461  * Fast frequency switching status count.  Positive means "enabled", negative
462  * means "disabled" and 0 means "not decided yet".
463  */
464 static int cpufreq_fast_switch_count;
465 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
466
467 static void cpufreq_list_transition_notifiers(void)
468 {
469         struct notifier_block *nb;
470
471         pr_info("Registered transition notifiers:\n");
472
473         mutex_lock(&cpufreq_transition_notifier_list.mutex);
474
475         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
476                 pr_info("%pS\n", nb->notifier_call);
477
478         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
479 }
480
481 /**
482  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
483  * @policy: cpufreq policy to enable fast frequency switching for.
484  *
485  * Try to enable fast frequency switching for @policy.
486  *
487  * The attempt will fail if there is at least one transition notifier registered
488  * at this point, as fast frequency switching is quite fundamentally at odds
489  * with transition notifiers.  Thus if successful, it will make registration of
490  * transition notifiers fail going forward.
491  */
492 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
493 {
494         lockdep_assert_held(&policy->rwsem);
495
496         if (!policy->fast_switch_possible)
497                 return;
498
499         mutex_lock(&cpufreq_fast_switch_lock);
500         if (cpufreq_fast_switch_count >= 0) {
501                 cpufreq_fast_switch_count++;
502                 policy->fast_switch_enabled = true;
503         } else {
504                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
505                         policy->cpu);
506                 cpufreq_list_transition_notifiers();
507         }
508         mutex_unlock(&cpufreq_fast_switch_lock);
509 }
510 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
511
512 /**
513  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
514  * @policy: cpufreq policy to disable fast frequency switching for.
515  */
516 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
517 {
518         mutex_lock(&cpufreq_fast_switch_lock);
519         if (policy->fast_switch_enabled) {
520                 policy->fast_switch_enabled = false;
521                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
522                         cpufreq_fast_switch_count--;
523         }
524         mutex_unlock(&cpufreq_fast_switch_lock);
525 }
526 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
527
528 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
529                 unsigned int target_freq, unsigned int relation)
530 {
531         unsigned int idx;
532
533         target_freq = clamp_val(target_freq, policy->min, policy->max);
534
535         if (!cpufreq_driver->target_index)
536                 return target_freq;
537
538         idx = cpufreq_frequency_table_target(policy, target_freq, relation);
539         policy->cached_resolved_idx = idx;
540         policy->cached_target_freq = target_freq;
541         return policy->freq_table[idx].frequency;
542 }
543
544 /**
545  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
546  * one.
547  * @policy: associated policy to interrogate
548  * @target_freq: target frequency to resolve.
549  *
550  * The target to driver frequency mapping is cached in the policy.
551  *
552  * Return: Lowest driver-supported frequency greater than or equal to the
553  * given target_freq, subject to policy (min/max) and driver limitations.
554  */
555 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
556                                          unsigned int target_freq)
557 {
558         return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_L);
559 }
560 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
561
562 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
563 {
564         unsigned int latency;
565
566         if (policy->transition_delay_us)
567                 return policy->transition_delay_us;
568
569         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
570         if (latency) {
571                 /*
572                  * For platforms that can change the frequency very fast (< 10
573                  * us), the above formula gives a decent transition delay. But
574                  * for platforms where transition_latency is in milliseconds, it
575                  * ends up giving unrealistic values.
576                  *
577                  * Cap the default transition delay to 10 ms, which seems to be
578                  * a reasonable amount of time after which we should reevaluate
579                  * the frequency.
580                  */
581                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
582         }
583
584         return LATENCY_MULTIPLIER;
585 }
586 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
587
588 /*********************************************************************
589  *                          SYSFS INTERFACE                          *
590  *********************************************************************/
591 static ssize_t show_boost(struct kobject *kobj,
592                           struct kobj_attribute *attr, char *buf)
593 {
594         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
595 }
596
597 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
598                            const char *buf, size_t count)
599 {
600         int ret, enable;
601
602         ret = sscanf(buf, "%d", &enable);
603         if (ret != 1 || enable < 0 || enable > 1)
604                 return -EINVAL;
605
606         if (cpufreq_boost_trigger_state(enable)) {
607                 pr_err("%s: Cannot %s BOOST!\n",
608                        __func__, enable ? "enable" : "disable");
609                 return -EINVAL;
610         }
611
612         pr_debug("%s: cpufreq BOOST %s\n",
613                  __func__, enable ? "enabled" : "disabled");
614
615         return count;
616 }
617 define_one_global_rw(boost);
618
619 static struct cpufreq_governor *find_governor(const char *str_governor)
620 {
621         struct cpufreq_governor *t;
622
623         for_each_governor(t)
624                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
625                         return t;
626
627         return NULL;
628 }
629
630 static struct cpufreq_governor *get_governor(const char *str_governor)
631 {
632         struct cpufreq_governor *t;
633
634         mutex_lock(&cpufreq_governor_mutex);
635         t = find_governor(str_governor);
636         if (!t)
637                 goto unlock;
638
639         if (!try_module_get(t->owner))
640                 t = NULL;
641
642 unlock:
643         mutex_unlock(&cpufreq_governor_mutex);
644
645         return t;
646 }
647
648 static unsigned int cpufreq_parse_policy(char *str_governor)
649 {
650         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
651                 return CPUFREQ_POLICY_PERFORMANCE;
652
653         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
654                 return CPUFREQ_POLICY_POWERSAVE;
655
656         return CPUFREQ_POLICY_UNKNOWN;
657 }
658
659 /**
660  * cpufreq_parse_governor - parse a governor string only for has_target()
661  * @str_governor: Governor name.
662  */
663 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
664 {
665         struct cpufreq_governor *t;
666
667         t = get_governor(str_governor);
668         if (t)
669                 return t;
670
671         if (request_module("cpufreq_%s", str_governor))
672                 return NULL;
673
674         return get_governor(str_governor);
675 }
676
677 /*
678  * cpufreq_per_cpu_attr_read() / show_##file_name() -
679  * print out cpufreq information
680  *
681  * Write out information from cpufreq_driver->policy[cpu]; object must be
682  * "unsigned int".
683  */
684
685 #define show_one(file_name, object)                     \
686 static ssize_t show_##file_name                         \
687 (struct cpufreq_policy *policy, char *buf)              \
688 {                                                       \
689         return sprintf(buf, "%u\n", policy->object);    \
690 }
691
692 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
693 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
694 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
695 show_one(scaling_min_freq, min);
696 show_one(scaling_max_freq, max);
697
698 __weak unsigned int arch_freq_get_on_cpu(int cpu)
699 {
700         return 0;
701 }
702
703 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
704 {
705         ssize_t ret;
706         unsigned int freq;
707
708         freq = arch_freq_get_on_cpu(policy->cpu);
709         if (freq)
710                 ret = sprintf(buf, "%u\n", freq);
711         else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
712                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
713         else
714                 ret = sprintf(buf, "%u\n", policy->cur);
715         return ret;
716 }
717
718 /*
719  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
720  */
721 #define store_one(file_name, object)                    \
722 static ssize_t store_##file_name                                        \
723 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
724 {                                                                       \
725         unsigned long val;                                              \
726         int ret;                                                        \
727                                                                         \
728         ret = sscanf(buf, "%lu", &val);                                 \
729         if (ret != 1)                                                   \
730                 return -EINVAL;                                         \
731                                                                         \
732         ret = freq_qos_update_request(policy->object##_freq_req, val);\
733         return ret >= 0 ? count : ret;                                  \
734 }
735
736 store_one(scaling_min_freq, min);
737 store_one(scaling_max_freq, max);
738
739 /*
740  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
741  */
742 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
743                                         char *buf)
744 {
745         unsigned int cur_freq = __cpufreq_get(policy);
746
747         if (cur_freq)
748                 return sprintf(buf, "%u\n", cur_freq);
749
750         return sprintf(buf, "<unknown>\n");
751 }
752
753 /*
754  * show_scaling_governor - show the current policy for the specified CPU
755  */
756 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
757 {
758         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
759                 return sprintf(buf, "powersave\n");
760         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
761                 return sprintf(buf, "performance\n");
762         else if (policy->governor)
763                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
764                                 policy->governor->name);
765         return -EINVAL;
766 }
767
768 /*
769  * store_scaling_governor - store policy for the specified CPU
770  */
771 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
772                                         const char *buf, size_t count)
773 {
774         char str_governor[16];
775         int ret;
776
777         ret = sscanf(buf, "%15s", str_governor);
778         if (ret != 1)
779                 return -EINVAL;
780
781         if (cpufreq_driver->setpolicy) {
782                 unsigned int new_pol;
783
784                 new_pol = cpufreq_parse_policy(str_governor);
785                 if (!new_pol)
786                         return -EINVAL;
787
788                 ret = cpufreq_set_policy(policy, NULL, new_pol);
789         } else {
790                 struct cpufreq_governor *new_gov;
791
792                 new_gov = cpufreq_parse_governor(str_governor);
793                 if (!new_gov)
794                         return -EINVAL;
795
796                 ret = cpufreq_set_policy(policy, new_gov,
797                                          CPUFREQ_POLICY_UNKNOWN);
798
799                 module_put(new_gov->owner);
800         }
801
802         return ret ? ret : count;
803 }
804
805 /*
806  * show_scaling_driver - show the cpufreq driver currently loaded
807  */
808 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
809 {
810         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
811 }
812
813 /*
814  * show_scaling_available_governors - show the available CPUfreq governors
815  */
816 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
817                                                 char *buf)
818 {
819         ssize_t i = 0;
820         struct cpufreq_governor *t;
821
822         if (!has_target()) {
823                 i += sprintf(buf, "performance powersave");
824                 goto out;
825         }
826
827         mutex_lock(&cpufreq_governor_mutex);
828         for_each_governor(t) {
829                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
830                     - (CPUFREQ_NAME_LEN + 2)))
831                         break;
832                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
833         }
834         mutex_unlock(&cpufreq_governor_mutex);
835 out:
836         i += sprintf(&buf[i], "\n");
837         return i;
838 }
839
840 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
841 {
842         ssize_t i = 0;
843         unsigned int cpu;
844
845         for_each_cpu(cpu, mask) {
846                 if (i)
847                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
848                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
849                 if (i >= (PAGE_SIZE - 5))
850                         break;
851         }
852         i += sprintf(&buf[i], "\n");
853         return i;
854 }
855 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
856
857 /*
858  * show_related_cpus - show the CPUs affected by each transition even if
859  * hw coordination is in use
860  */
861 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
862 {
863         return cpufreq_show_cpus(policy->related_cpus, buf);
864 }
865
866 /*
867  * show_affected_cpus - show the CPUs affected by each transition
868  */
869 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
870 {
871         return cpufreq_show_cpus(policy->cpus, buf);
872 }
873
874 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
875                                         const char *buf, size_t count)
876 {
877         unsigned int freq = 0;
878         unsigned int ret;
879
880         if (!policy->governor || !policy->governor->store_setspeed)
881                 return -EINVAL;
882
883         ret = sscanf(buf, "%u", &freq);
884         if (ret != 1)
885                 return -EINVAL;
886
887         policy->governor->store_setspeed(policy, freq);
888
889         return count;
890 }
891
892 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
893 {
894         if (!policy->governor || !policy->governor->show_setspeed)
895                 return sprintf(buf, "<unsupported>\n");
896
897         return policy->governor->show_setspeed(policy, buf);
898 }
899
900 /*
901  * show_bios_limit - show the current cpufreq HW/BIOS limitation
902  */
903 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
904 {
905         unsigned int limit;
906         int ret;
907         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
908         if (!ret)
909                 return sprintf(buf, "%u\n", limit);
910         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
911 }
912
913 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
914 cpufreq_freq_attr_ro(cpuinfo_min_freq);
915 cpufreq_freq_attr_ro(cpuinfo_max_freq);
916 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
917 cpufreq_freq_attr_ro(scaling_available_governors);
918 cpufreq_freq_attr_ro(scaling_driver);
919 cpufreq_freq_attr_ro(scaling_cur_freq);
920 cpufreq_freq_attr_ro(bios_limit);
921 cpufreq_freq_attr_ro(related_cpus);
922 cpufreq_freq_attr_ro(affected_cpus);
923 cpufreq_freq_attr_rw(scaling_min_freq);
924 cpufreq_freq_attr_rw(scaling_max_freq);
925 cpufreq_freq_attr_rw(scaling_governor);
926 cpufreq_freq_attr_rw(scaling_setspeed);
927
928 static struct attribute *default_attrs[] = {
929         &cpuinfo_min_freq.attr,
930         &cpuinfo_max_freq.attr,
931         &cpuinfo_transition_latency.attr,
932         &scaling_min_freq.attr,
933         &scaling_max_freq.attr,
934         &affected_cpus.attr,
935         &related_cpus.attr,
936         &scaling_governor.attr,
937         &scaling_driver.attr,
938         &scaling_available_governors.attr,
939         &scaling_setspeed.attr,
940         NULL
941 };
942
943 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
944 #define to_attr(a) container_of(a, struct freq_attr, attr)
945
946 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
947 {
948         struct cpufreq_policy *policy = to_policy(kobj);
949         struct freq_attr *fattr = to_attr(attr);
950         ssize_t ret;
951
952         if (!fattr->show)
953                 return -EIO;
954
955         down_read(&policy->rwsem);
956         ret = fattr->show(policy, buf);
957         up_read(&policy->rwsem);
958
959         return ret;
960 }
961
962 static ssize_t store(struct kobject *kobj, struct attribute *attr,
963                      const char *buf, size_t count)
964 {
965         struct cpufreq_policy *policy = to_policy(kobj);
966         struct freq_attr *fattr = to_attr(attr);
967         ssize_t ret = -EINVAL;
968
969         if (!fattr->store)
970                 return -EIO;
971
972         /*
973          * cpus_read_trylock() is used here to work around a circular lock
974          * dependency problem with respect to the cpufreq_register_driver().
975          */
976         if (!cpus_read_trylock())
977                 return -EBUSY;
978
979         if (cpu_online(policy->cpu)) {
980                 down_write(&policy->rwsem);
981                 ret = fattr->store(policy, buf, count);
982                 up_write(&policy->rwsem);
983         }
984
985         cpus_read_unlock();
986
987         return ret;
988 }
989
990 static void cpufreq_sysfs_release(struct kobject *kobj)
991 {
992         struct cpufreq_policy *policy = to_policy(kobj);
993         pr_debug("last reference is dropped\n");
994         complete(&policy->kobj_unregister);
995 }
996
997 static const struct sysfs_ops sysfs_ops = {
998         .show   = show,
999         .store  = store,
1000 };
1001
1002 static struct kobj_type ktype_cpufreq = {
1003         .sysfs_ops      = &sysfs_ops,
1004         .default_attrs  = default_attrs,
1005         .release        = cpufreq_sysfs_release,
1006 };
1007
1008 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1009                                 struct device *dev)
1010 {
1011         if (unlikely(!dev))
1012                 return;
1013
1014         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1015                 return;
1016
1017         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1018         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1019                 dev_err(dev, "cpufreq symlink creation failed\n");
1020 }
1021
1022 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1023                                    struct device *dev)
1024 {
1025         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1026         sysfs_remove_link(&dev->kobj, "cpufreq");
1027 }
1028
1029 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1030 {
1031         struct freq_attr **drv_attr;
1032         int ret = 0;
1033
1034         /* set up files for this cpu device */
1035         drv_attr = cpufreq_driver->attr;
1036         while (drv_attr && *drv_attr) {
1037                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1038                 if (ret)
1039                         return ret;
1040                 drv_attr++;
1041         }
1042         if (cpufreq_driver->get) {
1043                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1044                 if (ret)
1045                         return ret;
1046         }
1047
1048         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1049         if (ret)
1050                 return ret;
1051
1052         if (cpufreq_driver->bios_limit) {
1053                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1054                 if (ret)
1055                         return ret;
1056         }
1057
1058         return 0;
1059 }
1060
1061 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1062 {
1063         struct cpufreq_governor *gov = NULL;
1064         unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1065         int ret;
1066
1067         if (has_target()) {
1068                 /* Update policy governor to the one used before hotplug. */
1069                 gov = get_governor(policy->last_governor);
1070                 if (gov) {
1071                         pr_debug("Restoring governor %s for cpu %d\n",
1072                                  gov->name, policy->cpu);
1073                 } else {
1074                         gov = get_governor(default_governor);
1075                 }
1076
1077                 if (!gov) {
1078                         gov = cpufreq_default_governor();
1079                         __module_get(gov->owner);
1080                 }
1081
1082         } else {
1083
1084                 /* Use the default policy if there is no last_policy. */
1085                 if (policy->last_policy) {
1086                         pol = policy->last_policy;
1087                 } else {
1088                         pol = cpufreq_parse_policy(default_governor);
1089                         /*
1090                          * In case the default governor is neither "performance"
1091                          * nor "powersave", fall back to the initial policy
1092                          * value set by the driver.
1093                          */
1094                         if (pol == CPUFREQ_POLICY_UNKNOWN)
1095                                 pol = policy->policy;
1096                 }
1097                 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1098                     pol != CPUFREQ_POLICY_POWERSAVE)
1099                         return -ENODATA;
1100         }
1101
1102         ret = cpufreq_set_policy(policy, gov, pol);
1103         if (gov)
1104                 module_put(gov->owner);
1105
1106         return ret;
1107 }
1108
1109 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1110 {
1111         int ret = 0;
1112
1113         /* Has this CPU been taken care of already? */
1114         if (cpumask_test_cpu(cpu, policy->cpus))
1115                 return 0;
1116
1117         down_write(&policy->rwsem);
1118         if (has_target())
1119                 cpufreq_stop_governor(policy);
1120
1121         cpumask_set_cpu(cpu, policy->cpus);
1122
1123         if (has_target()) {
1124                 ret = cpufreq_start_governor(policy);
1125                 if (ret)
1126                         pr_err("%s: Failed to start governor\n", __func__);
1127         }
1128         up_write(&policy->rwsem);
1129         return ret;
1130 }
1131
1132 void refresh_frequency_limits(struct cpufreq_policy *policy)
1133 {
1134         if (!policy_is_inactive(policy)) {
1135                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1136
1137                 cpufreq_set_policy(policy, policy->governor, policy->policy);
1138         }
1139 }
1140 EXPORT_SYMBOL(refresh_frequency_limits);
1141
1142 static void handle_update(struct work_struct *work)
1143 {
1144         struct cpufreq_policy *policy =
1145                 container_of(work, struct cpufreq_policy, update);
1146
1147         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1148         down_write(&policy->rwsem);
1149         refresh_frequency_limits(policy);
1150         up_write(&policy->rwsem);
1151 }
1152
1153 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1154                                 void *data)
1155 {
1156         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1157
1158         schedule_work(&policy->update);
1159         return 0;
1160 }
1161
1162 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1163                                 void *data)
1164 {
1165         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1166
1167         schedule_work(&policy->update);
1168         return 0;
1169 }
1170
1171 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1172 {
1173         struct kobject *kobj;
1174         struct completion *cmp;
1175
1176         down_write(&policy->rwsem);
1177         cpufreq_stats_free_table(policy);
1178         kobj = &policy->kobj;
1179         cmp = &policy->kobj_unregister;
1180         up_write(&policy->rwsem);
1181         kobject_put(kobj);
1182
1183         /*
1184          * We need to make sure that the underlying kobj is
1185          * actually not referenced anymore by anybody before we
1186          * proceed with unloading.
1187          */
1188         pr_debug("waiting for dropping of refcount\n");
1189         wait_for_completion(cmp);
1190         pr_debug("wait complete\n");
1191 }
1192
1193 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1194 {
1195         struct cpufreq_policy *policy;
1196         struct device *dev = get_cpu_device(cpu);
1197         int ret;
1198
1199         if (!dev)
1200                 return NULL;
1201
1202         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1203         if (!policy)
1204                 return NULL;
1205
1206         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1207                 goto err_free_policy;
1208
1209         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1210                 goto err_free_cpumask;
1211
1212         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1213                 goto err_free_rcpumask;
1214
1215         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1216                                    cpufreq_global_kobject, "policy%u", cpu);
1217         if (ret) {
1218                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1219                 /*
1220                  * The entire policy object will be freed below, but the extra
1221                  * memory allocated for the kobject name needs to be freed by
1222                  * releasing the kobject.
1223                  */
1224                 kobject_put(&policy->kobj);
1225                 goto err_free_real_cpus;
1226         }
1227
1228         freq_constraints_init(&policy->constraints);
1229
1230         policy->nb_min.notifier_call = cpufreq_notifier_min;
1231         policy->nb_max.notifier_call = cpufreq_notifier_max;
1232
1233         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1234                                     &policy->nb_min);
1235         if (ret) {
1236                 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1237                         ret, cpumask_pr_args(policy->cpus));
1238                 goto err_kobj_remove;
1239         }
1240
1241         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1242                                     &policy->nb_max);
1243         if (ret) {
1244                 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1245                         ret, cpumask_pr_args(policy->cpus));
1246                 goto err_min_qos_notifier;
1247         }
1248
1249         INIT_LIST_HEAD(&policy->policy_list);
1250         init_rwsem(&policy->rwsem);
1251         spin_lock_init(&policy->transition_lock);
1252         init_waitqueue_head(&policy->transition_wait);
1253         init_completion(&policy->kobj_unregister);
1254         INIT_WORK(&policy->update, handle_update);
1255
1256         policy->cpu = cpu;
1257         return policy;
1258
1259 err_min_qos_notifier:
1260         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1261                                  &policy->nb_min);
1262 err_kobj_remove:
1263         cpufreq_policy_put_kobj(policy);
1264 err_free_real_cpus:
1265         free_cpumask_var(policy->real_cpus);
1266 err_free_rcpumask:
1267         free_cpumask_var(policy->related_cpus);
1268 err_free_cpumask:
1269         free_cpumask_var(policy->cpus);
1270 err_free_policy:
1271         kfree(policy);
1272
1273         return NULL;
1274 }
1275
1276 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1277 {
1278         unsigned long flags;
1279         int cpu;
1280
1281         /* Remove policy from list */
1282         write_lock_irqsave(&cpufreq_driver_lock, flags);
1283         list_del(&policy->policy_list);
1284
1285         for_each_cpu(cpu, policy->related_cpus)
1286                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1287         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1288
1289         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1290                                  &policy->nb_max);
1291         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1292                                  &policy->nb_min);
1293
1294         /* Cancel any pending policy->update work before freeing the policy. */
1295         cancel_work_sync(&policy->update);
1296
1297         if (policy->max_freq_req) {
1298                 /*
1299                  * CPUFREQ_CREATE_POLICY notification is sent only after
1300                  * successfully adding max_freq_req request.
1301                  */
1302                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1303                                              CPUFREQ_REMOVE_POLICY, policy);
1304                 freq_qos_remove_request(policy->max_freq_req);
1305         }
1306
1307         freq_qos_remove_request(policy->min_freq_req);
1308         kfree(policy->min_freq_req);
1309
1310         cpufreq_policy_put_kobj(policy);
1311         free_cpumask_var(policy->real_cpus);
1312         free_cpumask_var(policy->related_cpus);
1313         free_cpumask_var(policy->cpus);
1314         kfree(policy);
1315 }
1316
1317 static int cpufreq_online(unsigned int cpu)
1318 {
1319         struct cpufreq_policy *policy;
1320         bool new_policy;
1321         unsigned long flags;
1322         unsigned int j;
1323         int ret;
1324
1325         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1326
1327         /* Check if this CPU already has a policy to manage it */
1328         policy = per_cpu(cpufreq_cpu_data, cpu);
1329         if (policy) {
1330                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1331                 if (!policy_is_inactive(policy))
1332                         return cpufreq_add_policy_cpu(policy, cpu);
1333
1334                 /* This is the only online CPU for the policy.  Start over. */
1335                 new_policy = false;
1336                 down_write(&policy->rwsem);
1337                 policy->cpu = cpu;
1338                 policy->governor = NULL;
1339                 up_write(&policy->rwsem);
1340         } else {
1341                 new_policy = true;
1342                 policy = cpufreq_policy_alloc(cpu);
1343                 if (!policy)
1344                         return -ENOMEM;
1345         }
1346
1347         if (!new_policy && cpufreq_driver->online) {
1348                 ret = cpufreq_driver->online(policy);
1349                 if (ret) {
1350                         pr_debug("%s: %d: initialization failed\n", __func__,
1351                                  __LINE__);
1352                         goto out_exit_policy;
1353                 }
1354
1355                 /* Recover policy->cpus using related_cpus */
1356                 cpumask_copy(policy->cpus, policy->related_cpus);
1357         } else {
1358                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1359
1360                 /*
1361                  * Call driver. From then on the cpufreq must be able
1362                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1363                  */
1364                 ret = cpufreq_driver->init(policy);
1365                 if (ret) {
1366                         pr_debug("%s: %d: initialization failed\n", __func__,
1367                                  __LINE__);
1368                         goto out_free_policy;
1369                 }
1370
1371                 /*
1372                  * The initialization has succeeded and the policy is online.
1373                  * If there is a problem with its frequency table, take it
1374                  * offline and drop it.
1375                  */
1376                 ret = cpufreq_table_validate_and_sort(policy);
1377                 if (ret)
1378                         goto out_offline_policy;
1379
1380                 /* related_cpus should at least include policy->cpus. */
1381                 cpumask_copy(policy->related_cpus, policy->cpus);
1382         }
1383
1384         down_write(&policy->rwsem);
1385         /*
1386          * affected cpus must always be the one, which are online. We aren't
1387          * managing offline cpus here.
1388          */
1389         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1390
1391         if (new_policy) {
1392                 for_each_cpu(j, policy->related_cpus) {
1393                         per_cpu(cpufreq_cpu_data, j) = policy;
1394                         add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1395                 }
1396
1397                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1398                                                GFP_KERNEL);
1399                 if (!policy->min_freq_req) {
1400                         ret = -ENOMEM;
1401                         goto out_destroy_policy;
1402                 }
1403
1404                 ret = freq_qos_add_request(&policy->constraints,
1405                                            policy->min_freq_req, FREQ_QOS_MIN,
1406                                            FREQ_QOS_MIN_DEFAULT_VALUE);
1407                 if (ret < 0) {
1408                         /*
1409                          * So we don't call freq_qos_remove_request() for an
1410                          * uninitialized request.
1411                          */
1412                         kfree(policy->min_freq_req);
1413                         policy->min_freq_req = NULL;
1414                         goto out_destroy_policy;
1415                 }
1416
1417                 /*
1418                  * This must be initialized right here to avoid calling
1419                  * freq_qos_remove_request() on uninitialized request in case
1420                  * of errors.
1421                  */
1422                 policy->max_freq_req = policy->min_freq_req + 1;
1423
1424                 ret = freq_qos_add_request(&policy->constraints,
1425                                            policy->max_freq_req, FREQ_QOS_MAX,
1426                                            FREQ_QOS_MAX_DEFAULT_VALUE);
1427                 if (ret < 0) {
1428                         policy->max_freq_req = NULL;
1429                         goto out_destroy_policy;
1430                 }
1431
1432                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1433                                 CPUFREQ_CREATE_POLICY, policy);
1434         }
1435
1436         if (cpufreq_driver->get && has_target()) {
1437                 policy->cur = cpufreq_driver->get(policy->cpu);
1438                 if (!policy->cur) {
1439                         ret = -EIO;
1440                         pr_err("%s: ->get() failed\n", __func__);
1441                         goto out_destroy_policy;
1442                 }
1443         }
1444
1445         /*
1446          * Sometimes boot loaders set CPU frequency to a value outside of
1447          * frequency table present with cpufreq core. In such cases CPU might be
1448          * unstable if it has to run on that frequency for long duration of time
1449          * and so its better to set it to a frequency which is specified in
1450          * freq-table. This also makes cpufreq stats inconsistent as
1451          * cpufreq-stats would fail to register because current frequency of CPU
1452          * isn't found in freq-table.
1453          *
1454          * Because we don't want this change to effect boot process badly, we go
1455          * for the next freq which is >= policy->cur ('cur' must be set by now,
1456          * otherwise we will end up setting freq to lowest of the table as 'cur'
1457          * is initialized to zero).
1458          *
1459          * We are passing target-freq as "policy->cur - 1" otherwise
1460          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1461          * equal to target-freq.
1462          */
1463         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1464             && has_target()) {
1465                 unsigned int old_freq = policy->cur;
1466
1467                 /* Are we running at unknown frequency ? */
1468                 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1469                 if (ret == -EINVAL) {
1470                         ret = __cpufreq_driver_target(policy, old_freq - 1,
1471                                                       CPUFREQ_RELATION_L);
1472
1473                         /*
1474                          * Reaching here after boot in a few seconds may not
1475                          * mean that system will remain stable at "unknown"
1476                          * frequency for longer duration. Hence, a BUG_ON().
1477                          */
1478                         BUG_ON(ret);
1479                         pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1480                                 __func__, policy->cpu, old_freq, policy->cur);
1481                 }
1482         }
1483
1484         if (new_policy) {
1485                 ret = cpufreq_add_dev_interface(policy);
1486                 if (ret)
1487                         goto out_destroy_policy;
1488
1489                 cpufreq_stats_create_table(policy);
1490
1491                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1492                 list_add(&policy->policy_list, &cpufreq_policy_list);
1493                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1494
1495                 /*
1496                  * Register with the energy model before
1497                  * sched_cpufreq_governor_change() is called, which will result
1498                  * in rebuilding of the sched domains, which should only be done
1499                  * once the energy model is properly initialized for the policy
1500                  * first.
1501                  *
1502                  * Also, this should be called before the policy is registered
1503                  * with cooling framework.
1504                  */
1505                 if (cpufreq_driver->register_em)
1506                         cpufreq_driver->register_em(policy);
1507         }
1508
1509         ret = cpufreq_init_policy(policy);
1510         if (ret) {
1511                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1512                        __func__, cpu, ret);
1513                 goto out_destroy_policy;
1514         }
1515
1516         up_write(&policy->rwsem);
1517
1518         kobject_uevent(&policy->kobj, KOBJ_ADD);
1519
1520         if (cpufreq_thermal_control_enabled(cpufreq_driver))
1521                 policy->cdev = of_cpufreq_cooling_register(policy);
1522
1523         pr_debug("initialization complete\n");
1524
1525         return 0;
1526
1527 out_destroy_policy:
1528         for_each_cpu(j, policy->real_cpus)
1529                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1530
1531         up_write(&policy->rwsem);
1532
1533 out_offline_policy:
1534         if (cpufreq_driver->offline)
1535                 cpufreq_driver->offline(policy);
1536
1537 out_exit_policy:
1538         if (cpufreq_driver->exit)
1539                 cpufreq_driver->exit(policy);
1540
1541 out_free_policy:
1542         cpufreq_policy_free(policy);
1543         return ret;
1544 }
1545
1546 /**
1547  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1548  * @dev: CPU device.
1549  * @sif: Subsystem interface structure pointer (not used)
1550  */
1551 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1552 {
1553         struct cpufreq_policy *policy;
1554         unsigned cpu = dev->id;
1555         int ret;
1556
1557         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1558
1559         if (cpu_online(cpu)) {
1560                 ret = cpufreq_online(cpu);
1561                 if (ret)
1562                         return ret;
1563         }
1564
1565         /* Create sysfs link on CPU registration */
1566         policy = per_cpu(cpufreq_cpu_data, cpu);
1567         if (policy)
1568                 add_cpu_dev_symlink(policy, cpu, dev);
1569
1570         return 0;
1571 }
1572
1573 static int cpufreq_offline(unsigned int cpu)
1574 {
1575         struct cpufreq_policy *policy;
1576         int ret;
1577
1578         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1579
1580         policy = cpufreq_cpu_get_raw(cpu);
1581         if (!policy) {
1582                 pr_debug("%s: No cpu_data found\n", __func__);
1583                 return 0;
1584         }
1585
1586         down_write(&policy->rwsem);
1587         if (has_target())
1588                 cpufreq_stop_governor(policy);
1589
1590         cpumask_clear_cpu(cpu, policy->cpus);
1591
1592         if (policy_is_inactive(policy)) {
1593                 if (has_target())
1594                         strncpy(policy->last_governor, policy->governor->name,
1595                                 CPUFREQ_NAME_LEN);
1596                 else
1597                         policy->last_policy = policy->policy;
1598         } else if (cpu == policy->cpu) {
1599                 /* Nominate new CPU */
1600                 policy->cpu = cpumask_any(policy->cpus);
1601         }
1602
1603         /* Start governor again for active policy */
1604         if (!policy_is_inactive(policy)) {
1605                 if (has_target()) {
1606                         ret = cpufreq_start_governor(policy);
1607                         if (ret)
1608                                 pr_err("%s: Failed to start governor\n", __func__);
1609                 }
1610
1611                 goto unlock;
1612         }
1613
1614         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1615                 cpufreq_cooling_unregister(policy->cdev);
1616                 policy->cdev = NULL;
1617         }
1618
1619         if (has_target())
1620                 cpufreq_exit_governor(policy);
1621
1622         /*
1623          * Perform the ->offline() during light-weight tear-down, as
1624          * that allows fast recovery when the CPU comes back.
1625          */
1626         if (cpufreq_driver->offline) {
1627                 cpufreq_driver->offline(policy);
1628         } else if (cpufreq_driver->exit) {
1629                 cpufreq_driver->exit(policy);
1630                 policy->freq_table = NULL;
1631         }
1632
1633 unlock:
1634         up_write(&policy->rwsem);
1635         return 0;
1636 }
1637
1638 /*
1639  * cpufreq_remove_dev - remove a CPU device
1640  *
1641  * Removes the cpufreq interface for a CPU device.
1642  */
1643 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1644 {
1645         unsigned int cpu = dev->id;
1646         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1647
1648         if (!policy)
1649                 return;
1650
1651         if (cpu_online(cpu))
1652                 cpufreq_offline(cpu);
1653
1654         cpumask_clear_cpu(cpu, policy->real_cpus);
1655         remove_cpu_dev_symlink(policy, dev);
1656
1657         if (cpumask_empty(policy->real_cpus)) {
1658                 /* We did light-weight exit earlier, do full tear down now */
1659                 if (cpufreq_driver->offline)
1660                         cpufreq_driver->exit(policy);
1661
1662                 cpufreq_policy_free(policy);
1663         }
1664 }
1665
1666 /**
1667  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1668  * @policy: Policy managing CPUs.
1669  * @new_freq: New CPU frequency.
1670  *
1671  * Adjust to the current frequency first and clean up later by either calling
1672  * cpufreq_update_policy(), or scheduling handle_update().
1673  */
1674 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1675                                 unsigned int new_freq)
1676 {
1677         struct cpufreq_freqs freqs;
1678
1679         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1680                  policy->cur, new_freq);
1681
1682         freqs.old = policy->cur;
1683         freqs.new = new_freq;
1684
1685         cpufreq_freq_transition_begin(policy, &freqs);
1686         cpufreq_freq_transition_end(policy, &freqs, 0);
1687 }
1688
1689 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1690 {
1691         unsigned int new_freq;
1692
1693         new_freq = cpufreq_driver->get(policy->cpu);
1694         if (!new_freq)
1695                 return 0;
1696
1697         /*
1698          * If fast frequency switching is used with the given policy, the check
1699          * against policy->cur is pointless, so skip it in that case.
1700          */
1701         if (policy->fast_switch_enabled || !has_target())
1702                 return new_freq;
1703
1704         if (policy->cur != new_freq) {
1705                 /*
1706                  * For some platforms, the frequency returned by hardware may be
1707                  * slightly different from what is provided in the frequency
1708                  * table, for example hardware may return 499 MHz instead of 500
1709                  * MHz. In such cases it is better to avoid getting into
1710                  * unnecessary frequency updates.
1711                  */
1712                 if (abs(policy->cur - new_freq) < HZ_PER_MHZ)
1713                         return policy->cur;
1714
1715                 cpufreq_out_of_sync(policy, new_freq);
1716                 if (update)
1717                         schedule_work(&policy->update);
1718         }
1719
1720         return new_freq;
1721 }
1722
1723 /**
1724  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1725  * @cpu: CPU number
1726  *
1727  * This is the last known freq, without actually getting it from the driver.
1728  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1729  */
1730 unsigned int cpufreq_quick_get(unsigned int cpu)
1731 {
1732         struct cpufreq_policy *policy;
1733         unsigned int ret_freq = 0;
1734         unsigned long flags;
1735
1736         read_lock_irqsave(&cpufreq_driver_lock, flags);
1737
1738         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1739                 ret_freq = cpufreq_driver->get(cpu);
1740                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1741                 return ret_freq;
1742         }
1743
1744         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1745
1746         policy = cpufreq_cpu_get(cpu);
1747         if (policy) {
1748                 ret_freq = policy->cur;
1749                 cpufreq_cpu_put(policy);
1750         }
1751
1752         return ret_freq;
1753 }
1754 EXPORT_SYMBOL(cpufreq_quick_get);
1755
1756 /**
1757  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1758  * @cpu: CPU number
1759  *
1760  * Just return the max possible frequency for a given CPU.
1761  */
1762 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1763 {
1764         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1765         unsigned int ret_freq = 0;
1766
1767         if (policy) {
1768                 ret_freq = policy->max;
1769                 cpufreq_cpu_put(policy);
1770         }
1771
1772         return ret_freq;
1773 }
1774 EXPORT_SYMBOL(cpufreq_quick_get_max);
1775
1776 /**
1777  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1778  * @cpu: CPU number
1779  *
1780  * The default return value is the max_freq field of cpuinfo.
1781  */
1782 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1783 {
1784         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1785         unsigned int ret_freq = 0;
1786
1787         if (policy) {
1788                 ret_freq = policy->cpuinfo.max_freq;
1789                 cpufreq_cpu_put(policy);
1790         }
1791
1792         return ret_freq;
1793 }
1794 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1795
1796 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1797 {
1798         if (unlikely(policy_is_inactive(policy)))
1799                 return 0;
1800
1801         return cpufreq_verify_current_freq(policy, true);
1802 }
1803
1804 /**
1805  * cpufreq_get - get the current CPU frequency (in kHz)
1806  * @cpu: CPU number
1807  *
1808  * Get the CPU current (static) CPU frequency
1809  */
1810 unsigned int cpufreq_get(unsigned int cpu)
1811 {
1812         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1813         unsigned int ret_freq = 0;
1814
1815         if (policy) {
1816                 down_read(&policy->rwsem);
1817                 if (cpufreq_driver->get)
1818                         ret_freq = __cpufreq_get(policy);
1819                 up_read(&policy->rwsem);
1820
1821                 cpufreq_cpu_put(policy);
1822         }
1823
1824         return ret_freq;
1825 }
1826 EXPORT_SYMBOL(cpufreq_get);
1827
1828 static struct subsys_interface cpufreq_interface = {
1829         .name           = "cpufreq",
1830         .subsys         = &cpu_subsys,
1831         .add_dev        = cpufreq_add_dev,
1832         .remove_dev     = cpufreq_remove_dev,
1833 };
1834
1835 /*
1836  * In case platform wants some specific frequency to be configured
1837  * during suspend..
1838  */
1839 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1840 {
1841         int ret;
1842
1843         if (!policy->suspend_freq) {
1844                 pr_debug("%s: suspend_freq not defined\n", __func__);
1845                 return 0;
1846         }
1847
1848         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1849                         policy->suspend_freq);
1850
1851         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1852                         CPUFREQ_RELATION_H);
1853         if (ret)
1854                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1855                                 __func__, policy->suspend_freq, ret);
1856
1857         return ret;
1858 }
1859 EXPORT_SYMBOL(cpufreq_generic_suspend);
1860
1861 /**
1862  * cpufreq_suspend() - Suspend CPUFreq governors.
1863  *
1864  * Called during system wide Suspend/Hibernate cycles for suspending governors
1865  * as some platforms can't change frequency after this point in suspend cycle.
1866  * Because some of the devices (like: i2c, regulators, etc) they use for
1867  * changing frequency are suspended quickly after this point.
1868  */
1869 void cpufreq_suspend(void)
1870 {
1871         struct cpufreq_policy *policy;
1872
1873         if (!cpufreq_driver)
1874                 return;
1875
1876         if (!has_target() && !cpufreq_driver->suspend)
1877                 goto suspend;
1878
1879         pr_debug("%s: Suspending Governors\n", __func__);
1880
1881         for_each_active_policy(policy) {
1882                 if (has_target()) {
1883                         down_write(&policy->rwsem);
1884                         cpufreq_stop_governor(policy);
1885                         up_write(&policy->rwsem);
1886                 }
1887
1888                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1889                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1890                                 cpufreq_driver->name);
1891         }
1892
1893 suspend:
1894         cpufreq_suspended = true;
1895 }
1896
1897 /**
1898  * cpufreq_resume() - Resume CPUFreq governors.
1899  *
1900  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1901  * are suspended with cpufreq_suspend().
1902  */
1903 void cpufreq_resume(void)
1904 {
1905         struct cpufreq_policy *policy;
1906         int ret;
1907
1908         if (!cpufreq_driver)
1909                 return;
1910
1911         if (unlikely(!cpufreq_suspended))
1912                 return;
1913
1914         cpufreq_suspended = false;
1915
1916         if (!has_target() && !cpufreq_driver->resume)
1917                 return;
1918
1919         pr_debug("%s: Resuming Governors\n", __func__);
1920
1921         for_each_active_policy(policy) {
1922                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1923                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1924                                 policy);
1925                 } else if (has_target()) {
1926                         down_write(&policy->rwsem);
1927                         ret = cpufreq_start_governor(policy);
1928                         up_write(&policy->rwsem);
1929
1930                         if (ret)
1931                                 pr_err("%s: Failed to start governor for policy: %p\n",
1932                                        __func__, policy);
1933                 }
1934         }
1935 }
1936
1937 /**
1938  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1939  * @flags: Flags to test against the current cpufreq driver's flags.
1940  *
1941  * Assumes that the driver is there, so callers must ensure that this is the
1942  * case.
1943  */
1944 bool cpufreq_driver_test_flags(u16 flags)
1945 {
1946         return !!(cpufreq_driver->flags & flags);
1947 }
1948
1949 /**
1950  * cpufreq_get_current_driver - Return the current driver's name.
1951  *
1952  * Return the name string of the currently registered cpufreq driver or NULL if
1953  * none.
1954  */
1955 const char *cpufreq_get_current_driver(void)
1956 {
1957         if (cpufreq_driver)
1958                 return cpufreq_driver->name;
1959
1960         return NULL;
1961 }
1962 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1963
1964 /**
1965  * cpufreq_get_driver_data - Return current driver data.
1966  *
1967  * Return the private data of the currently registered cpufreq driver, or NULL
1968  * if no cpufreq driver has been registered.
1969  */
1970 void *cpufreq_get_driver_data(void)
1971 {
1972         if (cpufreq_driver)
1973                 return cpufreq_driver->driver_data;
1974
1975         return NULL;
1976 }
1977 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1978
1979 /*********************************************************************
1980  *                     NOTIFIER LISTS INTERFACE                      *
1981  *********************************************************************/
1982
1983 /**
1984  * cpufreq_register_notifier - Register a notifier with cpufreq.
1985  * @nb: notifier function to register.
1986  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
1987  *
1988  * Add a notifier to one of two lists: either a list of notifiers that run on
1989  * clock rate changes (once before and once after every transition), or a list
1990  * of notifiers that ron on cpufreq policy changes.
1991  *
1992  * This function may sleep and it has the same return values as
1993  * blocking_notifier_chain_register().
1994  */
1995 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1996 {
1997         int ret;
1998
1999         if (cpufreq_disabled())
2000                 return -EINVAL;
2001
2002         switch (list) {
2003         case CPUFREQ_TRANSITION_NOTIFIER:
2004                 mutex_lock(&cpufreq_fast_switch_lock);
2005
2006                 if (cpufreq_fast_switch_count > 0) {
2007                         mutex_unlock(&cpufreq_fast_switch_lock);
2008                         return -EBUSY;
2009                 }
2010                 ret = srcu_notifier_chain_register(
2011                                 &cpufreq_transition_notifier_list, nb);
2012                 if (!ret)
2013                         cpufreq_fast_switch_count--;
2014
2015                 mutex_unlock(&cpufreq_fast_switch_lock);
2016                 break;
2017         case CPUFREQ_POLICY_NOTIFIER:
2018                 ret = blocking_notifier_chain_register(
2019                                 &cpufreq_policy_notifier_list, nb);
2020                 break;
2021         default:
2022                 ret = -EINVAL;
2023         }
2024
2025         return ret;
2026 }
2027 EXPORT_SYMBOL(cpufreq_register_notifier);
2028
2029 /**
2030  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2031  * @nb: notifier block to be unregistered.
2032  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2033  *
2034  * Remove a notifier from one of the cpufreq notifier lists.
2035  *
2036  * This function may sleep and it has the same return values as
2037  * blocking_notifier_chain_unregister().
2038  */
2039 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2040 {
2041         int ret;
2042
2043         if (cpufreq_disabled())
2044                 return -EINVAL;
2045
2046         switch (list) {
2047         case CPUFREQ_TRANSITION_NOTIFIER:
2048                 mutex_lock(&cpufreq_fast_switch_lock);
2049
2050                 ret = srcu_notifier_chain_unregister(
2051                                 &cpufreq_transition_notifier_list, nb);
2052                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2053                         cpufreq_fast_switch_count++;
2054
2055                 mutex_unlock(&cpufreq_fast_switch_lock);
2056                 break;
2057         case CPUFREQ_POLICY_NOTIFIER:
2058                 ret = blocking_notifier_chain_unregister(
2059                                 &cpufreq_policy_notifier_list, nb);
2060                 break;
2061         default:
2062                 ret = -EINVAL;
2063         }
2064
2065         return ret;
2066 }
2067 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2068
2069
2070 /*********************************************************************
2071  *                              GOVERNORS                            *
2072  *********************************************************************/
2073
2074 /**
2075  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2076  * @policy: cpufreq policy to switch the frequency for.
2077  * @target_freq: New frequency to set (may be approximate).
2078  *
2079  * Carry out a fast frequency switch without sleeping.
2080  *
2081  * The driver's ->fast_switch() callback invoked by this function must be
2082  * suitable for being called from within RCU-sched read-side critical sections
2083  * and it is expected to select the minimum available frequency greater than or
2084  * equal to @target_freq (CPUFREQ_RELATION_L).
2085  *
2086  * This function must not be called if policy->fast_switch_enabled is unset.
2087  *
2088  * Governors calling this function must guarantee that it will never be invoked
2089  * twice in parallel for the same policy and that it will never be called in
2090  * parallel with either ->target() or ->target_index() for the same policy.
2091  *
2092  * Returns the actual frequency set for the CPU.
2093  *
2094  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2095  * error condition, the hardware configuration must be preserved.
2096  */
2097 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2098                                         unsigned int target_freq)
2099 {
2100         unsigned int freq;
2101         int cpu;
2102
2103         target_freq = clamp_val(target_freq, policy->min, policy->max);
2104         freq = cpufreq_driver->fast_switch(policy, target_freq);
2105
2106         if (!freq)
2107                 return 0;
2108
2109         policy->cur = freq;
2110         arch_set_freq_scale(policy->related_cpus, freq,
2111                             policy->cpuinfo.max_freq);
2112         cpufreq_stats_record_transition(policy, freq);
2113
2114         if (trace_cpu_frequency_enabled()) {
2115                 for_each_cpu(cpu, policy->cpus)
2116                         trace_cpu_frequency(freq, cpu);
2117         }
2118
2119         return freq;
2120 }
2121 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2122
2123 /**
2124  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2125  * @cpu: Target CPU.
2126  * @min_perf: Minimum (required) performance level (units of @capacity).
2127  * @target_perf: Target (desired) performance level (units of @capacity).
2128  * @capacity: Capacity of the target CPU.
2129  *
2130  * Carry out a fast performance level switch of @cpu without sleeping.
2131  *
2132  * The driver's ->adjust_perf() callback invoked by this function must be
2133  * suitable for being called from within RCU-sched read-side critical sections
2134  * and it is expected to select a suitable performance level equal to or above
2135  * @min_perf and preferably equal to or below @target_perf.
2136  *
2137  * This function must not be called if policy->fast_switch_enabled is unset.
2138  *
2139  * Governors calling this function must guarantee that it will never be invoked
2140  * twice in parallel for the same CPU and that it will never be called in
2141  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2142  * the same CPU.
2143  */
2144 void cpufreq_driver_adjust_perf(unsigned int cpu,
2145                                  unsigned long min_perf,
2146                                  unsigned long target_perf,
2147                                  unsigned long capacity)
2148 {
2149         cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2150 }
2151
2152 /**
2153  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2154  *
2155  * Return 'true' if the ->adjust_perf callback is present for the
2156  * current driver or 'false' otherwise.
2157  */
2158 bool cpufreq_driver_has_adjust_perf(void)
2159 {
2160         return !!cpufreq_driver->adjust_perf;
2161 }
2162
2163 /* Must set freqs->new to intermediate frequency */
2164 static int __target_intermediate(struct cpufreq_policy *policy,
2165                                  struct cpufreq_freqs *freqs, int index)
2166 {
2167         int ret;
2168
2169         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2170
2171         /* We don't need to switch to intermediate freq */
2172         if (!freqs->new)
2173                 return 0;
2174
2175         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2176                  __func__, policy->cpu, freqs->old, freqs->new);
2177
2178         cpufreq_freq_transition_begin(policy, freqs);
2179         ret = cpufreq_driver->target_intermediate(policy, index);
2180         cpufreq_freq_transition_end(policy, freqs, ret);
2181
2182         if (ret)
2183                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2184                        __func__, ret);
2185
2186         return ret;
2187 }
2188
2189 static int __target_index(struct cpufreq_policy *policy, int index)
2190 {
2191         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2192         unsigned int restore_freq, intermediate_freq = 0;
2193         unsigned int newfreq = policy->freq_table[index].frequency;
2194         int retval = -EINVAL;
2195         bool notify;
2196
2197         if (newfreq == policy->cur)
2198                 return 0;
2199
2200         /* Save last value to restore later on errors */
2201         restore_freq = policy->cur;
2202
2203         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2204         if (notify) {
2205                 /* Handle switching to intermediate frequency */
2206                 if (cpufreq_driver->get_intermediate) {
2207                         retval = __target_intermediate(policy, &freqs, index);
2208                         if (retval)
2209                                 return retval;
2210
2211                         intermediate_freq = freqs.new;
2212                         /* Set old freq to intermediate */
2213                         if (intermediate_freq)
2214                                 freqs.old = freqs.new;
2215                 }
2216
2217                 freqs.new = newfreq;
2218                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2219                          __func__, policy->cpu, freqs.old, freqs.new);
2220
2221                 cpufreq_freq_transition_begin(policy, &freqs);
2222         }
2223
2224         retval = cpufreq_driver->target_index(policy, index);
2225         if (retval)
2226                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2227                        retval);
2228
2229         if (notify) {
2230                 cpufreq_freq_transition_end(policy, &freqs, retval);
2231
2232                 /*
2233                  * Failed after setting to intermediate freq? Driver should have
2234                  * reverted back to initial frequency and so should we. Check
2235                  * here for intermediate_freq instead of get_intermediate, in
2236                  * case we haven't switched to intermediate freq at all.
2237                  */
2238                 if (unlikely(retval && intermediate_freq)) {
2239                         freqs.old = intermediate_freq;
2240                         freqs.new = restore_freq;
2241                         cpufreq_freq_transition_begin(policy, &freqs);
2242                         cpufreq_freq_transition_end(policy, &freqs, 0);
2243                 }
2244         }
2245
2246         return retval;
2247 }
2248
2249 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2250                             unsigned int target_freq,
2251                             unsigned int relation)
2252 {
2253         unsigned int old_target_freq = target_freq;
2254
2255         if (cpufreq_disabled())
2256                 return -ENODEV;
2257
2258         target_freq = __resolve_freq(policy, target_freq, relation);
2259
2260         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2261                  policy->cpu, target_freq, relation, old_target_freq);
2262
2263         /*
2264          * This might look like a redundant call as we are checking it again
2265          * after finding index. But it is left intentionally for cases where
2266          * exactly same freq is called again and so we can save on few function
2267          * calls.
2268          */
2269         if (target_freq == policy->cur &&
2270             !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2271                 return 0;
2272
2273         if (cpufreq_driver->target)
2274                 return cpufreq_driver->target(policy, target_freq, relation);
2275
2276         if (!cpufreq_driver->target_index)
2277                 return -EINVAL;
2278
2279         return __target_index(policy, policy->cached_resolved_idx);
2280 }
2281 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2282
2283 int cpufreq_driver_target(struct cpufreq_policy *policy,
2284                           unsigned int target_freq,
2285                           unsigned int relation)
2286 {
2287         int ret;
2288
2289         down_write(&policy->rwsem);
2290
2291         ret = __cpufreq_driver_target(policy, target_freq, relation);
2292
2293         up_write(&policy->rwsem);
2294
2295         return ret;
2296 }
2297 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2298
2299 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2300 {
2301         return NULL;
2302 }
2303
2304 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2305 {
2306         int ret;
2307
2308         /* Don't start any governor operations if we are entering suspend */
2309         if (cpufreq_suspended)
2310                 return 0;
2311         /*
2312          * Governor might not be initiated here if ACPI _PPC changed
2313          * notification happened, so check it.
2314          */
2315         if (!policy->governor)
2316                 return -EINVAL;
2317
2318         /* Platform doesn't want dynamic frequency switching ? */
2319         if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2320             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2321                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2322
2323                 if (gov) {
2324                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2325                                 policy->governor->name, gov->name);
2326                         policy->governor = gov;
2327                 } else {
2328                         return -EINVAL;
2329                 }
2330         }
2331
2332         if (!try_module_get(policy->governor->owner))
2333                 return -EINVAL;
2334
2335         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2336
2337         if (policy->governor->init) {
2338                 ret = policy->governor->init(policy);
2339                 if (ret) {
2340                         module_put(policy->governor->owner);
2341                         return ret;
2342                 }
2343         }
2344
2345         policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2346
2347         return 0;
2348 }
2349
2350 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2351 {
2352         if (cpufreq_suspended || !policy->governor)
2353                 return;
2354
2355         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2356
2357         if (policy->governor->exit)
2358                 policy->governor->exit(policy);
2359
2360         module_put(policy->governor->owner);
2361 }
2362
2363 int cpufreq_start_governor(struct cpufreq_policy *policy)
2364 {
2365         int ret;
2366
2367         if (cpufreq_suspended)
2368                 return 0;
2369
2370         if (!policy->governor)
2371                 return -EINVAL;
2372
2373         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2374
2375         if (cpufreq_driver->get)
2376                 cpufreq_verify_current_freq(policy, false);
2377
2378         if (policy->governor->start) {
2379                 ret = policy->governor->start(policy);
2380                 if (ret)
2381                         return ret;
2382         }
2383
2384         if (policy->governor->limits)
2385                 policy->governor->limits(policy);
2386
2387         return 0;
2388 }
2389
2390 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2391 {
2392         if (cpufreq_suspended || !policy->governor)
2393                 return;
2394
2395         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2396
2397         if (policy->governor->stop)
2398                 policy->governor->stop(policy);
2399 }
2400
2401 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2402 {
2403         if (cpufreq_suspended || !policy->governor)
2404                 return;
2405
2406         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2407
2408         if (policy->governor->limits)
2409                 policy->governor->limits(policy);
2410 }
2411
2412 int cpufreq_register_governor(struct cpufreq_governor *governor)
2413 {
2414         int err;
2415
2416         if (!governor)
2417                 return -EINVAL;
2418
2419         if (cpufreq_disabled())
2420                 return -ENODEV;
2421
2422         mutex_lock(&cpufreq_governor_mutex);
2423
2424         err = -EBUSY;
2425         if (!find_governor(governor->name)) {
2426                 err = 0;
2427                 list_add(&governor->governor_list, &cpufreq_governor_list);
2428         }
2429
2430         mutex_unlock(&cpufreq_governor_mutex);
2431         return err;
2432 }
2433 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2434
2435 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2436 {
2437         struct cpufreq_policy *policy;
2438         unsigned long flags;
2439
2440         if (!governor)
2441                 return;
2442
2443         if (cpufreq_disabled())
2444                 return;
2445
2446         /* clear last_governor for all inactive policies */
2447         read_lock_irqsave(&cpufreq_driver_lock, flags);
2448         for_each_inactive_policy(policy) {
2449                 if (!strcmp(policy->last_governor, governor->name)) {
2450                         policy->governor = NULL;
2451                         strcpy(policy->last_governor, "\0");
2452                 }
2453         }
2454         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2455
2456         mutex_lock(&cpufreq_governor_mutex);
2457         list_del(&governor->governor_list);
2458         mutex_unlock(&cpufreq_governor_mutex);
2459 }
2460 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2461
2462
2463 /*********************************************************************
2464  *                          POLICY INTERFACE                         *
2465  *********************************************************************/
2466
2467 /**
2468  * cpufreq_get_policy - get the current cpufreq_policy
2469  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2470  *      is written
2471  * @cpu: CPU to find the policy for
2472  *
2473  * Reads the current cpufreq policy.
2474  */
2475 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2476 {
2477         struct cpufreq_policy *cpu_policy;
2478         if (!policy)
2479                 return -EINVAL;
2480
2481         cpu_policy = cpufreq_cpu_get(cpu);
2482         if (!cpu_policy)
2483                 return -EINVAL;
2484
2485         memcpy(policy, cpu_policy, sizeof(*policy));
2486
2487         cpufreq_cpu_put(cpu_policy);
2488         return 0;
2489 }
2490 EXPORT_SYMBOL(cpufreq_get_policy);
2491
2492 /**
2493  * cpufreq_set_policy - Modify cpufreq policy parameters.
2494  * @policy: Policy object to modify.
2495  * @new_gov: Policy governor pointer.
2496  * @new_pol: Policy value (for drivers with built-in governors).
2497  *
2498  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2499  * limits to be set for the policy, update @policy with the verified limits
2500  * values and either invoke the driver's ->setpolicy() callback (if present) or
2501  * carry out a governor update for @policy.  That is, run the current governor's
2502  * ->limits() callback (if @new_gov points to the same object as the one in
2503  * @policy) or replace the governor for @policy with @new_gov.
2504  *
2505  * The cpuinfo part of @policy is not updated by this function.
2506  */
2507 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2508                               struct cpufreq_governor *new_gov,
2509                               unsigned int new_pol)
2510 {
2511         struct cpufreq_policy_data new_data;
2512         struct cpufreq_governor *old_gov;
2513         int ret;
2514
2515         memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2516         new_data.freq_table = policy->freq_table;
2517         new_data.cpu = policy->cpu;
2518         /*
2519          * PM QoS framework collects all the requests from users and provide us
2520          * the final aggregated value here.
2521          */
2522         new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2523         new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2524
2525         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2526                  new_data.cpu, new_data.min, new_data.max);
2527
2528         /*
2529          * Verify that the CPU speed can be set within these limits and make sure
2530          * that min <= max.
2531          */
2532         ret = cpufreq_driver->verify(&new_data);
2533         if (ret)
2534                 return ret;
2535
2536         /*
2537          * Resolve policy min/max to available frequencies. It ensures
2538          * no frequency resolution will neither overshoot the requested maximum
2539          * nor undershoot the requested minimum.
2540          */
2541         policy->min = new_data.min;
2542         policy->max = new_data.max;
2543         policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2544         policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2545         trace_cpu_frequency_limits(policy);
2546
2547         policy->cached_target_freq = UINT_MAX;
2548
2549         pr_debug("new min and max freqs are %u - %u kHz\n",
2550                  policy->min, policy->max);
2551
2552         if (cpufreq_driver->setpolicy) {
2553                 policy->policy = new_pol;
2554                 pr_debug("setting range\n");
2555                 return cpufreq_driver->setpolicy(policy);
2556         }
2557
2558         if (new_gov == policy->governor) {
2559                 pr_debug("governor limits update\n");
2560                 cpufreq_governor_limits(policy);
2561                 return 0;
2562         }
2563
2564         pr_debug("governor switch\n");
2565
2566         /* save old, working values */
2567         old_gov = policy->governor;
2568         /* end old governor */
2569         if (old_gov) {
2570                 cpufreq_stop_governor(policy);
2571                 cpufreq_exit_governor(policy);
2572         }
2573
2574         /* start new governor */
2575         policy->governor = new_gov;
2576         ret = cpufreq_init_governor(policy);
2577         if (!ret) {
2578                 ret = cpufreq_start_governor(policy);
2579                 if (!ret) {
2580                         pr_debug("governor change\n");
2581                         sched_cpufreq_governor_change(policy, old_gov);
2582                         return 0;
2583                 }
2584                 cpufreq_exit_governor(policy);
2585         }
2586
2587         /* new governor failed, so re-start old one */
2588         pr_debug("starting governor %s failed\n", policy->governor->name);
2589         if (old_gov) {
2590                 policy->governor = old_gov;
2591                 if (cpufreq_init_governor(policy))
2592                         policy->governor = NULL;
2593                 else
2594                         cpufreq_start_governor(policy);
2595         }
2596
2597         return ret;
2598 }
2599
2600 /**
2601  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2602  * @cpu: CPU to re-evaluate the policy for.
2603  *
2604  * Update the current frequency for the cpufreq policy of @cpu and use
2605  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2606  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2607  * for the policy in question, among other things.
2608  */
2609 void cpufreq_update_policy(unsigned int cpu)
2610 {
2611         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2612
2613         if (!policy)
2614                 return;
2615
2616         /*
2617          * BIOS might change freq behind our back
2618          * -> ask driver for current freq and notify governors about a change
2619          */
2620         if (cpufreq_driver->get && has_target() &&
2621             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2622                 goto unlock;
2623
2624         refresh_frequency_limits(policy);
2625
2626 unlock:
2627         cpufreq_cpu_release(policy);
2628 }
2629 EXPORT_SYMBOL(cpufreq_update_policy);
2630
2631 /**
2632  * cpufreq_update_limits - Update policy limits for a given CPU.
2633  * @cpu: CPU to update the policy limits for.
2634  *
2635  * Invoke the driver's ->update_limits callback if present or call
2636  * cpufreq_update_policy() for @cpu.
2637  */
2638 void cpufreq_update_limits(unsigned int cpu)
2639 {
2640         if (cpufreq_driver->update_limits)
2641                 cpufreq_driver->update_limits(cpu);
2642         else
2643                 cpufreq_update_policy(cpu);
2644 }
2645 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2646
2647 /*********************************************************************
2648  *               BOOST                                               *
2649  *********************************************************************/
2650 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2651 {
2652         int ret;
2653
2654         if (!policy->freq_table)
2655                 return -ENXIO;
2656
2657         ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2658         if (ret) {
2659                 pr_err("%s: Policy frequency update failed\n", __func__);
2660                 return ret;
2661         }
2662
2663         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2664         if (ret < 0)
2665                 return ret;
2666
2667         return 0;
2668 }
2669
2670 int cpufreq_boost_trigger_state(int state)
2671 {
2672         struct cpufreq_policy *policy;
2673         unsigned long flags;
2674         int ret = 0;
2675
2676         if (cpufreq_driver->boost_enabled == state)
2677                 return 0;
2678
2679         write_lock_irqsave(&cpufreq_driver_lock, flags);
2680         cpufreq_driver->boost_enabled = state;
2681         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2682
2683         cpus_read_lock();
2684         for_each_active_policy(policy) {
2685                 ret = cpufreq_driver->set_boost(policy, state);
2686                 if (ret)
2687                         goto err_reset_state;
2688         }
2689         cpus_read_unlock();
2690
2691         return 0;
2692
2693 err_reset_state:
2694         cpus_read_unlock();
2695
2696         write_lock_irqsave(&cpufreq_driver_lock, flags);
2697         cpufreq_driver->boost_enabled = !state;
2698         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2699
2700         pr_err("%s: Cannot %s BOOST\n",
2701                __func__, state ? "enable" : "disable");
2702
2703         return ret;
2704 }
2705
2706 static bool cpufreq_boost_supported(void)
2707 {
2708         return cpufreq_driver->set_boost;
2709 }
2710
2711 static int create_boost_sysfs_file(void)
2712 {
2713         int ret;
2714
2715         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2716         if (ret)
2717                 pr_err("%s: cannot register global BOOST sysfs file\n",
2718                        __func__);
2719
2720         return ret;
2721 }
2722
2723 static void remove_boost_sysfs_file(void)
2724 {
2725         if (cpufreq_boost_supported())
2726                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2727 }
2728
2729 int cpufreq_enable_boost_support(void)
2730 {
2731         if (!cpufreq_driver)
2732                 return -EINVAL;
2733
2734         if (cpufreq_boost_supported())
2735                 return 0;
2736
2737         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2738
2739         /* This will get removed on driver unregister */
2740         return create_boost_sysfs_file();
2741 }
2742 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2743
2744 int cpufreq_boost_enabled(void)
2745 {
2746         return cpufreq_driver->boost_enabled;
2747 }
2748 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2749
2750 /*********************************************************************
2751  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2752  *********************************************************************/
2753 static enum cpuhp_state hp_online;
2754
2755 static int cpuhp_cpufreq_online(unsigned int cpu)
2756 {
2757         cpufreq_online(cpu);
2758
2759         return 0;
2760 }
2761
2762 static int cpuhp_cpufreq_offline(unsigned int cpu)
2763 {
2764         cpufreq_offline(cpu);
2765
2766         return 0;
2767 }
2768
2769 /**
2770  * cpufreq_register_driver - register a CPU Frequency driver
2771  * @driver_data: A struct cpufreq_driver containing the values#
2772  * submitted by the CPU Frequency driver.
2773  *
2774  * Registers a CPU Frequency driver to this core code. This code
2775  * returns zero on success, -EEXIST when another driver got here first
2776  * (and isn't unregistered in the meantime).
2777  *
2778  */
2779 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2780 {
2781         unsigned long flags;
2782         int ret;
2783
2784         if (cpufreq_disabled())
2785                 return -ENODEV;
2786
2787         /*
2788          * The cpufreq core depends heavily on the availability of device
2789          * structure, make sure they are available before proceeding further.
2790          */
2791         if (!get_cpu_device(0))
2792                 return -EPROBE_DEFER;
2793
2794         if (!driver_data || !driver_data->verify || !driver_data->init ||
2795             !(driver_data->setpolicy || driver_data->target_index ||
2796                     driver_data->target) ||
2797              (driver_data->setpolicy && (driver_data->target_index ||
2798                     driver_data->target)) ||
2799              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2800              (!driver_data->online != !driver_data->offline))
2801                 return -EINVAL;
2802
2803         pr_debug("trying to register driver %s\n", driver_data->name);
2804
2805         /* Protect against concurrent CPU online/offline. */
2806         cpus_read_lock();
2807
2808         write_lock_irqsave(&cpufreq_driver_lock, flags);
2809         if (cpufreq_driver) {
2810                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2811                 ret = -EEXIST;
2812                 goto out;
2813         }
2814         cpufreq_driver = driver_data;
2815         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2816
2817         /*
2818          * Mark support for the scheduler's frequency invariance engine for
2819          * drivers that implement target(), target_index() or fast_switch().
2820          */
2821         if (!cpufreq_driver->setpolicy) {
2822                 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2823                 pr_debug("supports frequency invariance");
2824         }
2825
2826         if (driver_data->setpolicy)
2827                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2828
2829         if (cpufreq_boost_supported()) {
2830                 ret = create_boost_sysfs_file();
2831                 if (ret)
2832                         goto err_null_driver;
2833         }
2834
2835         ret = subsys_interface_register(&cpufreq_interface);
2836         if (ret)
2837                 goto err_boost_unreg;
2838
2839         if (unlikely(list_empty(&cpufreq_policy_list))) {
2840                 /* if all ->init() calls failed, unregister */
2841                 ret = -ENODEV;
2842                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2843                          driver_data->name);
2844                 goto err_if_unreg;
2845         }
2846
2847         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2848                                                    "cpufreq:online",
2849                                                    cpuhp_cpufreq_online,
2850                                                    cpuhp_cpufreq_offline);
2851         if (ret < 0)
2852                 goto err_if_unreg;
2853         hp_online = ret;
2854         ret = 0;
2855
2856         pr_debug("driver %s up and running\n", driver_data->name);
2857         goto out;
2858
2859 err_if_unreg:
2860         subsys_interface_unregister(&cpufreq_interface);
2861 err_boost_unreg:
2862         remove_boost_sysfs_file();
2863 err_null_driver:
2864         write_lock_irqsave(&cpufreq_driver_lock, flags);
2865         cpufreq_driver = NULL;
2866         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2867 out:
2868         cpus_read_unlock();
2869         return ret;
2870 }
2871 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2872
2873 /*
2874  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2875  *
2876  * Unregister the current CPUFreq driver. Only call this if you have
2877  * the right to do so, i.e. if you have succeeded in initialising before!
2878  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2879  * currently not initialised.
2880  */
2881 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2882 {
2883         unsigned long flags;
2884
2885         if (!cpufreq_driver || (driver != cpufreq_driver))
2886                 return -EINVAL;
2887
2888         pr_debug("unregistering driver %s\n", driver->name);
2889
2890         /* Protect against concurrent cpu hotplug */
2891         cpus_read_lock();
2892         subsys_interface_unregister(&cpufreq_interface);
2893         remove_boost_sysfs_file();
2894         static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2895         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2896
2897         write_lock_irqsave(&cpufreq_driver_lock, flags);
2898
2899         cpufreq_driver = NULL;
2900
2901         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2902         cpus_read_unlock();
2903
2904         return 0;
2905 }
2906 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2907
2908 static int __init cpufreq_core_init(void)
2909 {
2910         struct cpufreq_governor *gov = cpufreq_default_governor();
2911
2912         if (cpufreq_disabled())
2913                 return -ENODEV;
2914
2915         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2916         BUG_ON(!cpufreq_global_kobject);
2917
2918         if (!strlen(default_governor))
2919                 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2920
2921         return 0;
2922 }
2923 module_param(off, int, 0444);
2924 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2925 core_initcall(cpufreq_core_init);