GNU Linux-libre 6.1.86-gnu
[releases.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <linux/units.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 /* Macros to iterate over CPU policies */
37 #define for_each_suitable_policy(__policy, __active)                     \
38         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39                 if ((__active) == !policy_is_inactive(__policy))
40
41 #define for_each_active_policy(__policy)                \
42         for_each_suitable_policy(__policy, true)
43 #define for_each_inactive_policy(__policy)              \
44         for_each_suitable_policy(__policy, false)
45
46 /* Iterate over governors */
47 static LIST_HEAD(cpufreq_governor_list);
48 #define for_each_governor(__governor)                           \
49         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50
51 static char default_governor[CPUFREQ_NAME_LEN];
52
53 /*
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63 bool cpufreq_supports_freq_invariance(void)
64 {
65         return static_branch_likely(&cpufreq_freq_invariance);
66 }
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73         return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
81 static int cpufreq_set_policy(struct cpufreq_policy *policy,
82                               struct cpufreq_governor *new_gov,
83                               unsigned int new_pol);
84
85 /*
86  * Two notifier lists: the "policy" list is involved in the
87  * validation process for a new CPU frequency policy; the
88  * "transition" list for kernel code that needs to handle
89  * changes to devices when the CPU clock speed changes.
90  * The mutex locks both lists.
91  */
92 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
93 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
94
95 static int off __read_mostly;
96 static int cpufreq_disabled(void)
97 {
98         return off;
99 }
100 void disable_cpufreq(void)
101 {
102         off = 1;
103 }
104 static DEFINE_MUTEX(cpufreq_governor_mutex);
105
106 bool have_governor_per_policy(void)
107 {
108         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
109 }
110 EXPORT_SYMBOL_GPL(have_governor_per_policy);
111
112 static struct kobject *cpufreq_global_kobject;
113
114 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
115 {
116         if (have_governor_per_policy())
117                 return &policy->kobj;
118         else
119                 return cpufreq_global_kobject;
120 }
121 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
122
123 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
124 {
125         struct kernel_cpustat kcpustat;
126         u64 cur_wall_time;
127         u64 idle_time;
128         u64 busy_time;
129
130         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
131
132         kcpustat_cpu_fetch(&kcpustat, cpu);
133
134         busy_time = kcpustat.cpustat[CPUTIME_USER];
135         busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
136         busy_time += kcpustat.cpustat[CPUTIME_IRQ];
137         busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
138         busy_time += kcpustat.cpustat[CPUTIME_STEAL];
139         busy_time += kcpustat.cpustat[CPUTIME_NICE];
140
141         idle_time = cur_wall_time - busy_time;
142         if (wall)
143                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
144
145         return div_u64(idle_time, NSEC_PER_USEC);
146 }
147
148 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
149 {
150         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
151
152         if (idle_time == -1ULL)
153                 return get_cpu_idle_time_jiffy(cpu, wall);
154         else if (!io_busy)
155                 idle_time += get_cpu_iowait_time_us(cpu, wall);
156
157         return idle_time;
158 }
159 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
160
161 /*
162  * This is a generic cpufreq init() routine which can be used by cpufreq
163  * drivers of SMP systems. It will do following:
164  * - validate & show freq table passed
165  * - set policies transition latency
166  * - policy->cpus with all possible CPUs
167  */
168 void cpufreq_generic_init(struct cpufreq_policy *policy,
169                 struct cpufreq_frequency_table *table,
170                 unsigned int transition_latency)
171 {
172         policy->freq_table = table;
173         policy->cpuinfo.transition_latency = transition_latency;
174
175         /*
176          * The driver only supports the SMP configuration where all processors
177          * share the clock and voltage and clock.
178          */
179         cpumask_setall(policy->cpus);
180 }
181 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
182
183 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
184 {
185         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
186
187         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
188 }
189 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
190
191 unsigned int cpufreq_generic_get(unsigned int cpu)
192 {
193         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
194
195         if (!policy || IS_ERR(policy->clk)) {
196                 pr_err("%s: No %s associated to cpu: %d\n",
197                        __func__, policy ? "clk" : "policy", cpu);
198                 return 0;
199         }
200
201         return clk_get_rate(policy->clk) / 1000;
202 }
203 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
204
205 /**
206  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
207  * @cpu: CPU to find the policy for.
208  *
209  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
210  * the kobject reference counter of that policy.  Return a valid policy on
211  * success or NULL on failure.
212  *
213  * The policy returned by this function has to be released with the help of
214  * cpufreq_cpu_put() to balance its kobject reference counter properly.
215  */
216 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
217 {
218         struct cpufreq_policy *policy = NULL;
219         unsigned long flags;
220
221         if (WARN_ON(cpu >= nr_cpu_ids))
222                 return NULL;
223
224         /* get the cpufreq driver */
225         read_lock_irqsave(&cpufreq_driver_lock, flags);
226
227         if (cpufreq_driver) {
228                 /* get the CPU */
229                 policy = cpufreq_cpu_get_raw(cpu);
230                 if (policy)
231                         kobject_get(&policy->kobj);
232         }
233
234         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
235
236         return policy;
237 }
238 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
239
240 /**
241  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
242  * @policy: cpufreq policy returned by cpufreq_cpu_get().
243  */
244 void cpufreq_cpu_put(struct cpufreq_policy *policy)
245 {
246         kobject_put(&policy->kobj);
247 }
248 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
249
250 /**
251  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
252  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
253  */
254 void cpufreq_cpu_release(struct cpufreq_policy *policy)
255 {
256         if (WARN_ON(!policy))
257                 return;
258
259         lockdep_assert_held(&policy->rwsem);
260
261         up_write(&policy->rwsem);
262
263         cpufreq_cpu_put(policy);
264 }
265
266 /**
267  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
268  * @cpu: CPU to find the policy for.
269  *
270  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
271  * if the policy returned by it is not NULL, acquire its rwsem for writing.
272  * Return the policy if it is active or release it and return NULL otherwise.
273  *
274  * The policy returned by this function has to be released with the help of
275  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
276  * counter properly.
277  */
278 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
279 {
280         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
281
282         if (!policy)
283                 return NULL;
284
285         down_write(&policy->rwsem);
286
287         if (policy_is_inactive(policy)) {
288                 cpufreq_cpu_release(policy);
289                 return NULL;
290         }
291
292         return policy;
293 }
294
295 /*********************************************************************
296  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
297  *********************************************************************/
298
299 /**
300  * adjust_jiffies - Adjust the system "loops_per_jiffy".
301  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
302  * @ci: Frequency change information.
303  *
304  * This function alters the system "loops_per_jiffy" for the clock
305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
306  * systems as each CPU might be scaled differently. So, use the arch
307  * per-CPU loops_per_jiffy value wherever possible.
308  */
309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312         static unsigned long l_p_j_ref;
313         static unsigned int l_p_j_ref_freq;
314
315         if (ci->flags & CPUFREQ_CONST_LOOPS)
316                 return;
317
318         if (!l_p_j_ref_freq) {
319                 l_p_j_ref = loops_per_jiffy;
320                 l_p_j_ref_freq = ci->old;
321                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322                          l_p_j_ref, l_p_j_ref_freq);
323         }
324         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326                                                                 ci->new);
327                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328                          loops_per_jiffy, ci->new);
329         }
330 #endif
331 }
332
333 /**
334  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
335  * @policy: cpufreq policy to enable fast frequency switching for.
336  * @freqs: contain details of the frequency update.
337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338  *
339  * This function calls the transition notifiers and adjust_jiffies().
340  *
341  * It is called twice on all CPU frequency changes that have external effects.
342  */
343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344                                       struct cpufreq_freqs *freqs,
345                                       unsigned int state)
346 {
347         int cpu;
348
349         BUG_ON(irqs_disabled());
350
351         if (cpufreq_disabled())
352                 return;
353
354         freqs->policy = policy;
355         freqs->flags = cpufreq_driver->flags;
356         pr_debug("notification %u of frequency transition to %u kHz\n",
357                  state, freqs->new);
358
359         switch (state) {
360         case CPUFREQ_PRECHANGE:
361                 /*
362                  * Detect if the driver reported a value as "old frequency"
363                  * which is not equal to what the cpufreq core thinks is
364                  * "old frequency".
365                  */
366                 if (policy->cur && policy->cur != freqs->old) {
367                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368                                  freqs->old, policy->cur);
369                         freqs->old = policy->cur;
370                 }
371
372                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373                                          CPUFREQ_PRECHANGE, freqs);
374
375                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376                 break;
377
378         case CPUFREQ_POSTCHANGE:
379                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381                          cpumask_pr_args(policy->cpus));
382
383                 for_each_cpu(cpu, policy->cpus)
384                         trace_cpu_frequency(freqs->new, cpu);
385
386                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387                                          CPUFREQ_POSTCHANGE, freqs);
388
389                 cpufreq_stats_record_transition(policy, freqs->new);
390                 policy->cur = freqs->new;
391         }
392 }
393
394 /* Do post notifications when there are chances that transition has failed */
395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396                 struct cpufreq_freqs *freqs, int transition_failed)
397 {
398         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399         if (!transition_failed)
400                 return;
401
402         swap(freqs->old, freqs->new);
403         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406
407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408                 struct cpufreq_freqs *freqs)
409 {
410
411         /*
412          * Catch double invocations of _begin() which lead to self-deadlock.
413          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414          * doesn't invoke _begin() on their behalf, and hence the chances of
415          * double invocations are very low. Moreover, there are scenarios
416          * where these checks can emit false-positive warnings in these
417          * drivers; so we avoid that by skipping them altogether.
418          */
419         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420                                 && current == policy->transition_task);
421
422 wait:
423         wait_event(policy->transition_wait, !policy->transition_ongoing);
424
425         spin_lock(&policy->transition_lock);
426
427         if (unlikely(policy->transition_ongoing)) {
428                 spin_unlock(&policy->transition_lock);
429                 goto wait;
430         }
431
432         policy->transition_ongoing = true;
433         policy->transition_task = current;
434
435         spin_unlock(&policy->transition_lock);
436
437         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440
441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442                 struct cpufreq_freqs *freqs, int transition_failed)
443 {
444         if (WARN_ON(!policy->transition_ongoing))
445                 return;
446
447         cpufreq_notify_post_transition(policy, freqs, transition_failed);
448
449         arch_set_freq_scale(policy->related_cpus,
450                             policy->cur,
451                             policy->cpuinfo.max_freq);
452
453         spin_lock(&policy->transition_lock);
454         policy->transition_ongoing = false;
455         policy->transition_task = NULL;
456         spin_unlock(&policy->transition_lock);
457
458         wake_up(&policy->transition_wait);
459 }
460 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
461
462 /*
463  * Fast frequency switching status count.  Positive means "enabled", negative
464  * means "disabled" and 0 means "not decided yet".
465  */
466 static int cpufreq_fast_switch_count;
467 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
468
469 static void cpufreq_list_transition_notifiers(void)
470 {
471         struct notifier_block *nb;
472
473         pr_info("Registered transition notifiers:\n");
474
475         mutex_lock(&cpufreq_transition_notifier_list.mutex);
476
477         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
478                 pr_info("%pS\n", nb->notifier_call);
479
480         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
481 }
482
483 /**
484  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
485  * @policy: cpufreq policy to enable fast frequency switching for.
486  *
487  * Try to enable fast frequency switching for @policy.
488  *
489  * The attempt will fail if there is at least one transition notifier registered
490  * at this point, as fast frequency switching is quite fundamentally at odds
491  * with transition notifiers.  Thus if successful, it will make registration of
492  * transition notifiers fail going forward.
493  */
494 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
495 {
496         lockdep_assert_held(&policy->rwsem);
497
498         if (!policy->fast_switch_possible)
499                 return;
500
501         mutex_lock(&cpufreq_fast_switch_lock);
502         if (cpufreq_fast_switch_count >= 0) {
503                 cpufreq_fast_switch_count++;
504                 policy->fast_switch_enabled = true;
505         } else {
506                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
507                         policy->cpu);
508                 cpufreq_list_transition_notifiers();
509         }
510         mutex_unlock(&cpufreq_fast_switch_lock);
511 }
512 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
513
514 /**
515  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
516  * @policy: cpufreq policy to disable fast frequency switching for.
517  */
518 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
519 {
520         mutex_lock(&cpufreq_fast_switch_lock);
521         if (policy->fast_switch_enabled) {
522                 policy->fast_switch_enabled = false;
523                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
524                         cpufreq_fast_switch_count--;
525         }
526         mutex_unlock(&cpufreq_fast_switch_lock);
527 }
528 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
529
530 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
531                 unsigned int target_freq, unsigned int relation)
532 {
533         unsigned int idx;
534
535         target_freq = clamp_val(target_freq, policy->min, policy->max);
536
537         if (!policy->freq_table)
538                 return target_freq;
539
540         idx = cpufreq_frequency_table_target(policy, target_freq, relation);
541         policy->cached_resolved_idx = idx;
542         policy->cached_target_freq = target_freq;
543         return policy->freq_table[idx].frequency;
544 }
545
546 /**
547  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
548  * one.
549  * @policy: associated policy to interrogate
550  * @target_freq: target frequency to resolve.
551  *
552  * The target to driver frequency mapping is cached in the policy.
553  *
554  * Return: Lowest driver-supported frequency greater than or equal to the
555  * given target_freq, subject to policy (min/max) and driver limitations.
556  */
557 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
558                                          unsigned int target_freq)
559 {
560         return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
561 }
562 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
563
564 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
565 {
566         unsigned int latency;
567
568         if (policy->transition_delay_us)
569                 return policy->transition_delay_us;
570
571         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
572         if (latency) {
573                 /*
574                  * For platforms that can change the frequency very fast (< 10
575                  * us), the above formula gives a decent transition delay. But
576                  * for platforms where transition_latency is in milliseconds, it
577                  * ends up giving unrealistic values.
578                  *
579                  * Cap the default transition delay to 10 ms, which seems to be
580                  * a reasonable amount of time after which we should reevaluate
581                  * the frequency.
582                  */
583                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
584         }
585
586         return LATENCY_MULTIPLIER;
587 }
588 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
589
590 /*********************************************************************
591  *                          SYSFS INTERFACE                          *
592  *********************************************************************/
593 static ssize_t show_boost(struct kobject *kobj,
594                           struct kobj_attribute *attr, char *buf)
595 {
596         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
597 }
598
599 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
600                            const char *buf, size_t count)
601 {
602         int ret, enable;
603
604         ret = sscanf(buf, "%d", &enable);
605         if (ret != 1 || enable < 0 || enable > 1)
606                 return -EINVAL;
607
608         if (cpufreq_boost_trigger_state(enable)) {
609                 pr_err("%s: Cannot %s BOOST!\n",
610                        __func__, enable ? "enable" : "disable");
611                 return -EINVAL;
612         }
613
614         pr_debug("%s: cpufreq BOOST %s\n",
615                  __func__, enable ? "enabled" : "disabled");
616
617         return count;
618 }
619 define_one_global_rw(boost);
620
621 static struct cpufreq_governor *find_governor(const char *str_governor)
622 {
623         struct cpufreq_governor *t;
624
625         for_each_governor(t)
626                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
627                         return t;
628
629         return NULL;
630 }
631
632 static struct cpufreq_governor *get_governor(const char *str_governor)
633 {
634         struct cpufreq_governor *t;
635
636         mutex_lock(&cpufreq_governor_mutex);
637         t = find_governor(str_governor);
638         if (!t)
639                 goto unlock;
640
641         if (!try_module_get(t->owner))
642                 t = NULL;
643
644 unlock:
645         mutex_unlock(&cpufreq_governor_mutex);
646
647         return t;
648 }
649
650 static unsigned int cpufreq_parse_policy(char *str_governor)
651 {
652         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
653                 return CPUFREQ_POLICY_PERFORMANCE;
654
655         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
656                 return CPUFREQ_POLICY_POWERSAVE;
657
658         return CPUFREQ_POLICY_UNKNOWN;
659 }
660
661 /**
662  * cpufreq_parse_governor - parse a governor string only for has_target()
663  * @str_governor: Governor name.
664  */
665 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
666 {
667         struct cpufreq_governor *t;
668
669         t = get_governor(str_governor);
670         if (t)
671                 return t;
672
673         if (request_module("cpufreq_%s", str_governor))
674                 return NULL;
675
676         return get_governor(str_governor);
677 }
678
679 /*
680  * cpufreq_per_cpu_attr_read() / show_##file_name() -
681  * print out cpufreq information
682  *
683  * Write out information from cpufreq_driver->policy[cpu]; object must be
684  * "unsigned int".
685  */
686
687 #define show_one(file_name, object)                     \
688 static ssize_t show_##file_name                         \
689 (struct cpufreq_policy *policy, char *buf)              \
690 {                                                       \
691         return sprintf(buf, "%u\n", policy->object);    \
692 }
693
694 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
695 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
696 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
697 show_one(scaling_min_freq, min);
698 show_one(scaling_max_freq, max);
699
700 __weak unsigned int arch_freq_get_on_cpu(int cpu)
701 {
702         return 0;
703 }
704
705 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
706 {
707         ssize_t ret;
708         unsigned int freq;
709
710         freq = arch_freq_get_on_cpu(policy->cpu);
711         if (freq)
712                 ret = sprintf(buf, "%u\n", freq);
713         else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
714                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
715         else
716                 ret = sprintf(buf, "%u\n", policy->cur);
717         return ret;
718 }
719
720 /*
721  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
722  */
723 #define store_one(file_name, object)                    \
724 static ssize_t store_##file_name                                        \
725 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
726 {                                                                       \
727         unsigned long val;                                              \
728         int ret;                                                        \
729                                                                         \
730         ret = sscanf(buf, "%lu", &val);                                 \
731         if (ret != 1)                                                   \
732                 return -EINVAL;                                         \
733                                                                         \
734         ret = freq_qos_update_request(policy->object##_freq_req, val);\
735         return ret >= 0 ? count : ret;                                  \
736 }
737
738 store_one(scaling_min_freq, min);
739 store_one(scaling_max_freq, max);
740
741 /*
742  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
743  */
744 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
745                                         char *buf)
746 {
747         unsigned int cur_freq = __cpufreq_get(policy);
748
749         if (cur_freq)
750                 return sprintf(buf, "%u\n", cur_freq);
751
752         return sprintf(buf, "<unknown>\n");
753 }
754
755 /*
756  * show_scaling_governor - show the current policy for the specified CPU
757  */
758 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
759 {
760         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
761                 return sprintf(buf, "powersave\n");
762         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
763                 return sprintf(buf, "performance\n");
764         else if (policy->governor)
765                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
766                                 policy->governor->name);
767         return -EINVAL;
768 }
769
770 /*
771  * store_scaling_governor - store policy for the specified CPU
772  */
773 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
774                                         const char *buf, size_t count)
775 {
776         char str_governor[16];
777         int ret;
778
779         ret = sscanf(buf, "%15s", str_governor);
780         if (ret != 1)
781                 return -EINVAL;
782
783         if (cpufreq_driver->setpolicy) {
784                 unsigned int new_pol;
785
786                 new_pol = cpufreq_parse_policy(str_governor);
787                 if (!new_pol)
788                         return -EINVAL;
789
790                 ret = cpufreq_set_policy(policy, NULL, new_pol);
791         } else {
792                 struct cpufreq_governor *new_gov;
793
794                 new_gov = cpufreq_parse_governor(str_governor);
795                 if (!new_gov)
796                         return -EINVAL;
797
798                 ret = cpufreq_set_policy(policy, new_gov,
799                                          CPUFREQ_POLICY_UNKNOWN);
800
801                 module_put(new_gov->owner);
802         }
803
804         return ret ? ret : count;
805 }
806
807 /*
808  * show_scaling_driver - show the cpufreq driver currently loaded
809  */
810 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
811 {
812         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
813 }
814
815 /*
816  * show_scaling_available_governors - show the available CPUfreq governors
817  */
818 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
819                                                 char *buf)
820 {
821         ssize_t i = 0;
822         struct cpufreq_governor *t;
823
824         if (!has_target()) {
825                 i += sprintf(buf, "performance powersave");
826                 goto out;
827         }
828
829         mutex_lock(&cpufreq_governor_mutex);
830         for_each_governor(t) {
831                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
832                     - (CPUFREQ_NAME_LEN + 2)))
833                         break;
834                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
835         }
836         mutex_unlock(&cpufreq_governor_mutex);
837 out:
838         i += sprintf(&buf[i], "\n");
839         return i;
840 }
841
842 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
843 {
844         ssize_t i = 0;
845         unsigned int cpu;
846
847         for_each_cpu(cpu, mask) {
848                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
849                 if (i >= (PAGE_SIZE - 5))
850                         break;
851         }
852
853         /* Remove the extra space at the end */
854         i--;
855
856         i += sprintf(&buf[i], "\n");
857         return i;
858 }
859 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
860
861 /*
862  * show_related_cpus - show the CPUs affected by each transition even if
863  * hw coordination is in use
864  */
865 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
866 {
867         return cpufreq_show_cpus(policy->related_cpus, buf);
868 }
869
870 /*
871  * show_affected_cpus - show the CPUs affected by each transition
872  */
873 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
874 {
875         return cpufreq_show_cpus(policy->cpus, buf);
876 }
877
878 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
879                                         const char *buf, size_t count)
880 {
881         unsigned int freq = 0;
882         unsigned int ret;
883
884         if (!policy->governor || !policy->governor->store_setspeed)
885                 return -EINVAL;
886
887         ret = sscanf(buf, "%u", &freq);
888         if (ret != 1)
889                 return -EINVAL;
890
891         policy->governor->store_setspeed(policy, freq);
892
893         return count;
894 }
895
896 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
897 {
898         if (!policy->governor || !policy->governor->show_setspeed)
899                 return sprintf(buf, "<unsupported>\n");
900
901         return policy->governor->show_setspeed(policy, buf);
902 }
903
904 /*
905  * show_bios_limit - show the current cpufreq HW/BIOS limitation
906  */
907 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
908 {
909         unsigned int limit;
910         int ret;
911         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
912         if (!ret)
913                 return sprintf(buf, "%u\n", limit);
914         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
915 }
916
917 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
918 cpufreq_freq_attr_ro(cpuinfo_min_freq);
919 cpufreq_freq_attr_ro(cpuinfo_max_freq);
920 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
921 cpufreq_freq_attr_ro(scaling_available_governors);
922 cpufreq_freq_attr_ro(scaling_driver);
923 cpufreq_freq_attr_ro(scaling_cur_freq);
924 cpufreq_freq_attr_ro(bios_limit);
925 cpufreq_freq_attr_ro(related_cpus);
926 cpufreq_freq_attr_ro(affected_cpus);
927 cpufreq_freq_attr_rw(scaling_min_freq);
928 cpufreq_freq_attr_rw(scaling_max_freq);
929 cpufreq_freq_attr_rw(scaling_governor);
930 cpufreq_freq_attr_rw(scaling_setspeed);
931
932 static struct attribute *cpufreq_attrs[] = {
933         &cpuinfo_min_freq.attr,
934         &cpuinfo_max_freq.attr,
935         &cpuinfo_transition_latency.attr,
936         &scaling_min_freq.attr,
937         &scaling_max_freq.attr,
938         &affected_cpus.attr,
939         &related_cpus.attr,
940         &scaling_governor.attr,
941         &scaling_driver.attr,
942         &scaling_available_governors.attr,
943         &scaling_setspeed.attr,
944         NULL
945 };
946 ATTRIBUTE_GROUPS(cpufreq);
947
948 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
949 #define to_attr(a) container_of(a, struct freq_attr, attr)
950
951 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
952 {
953         struct cpufreq_policy *policy = to_policy(kobj);
954         struct freq_attr *fattr = to_attr(attr);
955         ssize_t ret = -EBUSY;
956
957         if (!fattr->show)
958                 return -EIO;
959
960         down_read(&policy->rwsem);
961         if (likely(!policy_is_inactive(policy)))
962                 ret = fattr->show(policy, buf);
963         up_read(&policy->rwsem);
964
965         return ret;
966 }
967
968 static ssize_t store(struct kobject *kobj, struct attribute *attr,
969                      const char *buf, size_t count)
970 {
971         struct cpufreq_policy *policy = to_policy(kobj);
972         struct freq_attr *fattr = to_attr(attr);
973         ssize_t ret = -EBUSY;
974
975         if (!fattr->store)
976                 return -EIO;
977
978         down_write(&policy->rwsem);
979         if (likely(!policy_is_inactive(policy)))
980                 ret = fattr->store(policy, buf, count);
981         up_write(&policy->rwsem);
982
983         return ret;
984 }
985
986 static void cpufreq_sysfs_release(struct kobject *kobj)
987 {
988         struct cpufreq_policy *policy = to_policy(kobj);
989         pr_debug("last reference is dropped\n");
990         complete(&policy->kobj_unregister);
991 }
992
993 static const struct sysfs_ops sysfs_ops = {
994         .show   = show,
995         .store  = store,
996 };
997
998 static struct kobj_type ktype_cpufreq = {
999         .sysfs_ops      = &sysfs_ops,
1000         .default_groups = cpufreq_groups,
1001         .release        = cpufreq_sysfs_release,
1002 };
1003
1004 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1005                                 struct device *dev)
1006 {
1007         if (unlikely(!dev))
1008                 return;
1009
1010         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1011                 return;
1012
1013         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1014         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1015                 dev_err(dev, "cpufreq symlink creation failed\n");
1016 }
1017
1018 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1019                                    struct device *dev)
1020 {
1021         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1022         sysfs_remove_link(&dev->kobj, "cpufreq");
1023         cpumask_clear_cpu(cpu, policy->real_cpus);
1024 }
1025
1026 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1027 {
1028         struct freq_attr **drv_attr;
1029         int ret = 0;
1030
1031         /* set up files for this cpu device */
1032         drv_attr = cpufreq_driver->attr;
1033         while (drv_attr && *drv_attr) {
1034                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1035                 if (ret)
1036                         return ret;
1037                 drv_attr++;
1038         }
1039         if (cpufreq_driver->get) {
1040                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1041                 if (ret)
1042                         return ret;
1043         }
1044
1045         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1046         if (ret)
1047                 return ret;
1048
1049         if (cpufreq_driver->bios_limit) {
1050                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1051                 if (ret)
1052                         return ret;
1053         }
1054
1055         return 0;
1056 }
1057
1058 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1059 {
1060         struct cpufreq_governor *gov = NULL;
1061         unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1062         int ret;
1063
1064         if (has_target()) {
1065                 /* Update policy governor to the one used before hotplug. */
1066                 gov = get_governor(policy->last_governor);
1067                 if (gov) {
1068                         pr_debug("Restoring governor %s for cpu %d\n",
1069                                  gov->name, policy->cpu);
1070                 } else {
1071                         gov = get_governor(default_governor);
1072                 }
1073
1074                 if (!gov) {
1075                         gov = cpufreq_default_governor();
1076                         __module_get(gov->owner);
1077                 }
1078
1079         } else {
1080
1081                 /* Use the default policy if there is no last_policy. */
1082                 if (policy->last_policy) {
1083                         pol = policy->last_policy;
1084                 } else {
1085                         pol = cpufreq_parse_policy(default_governor);
1086                         /*
1087                          * In case the default governor is neither "performance"
1088                          * nor "powersave", fall back to the initial policy
1089                          * value set by the driver.
1090                          */
1091                         if (pol == CPUFREQ_POLICY_UNKNOWN)
1092                                 pol = policy->policy;
1093                 }
1094                 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1095                     pol != CPUFREQ_POLICY_POWERSAVE)
1096                         return -ENODATA;
1097         }
1098
1099         ret = cpufreq_set_policy(policy, gov, pol);
1100         if (gov)
1101                 module_put(gov->owner);
1102
1103         return ret;
1104 }
1105
1106 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1107 {
1108         int ret = 0;
1109
1110         /* Has this CPU been taken care of already? */
1111         if (cpumask_test_cpu(cpu, policy->cpus))
1112                 return 0;
1113
1114         down_write(&policy->rwsem);
1115         if (has_target())
1116                 cpufreq_stop_governor(policy);
1117
1118         cpumask_set_cpu(cpu, policy->cpus);
1119
1120         if (has_target()) {
1121                 ret = cpufreq_start_governor(policy);
1122                 if (ret)
1123                         pr_err("%s: Failed to start governor\n", __func__);
1124         }
1125         up_write(&policy->rwsem);
1126         return ret;
1127 }
1128
1129 void refresh_frequency_limits(struct cpufreq_policy *policy)
1130 {
1131         if (!policy_is_inactive(policy)) {
1132                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1133
1134                 cpufreq_set_policy(policy, policy->governor, policy->policy);
1135         }
1136 }
1137 EXPORT_SYMBOL(refresh_frequency_limits);
1138
1139 static void handle_update(struct work_struct *work)
1140 {
1141         struct cpufreq_policy *policy =
1142                 container_of(work, struct cpufreq_policy, update);
1143
1144         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1145         down_write(&policy->rwsem);
1146         refresh_frequency_limits(policy);
1147         up_write(&policy->rwsem);
1148 }
1149
1150 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1151                                 void *data)
1152 {
1153         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1154
1155         schedule_work(&policy->update);
1156         return 0;
1157 }
1158
1159 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1160                                 void *data)
1161 {
1162         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1163
1164         schedule_work(&policy->update);
1165         return 0;
1166 }
1167
1168 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1169 {
1170         struct kobject *kobj;
1171         struct completion *cmp;
1172
1173         down_write(&policy->rwsem);
1174         cpufreq_stats_free_table(policy);
1175         kobj = &policy->kobj;
1176         cmp = &policy->kobj_unregister;
1177         up_write(&policy->rwsem);
1178         kobject_put(kobj);
1179
1180         /*
1181          * We need to make sure that the underlying kobj is
1182          * actually not referenced anymore by anybody before we
1183          * proceed with unloading.
1184          */
1185         pr_debug("waiting for dropping of refcount\n");
1186         wait_for_completion(cmp);
1187         pr_debug("wait complete\n");
1188 }
1189
1190 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1191 {
1192         struct cpufreq_policy *policy;
1193         struct device *dev = get_cpu_device(cpu);
1194         int ret;
1195
1196         if (!dev)
1197                 return NULL;
1198
1199         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1200         if (!policy)
1201                 return NULL;
1202
1203         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1204                 goto err_free_policy;
1205
1206         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1207                 goto err_free_cpumask;
1208
1209         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1210                 goto err_free_rcpumask;
1211
1212         init_completion(&policy->kobj_unregister);
1213         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1214                                    cpufreq_global_kobject, "policy%u", cpu);
1215         if (ret) {
1216                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1217                 /*
1218                  * The entire policy object will be freed below, but the extra
1219                  * memory allocated for the kobject name needs to be freed by
1220                  * releasing the kobject.
1221                  */
1222                 kobject_put(&policy->kobj);
1223                 goto err_free_real_cpus;
1224         }
1225
1226         freq_constraints_init(&policy->constraints);
1227
1228         policy->nb_min.notifier_call = cpufreq_notifier_min;
1229         policy->nb_max.notifier_call = cpufreq_notifier_max;
1230
1231         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1232                                     &policy->nb_min);
1233         if (ret) {
1234                 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1235                         ret, cpumask_pr_args(policy->cpus));
1236                 goto err_kobj_remove;
1237         }
1238
1239         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1240                                     &policy->nb_max);
1241         if (ret) {
1242                 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1243                         ret, cpumask_pr_args(policy->cpus));
1244                 goto err_min_qos_notifier;
1245         }
1246
1247         INIT_LIST_HEAD(&policy->policy_list);
1248         init_rwsem(&policy->rwsem);
1249         spin_lock_init(&policy->transition_lock);
1250         init_waitqueue_head(&policy->transition_wait);
1251         INIT_WORK(&policy->update, handle_update);
1252
1253         policy->cpu = cpu;
1254         return policy;
1255
1256 err_min_qos_notifier:
1257         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1258                                  &policy->nb_min);
1259 err_kobj_remove:
1260         cpufreq_policy_put_kobj(policy);
1261 err_free_real_cpus:
1262         free_cpumask_var(policy->real_cpus);
1263 err_free_rcpumask:
1264         free_cpumask_var(policy->related_cpus);
1265 err_free_cpumask:
1266         free_cpumask_var(policy->cpus);
1267 err_free_policy:
1268         kfree(policy);
1269
1270         return NULL;
1271 }
1272
1273 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1274 {
1275         unsigned long flags;
1276         int cpu;
1277
1278         /*
1279          * The callers must ensure the policy is inactive by now, to avoid any
1280          * races with show()/store() callbacks.
1281          */
1282         if (unlikely(!policy_is_inactive(policy)))
1283                 pr_warn("%s: Freeing active policy\n", __func__);
1284
1285         /* Remove policy from list */
1286         write_lock_irqsave(&cpufreq_driver_lock, flags);
1287         list_del(&policy->policy_list);
1288
1289         for_each_cpu(cpu, policy->related_cpus)
1290                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1291         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1292
1293         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1294                                  &policy->nb_max);
1295         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1296                                  &policy->nb_min);
1297
1298         /* Cancel any pending policy->update work before freeing the policy. */
1299         cancel_work_sync(&policy->update);
1300
1301         if (policy->max_freq_req) {
1302                 /*
1303                  * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1304                  * notification, since CPUFREQ_CREATE_POLICY notification was
1305                  * sent after adding max_freq_req earlier.
1306                  */
1307                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1308                                              CPUFREQ_REMOVE_POLICY, policy);
1309                 freq_qos_remove_request(policy->max_freq_req);
1310         }
1311
1312         freq_qos_remove_request(policy->min_freq_req);
1313         kfree(policy->min_freq_req);
1314
1315         cpufreq_policy_put_kobj(policy);
1316         free_cpumask_var(policy->real_cpus);
1317         free_cpumask_var(policy->related_cpus);
1318         free_cpumask_var(policy->cpus);
1319         kfree(policy);
1320 }
1321
1322 static int cpufreq_online(unsigned int cpu)
1323 {
1324         struct cpufreq_policy *policy;
1325         bool new_policy;
1326         unsigned long flags;
1327         unsigned int j;
1328         int ret;
1329
1330         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1331
1332         /* Check if this CPU already has a policy to manage it */
1333         policy = per_cpu(cpufreq_cpu_data, cpu);
1334         if (policy) {
1335                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1336                 if (!policy_is_inactive(policy))
1337                         return cpufreq_add_policy_cpu(policy, cpu);
1338
1339                 /* This is the only online CPU for the policy.  Start over. */
1340                 new_policy = false;
1341                 down_write(&policy->rwsem);
1342                 policy->cpu = cpu;
1343                 policy->governor = NULL;
1344         } else {
1345                 new_policy = true;
1346                 policy = cpufreq_policy_alloc(cpu);
1347                 if (!policy)
1348                         return -ENOMEM;
1349                 down_write(&policy->rwsem);
1350         }
1351
1352         if (!new_policy && cpufreq_driver->online) {
1353                 /* Recover policy->cpus using related_cpus */
1354                 cpumask_copy(policy->cpus, policy->related_cpus);
1355
1356                 ret = cpufreq_driver->online(policy);
1357                 if (ret) {
1358                         pr_debug("%s: %d: initialization failed\n", __func__,
1359                                  __LINE__);
1360                         goto out_exit_policy;
1361                 }
1362         } else {
1363                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1364
1365                 /*
1366                  * Call driver. From then on the cpufreq must be able
1367                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1368                  */
1369                 ret = cpufreq_driver->init(policy);
1370                 if (ret) {
1371                         pr_debug("%s: %d: initialization failed\n", __func__,
1372                                  __LINE__);
1373                         goto out_free_policy;
1374                 }
1375
1376                 /*
1377                  * The initialization has succeeded and the policy is online.
1378                  * If there is a problem with its frequency table, take it
1379                  * offline and drop it.
1380                  */
1381                 ret = cpufreq_table_validate_and_sort(policy);
1382                 if (ret)
1383                         goto out_offline_policy;
1384
1385                 /* related_cpus should at least include policy->cpus. */
1386                 cpumask_copy(policy->related_cpus, policy->cpus);
1387         }
1388
1389         /*
1390          * affected cpus must always be the one, which are online. We aren't
1391          * managing offline cpus here.
1392          */
1393         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1394
1395         if (new_policy) {
1396                 for_each_cpu(j, policy->related_cpus) {
1397                         per_cpu(cpufreq_cpu_data, j) = policy;
1398                         add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1399                 }
1400
1401                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1402                                                GFP_KERNEL);
1403                 if (!policy->min_freq_req) {
1404                         ret = -ENOMEM;
1405                         goto out_destroy_policy;
1406                 }
1407
1408                 ret = freq_qos_add_request(&policy->constraints,
1409                                            policy->min_freq_req, FREQ_QOS_MIN,
1410                                            FREQ_QOS_MIN_DEFAULT_VALUE);
1411                 if (ret < 0) {
1412                         /*
1413                          * So we don't call freq_qos_remove_request() for an
1414                          * uninitialized request.
1415                          */
1416                         kfree(policy->min_freq_req);
1417                         policy->min_freq_req = NULL;
1418                         goto out_destroy_policy;
1419                 }
1420
1421                 /*
1422                  * This must be initialized right here to avoid calling
1423                  * freq_qos_remove_request() on uninitialized request in case
1424                  * of errors.
1425                  */
1426                 policy->max_freq_req = policy->min_freq_req + 1;
1427
1428                 ret = freq_qos_add_request(&policy->constraints,
1429                                            policy->max_freq_req, FREQ_QOS_MAX,
1430                                            FREQ_QOS_MAX_DEFAULT_VALUE);
1431                 if (ret < 0) {
1432                         policy->max_freq_req = NULL;
1433                         goto out_destroy_policy;
1434                 }
1435
1436                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1437                                 CPUFREQ_CREATE_POLICY, policy);
1438         }
1439
1440         if (cpufreq_driver->get && has_target()) {
1441                 policy->cur = cpufreq_driver->get(policy->cpu);
1442                 if (!policy->cur) {
1443                         ret = -EIO;
1444                         pr_err("%s: ->get() failed\n", __func__);
1445                         goto out_destroy_policy;
1446                 }
1447         }
1448
1449         /*
1450          * Sometimes boot loaders set CPU frequency to a value outside of
1451          * frequency table present with cpufreq core. In such cases CPU might be
1452          * unstable if it has to run on that frequency for long duration of time
1453          * and so its better to set it to a frequency which is specified in
1454          * freq-table. This also makes cpufreq stats inconsistent as
1455          * cpufreq-stats would fail to register because current frequency of CPU
1456          * isn't found in freq-table.
1457          *
1458          * Because we don't want this change to effect boot process badly, we go
1459          * for the next freq which is >= policy->cur ('cur' must be set by now,
1460          * otherwise we will end up setting freq to lowest of the table as 'cur'
1461          * is initialized to zero).
1462          *
1463          * We are passing target-freq as "policy->cur - 1" otherwise
1464          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1465          * equal to target-freq.
1466          */
1467         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1468             && has_target()) {
1469                 unsigned int old_freq = policy->cur;
1470
1471                 /* Are we running at unknown frequency ? */
1472                 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1473                 if (ret == -EINVAL) {
1474                         ret = __cpufreq_driver_target(policy, old_freq - 1,
1475                                                       CPUFREQ_RELATION_L);
1476
1477                         /*
1478                          * Reaching here after boot in a few seconds may not
1479                          * mean that system will remain stable at "unknown"
1480                          * frequency for longer duration. Hence, a BUG_ON().
1481                          */
1482                         BUG_ON(ret);
1483                         pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1484                                 __func__, policy->cpu, old_freq, policy->cur);
1485                 }
1486         }
1487
1488         if (new_policy) {
1489                 ret = cpufreq_add_dev_interface(policy);
1490                 if (ret)
1491                         goto out_destroy_policy;
1492
1493                 cpufreq_stats_create_table(policy);
1494
1495                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1496                 list_add(&policy->policy_list, &cpufreq_policy_list);
1497                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1498
1499                 /*
1500                  * Register with the energy model before
1501                  * sched_cpufreq_governor_change() is called, which will result
1502                  * in rebuilding of the sched domains, which should only be done
1503                  * once the energy model is properly initialized for the policy
1504                  * first.
1505                  *
1506                  * Also, this should be called before the policy is registered
1507                  * with cooling framework.
1508                  */
1509                 if (cpufreq_driver->register_em)
1510                         cpufreq_driver->register_em(policy);
1511         }
1512
1513         ret = cpufreq_init_policy(policy);
1514         if (ret) {
1515                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1516                        __func__, cpu, ret);
1517                 goto out_destroy_policy;
1518         }
1519
1520         up_write(&policy->rwsem);
1521
1522         kobject_uevent(&policy->kobj, KOBJ_ADD);
1523
1524         /* Callback for handling stuff after policy is ready */
1525         if (cpufreq_driver->ready)
1526                 cpufreq_driver->ready(policy);
1527
1528         /* Register cpufreq cooling only for a new policy */
1529         if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1530                 policy->cdev = of_cpufreq_cooling_register(policy);
1531
1532         pr_debug("initialization complete\n");
1533
1534         return 0;
1535
1536 out_destroy_policy:
1537         for_each_cpu(j, policy->real_cpus)
1538                 remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1539
1540 out_offline_policy:
1541         if (cpufreq_driver->offline)
1542                 cpufreq_driver->offline(policy);
1543
1544 out_exit_policy:
1545         if (cpufreq_driver->exit)
1546                 cpufreq_driver->exit(policy);
1547
1548 out_free_policy:
1549         cpumask_clear(policy->cpus);
1550         up_write(&policy->rwsem);
1551
1552         cpufreq_policy_free(policy);
1553         return ret;
1554 }
1555
1556 /**
1557  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1558  * @dev: CPU device.
1559  * @sif: Subsystem interface structure pointer (not used)
1560  */
1561 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1562 {
1563         struct cpufreq_policy *policy;
1564         unsigned cpu = dev->id;
1565         int ret;
1566
1567         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1568
1569         if (cpu_online(cpu)) {
1570                 ret = cpufreq_online(cpu);
1571                 if (ret)
1572                         return ret;
1573         }
1574
1575         /* Create sysfs link on CPU registration */
1576         policy = per_cpu(cpufreq_cpu_data, cpu);
1577         if (policy)
1578                 add_cpu_dev_symlink(policy, cpu, dev);
1579
1580         return 0;
1581 }
1582
1583 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1584 {
1585         int ret;
1586
1587         if (has_target())
1588                 cpufreq_stop_governor(policy);
1589
1590         cpumask_clear_cpu(cpu, policy->cpus);
1591
1592         if (!policy_is_inactive(policy)) {
1593                 /* Nominate a new CPU if necessary. */
1594                 if (cpu == policy->cpu)
1595                         policy->cpu = cpumask_any(policy->cpus);
1596
1597                 /* Start the governor again for the active policy. */
1598                 if (has_target()) {
1599                         ret = cpufreq_start_governor(policy);
1600                         if (ret)
1601                                 pr_err("%s: Failed to start governor\n", __func__);
1602                 }
1603
1604                 return;
1605         }
1606
1607         if (has_target())
1608                 strncpy(policy->last_governor, policy->governor->name,
1609                         CPUFREQ_NAME_LEN);
1610         else
1611                 policy->last_policy = policy->policy;
1612
1613         if (has_target())
1614                 cpufreq_exit_governor(policy);
1615
1616         /*
1617          * Perform the ->offline() during light-weight tear-down, as
1618          * that allows fast recovery when the CPU comes back.
1619          */
1620         if (cpufreq_driver->offline) {
1621                 cpufreq_driver->offline(policy);
1622         } else if (cpufreq_driver->exit) {
1623                 cpufreq_driver->exit(policy);
1624                 policy->freq_table = NULL;
1625         }
1626 }
1627
1628 static int cpufreq_offline(unsigned int cpu)
1629 {
1630         struct cpufreq_policy *policy;
1631
1632         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1633
1634         policy = cpufreq_cpu_get_raw(cpu);
1635         if (!policy) {
1636                 pr_debug("%s: No cpu_data found\n", __func__);
1637                 return 0;
1638         }
1639
1640         down_write(&policy->rwsem);
1641
1642         __cpufreq_offline(cpu, policy);
1643
1644         up_write(&policy->rwsem);
1645         return 0;
1646 }
1647
1648 /*
1649  * cpufreq_remove_dev - remove a CPU device
1650  *
1651  * Removes the cpufreq interface for a CPU device.
1652  */
1653 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1654 {
1655         unsigned int cpu = dev->id;
1656         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1657
1658         if (!policy)
1659                 return;
1660
1661         down_write(&policy->rwsem);
1662
1663         if (cpu_online(cpu))
1664                 __cpufreq_offline(cpu, policy);
1665
1666         remove_cpu_dev_symlink(policy, cpu, dev);
1667
1668         if (!cpumask_empty(policy->real_cpus)) {
1669                 up_write(&policy->rwsem);
1670                 return;
1671         }
1672
1673         /*
1674          * Unregister cpufreq cooling once all the CPUs of the policy are
1675          * removed.
1676          */
1677         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1678                 cpufreq_cooling_unregister(policy->cdev);
1679                 policy->cdev = NULL;
1680         }
1681
1682         /* We did light-weight exit earlier, do full tear down now */
1683         if (cpufreq_driver->offline)
1684                 cpufreq_driver->exit(policy);
1685
1686         up_write(&policy->rwsem);
1687
1688         cpufreq_policy_free(policy);
1689 }
1690
1691 /**
1692  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1693  * @policy: Policy managing CPUs.
1694  * @new_freq: New CPU frequency.
1695  *
1696  * Adjust to the current frequency first and clean up later by either calling
1697  * cpufreq_update_policy(), or scheduling handle_update().
1698  */
1699 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1700                                 unsigned int new_freq)
1701 {
1702         struct cpufreq_freqs freqs;
1703
1704         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1705                  policy->cur, new_freq);
1706
1707         freqs.old = policy->cur;
1708         freqs.new = new_freq;
1709
1710         cpufreq_freq_transition_begin(policy, &freqs);
1711         cpufreq_freq_transition_end(policy, &freqs, 0);
1712 }
1713
1714 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1715 {
1716         unsigned int new_freq;
1717
1718         new_freq = cpufreq_driver->get(policy->cpu);
1719         if (!new_freq)
1720                 return 0;
1721
1722         /*
1723          * If fast frequency switching is used with the given policy, the check
1724          * against policy->cur is pointless, so skip it in that case.
1725          */
1726         if (policy->fast_switch_enabled || !has_target())
1727                 return new_freq;
1728
1729         if (policy->cur != new_freq) {
1730                 /*
1731                  * For some platforms, the frequency returned by hardware may be
1732                  * slightly different from what is provided in the frequency
1733                  * table, for example hardware may return 499 MHz instead of 500
1734                  * MHz. In such cases it is better to avoid getting into
1735                  * unnecessary frequency updates.
1736                  */
1737                 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1738                         return policy->cur;
1739
1740                 cpufreq_out_of_sync(policy, new_freq);
1741                 if (update)
1742                         schedule_work(&policy->update);
1743         }
1744
1745         return new_freq;
1746 }
1747
1748 /**
1749  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1750  * @cpu: CPU number
1751  *
1752  * This is the last known freq, without actually getting it from the driver.
1753  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1754  */
1755 unsigned int cpufreq_quick_get(unsigned int cpu)
1756 {
1757         struct cpufreq_policy *policy;
1758         unsigned int ret_freq = 0;
1759         unsigned long flags;
1760
1761         read_lock_irqsave(&cpufreq_driver_lock, flags);
1762
1763         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1764                 ret_freq = cpufreq_driver->get(cpu);
1765                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1766                 return ret_freq;
1767         }
1768
1769         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1770
1771         policy = cpufreq_cpu_get(cpu);
1772         if (policy) {
1773                 ret_freq = policy->cur;
1774                 cpufreq_cpu_put(policy);
1775         }
1776
1777         return ret_freq;
1778 }
1779 EXPORT_SYMBOL(cpufreq_quick_get);
1780
1781 /**
1782  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1783  * @cpu: CPU number
1784  *
1785  * Just return the max possible frequency for a given CPU.
1786  */
1787 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1788 {
1789         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1790         unsigned int ret_freq = 0;
1791
1792         if (policy) {
1793                 ret_freq = policy->max;
1794                 cpufreq_cpu_put(policy);
1795         }
1796
1797         return ret_freq;
1798 }
1799 EXPORT_SYMBOL(cpufreq_quick_get_max);
1800
1801 /**
1802  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1803  * @cpu: CPU number
1804  *
1805  * The default return value is the max_freq field of cpuinfo.
1806  */
1807 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1808 {
1809         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1810         unsigned int ret_freq = 0;
1811
1812         if (policy) {
1813                 ret_freq = policy->cpuinfo.max_freq;
1814                 cpufreq_cpu_put(policy);
1815         }
1816
1817         return ret_freq;
1818 }
1819 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1820
1821 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1822 {
1823         if (unlikely(policy_is_inactive(policy)))
1824                 return 0;
1825
1826         return cpufreq_verify_current_freq(policy, true);
1827 }
1828
1829 /**
1830  * cpufreq_get - get the current CPU frequency (in kHz)
1831  * @cpu: CPU number
1832  *
1833  * Get the CPU current (static) CPU frequency
1834  */
1835 unsigned int cpufreq_get(unsigned int cpu)
1836 {
1837         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1838         unsigned int ret_freq = 0;
1839
1840         if (policy) {
1841                 down_read(&policy->rwsem);
1842                 if (cpufreq_driver->get)
1843                         ret_freq = __cpufreq_get(policy);
1844                 up_read(&policy->rwsem);
1845
1846                 cpufreq_cpu_put(policy);
1847         }
1848
1849         return ret_freq;
1850 }
1851 EXPORT_SYMBOL(cpufreq_get);
1852
1853 static struct subsys_interface cpufreq_interface = {
1854         .name           = "cpufreq",
1855         .subsys         = &cpu_subsys,
1856         .add_dev        = cpufreq_add_dev,
1857         .remove_dev     = cpufreq_remove_dev,
1858 };
1859
1860 /*
1861  * In case platform wants some specific frequency to be configured
1862  * during suspend..
1863  */
1864 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1865 {
1866         int ret;
1867
1868         if (!policy->suspend_freq) {
1869                 pr_debug("%s: suspend_freq not defined\n", __func__);
1870                 return 0;
1871         }
1872
1873         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1874                         policy->suspend_freq);
1875
1876         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1877                         CPUFREQ_RELATION_H);
1878         if (ret)
1879                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1880                                 __func__, policy->suspend_freq, ret);
1881
1882         return ret;
1883 }
1884 EXPORT_SYMBOL(cpufreq_generic_suspend);
1885
1886 /**
1887  * cpufreq_suspend() - Suspend CPUFreq governors.
1888  *
1889  * Called during system wide Suspend/Hibernate cycles for suspending governors
1890  * as some platforms can't change frequency after this point in suspend cycle.
1891  * Because some of the devices (like: i2c, regulators, etc) they use for
1892  * changing frequency are suspended quickly after this point.
1893  */
1894 void cpufreq_suspend(void)
1895 {
1896         struct cpufreq_policy *policy;
1897
1898         if (!cpufreq_driver)
1899                 return;
1900
1901         if (!has_target() && !cpufreq_driver->suspend)
1902                 goto suspend;
1903
1904         pr_debug("%s: Suspending Governors\n", __func__);
1905
1906         for_each_active_policy(policy) {
1907                 if (has_target()) {
1908                         down_write(&policy->rwsem);
1909                         cpufreq_stop_governor(policy);
1910                         up_write(&policy->rwsem);
1911                 }
1912
1913                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1914                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1915                                 cpufreq_driver->name);
1916         }
1917
1918 suspend:
1919         cpufreq_suspended = true;
1920 }
1921
1922 /**
1923  * cpufreq_resume() - Resume CPUFreq governors.
1924  *
1925  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1926  * are suspended with cpufreq_suspend().
1927  */
1928 void cpufreq_resume(void)
1929 {
1930         struct cpufreq_policy *policy;
1931         int ret;
1932
1933         if (!cpufreq_driver)
1934                 return;
1935
1936         if (unlikely(!cpufreq_suspended))
1937                 return;
1938
1939         cpufreq_suspended = false;
1940
1941         if (!has_target() && !cpufreq_driver->resume)
1942                 return;
1943
1944         pr_debug("%s: Resuming Governors\n", __func__);
1945
1946         for_each_active_policy(policy) {
1947                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1948                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1949                                 policy);
1950                 } else if (has_target()) {
1951                         down_write(&policy->rwsem);
1952                         ret = cpufreq_start_governor(policy);
1953                         up_write(&policy->rwsem);
1954
1955                         if (ret)
1956                                 pr_err("%s: Failed to start governor for policy: %p\n",
1957                                        __func__, policy);
1958                 }
1959         }
1960 }
1961
1962 /**
1963  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1964  * @flags: Flags to test against the current cpufreq driver's flags.
1965  *
1966  * Assumes that the driver is there, so callers must ensure that this is the
1967  * case.
1968  */
1969 bool cpufreq_driver_test_flags(u16 flags)
1970 {
1971         return !!(cpufreq_driver->flags & flags);
1972 }
1973
1974 /**
1975  * cpufreq_get_current_driver - Return the current driver's name.
1976  *
1977  * Return the name string of the currently registered cpufreq driver or NULL if
1978  * none.
1979  */
1980 const char *cpufreq_get_current_driver(void)
1981 {
1982         if (cpufreq_driver)
1983                 return cpufreq_driver->name;
1984
1985         return NULL;
1986 }
1987 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1988
1989 /**
1990  * cpufreq_get_driver_data - Return current driver data.
1991  *
1992  * Return the private data of the currently registered cpufreq driver, or NULL
1993  * if no cpufreq driver has been registered.
1994  */
1995 void *cpufreq_get_driver_data(void)
1996 {
1997         if (cpufreq_driver)
1998                 return cpufreq_driver->driver_data;
1999
2000         return NULL;
2001 }
2002 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2003
2004 /*********************************************************************
2005  *                     NOTIFIER LISTS INTERFACE                      *
2006  *********************************************************************/
2007
2008 /**
2009  * cpufreq_register_notifier - Register a notifier with cpufreq.
2010  * @nb: notifier function to register.
2011  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2012  *
2013  * Add a notifier to one of two lists: either a list of notifiers that run on
2014  * clock rate changes (once before and once after every transition), or a list
2015  * of notifiers that ron on cpufreq policy changes.
2016  *
2017  * This function may sleep and it has the same return values as
2018  * blocking_notifier_chain_register().
2019  */
2020 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2021 {
2022         int ret;
2023
2024         if (cpufreq_disabled())
2025                 return -EINVAL;
2026
2027         switch (list) {
2028         case CPUFREQ_TRANSITION_NOTIFIER:
2029                 mutex_lock(&cpufreq_fast_switch_lock);
2030
2031                 if (cpufreq_fast_switch_count > 0) {
2032                         mutex_unlock(&cpufreq_fast_switch_lock);
2033                         return -EBUSY;
2034                 }
2035                 ret = srcu_notifier_chain_register(
2036                                 &cpufreq_transition_notifier_list, nb);
2037                 if (!ret)
2038                         cpufreq_fast_switch_count--;
2039
2040                 mutex_unlock(&cpufreq_fast_switch_lock);
2041                 break;
2042         case CPUFREQ_POLICY_NOTIFIER:
2043                 ret = blocking_notifier_chain_register(
2044                                 &cpufreq_policy_notifier_list, nb);
2045                 break;
2046         default:
2047                 ret = -EINVAL;
2048         }
2049
2050         return ret;
2051 }
2052 EXPORT_SYMBOL(cpufreq_register_notifier);
2053
2054 /**
2055  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2056  * @nb: notifier block to be unregistered.
2057  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2058  *
2059  * Remove a notifier from one of the cpufreq notifier lists.
2060  *
2061  * This function may sleep and it has the same return values as
2062  * blocking_notifier_chain_unregister().
2063  */
2064 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2065 {
2066         int ret;
2067
2068         if (cpufreq_disabled())
2069                 return -EINVAL;
2070
2071         switch (list) {
2072         case CPUFREQ_TRANSITION_NOTIFIER:
2073                 mutex_lock(&cpufreq_fast_switch_lock);
2074
2075                 ret = srcu_notifier_chain_unregister(
2076                                 &cpufreq_transition_notifier_list, nb);
2077                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2078                         cpufreq_fast_switch_count++;
2079
2080                 mutex_unlock(&cpufreq_fast_switch_lock);
2081                 break;
2082         case CPUFREQ_POLICY_NOTIFIER:
2083                 ret = blocking_notifier_chain_unregister(
2084                                 &cpufreq_policy_notifier_list, nb);
2085                 break;
2086         default:
2087                 ret = -EINVAL;
2088         }
2089
2090         return ret;
2091 }
2092 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2093
2094
2095 /*********************************************************************
2096  *                              GOVERNORS                            *
2097  *********************************************************************/
2098
2099 /**
2100  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2101  * @policy: cpufreq policy to switch the frequency for.
2102  * @target_freq: New frequency to set (may be approximate).
2103  *
2104  * Carry out a fast frequency switch without sleeping.
2105  *
2106  * The driver's ->fast_switch() callback invoked by this function must be
2107  * suitable for being called from within RCU-sched read-side critical sections
2108  * and it is expected to select the minimum available frequency greater than or
2109  * equal to @target_freq (CPUFREQ_RELATION_L).
2110  *
2111  * This function must not be called if policy->fast_switch_enabled is unset.
2112  *
2113  * Governors calling this function must guarantee that it will never be invoked
2114  * twice in parallel for the same policy and that it will never be called in
2115  * parallel with either ->target() or ->target_index() for the same policy.
2116  *
2117  * Returns the actual frequency set for the CPU.
2118  *
2119  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2120  * error condition, the hardware configuration must be preserved.
2121  */
2122 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2123                                         unsigned int target_freq)
2124 {
2125         unsigned int freq;
2126         int cpu;
2127
2128         target_freq = clamp_val(target_freq, policy->min, policy->max);
2129         freq = cpufreq_driver->fast_switch(policy, target_freq);
2130
2131         if (!freq)
2132                 return 0;
2133
2134         policy->cur = freq;
2135         arch_set_freq_scale(policy->related_cpus, freq,
2136                             policy->cpuinfo.max_freq);
2137         cpufreq_stats_record_transition(policy, freq);
2138
2139         if (trace_cpu_frequency_enabled()) {
2140                 for_each_cpu(cpu, policy->cpus)
2141                         trace_cpu_frequency(freq, cpu);
2142         }
2143
2144         return freq;
2145 }
2146 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2147
2148 /**
2149  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2150  * @cpu: Target CPU.
2151  * @min_perf: Minimum (required) performance level (units of @capacity).
2152  * @target_perf: Target (desired) performance level (units of @capacity).
2153  * @capacity: Capacity of the target CPU.
2154  *
2155  * Carry out a fast performance level switch of @cpu without sleeping.
2156  *
2157  * The driver's ->adjust_perf() callback invoked by this function must be
2158  * suitable for being called from within RCU-sched read-side critical sections
2159  * and it is expected to select a suitable performance level equal to or above
2160  * @min_perf and preferably equal to or below @target_perf.
2161  *
2162  * This function must not be called if policy->fast_switch_enabled is unset.
2163  *
2164  * Governors calling this function must guarantee that it will never be invoked
2165  * twice in parallel for the same CPU and that it will never be called in
2166  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2167  * the same CPU.
2168  */
2169 void cpufreq_driver_adjust_perf(unsigned int cpu,
2170                                  unsigned long min_perf,
2171                                  unsigned long target_perf,
2172                                  unsigned long capacity)
2173 {
2174         cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2175 }
2176
2177 /**
2178  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2179  *
2180  * Return 'true' if the ->adjust_perf callback is present for the
2181  * current driver or 'false' otherwise.
2182  */
2183 bool cpufreq_driver_has_adjust_perf(void)
2184 {
2185         return !!cpufreq_driver->adjust_perf;
2186 }
2187
2188 /* Must set freqs->new to intermediate frequency */
2189 static int __target_intermediate(struct cpufreq_policy *policy,
2190                                  struct cpufreq_freqs *freqs, int index)
2191 {
2192         int ret;
2193
2194         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2195
2196         /* We don't need to switch to intermediate freq */
2197         if (!freqs->new)
2198                 return 0;
2199
2200         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2201                  __func__, policy->cpu, freqs->old, freqs->new);
2202
2203         cpufreq_freq_transition_begin(policy, freqs);
2204         ret = cpufreq_driver->target_intermediate(policy, index);
2205         cpufreq_freq_transition_end(policy, freqs, ret);
2206
2207         if (ret)
2208                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2209                        __func__, ret);
2210
2211         return ret;
2212 }
2213
2214 static int __target_index(struct cpufreq_policy *policy, int index)
2215 {
2216         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2217         unsigned int restore_freq, intermediate_freq = 0;
2218         unsigned int newfreq = policy->freq_table[index].frequency;
2219         int retval = -EINVAL;
2220         bool notify;
2221
2222         if (newfreq == policy->cur)
2223                 return 0;
2224
2225         /* Save last value to restore later on errors */
2226         restore_freq = policy->cur;
2227
2228         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2229         if (notify) {
2230                 /* Handle switching to intermediate frequency */
2231                 if (cpufreq_driver->get_intermediate) {
2232                         retval = __target_intermediate(policy, &freqs, index);
2233                         if (retval)
2234                                 return retval;
2235
2236                         intermediate_freq = freqs.new;
2237                         /* Set old freq to intermediate */
2238                         if (intermediate_freq)
2239                                 freqs.old = freqs.new;
2240                 }
2241
2242                 freqs.new = newfreq;
2243                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2244                          __func__, policy->cpu, freqs.old, freqs.new);
2245
2246                 cpufreq_freq_transition_begin(policy, &freqs);
2247         }
2248
2249         retval = cpufreq_driver->target_index(policy, index);
2250         if (retval)
2251                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2252                        retval);
2253
2254         if (notify) {
2255                 cpufreq_freq_transition_end(policy, &freqs, retval);
2256
2257                 /*
2258                  * Failed after setting to intermediate freq? Driver should have
2259                  * reverted back to initial frequency and so should we. Check
2260                  * here for intermediate_freq instead of get_intermediate, in
2261                  * case we haven't switched to intermediate freq at all.
2262                  */
2263                 if (unlikely(retval && intermediate_freq)) {
2264                         freqs.old = intermediate_freq;
2265                         freqs.new = restore_freq;
2266                         cpufreq_freq_transition_begin(policy, &freqs);
2267                         cpufreq_freq_transition_end(policy, &freqs, 0);
2268                 }
2269         }
2270
2271         return retval;
2272 }
2273
2274 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2275                             unsigned int target_freq,
2276                             unsigned int relation)
2277 {
2278         unsigned int old_target_freq = target_freq;
2279
2280         if (cpufreq_disabled())
2281                 return -ENODEV;
2282
2283         target_freq = __resolve_freq(policy, target_freq, relation);
2284
2285         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2286                  policy->cpu, target_freq, relation, old_target_freq);
2287
2288         /*
2289          * This might look like a redundant call as we are checking it again
2290          * after finding index. But it is left intentionally for cases where
2291          * exactly same freq is called again and so we can save on few function
2292          * calls.
2293          */
2294         if (target_freq == policy->cur &&
2295             !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2296                 return 0;
2297
2298         if (cpufreq_driver->target) {
2299                 /*
2300                  * If the driver hasn't setup a single inefficient frequency,
2301                  * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2302                  */
2303                 if (!policy->efficiencies_available)
2304                         relation &= ~CPUFREQ_RELATION_E;
2305
2306                 return cpufreq_driver->target(policy, target_freq, relation);
2307         }
2308
2309         if (!cpufreq_driver->target_index)
2310                 return -EINVAL;
2311
2312         return __target_index(policy, policy->cached_resolved_idx);
2313 }
2314 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2315
2316 int cpufreq_driver_target(struct cpufreq_policy *policy,
2317                           unsigned int target_freq,
2318                           unsigned int relation)
2319 {
2320         int ret;
2321
2322         down_write(&policy->rwsem);
2323
2324         ret = __cpufreq_driver_target(policy, target_freq, relation);
2325
2326         up_write(&policy->rwsem);
2327
2328         return ret;
2329 }
2330 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2331
2332 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2333 {
2334         return NULL;
2335 }
2336
2337 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2338 {
2339         int ret;
2340
2341         /* Don't start any governor operations if we are entering suspend */
2342         if (cpufreq_suspended)
2343                 return 0;
2344         /*
2345          * Governor might not be initiated here if ACPI _PPC changed
2346          * notification happened, so check it.
2347          */
2348         if (!policy->governor)
2349                 return -EINVAL;
2350
2351         /* Platform doesn't want dynamic frequency switching ? */
2352         if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2353             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2354                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2355
2356                 if (gov) {
2357                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2358                                 policy->governor->name, gov->name);
2359                         policy->governor = gov;
2360                 } else {
2361                         return -EINVAL;
2362                 }
2363         }
2364
2365         if (!try_module_get(policy->governor->owner))
2366                 return -EINVAL;
2367
2368         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2369
2370         if (policy->governor->init) {
2371                 ret = policy->governor->init(policy);
2372                 if (ret) {
2373                         module_put(policy->governor->owner);
2374                         return ret;
2375                 }
2376         }
2377
2378         policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2379
2380         return 0;
2381 }
2382
2383 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2384 {
2385         if (cpufreq_suspended || !policy->governor)
2386                 return;
2387
2388         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2389
2390         if (policy->governor->exit)
2391                 policy->governor->exit(policy);
2392
2393         module_put(policy->governor->owner);
2394 }
2395
2396 int cpufreq_start_governor(struct cpufreq_policy *policy)
2397 {
2398         int ret;
2399
2400         if (cpufreq_suspended)
2401                 return 0;
2402
2403         if (!policy->governor)
2404                 return -EINVAL;
2405
2406         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2407
2408         if (cpufreq_driver->get)
2409                 cpufreq_verify_current_freq(policy, false);
2410
2411         if (policy->governor->start) {
2412                 ret = policy->governor->start(policy);
2413                 if (ret)
2414                         return ret;
2415         }
2416
2417         if (policy->governor->limits)
2418                 policy->governor->limits(policy);
2419
2420         return 0;
2421 }
2422
2423 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2424 {
2425         if (cpufreq_suspended || !policy->governor)
2426                 return;
2427
2428         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2429
2430         if (policy->governor->stop)
2431                 policy->governor->stop(policy);
2432 }
2433
2434 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2435 {
2436         if (cpufreq_suspended || !policy->governor)
2437                 return;
2438
2439         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2440
2441         if (policy->governor->limits)
2442                 policy->governor->limits(policy);
2443 }
2444
2445 int cpufreq_register_governor(struct cpufreq_governor *governor)
2446 {
2447         int err;
2448
2449         if (!governor)
2450                 return -EINVAL;
2451
2452         if (cpufreq_disabled())
2453                 return -ENODEV;
2454
2455         mutex_lock(&cpufreq_governor_mutex);
2456
2457         err = -EBUSY;
2458         if (!find_governor(governor->name)) {
2459                 err = 0;
2460                 list_add(&governor->governor_list, &cpufreq_governor_list);
2461         }
2462
2463         mutex_unlock(&cpufreq_governor_mutex);
2464         return err;
2465 }
2466 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2467
2468 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2469 {
2470         struct cpufreq_policy *policy;
2471         unsigned long flags;
2472
2473         if (!governor)
2474                 return;
2475
2476         if (cpufreq_disabled())
2477                 return;
2478
2479         /* clear last_governor for all inactive policies */
2480         read_lock_irqsave(&cpufreq_driver_lock, flags);
2481         for_each_inactive_policy(policy) {
2482                 if (!strcmp(policy->last_governor, governor->name)) {
2483                         policy->governor = NULL;
2484                         strcpy(policy->last_governor, "\0");
2485                 }
2486         }
2487         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2488
2489         mutex_lock(&cpufreq_governor_mutex);
2490         list_del(&governor->governor_list);
2491         mutex_unlock(&cpufreq_governor_mutex);
2492 }
2493 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2494
2495
2496 /*********************************************************************
2497  *                          POLICY INTERFACE                         *
2498  *********************************************************************/
2499
2500 /**
2501  * cpufreq_get_policy - get the current cpufreq_policy
2502  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2503  *      is written
2504  * @cpu: CPU to find the policy for
2505  *
2506  * Reads the current cpufreq policy.
2507  */
2508 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2509 {
2510         struct cpufreq_policy *cpu_policy;
2511         if (!policy)
2512                 return -EINVAL;
2513
2514         cpu_policy = cpufreq_cpu_get(cpu);
2515         if (!cpu_policy)
2516                 return -EINVAL;
2517
2518         memcpy(policy, cpu_policy, sizeof(*policy));
2519
2520         cpufreq_cpu_put(cpu_policy);
2521         return 0;
2522 }
2523 EXPORT_SYMBOL(cpufreq_get_policy);
2524
2525 /**
2526  * cpufreq_set_policy - Modify cpufreq policy parameters.
2527  * @policy: Policy object to modify.
2528  * @new_gov: Policy governor pointer.
2529  * @new_pol: Policy value (for drivers with built-in governors).
2530  *
2531  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2532  * limits to be set for the policy, update @policy with the verified limits
2533  * values and either invoke the driver's ->setpolicy() callback (if present) or
2534  * carry out a governor update for @policy.  That is, run the current governor's
2535  * ->limits() callback (if @new_gov points to the same object as the one in
2536  * @policy) or replace the governor for @policy with @new_gov.
2537  *
2538  * The cpuinfo part of @policy is not updated by this function.
2539  */
2540 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2541                               struct cpufreq_governor *new_gov,
2542                               unsigned int new_pol)
2543 {
2544         struct cpufreq_policy_data new_data;
2545         struct cpufreq_governor *old_gov;
2546         int ret;
2547
2548         memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2549         new_data.freq_table = policy->freq_table;
2550         new_data.cpu = policy->cpu;
2551         /*
2552          * PM QoS framework collects all the requests from users and provide us
2553          * the final aggregated value here.
2554          */
2555         new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2556         new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2557
2558         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2559                  new_data.cpu, new_data.min, new_data.max);
2560
2561         /*
2562          * Verify that the CPU speed can be set within these limits and make sure
2563          * that min <= max.
2564          */
2565         ret = cpufreq_driver->verify(&new_data);
2566         if (ret)
2567                 return ret;
2568
2569         /*
2570          * Resolve policy min/max to available frequencies. It ensures
2571          * no frequency resolution will neither overshoot the requested maximum
2572          * nor undershoot the requested minimum.
2573          */
2574         policy->min = new_data.min;
2575         policy->max = new_data.max;
2576         policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2577         policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2578         trace_cpu_frequency_limits(policy);
2579
2580         policy->cached_target_freq = UINT_MAX;
2581
2582         pr_debug("new min and max freqs are %u - %u kHz\n",
2583                  policy->min, policy->max);
2584
2585         if (cpufreq_driver->setpolicy) {
2586                 policy->policy = new_pol;
2587                 pr_debug("setting range\n");
2588                 return cpufreq_driver->setpolicy(policy);
2589         }
2590
2591         if (new_gov == policy->governor) {
2592                 pr_debug("governor limits update\n");
2593                 cpufreq_governor_limits(policy);
2594                 return 0;
2595         }
2596
2597         pr_debug("governor switch\n");
2598
2599         /* save old, working values */
2600         old_gov = policy->governor;
2601         /* end old governor */
2602         if (old_gov) {
2603                 cpufreq_stop_governor(policy);
2604                 cpufreq_exit_governor(policy);
2605         }
2606
2607         /* start new governor */
2608         policy->governor = new_gov;
2609         ret = cpufreq_init_governor(policy);
2610         if (!ret) {
2611                 ret = cpufreq_start_governor(policy);
2612                 if (!ret) {
2613                         pr_debug("governor change\n");
2614                         sched_cpufreq_governor_change(policy, old_gov);
2615                         return 0;
2616                 }
2617                 cpufreq_exit_governor(policy);
2618         }
2619
2620         /* new governor failed, so re-start old one */
2621         pr_debug("starting governor %s failed\n", policy->governor->name);
2622         if (old_gov) {
2623                 policy->governor = old_gov;
2624                 if (cpufreq_init_governor(policy))
2625                         policy->governor = NULL;
2626                 else
2627                         cpufreq_start_governor(policy);
2628         }
2629
2630         return ret;
2631 }
2632
2633 /**
2634  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2635  * @cpu: CPU to re-evaluate the policy for.
2636  *
2637  * Update the current frequency for the cpufreq policy of @cpu and use
2638  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2639  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2640  * for the policy in question, among other things.
2641  */
2642 void cpufreq_update_policy(unsigned int cpu)
2643 {
2644         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2645
2646         if (!policy)
2647                 return;
2648
2649         /*
2650          * BIOS might change freq behind our back
2651          * -> ask driver for current freq and notify governors about a change
2652          */
2653         if (cpufreq_driver->get && has_target() &&
2654             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2655                 goto unlock;
2656
2657         refresh_frequency_limits(policy);
2658
2659 unlock:
2660         cpufreq_cpu_release(policy);
2661 }
2662 EXPORT_SYMBOL(cpufreq_update_policy);
2663
2664 /**
2665  * cpufreq_update_limits - Update policy limits for a given CPU.
2666  * @cpu: CPU to update the policy limits for.
2667  *
2668  * Invoke the driver's ->update_limits callback if present or call
2669  * cpufreq_update_policy() for @cpu.
2670  */
2671 void cpufreq_update_limits(unsigned int cpu)
2672 {
2673         if (cpufreq_driver->update_limits)
2674                 cpufreq_driver->update_limits(cpu);
2675         else
2676                 cpufreq_update_policy(cpu);
2677 }
2678 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2679
2680 /*********************************************************************
2681  *               BOOST                                               *
2682  *********************************************************************/
2683 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2684 {
2685         int ret;
2686
2687         if (!policy->freq_table)
2688                 return -ENXIO;
2689
2690         ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2691         if (ret) {
2692                 pr_err("%s: Policy frequency update failed\n", __func__);
2693                 return ret;
2694         }
2695
2696         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2697         if (ret < 0)
2698                 return ret;
2699
2700         return 0;
2701 }
2702
2703 int cpufreq_boost_trigger_state(int state)
2704 {
2705         struct cpufreq_policy *policy;
2706         unsigned long flags;
2707         int ret = 0;
2708
2709         if (cpufreq_driver->boost_enabled == state)
2710                 return 0;
2711
2712         write_lock_irqsave(&cpufreq_driver_lock, flags);
2713         cpufreq_driver->boost_enabled = state;
2714         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2715
2716         cpus_read_lock();
2717         for_each_active_policy(policy) {
2718                 ret = cpufreq_driver->set_boost(policy, state);
2719                 if (ret)
2720                         goto err_reset_state;
2721         }
2722         cpus_read_unlock();
2723
2724         return 0;
2725
2726 err_reset_state:
2727         cpus_read_unlock();
2728
2729         write_lock_irqsave(&cpufreq_driver_lock, flags);
2730         cpufreq_driver->boost_enabled = !state;
2731         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2732
2733         pr_err("%s: Cannot %s BOOST\n",
2734                __func__, state ? "enable" : "disable");
2735
2736         return ret;
2737 }
2738
2739 static bool cpufreq_boost_supported(void)
2740 {
2741         return cpufreq_driver->set_boost;
2742 }
2743
2744 static int create_boost_sysfs_file(void)
2745 {
2746         int ret;
2747
2748         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2749         if (ret)
2750                 pr_err("%s: cannot register global BOOST sysfs file\n",
2751                        __func__);
2752
2753         return ret;
2754 }
2755
2756 static void remove_boost_sysfs_file(void)
2757 {
2758         if (cpufreq_boost_supported())
2759                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2760 }
2761
2762 int cpufreq_enable_boost_support(void)
2763 {
2764         if (!cpufreq_driver)
2765                 return -EINVAL;
2766
2767         if (cpufreq_boost_supported())
2768                 return 0;
2769
2770         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2771
2772         /* This will get removed on driver unregister */
2773         return create_boost_sysfs_file();
2774 }
2775 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2776
2777 int cpufreq_boost_enabled(void)
2778 {
2779         return cpufreq_driver->boost_enabled;
2780 }
2781 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2782
2783 /*********************************************************************
2784  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2785  *********************************************************************/
2786 static enum cpuhp_state hp_online;
2787
2788 static int cpuhp_cpufreq_online(unsigned int cpu)
2789 {
2790         cpufreq_online(cpu);
2791
2792         return 0;
2793 }
2794
2795 static int cpuhp_cpufreq_offline(unsigned int cpu)
2796 {
2797         cpufreq_offline(cpu);
2798
2799         return 0;
2800 }
2801
2802 /**
2803  * cpufreq_register_driver - register a CPU Frequency driver
2804  * @driver_data: A struct cpufreq_driver containing the values#
2805  * submitted by the CPU Frequency driver.
2806  *
2807  * Registers a CPU Frequency driver to this core code. This code
2808  * returns zero on success, -EEXIST when another driver got here first
2809  * (and isn't unregistered in the meantime).
2810  *
2811  */
2812 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2813 {
2814         unsigned long flags;
2815         int ret;
2816
2817         if (cpufreq_disabled())
2818                 return -ENODEV;
2819
2820         /*
2821          * The cpufreq core depends heavily on the availability of device
2822          * structure, make sure they are available before proceeding further.
2823          */
2824         if (!get_cpu_device(0))
2825                 return -EPROBE_DEFER;
2826
2827         if (!driver_data || !driver_data->verify || !driver_data->init ||
2828             !(driver_data->setpolicy || driver_data->target_index ||
2829                     driver_data->target) ||
2830              (driver_data->setpolicy && (driver_data->target_index ||
2831                     driver_data->target)) ||
2832              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2833              (!driver_data->online != !driver_data->offline))
2834                 return -EINVAL;
2835
2836         pr_debug("trying to register driver %s\n", driver_data->name);
2837
2838         /* Protect against concurrent CPU online/offline. */
2839         cpus_read_lock();
2840
2841         write_lock_irqsave(&cpufreq_driver_lock, flags);
2842         if (cpufreq_driver) {
2843                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2844                 ret = -EEXIST;
2845                 goto out;
2846         }
2847         cpufreq_driver = driver_data;
2848         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2849
2850         /*
2851          * Mark support for the scheduler's frequency invariance engine for
2852          * drivers that implement target(), target_index() or fast_switch().
2853          */
2854         if (!cpufreq_driver->setpolicy) {
2855                 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2856                 pr_debug("supports frequency invariance");
2857         }
2858
2859         if (driver_data->setpolicy)
2860                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2861
2862         if (cpufreq_boost_supported()) {
2863                 ret = create_boost_sysfs_file();
2864                 if (ret)
2865                         goto err_null_driver;
2866         }
2867
2868         ret = subsys_interface_register(&cpufreq_interface);
2869         if (ret)
2870                 goto err_boost_unreg;
2871
2872         if (unlikely(list_empty(&cpufreq_policy_list))) {
2873                 /* if all ->init() calls failed, unregister */
2874                 ret = -ENODEV;
2875                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2876                          driver_data->name);
2877                 goto err_if_unreg;
2878         }
2879
2880         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2881                                                    "cpufreq:online",
2882                                                    cpuhp_cpufreq_online,
2883                                                    cpuhp_cpufreq_offline);
2884         if (ret < 0)
2885                 goto err_if_unreg;
2886         hp_online = ret;
2887         ret = 0;
2888
2889         pr_debug("driver %s up and running\n", driver_data->name);
2890         goto out;
2891
2892 err_if_unreg:
2893         subsys_interface_unregister(&cpufreq_interface);
2894 err_boost_unreg:
2895         remove_boost_sysfs_file();
2896 err_null_driver:
2897         write_lock_irqsave(&cpufreq_driver_lock, flags);
2898         cpufreq_driver = NULL;
2899         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2900 out:
2901         cpus_read_unlock();
2902         return ret;
2903 }
2904 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2905
2906 /*
2907  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2908  *
2909  * Unregister the current CPUFreq driver. Only call this if you have
2910  * the right to do so, i.e. if you have succeeded in initialising before!
2911  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2912  * currently not initialised.
2913  */
2914 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2915 {
2916         unsigned long flags;
2917
2918         if (!cpufreq_driver || (driver != cpufreq_driver))
2919                 return -EINVAL;
2920
2921         pr_debug("unregistering driver %s\n", driver->name);
2922
2923         /* Protect against concurrent cpu hotplug */
2924         cpus_read_lock();
2925         subsys_interface_unregister(&cpufreq_interface);
2926         remove_boost_sysfs_file();
2927         static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2928         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2929
2930         write_lock_irqsave(&cpufreq_driver_lock, flags);
2931
2932         cpufreq_driver = NULL;
2933
2934         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2935         cpus_read_unlock();
2936
2937         return 0;
2938 }
2939 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2940
2941 static int __init cpufreq_core_init(void)
2942 {
2943         struct cpufreq_governor *gov = cpufreq_default_governor();
2944
2945         if (cpufreq_disabled())
2946                 return -ENODEV;
2947
2948         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2949         BUG_ON(!cpufreq_global_kobject);
2950
2951         if (!strlen(default_governor))
2952                 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2953
2954         return 0;
2955 }
2956 module_param(off, int, 0444);
2957 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2958 core_initcall(cpufreq_core_init);