GNU Linux-libre 6.8.9-gnu
[releases.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <linux/units.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 /* Macros to iterate over CPU policies */
37 #define for_each_suitable_policy(__policy, __active)                     \
38         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39                 if ((__active) == !policy_is_inactive(__policy))
40
41 #define for_each_active_policy(__policy)                \
42         for_each_suitable_policy(__policy, true)
43 #define for_each_inactive_policy(__policy)              \
44         for_each_suitable_policy(__policy, false)
45
46 /* Iterate over governors */
47 static LIST_HEAD(cpufreq_governor_list);
48 #define for_each_governor(__governor)                           \
49         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50
51 static char default_governor[CPUFREQ_NAME_LEN];
52
53 /*
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63 bool cpufreq_supports_freq_invariance(void)
64 {
65         return static_branch_likely(&cpufreq_freq_invariance);
66 }
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73         return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 bool has_target_index(void)
77 {
78         return !!cpufreq_driver->target_index;
79 }
80
81 /* internal prototypes */
82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
83 static int cpufreq_init_governor(struct cpufreq_policy *policy);
84 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
85 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
86 static int cpufreq_set_policy(struct cpufreq_policy *policy,
87                               struct cpufreq_governor *new_gov,
88                               unsigned int new_pol);
89 static bool cpufreq_boost_supported(void);
90
91 /*
92  * Two notifier lists: the "policy" list is involved in the
93  * validation process for a new CPU frequency policy; the
94  * "transition" list for kernel code that needs to handle
95  * changes to devices when the CPU clock speed changes.
96  * The mutex locks both lists.
97  */
98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
100
101 static int off __read_mostly;
102 static int cpufreq_disabled(void)
103 {
104         return off;
105 }
106 void disable_cpufreq(void)
107 {
108         off = 1;
109 }
110 static DEFINE_MUTEX(cpufreq_governor_mutex);
111
112 bool have_governor_per_policy(void)
113 {
114         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
115 }
116 EXPORT_SYMBOL_GPL(have_governor_per_policy);
117
118 static struct kobject *cpufreq_global_kobject;
119
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122         if (have_governor_per_policy())
123                 return &policy->kobj;
124         else
125                 return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131         struct kernel_cpustat kcpustat;
132         u64 cur_wall_time;
133         u64 idle_time;
134         u64 busy_time;
135
136         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137
138         kcpustat_cpu_fetch(&kcpustat, cpu);
139
140         busy_time = kcpustat.cpustat[CPUTIME_USER];
141         busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
142         busy_time += kcpustat.cpustat[CPUTIME_IRQ];
143         busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
144         busy_time += kcpustat.cpustat[CPUTIME_STEAL];
145         busy_time += kcpustat.cpustat[CPUTIME_NICE];
146
147         idle_time = cur_wall_time - busy_time;
148         if (wall)
149                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
150
151         return div_u64(idle_time, NSEC_PER_USEC);
152 }
153
154 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
155 {
156         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
157
158         if (idle_time == -1ULL)
159                 return get_cpu_idle_time_jiffy(cpu, wall);
160         else if (!io_busy)
161                 idle_time += get_cpu_iowait_time_us(cpu, wall);
162
163         return idle_time;
164 }
165 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
166
167 /*
168  * This is a generic cpufreq init() routine which can be used by cpufreq
169  * drivers of SMP systems. It will do following:
170  * - validate & show freq table passed
171  * - set policies transition latency
172  * - policy->cpus with all possible CPUs
173  */
174 void cpufreq_generic_init(struct cpufreq_policy *policy,
175                 struct cpufreq_frequency_table *table,
176                 unsigned int transition_latency)
177 {
178         policy->freq_table = table;
179         policy->cpuinfo.transition_latency = transition_latency;
180
181         /*
182          * The driver only supports the SMP configuration where all processors
183          * share the clock and voltage and clock.
184          */
185         cpumask_setall(policy->cpus);
186 }
187 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188
189 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190 {
191         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192
193         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
194 }
195 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196
197 unsigned int cpufreq_generic_get(unsigned int cpu)
198 {
199         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200
201         if (!policy || IS_ERR(policy->clk)) {
202                 pr_err("%s: No %s associated to cpu: %d\n",
203                        __func__, policy ? "clk" : "policy", cpu);
204                 return 0;
205         }
206
207         return clk_get_rate(policy->clk) / 1000;
208 }
209 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210
211 /**
212  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213  * @cpu: CPU to find the policy for.
214  *
215  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216  * the kobject reference counter of that policy.  Return a valid policy on
217  * success or NULL on failure.
218  *
219  * The policy returned by this function has to be released with the help of
220  * cpufreq_cpu_put() to balance its kobject reference counter properly.
221  */
222 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223 {
224         struct cpufreq_policy *policy = NULL;
225         unsigned long flags;
226
227         if (WARN_ON(cpu >= nr_cpu_ids))
228                 return NULL;
229
230         /* get the cpufreq driver */
231         read_lock_irqsave(&cpufreq_driver_lock, flags);
232
233         if (cpufreq_driver) {
234                 /* get the CPU */
235                 policy = cpufreq_cpu_get_raw(cpu);
236                 if (policy)
237                         kobject_get(&policy->kobj);
238         }
239
240         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241
242         return policy;
243 }
244 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245
246 /**
247  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248  * @policy: cpufreq policy returned by cpufreq_cpu_get().
249  */
250 void cpufreq_cpu_put(struct cpufreq_policy *policy)
251 {
252         kobject_put(&policy->kobj);
253 }
254 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255
256 /**
257  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259  */
260 void cpufreq_cpu_release(struct cpufreq_policy *policy)
261 {
262         if (WARN_ON(!policy))
263                 return;
264
265         lockdep_assert_held(&policy->rwsem);
266
267         up_write(&policy->rwsem);
268
269         cpufreq_cpu_put(policy);
270 }
271
272 /**
273  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274  * @cpu: CPU to find the policy for.
275  *
276  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277  * if the policy returned by it is not NULL, acquire its rwsem for writing.
278  * Return the policy if it is active or release it and return NULL otherwise.
279  *
280  * The policy returned by this function has to be released with the help of
281  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282  * counter properly.
283  */
284 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285 {
286         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287
288         if (!policy)
289                 return NULL;
290
291         down_write(&policy->rwsem);
292
293         if (policy_is_inactive(policy)) {
294                 cpufreq_cpu_release(policy);
295                 return NULL;
296         }
297
298         return policy;
299 }
300
301 /*********************************************************************
302  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
303  *********************************************************************/
304
305 /**
306  * adjust_jiffies - Adjust the system "loops_per_jiffy".
307  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
308  * @ci: Frequency change information.
309  *
310  * This function alters the system "loops_per_jiffy" for the clock
311  * speed change. Note that loops_per_jiffy cannot be updated on SMP
312  * systems as each CPU might be scaled differently. So, use the arch
313  * per-CPU loops_per_jiffy value wherever possible.
314  */
315 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
316 {
317 #ifndef CONFIG_SMP
318         static unsigned long l_p_j_ref;
319         static unsigned int l_p_j_ref_freq;
320
321         if (ci->flags & CPUFREQ_CONST_LOOPS)
322                 return;
323
324         if (!l_p_j_ref_freq) {
325                 l_p_j_ref = loops_per_jiffy;
326                 l_p_j_ref_freq = ci->old;
327                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
328                          l_p_j_ref, l_p_j_ref_freq);
329         }
330         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
331                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
332                                                                 ci->new);
333                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
334                          loops_per_jiffy, ci->new);
335         }
336 #endif
337 }
338
339 /**
340  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
341  * @policy: cpufreq policy to enable fast frequency switching for.
342  * @freqs: contain details of the frequency update.
343  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
344  *
345  * This function calls the transition notifiers and adjust_jiffies().
346  *
347  * It is called twice on all CPU frequency changes that have external effects.
348  */
349 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
350                                       struct cpufreq_freqs *freqs,
351                                       unsigned int state)
352 {
353         int cpu;
354
355         BUG_ON(irqs_disabled());
356
357         if (cpufreq_disabled())
358                 return;
359
360         freqs->policy = policy;
361         freqs->flags = cpufreq_driver->flags;
362         pr_debug("notification %u of frequency transition to %u kHz\n",
363                  state, freqs->new);
364
365         switch (state) {
366         case CPUFREQ_PRECHANGE:
367                 /*
368                  * Detect if the driver reported a value as "old frequency"
369                  * which is not equal to what the cpufreq core thinks is
370                  * "old frequency".
371                  */
372                 if (policy->cur && policy->cur != freqs->old) {
373                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
374                                  freqs->old, policy->cur);
375                         freqs->old = policy->cur;
376                 }
377
378                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379                                          CPUFREQ_PRECHANGE, freqs);
380
381                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
382                 break;
383
384         case CPUFREQ_POSTCHANGE:
385                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
386                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
387                          cpumask_pr_args(policy->cpus));
388
389                 for_each_cpu(cpu, policy->cpus)
390                         trace_cpu_frequency(freqs->new, cpu);
391
392                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
393                                          CPUFREQ_POSTCHANGE, freqs);
394
395                 cpufreq_stats_record_transition(policy, freqs->new);
396                 policy->cur = freqs->new;
397         }
398 }
399
400 /* Do post notifications when there are chances that transition has failed */
401 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
402                 struct cpufreq_freqs *freqs, int transition_failed)
403 {
404         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405         if (!transition_failed)
406                 return;
407
408         swap(freqs->old, freqs->new);
409         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
410         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
411 }
412
413 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
414                 struct cpufreq_freqs *freqs)
415 {
416
417         /*
418          * Catch double invocations of _begin() which lead to self-deadlock.
419          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
420          * doesn't invoke _begin() on their behalf, and hence the chances of
421          * double invocations are very low. Moreover, there are scenarios
422          * where these checks can emit false-positive warnings in these
423          * drivers; so we avoid that by skipping them altogether.
424          */
425         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
426                                 && current == policy->transition_task);
427
428 wait:
429         wait_event(policy->transition_wait, !policy->transition_ongoing);
430
431         spin_lock(&policy->transition_lock);
432
433         if (unlikely(policy->transition_ongoing)) {
434                 spin_unlock(&policy->transition_lock);
435                 goto wait;
436         }
437
438         policy->transition_ongoing = true;
439         policy->transition_task = current;
440
441         spin_unlock(&policy->transition_lock);
442
443         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
444 }
445 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
446
447 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
448                 struct cpufreq_freqs *freqs, int transition_failed)
449 {
450         if (WARN_ON(!policy->transition_ongoing))
451                 return;
452
453         cpufreq_notify_post_transition(policy, freqs, transition_failed);
454
455         arch_set_freq_scale(policy->related_cpus,
456                             policy->cur,
457                             arch_scale_freq_ref(policy->cpu));
458
459         spin_lock(&policy->transition_lock);
460         policy->transition_ongoing = false;
461         policy->transition_task = NULL;
462         spin_unlock(&policy->transition_lock);
463
464         wake_up(&policy->transition_wait);
465 }
466 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
467
468 /*
469  * Fast frequency switching status count.  Positive means "enabled", negative
470  * means "disabled" and 0 means "not decided yet".
471  */
472 static int cpufreq_fast_switch_count;
473 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
474
475 static void cpufreq_list_transition_notifiers(void)
476 {
477         struct notifier_block *nb;
478
479         pr_info("Registered transition notifiers:\n");
480
481         mutex_lock(&cpufreq_transition_notifier_list.mutex);
482
483         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
484                 pr_info("%pS\n", nb->notifier_call);
485
486         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
487 }
488
489 /**
490  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
491  * @policy: cpufreq policy to enable fast frequency switching for.
492  *
493  * Try to enable fast frequency switching for @policy.
494  *
495  * The attempt will fail if there is at least one transition notifier registered
496  * at this point, as fast frequency switching is quite fundamentally at odds
497  * with transition notifiers.  Thus if successful, it will make registration of
498  * transition notifiers fail going forward.
499  */
500 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
501 {
502         lockdep_assert_held(&policy->rwsem);
503
504         if (!policy->fast_switch_possible)
505                 return;
506
507         mutex_lock(&cpufreq_fast_switch_lock);
508         if (cpufreq_fast_switch_count >= 0) {
509                 cpufreq_fast_switch_count++;
510                 policy->fast_switch_enabled = true;
511         } else {
512                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
513                         policy->cpu);
514                 cpufreq_list_transition_notifiers();
515         }
516         mutex_unlock(&cpufreq_fast_switch_lock);
517 }
518 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
519
520 /**
521  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
522  * @policy: cpufreq policy to disable fast frequency switching for.
523  */
524 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
525 {
526         mutex_lock(&cpufreq_fast_switch_lock);
527         if (policy->fast_switch_enabled) {
528                 policy->fast_switch_enabled = false;
529                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
530                         cpufreq_fast_switch_count--;
531         }
532         mutex_unlock(&cpufreq_fast_switch_lock);
533 }
534 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
535
536 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
537                 unsigned int target_freq, unsigned int relation)
538 {
539         unsigned int idx;
540
541         target_freq = clamp_val(target_freq, policy->min, policy->max);
542
543         if (!policy->freq_table)
544                 return target_freq;
545
546         idx = cpufreq_frequency_table_target(policy, target_freq, relation);
547         policy->cached_resolved_idx = idx;
548         policy->cached_target_freq = target_freq;
549         return policy->freq_table[idx].frequency;
550 }
551
552 /**
553  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
554  * one.
555  * @policy: associated policy to interrogate
556  * @target_freq: target frequency to resolve.
557  *
558  * The target to driver frequency mapping is cached in the policy.
559  *
560  * Return: Lowest driver-supported frequency greater than or equal to the
561  * given target_freq, subject to policy (min/max) and driver limitations.
562  */
563 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
564                                          unsigned int target_freq)
565 {
566         return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
567 }
568 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
569
570 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
571 {
572         unsigned int latency;
573
574         if (policy->transition_delay_us)
575                 return policy->transition_delay_us;
576
577         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
578         if (latency) {
579                 /*
580                  * For platforms that can change the frequency very fast (< 10
581                  * us), the above formula gives a decent transition delay. But
582                  * for platforms where transition_latency is in milliseconds, it
583                  * ends up giving unrealistic values.
584                  *
585                  * Cap the default transition delay to 10 ms, which seems to be
586                  * a reasonable amount of time after which we should reevaluate
587                  * the frequency.
588                  */
589                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
590         }
591
592         return LATENCY_MULTIPLIER;
593 }
594 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
595
596 /*********************************************************************
597  *                          SYSFS INTERFACE                          *
598  *********************************************************************/
599 static ssize_t show_boost(struct kobject *kobj,
600                           struct kobj_attribute *attr, char *buf)
601 {
602         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
603 }
604
605 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
606                            const char *buf, size_t count)
607 {
608         int ret, enable;
609
610         ret = sscanf(buf, "%d", &enable);
611         if (ret != 1 || enable < 0 || enable > 1)
612                 return -EINVAL;
613
614         if (cpufreq_boost_trigger_state(enable)) {
615                 pr_err("%s: Cannot %s BOOST!\n",
616                        __func__, enable ? "enable" : "disable");
617                 return -EINVAL;
618         }
619
620         pr_debug("%s: cpufreq BOOST %s\n",
621                  __func__, enable ? "enabled" : "disabled");
622
623         return count;
624 }
625 define_one_global_rw(boost);
626
627 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
628 {
629         return sysfs_emit(buf, "%d\n", policy->boost_enabled);
630 }
631
632 static ssize_t store_local_boost(struct cpufreq_policy *policy,
633                                  const char *buf, size_t count)
634 {
635         int ret, enable;
636
637         ret = kstrtoint(buf, 10, &enable);
638         if (ret || enable < 0 || enable > 1)
639                 return -EINVAL;
640
641         if (!cpufreq_driver->boost_enabled)
642                 return -EINVAL;
643
644         if (policy->boost_enabled == enable)
645                 return count;
646
647         policy->boost_enabled = enable;
648
649         cpus_read_lock();
650         ret = cpufreq_driver->set_boost(policy, enable);
651         cpus_read_unlock();
652
653         if (ret) {
654                 policy->boost_enabled = !policy->boost_enabled;
655                 return ret;
656         }
657
658         return count;
659 }
660
661 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
662
663 static struct cpufreq_governor *find_governor(const char *str_governor)
664 {
665         struct cpufreq_governor *t;
666
667         for_each_governor(t)
668                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
669                         return t;
670
671         return NULL;
672 }
673
674 static struct cpufreq_governor *get_governor(const char *str_governor)
675 {
676         struct cpufreq_governor *t;
677
678         mutex_lock(&cpufreq_governor_mutex);
679         t = find_governor(str_governor);
680         if (!t)
681                 goto unlock;
682
683         if (!try_module_get(t->owner))
684                 t = NULL;
685
686 unlock:
687         mutex_unlock(&cpufreq_governor_mutex);
688
689         return t;
690 }
691
692 static unsigned int cpufreq_parse_policy(char *str_governor)
693 {
694         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
695                 return CPUFREQ_POLICY_PERFORMANCE;
696
697         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
698                 return CPUFREQ_POLICY_POWERSAVE;
699
700         return CPUFREQ_POLICY_UNKNOWN;
701 }
702
703 /**
704  * cpufreq_parse_governor - parse a governor string only for has_target()
705  * @str_governor: Governor name.
706  */
707 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
708 {
709         struct cpufreq_governor *t;
710
711         t = get_governor(str_governor);
712         if (t)
713                 return t;
714
715         if (request_module("cpufreq_%s", str_governor))
716                 return NULL;
717
718         return get_governor(str_governor);
719 }
720
721 /*
722  * cpufreq_per_cpu_attr_read() / show_##file_name() -
723  * print out cpufreq information
724  *
725  * Write out information from cpufreq_driver->policy[cpu]; object must be
726  * "unsigned int".
727  */
728
729 #define show_one(file_name, object)                     \
730 static ssize_t show_##file_name                         \
731 (struct cpufreq_policy *policy, char *buf)              \
732 {                                                       \
733         return sprintf(buf, "%u\n", policy->object);    \
734 }
735
736 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
737 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
738 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
739 show_one(scaling_min_freq, min);
740 show_one(scaling_max_freq, max);
741
742 __weak unsigned int arch_freq_get_on_cpu(int cpu)
743 {
744         return 0;
745 }
746
747 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
748 {
749         ssize_t ret;
750         unsigned int freq;
751
752         freq = arch_freq_get_on_cpu(policy->cpu);
753         if (freq)
754                 ret = sprintf(buf, "%u\n", freq);
755         else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
756                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
757         else
758                 ret = sprintf(buf, "%u\n", policy->cur);
759         return ret;
760 }
761
762 /*
763  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
764  */
765 #define store_one(file_name, object)                    \
766 static ssize_t store_##file_name                                        \
767 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
768 {                                                                       \
769         unsigned long val;                                              \
770         int ret;                                                        \
771                                                                         \
772         ret = kstrtoul(buf, 0, &val);                                   \
773         if (ret)                                                        \
774                 return ret;                                             \
775                                                                         \
776         ret = freq_qos_update_request(policy->object##_freq_req, val);\
777         return ret >= 0 ? count : ret;                                  \
778 }
779
780 store_one(scaling_min_freq, min);
781 store_one(scaling_max_freq, max);
782
783 /*
784  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
785  */
786 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
787                                         char *buf)
788 {
789         unsigned int cur_freq = __cpufreq_get(policy);
790
791         if (cur_freq)
792                 return sprintf(buf, "%u\n", cur_freq);
793
794         return sprintf(buf, "<unknown>\n");
795 }
796
797 /*
798  * show_scaling_governor - show the current policy for the specified CPU
799  */
800 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
801 {
802         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
803                 return sprintf(buf, "powersave\n");
804         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
805                 return sprintf(buf, "performance\n");
806         else if (policy->governor)
807                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
808                                 policy->governor->name);
809         return -EINVAL;
810 }
811
812 /*
813  * store_scaling_governor - store policy for the specified CPU
814  */
815 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
816                                         const char *buf, size_t count)
817 {
818         char str_governor[16];
819         int ret;
820
821         ret = sscanf(buf, "%15s", str_governor);
822         if (ret != 1)
823                 return -EINVAL;
824
825         if (cpufreq_driver->setpolicy) {
826                 unsigned int new_pol;
827
828                 new_pol = cpufreq_parse_policy(str_governor);
829                 if (!new_pol)
830                         return -EINVAL;
831
832                 ret = cpufreq_set_policy(policy, NULL, new_pol);
833         } else {
834                 struct cpufreq_governor *new_gov;
835
836                 new_gov = cpufreq_parse_governor(str_governor);
837                 if (!new_gov)
838                         return -EINVAL;
839
840                 ret = cpufreq_set_policy(policy, new_gov,
841                                          CPUFREQ_POLICY_UNKNOWN);
842
843                 module_put(new_gov->owner);
844         }
845
846         return ret ? ret : count;
847 }
848
849 /*
850  * show_scaling_driver - show the cpufreq driver currently loaded
851  */
852 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
853 {
854         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
855 }
856
857 /*
858  * show_scaling_available_governors - show the available CPUfreq governors
859  */
860 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
861                                                 char *buf)
862 {
863         ssize_t i = 0;
864         struct cpufreq_governor *t;
865
866         if (!has_target()) {
867                 i += sprintf(buf, "performance powersave");
868                 goto out;
869         }
870
871         mutex_lock(&cpufreq_governor_mutex);
872         for_each_governor(t) {
873                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
874                     - (CPUFREQ_NAME_LEN + 2)))
875                         break;
876                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
877         }
878         mutex_unlock(&cpufreq_governor_mutex);
879 out:
880         i += sprintf(&buf[i], "\n");
881         return i;
882 }
883
884 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
885 {
886         ssize_t i = 0;
887         unsigned int cpu;
888
889         for_each_cpu(cpu, mask) {
890                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
891                 if (i >= (PAGE_SIZE - 5))
892                         break;
893         }
894
895         /* Remove the extra space at the end */
896         i--;
897
898         i += sprintf(&buf[i], "\n");
899         return i;
900 }
901 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
902
903 /*
904  * show_related_cpus - show the CPUs affected by each transition even if
905  * hw coordination is in use
906  */
907 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
908 {
909         return cpufreq_show_cpus(policy->related_cpus, buf);
910 }
911
912 /*
913  * show_affected_cpus - show the CPUs affected by each transition
914  */
915 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
916 {
917         return cpufreq_show_cpus(policy->cpus, buf);
918 }
919
920 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
921                                         const char *buf, size_t count)
922 {
923         unsigned int freq = 0;
924         unsigned int ret;
925
926         if (!policy->governor || !policy->governor->store_setspeed)
927                 return -EINVAL;
928
929         ret = sscanf(buf, "%u", &freq);
930         if (ret != 1)
931                 return -EINVAL;
932
933         policy->governor->store_setspeed(policy, freq);
934
935         return count;
936 }
937
938 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
939 {
940         if (!policy->governor || !policy->governor->show_setspeed)
941                 return sprintf(buf, "<unsupported>\n");
942
943         return policy->governor->show_setspeed(policy, buf);
944 }
945
946 /*
947  * show_bios_limit - show the current cpufreq HW/BIOS limitation
948  */
949 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
950 {
951         unsigned int limit;
952         int ret;
953         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
954         if (!ret)
955                 return sprintf(buf, "%u\n", limit);
956         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
957 }
958
959 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
960 cpufreq_freq_attr_ro(cpuinfo_min_freq);
961 cpufreq_freq_attr_ro(cpuinfo_max_freq);
962 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
963 cpufreq_freq_attr_ro(scaling_available_governors);
964 cpufreq_freq_attr_ro(scaling_driver);
965 cpufreq_freq_attr_ro(scaling_cur_freq);
966 cpufreq_freq_attr_ro(bios_limit);
967 cpufreq_freq_attr_ro(related_cpus);
968 cpufreq_freq_attr_ro(affected_cpus);
969 cpufreq_freq_attr_rw(scaling_min_freq);
970 cpufreq_freq_attr_rw(scaling_max_freq);
971 cpufreq_freq_attr_rw(scaling_governor);
972 cpufreq_freq_attr_rw(scaling_setspeed);
973
974 static struct attribute *cpufreq_attrs[] = {
975         &cpuinfo_min_freq.attr,
976         &cpuinfo_max_freq.attr,
977         &cpuinfo_transition_latency.attr,
978         &scaling_min_freq.attr,
979         &scaling_max_freq.attr,
980         &affected_cpus.attr,
981         &related_cpus.attr,
982         &scaling_governor.attr,
983         &scaling_driver.attr,
984         &scaling_available_governors.attr,
985         &scaling_setspeed.attr,
986         NULL
987 };
988 ATTRIBUTE_GROUPS(cpufreq);
989
990 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
991 #define to_attr(a) container_of(a, struct freq_attr, attr)
992
993 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
994 {
995         struct cpufreq_policy *policy = to_policy(kobj);
996         struct freq_attr *fattr = to_attr(attr);
997         ssize_t ret = -EBUSY;
998
999         if (!fattr->show)
1000                 return -EIO;
1001
1002         down_read(&policy->rwsem);
1003         if (likely(!policy_is_inactive(policy)))
1004                 ret = fattr->show(policy, buf);
1005         up_read(&policy->rwsem);
1006
1007         return ret;
1008 }
1009
1010 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1011                      const char *buf, size_t count)
1012 {
1013         struct cpufreq_policy *policy = to_policy(kobj);
1014         struct freq_attr *fattr = to_attr(attr);
1015         ssize_t ret = -EBUSY;
1016
1017         if (!fattr->store)
1018                 return -EIO;
1019
1020         down_write(&policy->rwsem);
1021         if (likely(!policy_is_inactive(policy)))
1022                 ret = fattr->store(policy, buf, count);
1023         up_write(&policy->rwsem);
1024
1025         return ret;
1026 }
1027
1028 static void cpufreq_sysfs_release(struct kobject *kobj)
1029 {
1030         struct cpufreq_policy *policy = to_policy(kobj);
1031         pr_debug("last reference is dropped\n");
1032         complete(&policy->kobj_unregister);
1033 }
1034
1035 static const struct sysfs_ops sysfs_ops = {
1036         .show   = show,
1037         .store  = store,
1038 };
1039
1040 static const struct kobj_type ktype_cpufreq = {
1041         .sysfs_ops      = &sysfs_ops,
1042         .default_groups = cpufreq_groups,
1043         .release        = cpufreq_sysfs_release,
1044 };
1045
1046 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1047                                 struct device *dev)
1048 {
1049         if (unlikely(!dev))
1050                 return;
1051
1052         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1053                 return;
1054
1055         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1056         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1057                 dev_err(dev, "cpufreq symlink creation failed\n");
1058 }
1059
1060 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1061                                    struct device *dev)
1062 {
1063         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1064         sysfs_remove_link(&dev->kobj, "cpufreq");
1065         cpumask_clear_cpu(cpu, policy->real_cpus);
1066 }
1067
1068 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1069 {
1070         struct freq_attr **drv_attr;
1071         int ret = 0;
1072
1073         /* set up files for this cpu device */
1074         drv_attr = cpufreq_driver->attr;
1075         while (drv_attr && *drv_attr) {
1076                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1077                 if (ret)
1078                         return ret;
1079                 drv_attr++;
1080         }
1081         if (cpufreq_driver->get) {
1082                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1083                 if (ret)
1084                         return ret;
1085         }
1086
1087         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1088         if (ret)
1089                 return ret;
1090
1091         if (cpufreq_driver->bios_limit) {
1092                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1093                 if (ret)
1094                         return ret;
1095         }
1096
1097         if (cpufreq_boost_supported()) {
1098                 ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1099                 if (ret)
1100                         return ret;
1101         }
1102
1103         return 0;
1104 }
1105
1106 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1107 {
1108         struct cpufreq_governor *gov = NULL;
1109         unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1110         int ret;
1111
1112         if (has_target()) {
1113                 /* Update policy governor to the one used before hotplug. */
1114                 gov = get_governor(policy->last_governor);
1115                 if (gov) {
1116                         pr_debug("Restoring governor %s for cpu %d\n",
1117                                  gov->name, policy->cpu);
1118                 } else {
1119                         gov = get_governor(default_governor);
1120                 }
1121
1122                 if (!gov) {
1123                         gov = cpufreq_default_governor();
1124                         __module_get(gov->owner);
1125                 }
1126
1127         } else {
1128
1129                 /* Use the default policy if there is no last_policy. */
1130                 if (policy->last_policy) {
1131                         pol = policy->last_policy;
1132                 } else {
1133                         pol = cpufreq_parse_policy(default_governor);
1134                         /*
1135                          * In case the default governor is neither "performance"
1136                          * nor "powersave", fall back to the initial policy
1137                          * value set by the driver.
1138                          */
1139                         if (pol == CPUFREQ_POLICY_UNKNOWN)
1140                                 pol = policy->policy;
1141                 }
1142                 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1143                     pol != CPUFREQ_POLICY_POWERSAVE)
1144                         return -ENODATA;
1145         }
1146
1147         ret = cpufreq_set_policy(policy, gov, pol);
1148         if (gov)
1149                 module_put(gov->owner);
1150
1151         return ret;
1152 }
1153
1154 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1155 {
1156         int ret = 0;
1157
1158         /* Has this CPU been taken care of already? */
1159         if (cpumask_test_cpu(cpu, policy->cpus))
1160                 return 0;
1161
1162         down_write(&policy->rwsem);
1163         if (has_target())
1164                 cpufreq_stop_governor(policy);
1165
1166         cpumask_set_cpu(cpu, policy->cpus);
1167
1168         if (has_target()) {
1169                 ret = cpufreq_start_governor(policy);
1170                 if (ret)
1171                         pr_err("%s: Failed to start governor\n", __func__);
1172         }
1173         up_write(&policy->rwsem);
1174         return ret;
1175 }
1176
1177 void refresh_frequency_limits(struct cpufreq_policy *policy)
1178 {
1179         if (!policy_is_inactive(policy)) {
1180                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1181
1182                 cpufreq_set_policy(policy, policy->governor, policy->policy);
1183         }
1184 }
1185 EXPORT_SYMBOL(refresh_frequency_limits);
1186
1187 static void handle_update(struct work_struct *work)
1188 {
1189         struct cpufreq_policy *policy =
1190                 container_of(work, struct cpufreq_policy, update);
1191
1192         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1193         down_write(&policy->rwsem);
1194         refresh_frequency_limits(policy);
1195         up_write(&policy->rwsem);
1196 }
1197
1198 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1199                                 void *data)
1200 {
1201         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1202
1203         schedule_work(&policy->update);
1204         return 0;
1205 }
1206
1207 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1208                                 void *data)
1209 {
1210         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1211
1212         schedule_work(&policy->update);
1213         return 0;
1214 }
1215
1216 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1217 {
1218         struct kobject *kobj;
1219         struct completion *cmp;
1220
1221         down_write(&policy->rwsem);
1222         cpufreq_stats_free_table(policy);
1223         kobj = &policy->kobj;
1224         cmp = &policy->kobj_unregister;
1225         up_write(&policy->rwsem);
1226         kobject_put(kobj);
1227
1228         /*
1229          * We need to make sure that the underlying kobj is
1230          * actually not referenced anymore by anybody before we
1231          * proceed with unloading.
1232          */
1233         pr_debug("waiting for dropping of refcount\n");
1234         wait_for_completion(cmp);
1235         pr_debug("wait complete\n");
1236 }
1237
1238 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1239 {
1240         struct cpufreq_policy *policy;
1241         struct device *dev = get_cpu_device(cpu);
1242         int ret;
1243
1244         if (!dev)
1245                 return NULL;
1246
1247         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1248         if (!policy)
1249                 return NULL;
1250
1251         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1252                 goto err_free_policy;
1253
1254         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1255                 goto err_free_cpumask;
1256
1257         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1258                 goto err_free_rcpumask;
1259
1260         init_completion(&policy->kobj_unregister);
1261         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1262                                    cpufreq_global_kobject, "policy%u", cpu);
1263         if (ret) {
1264                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1265                 /*
1266                  * The entire policy object will be freed below, but the extra
1267                  * memory allocated for the kobject name needs to be freed by
1268                  * releasing the kobject.
1269                  */
1270                 kobject_put(&policy->kobj);
1271                 goto err_free_real_cpus;
1272         }
1273
1274         freq_constraints_init(&policy->constraints);
1275
1276         policy->nb_min.notifier_call = cpufreq_notifier_min;
1277         policy->nb_max.notifier_call = cpufreq_notifier_max;
1278
1279         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1280                                     &policy->nb_min);
1281         if (ret) {
1282                 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1283                         ret, cpu);
1284                 goto err_kobj_remove;
1285         }
1286
1287         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1288                                     &policy->nb_max);
1289         if (ret) {
1290                 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1291                         ret, cpu);
1292                 goto err_min_qos_notifier;
1293         }
1294
1295         INIT_LIST_HEAD(&policy->policy_list);
1296         init_rwsem(&policy->rwsem);
1297         spin_lock_init(&policy->transition_lock);
1298         init_waitqueue_head(&policy->transition_wait);
1299         INIT_WORK(&policy->update, handle_update);
1300
1301         policy->cpu = cpu;
1302         return policy;
1303
1304 err_min_qos_notifier:
1305         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1306                                  &policy->nb_min);
1307 err_kobj_remove:
1308         cpufreq_policy_put_kobj(policy);
1309 err_free_real_cpus:
1310         free_cpumask_var(policy->real_cpus);
1311 err_free_rcpumask:
1312         free_cpumask_var(policy->related_cpus);
1313 err_free_cpumask:
1314         free_cpumask_var(policy->cpus);
1315 err_free_policy:
1316         kfree(policy);
1317
1318         return NULL;
1319 }
1320
1321 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1322 {
1323         unsigned long flags;
1324         int cpu;
1325
1326         /*
1327          * The callers must ensure the policy is inactive by now, to avoid any
1328          * races with show()/store() callbacks.
1329          */
1330         if (unlikely(!policy_is_inactive(policy)))
1331                 pr_warn("%s: Freeing active policy\n", __func__);
1332
1333         /* Remove policy from list */
1334         write_lock_irqsave(&cpufreq_driver_lock, flags);
1335         list_del(&policy->policy_list);
1336
1337         for_each_cpu(cpu, policy->related_cpus)
1338                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1339         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1340
1341         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1342                                  &policy->nb_max);
1343         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1344                                  &policy->nb_min);
1345
1346         /* Cancel any pending policy->update work before freeing the policy. */
1347         cancel_work_sync(&policy->update);
1348
1349         if (policy->max_freq_req) {
1350                 /*
1351                  * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1352                  * notification, since CPUFREQ_CREATE_POLICY notification was
1353                  * sent after adding max_freq_req earlier.
1354                  */
1355                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1356                                              CPUFREQ_REMOVE_POLICY, policy);
1357                 freq_qos_remove_request(policy->max_freq_req);
1358         }
1359
1360         freq_qos_remove_request(policy->min_freq_req);
1361         kfree(policy->min_freq_req);
1362
1363         cpufreq_policy_put_kobj(policy);
1364         free_cpumask_var(policy->real_cpus);
1365         free_cpumask_var(policy->related_cpus);
1366         free_cpumask_var(policy->cpus);
1367         kfree(policy);
1368 }
1369
1370 static int cpufreq_online(unsigned int cpu)
1371 {
1372         struct cpufreq_policy *policy;
1373         bool new_policy;
1374         unsigned long flags;
1375         unsigned int j;
1376         int ret;
1377
1378         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1379
1380         /* Check if this CPU already has a policy to manage it */
1381         policy = per_cpu(cpufreq_cpu_data, cpu);
1382         if (policy) {
1383                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1384                 if (!policy_is_inactive(policy))
1385                         return cpufreq_add_policy_cpu(policy, cpu);
1386
1387                 /* This is the only online CPU for the policy.  Start over. */
1388                 new_policy = false;
1389                 down_write(&policy->rwsem);
1390                 policy->cpu = cpu;
1391                 policy->governor = NULL;
1392         } else {
1393                 new_policy = true;
1394                 policy = cpufreq_policy_alloc(cpu);
1395                 if (!policy)
1396                         return -ENOMEM;
1397                 down_write(&policy->rwsem);
1398         }
1399
1400         if (!new_policy && cpufreq_driver->online) {
1401                 /* Recover policy->cpus using related_cpus */
1402                 cpumask_copy(policy->cpus, policy->related_cpus);
1403
1404                 ret = cpufreq_driver->online(policy);
1405                 if (ret) {
1406                         pr_debug("%s: %d: initialization failed\n", __func__,
1407                                  __LINE__);
1408                         goto out_exit_policy;
1409                 }
1410         } else {
1411                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1412
1413                 /*
1414                  * Call driver. From then on the cpufreq must be able
1415                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1416                  */
1417                 ret = cpufreq_driver->init(policy);
1418                 if (ret) {
1419                         pr_debug("%s: %d: initialization failed\n", __func__,
1420                                  __LINE__);
1421                         goto out_free_policy;
1422                 }
1423
1424                 /* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1425                 policy->boost_enabled = cpufreq_boost_enabled() && policy_has_boost_freq(policy);
1426
1427                 /*
1428                  * The initialization has succeeded and the policy is online.
1429                  * If there is a problem with its frequency table, take it
1430                  * offline and drop it.
1431                  */
1432                 ret = cpufreq_table_validate_and_sort(policy);
1433                 if (ret)
1434                         goto out_offline_policy;
1435
1436                 /* related_cpus should at least include policy->cpus. */
1437                 cpumask_copy(policy->related_cpus, policy->cpus);
1438         }
1439
1440         /*
1441          * affected cpus must always be the one, which are online. We aren't
1442          * managing offline cpus here.
1443          */
1444         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1445
1446         if (new_policy) {
1447                 for_each_cpu(j, policy->related_cpus) {
1448                         per_cpu(cpufreq_cpu_data, j) = policy;
1449                         add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1450                 }
1451
1452                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1453                                                GFP_KERNEL);
1454                 if (!policy->min_freq_req) {
1455                         ret = -ENOMEM;
1456                         goto out_destroy_policy;
1457                 }
1458
1459                 ret = freq_qos_add_request(&policy->constraints,
1460                                            policy->min_freq_req, FREQ_QOS_MIN,
1461                                            FREQ_QOS_MIN_DEFAULT_VALUE);
1462                 if (ret < 0) {
1463                         /*
1464                          * So we don't call freq_qos_remove_request() for an
1465                          * uninitialized request.
1466                          */
1467                         kfree(policy->min_freq_req);
1468                         policy->min_freq_req = NULL;
1469                         goto out_destroy_policy;
1470                 }
1471
1472                 /*
1473                  * This must be initialized right here to avoid calling
1474                  * freq_qos_remove_request() on uninitialized request in case
1475                  * of errors.
1476                  */
1477                 policy->max_freq_req = policy->min_freq_req + 1;
1478
1479                 ret = freq_qos_add_request(&policy->constraints,
1480                                            policy->max_freq_req, FREQ_QOS_MAX,
1481                                            FREQ_QOS_MAX_DEFAULT_VALUE);
1482                 if (ret < 0) {
1483                         policy->max_freq_req = NULL;
1484                         goto out_destroy_policy;
1485                 }
1486
1487                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1488                                 CPUFREQ_CREATE_POLICY, policy);
1489         }
1490
1491         if (cpufreq_driver->get && has_target()) {
1492                 policy->cur = cpufreq_driver->get(policy->cpu);
1493                 if (!policy->cur) {
1494                         ret = -EIO;
1495                         pr_err("%s: ->get() failed\n", __func__);
1496                         goto out_destroy_policy;
1497                 }
1498         }
1499
1500         /*
1501          * Sometimes boot loaders set CPU frequency to a value outside of
1502          * frequency table present with cpufreq core. In such cases CPU might be
1503          * unstable if it has to run on that frequency for long duration of time
1504          * and so its better to set it to a frequency which is specified in
1505          * freq-table. This also makes cpufreq stats inconsistent as
1506          * cpufreq-stats would fail to register because current frequency of CPU
1507          * isn't found in freq-table.
1508          *
1509          * Because we don't want this change to effect boot process badly, we go
1510          * for the next freq which is >= policy->cur ('cur' must be set by now,
1511          * otherwise we will end up setting freq to lowest of the table as 'cur'
1512          * is initialized to zero).
1513          *
1514          * We are passing target-freq as "policy->cur - 1" otherwise
1515          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1516          * equal to target-freq.
1517          */
1518         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1519             && has_target()) {
1520                 unsigned int old_freq = policy->cur;
1521
1522                 /* Are we running at unknown frequency ? */
1523                 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1524                 if (ret == -EINVAL) {
1525                         ret = __cpufreq_driver_target(policy, old_freq - 1,
1526                                                       CPUFREQ_RELATION_L);
1527
1528                         /*
1529                          * Reaching here after boot in a few seconds may not
1530                          * mean that system will remain stable at "unknown"
1531                          * frequency for longer duration. Hence, a BUG_ON().
1532                          */
1533                         BUG_ON(ret);
1534                         pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1535                                 __func__, policy->cpu, old_freq, policy->cur);
1536                 }
1537         }
1538
1539         if (new_policy) {
1540                 ret = cpufreq_add_dev_interface(policy);
1541                 if (ret)
1542                         goto out_destroy_policy;
1543
1544                 cpufreq_stats_create_table(policy);
1545
1546                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1547                 list_add(&policy->policy_list, &cpufreq_policy_list);
1548                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1549
1550                 /*
1551                  * Register with the energy model before
1552                  * sugov_eas_rebuild_sd() is called, which will result
1553                  * in rebuilding of the sched domains, which should only be done
1554                  * once the energy model is properly initialized for the policy
1555                  * first.
1556                  *
1557                  * Also, this should be called before the policy is registered
1558                  * with cooling framework.
1559                  */
1560                 if (cpufreq_driver->register_em)
1561                         cpufreq_driver->register_em(policy);
1562         }
1563
1564         ret = cpufreq_init_policy(policy);
1565         if (ret) {
1566                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1567                        __func__, cpu, ret);
1568                 goto out_destroy_policy;
1569         }
1570
1571         up_write(&policy->rwsem);
1572
1573         kobject_uevent(&policy->kobj, KOBJ_ADD);
1574
1575         /* Callback for handling stuff after policy is ready */
1576         if (cpufreq_driver->ready)
1577                 cpufreq_driver->ready(policy);
1578
1579         /* Register cpufreq cooling only for a new policy */
1580         if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1581                 policy->cdev = of_cpufreq_cooling_register(policy);
1582
1583         pr_debug("initialization complete\n");
1584
1585         return 0;
1586
1587 out_destroy_policy:
1588         for_each_cpu(j, policy->real_cpus)
1589                 remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1590
1591 out_offline_policy:
1592         if (cpufreq_driver->offline)
1593                 cpufreq_driver->offline(policy);
1594
1595 out_exit_policy:
1596         if (cpufreq_driver->exit)
1597                 cpufreq_driver->exit(policy);
1598
1599 out_free_policy:
1600         cpumask_clear(policy->cpus);
1601         up_write(&policy->rwsem);
1602
1603         cpufreq_policy_free(policy);
1604         return ret;
1605 }
1606
1607 /**
1608  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1609  * @dev: CPU device.
1610  * @sif: Subsystem interface structure pointer (not used)
1611  */
1612 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1613 {
1614         struct cpufreq_policy *policy;
1615         unsigned cpu = dev->id;
1616         int ret;
1617
1618         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1619
1620         if (cpu_online(cpu)) {
1621                 ret = cpufreq_online(cpu);
1622                 if (ret)
1623                         return ret;
1624         }
1625
1626         /* Create sysfs link on CPU registration */
1627         policy = per_cpu(cpufreq_cpu_data, cpu);
1628         if (policy)
1629                 add_cpu_dev_symlink(policy, cpu, dev);
1630
1631         return 0;
1632 }
1633
1634 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1635 {
1636         int ret;
1637
1638         if (has_target())
1639                 cpufreq_stop_governor(policy);
1640
1641         cpumask_clear_cpu(cpu, policy->cpus);
1642
1643         if (!policy_is_inactive(policy)) {
1644                 /* Nominate a new CPU if necessary. */
1645                 if (cpu == policy->cpu)
1646                         policy->cpu = cpumask_any(policy->cpus);
1647
1648                 /* Start the governor again for the active policy. */
1649                 if (has_target()) {
1650                         ret = cpufreq_start_governor(policy);
1651                         if (ret)
1652                                 pr_err("%s: Failed to start governor\n", __func__);
1653                 }
1654
1655                 return;
1656         }
1657
1658         if (has_target())
1659                 strscpy(policy->last_governor, policy->governor->name,
1660                         CPUFREQ_NAME_LEN);
1661         else
1662                 policy->last_policy = policy->policy;
1663
1664         if (has_target())
1665                 cpufreq_exit_governor(policy);
1666
1667         /*
1668          * Perform the ->offline() during light-weight tear-down, as
1669          * that allows fast recovery when the CPU comes back.
1670          */
1671         if (cpufreq_driver->offline) {
1672                 cpufreq_driver->offline(policy);
1673         } else if (cpufreq_driver->exit) {
1674                 cpufreq_driver->exit(policy);
1675                 policy->freq_table = NULL;
1676         }
1677 }
1678
1679 static int cpufreq_offline(unsigned int cpu)
1680 {
1681         struct cpufreq_policy *policy;
1682
1683         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1684
1685         policy = cpufreq_cpu_get_raw(cpu);
1686         if (!policy) {
1687                 pr_debug("%s: No cpu_data found\n", __func__);
1688                 return 0;
1689         }
1690
1691         down_write(&policy->rwsem);
1692
1693         __cpufreq_offline(cpu, policy);
1694
1695         up_write(&policy->rwsem);
1696         return 0;
1697 }
1698
1699 /*
1700  * cpufreq_remove_dev - remove a CPU device
1701  *
1702  * Removes the cpufreq interface for a CPU device.
1703  */
1704 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1705 {
1706         unsigned int cpu = dev->id;
1707         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1708
1709         if (!policy)
1710                 return;
1711
1712         down_write(&policy->rwsem);
1713
1714         if (cpu_online(cpu))
1715                 __cpufreq_offline(cpu, policy);
1716
1717         remove_cpu_dev_symlink(policy, cpu, dev);
1718
1719         if (!cpumask_empty(policy->real_cpus)) {
1720                 up_write(&policy->rwsem);
1721                 return;
1722         }
1723
1724         /*
1725          * Unregister cpufreq cooling once all the CPUs of the policy are
1726          * removed.
1727          */
1728         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1729                 cpufreq_cooling_unregister(policy->cdev);
1730                 policy->cdev = NULL;
1731         }
1732
1733         /* We did light-weight exit earlier, do full tear down now */
1734         if (cpufreq_driver->offline)
1735                 cpufreq_driver->exit(policy);
1736
1737         up_write(&policy->rwsem);
1738
1739         cpufreq_policy_free(policy);
1740 }
1741
1742 /**
1743  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1744  * @policy: Policy managing CPUs.
1745  * @new_freq: New CPU frequency.
1746  *
1747  * Adjust to the current frequency first and clean up later by either calling
1748  * cpufreq_update_policy(), or scheduling handle_update().
1749  */
1750 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1751                                 unsigned int new_freq)
1752 {
1753         struct cpufreq_freqs freqs;
1754
1755         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1756                  policy->cur, new_freq);
1757
1758         freqs.old = policy->cur;
1759         freqs.new = new_freq;
1760
1761         cpufreq_freq_transition_begin(policy, &freqs);
1762         cpufreq_freq_transition_end(policy, &freqs, 0);
1763 }
1764
1765 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1766 {
1767         unsigned int new_freq;
1768
1769         new_freq = cpufreq_driver->get(policy->cpu);
1770         if (!new_freq)
1771                 return 0;
1772
1773         /*
1774          * If fast frequency switching is used with the given policy, the check
1775          * against policy->cur is pointless, so skip it in that case.
1776          */
1777         if (policy->fast_switch_enabled || !has_target())
1778                 return new_freq;
1779
1780         if (policy->cur != new_freq) {
1781                 /*
1782                  * For some platforms, the frequency returned by hardware may be
1783                  * slightly different from what is provided in the frequency
1784                  * table, for example hardware may return 499 MHz instead of 500
1785                  * MHz. In such cases it is better to avoid getting into
1786                  * unnecessary frequency updates.
1787                  */
1788                 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1789                         return policy->cur;
1790
1791                 cpufreq_out_of_sync(policy, new_freq);
1792                 if (update)
1793                         schedule_work(&policy->update);
1794         }
1795
1796         return new_freq;
1797 }
1798
1799 /**
1800  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1801  * @cpu: CPU number
1802  *
1803  * This is the last known freq, without actually getting it from the driver.
1804  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1805  */
1806 unsigned int cpufreq_quick_get(unsigned int cpu)
1807 {
1808         struct cpufreq_policy *policy;
1809         unsigned int ret_freq = 0;
1810         unsigned long flags;
1811
1812         read_lock_irqsave(&cpufreq_driver_lock, flags);
1813
1814         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1815                 ret_freq = cpufreq_driver->get(cpu);
1816                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1817                 return ret_freq;
1818         }
1819
1820         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1821
1822         policy = cpufreq_cpu_get(cpu);
1823         if (policy) {
1824                 ret_freq = policy->cur;
1825                 cpufreq_cpu_put(policy);
1826         }
1827
1828         return ret_freq;
1829 }
1830 EXPORT_SYMBOL(cpufreq_quick_get);
1831
1832 /**
1833  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1834  * @cpu: CPU number
1835  *
1836  * Just return the max possible frequency for a given CPU.
1837  */
1838 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1839 {
1840         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1841         unsigned int ret_freq = 0;
1842
1843         if (policy) {
1844                 ret_freq = policy->max;
1845                 cpufreq_cpu_put(policy);
1846         }
1847
1848         return ret_freq;
1849 }
1850 EXPORT_SYMBOL(cpufreq_quick_get_max);
1851
1852 /**
1853  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1854  * @cpu: CPU number
1855  *
1856  * The default return value is the max_freq field of cpuinfo.
1857  */
1858 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1859 {
1860         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1861         unsigned int ret_freq = 0;
1862
1863         if (policy) {
1864                 ret_freq = policy->cpuinfo.max_freq;
1865                 cpufreq_cpu_put(policy);
1866         }
1867
1868         return ret_freq;
1869 }
1870 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1871
1872 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1873 {
1874         if (unlikely(policy_is_inactive(policy)))
1875                 return 0;
1876
1877         return cpufreq_verify_current_freq(policy, true);
1878 }
1879
1880 /**
1881  * cpufreq_get - get the current CPU frequency (in kHz)
1882  * @cpu: CPU number
1883  *
1884  * Get the CPU current (static) CPU frequency
1885  */
1886 unsigned int cpufreq_get(unsigned int cpu)
1887 {
1888         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1889         unsigned int ret_freq = 0;
1890
1891         if (policy) {
1892                 down_read(&policy->rwsem);
1893                 if (cpufreq_driver->get)
1894                         ret_freq = __cpufreq_get(policy);
1895                 up_read(&policy->rwsem);
1896
1897                 cpufreq_cpu_put(policy);
1898         }
1899
1900         return ret_freq;
1901 }
1902 EXPORT_SYMBOL(cpufreq_get);
1903
1904 static struct subsys_interface cpufreq_interface = {
1905         .name           = "cpufreq",
1906         .subsys         = &cpu_subsys,
1907         .add_dev        = cpufreq_add_dev,
1908         .remove_dev     = cpufreq_remove_dev,
1909 };
1910
1911 /*
1912  * In case platform wants some specific frequency to be configured
1913  * during suspend..
1914  */
1915 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1916 {
1917         int ret;
1918
1919         if (!policy->suspend_freq) {
1920                 pr_debug("%s: suspend_freq not defined\n", __func__);
1921                 return 0;
1922         }
1923
1924         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1925                         policy->suspend_freq);
1926
1927         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1928                         CPUFREQ_RELATION_H);
1929         if (ret)
1930                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1931                                 __func__, policy->suspend_freq, ret);
1932
1933         return ret;
1934 }
1935 EXPORT_SYMBOL(cpufreq_generic_suspend);
1936
1937 /**
1938  * cpufreq_suspend() - Suspend CPUFreq governors.
1939  *
1940  * Called during system wide Suspend/Hibernate cycles for suspending governors
1941  * as some platforms can't change frequency after this point in suspend cycle.
1942  * Because some of the devices (like: i2c, regulators, etc) they use for
1943  * changing frequency are suspended quickly after this point.
1944  */
1945 void cpufreq_suspend(void)
1946 {
1947         struct cpufreq_policy *policy;
1948
1949         if (!cpufreq_driver)
1950                 return;
1951
1952         if (!has_target() && !cpufreq_driver->suspend)
1953                 goto suspend;
1954
1955         pr_debug("%s: Suspending Governors\n", __func__);
1956
1957         for_each_active_policy(policy) {
1958                 if (has_target()) {
1959                         down_write(&policy->rwsem);
1960                         cpufreq_stop_governor(policy);
1961                         up_write(&policy->rwsem);
1962                 }
1963
1964                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1965                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1966                                 cpufreq_driver->name);
1967         }
1968
1969 suspend:
1970         cpufreq_suspended = true;
1971 }
1972
1973 /**
1974  * cpufreq_resume() - Resume CPUFreq governors.
1975  *
1976  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1977  * are suspended with cpufreq_suspend().
1978  */
1979 void cpufreq_resume(void)
1980 {
1981         struct cpufreq_policy *policy;
1982         int ret;
1983
1984         if (!cpufreq_driver)
1985                 return;
1986
1987         if (unlikely(!cpufreq_suspended))
1988                 return;
1989
1990         cpufreq_suspended = false;
1991
1992         if (!has_target() && !cpufreq_driver->resume)
1993                 return;
1994
1995         pr_debug("%s: Resuming Governors\n", __func__);
1996
1997         for_each_active_policy(policy) {
1998                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1999                         pr_err("%s: Failed to resume driver: %s\n", __func__,
2000                                 cpufreq_driver->name);
2001                 } else if (has_target()) {
2002                         down_write(&policy->rwsem);
2003                         ret = cpufreq_start_governor(policy);
2004                         up_write(&policy->rwsem);
2005
2006                         if (ret)
2007                                 pr_err("%s: Failed to start governor for CPU%u's policy\n",
2008                                        __func__, policy->cpu);
2009                 }
2010         }
2011 }
2012
2013 /**
2014  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2015  * @flags: Flags to test against the current cpufreq driver's flags.
2016  *
2017  * Assumes that the driver is there, so callers must ensure that this is the
2018  * case.
2019  */
2020 bool cpufreq_driver_test_flags(u16 flags)
2021 {
2022         return !!(cpufreq_driver->flags & flags);
2023 }
2024
2025 /**
2026  * cpufreq_get_current_driver - Return the current driver's name.
2027  *
2028  * Return the name string of the currently registered cpufreq driver or NULL if
2029  * none.
2030  */
2031 const char *cpufreq_get_current_driver(void)
2032 {
2033         if (cpufreq_driver)
2034                 return cpufreq_driver->name;
2035
2036         return NULL;
2037 }
2038 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2039
2040 /**
2041  * cpufreq_get_driver_data - Return current driver data.
2042  *
2043  * Return the private data of the currently registered cpufreq driver, or NULL
2044  * if no cpufreq driver has been registered.
2045  */
2046 void *cpufreq_get_driver_data(void)
2047 {
2048         if (cpufreq_driver)
2049                 return cpufreq_driver->driver_data;
2050
2051         return NULL;
2052 }
2053 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2054
2055 /*********************************************************************
2056  *                     NOTIFIER LISTS INTERFACE                      *
2057  *********************************************************************/
2058
2059 /**
2060  * cpufreq_register_notifier - Register a notifier with cpufreq.
2061  * @nb: notifier function to register.
2062  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2063  *
2064  * Add a notifier to one of two lists: either a list of notifiers that run on
2065  * clock rate changes (once before and once after every transition), or a list
2066  * of notifiers that ron on cpufreq policy changes.
2067  *
2068  * This function may sleep and it has the same return values as
2069  * blocking_notifier_chain_register().
2070  */
2071 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2072 {
2073         int ret;
2074
2075         if (cpufreq_disabled())
2076                 return -EINVAL;
2077
2078         switch (list) {
2079         case CPUFREQ_TRANSITION_NOTIFIER:
2080                 mutex_lock(&cpufreq_fast_switch_lock);
2081
2082                 if (cpufreq_fast_switch_count > 0) {
2083                         mutex_unlock(&cpufreq_fast_switch_lock);
2084                         return -EBUSY;
2085                 }
2086                 ret = srcu_notifier_chain_register(
2087                                 &cpufreq_transition_notifier_list, nb);
2088                 if (!ret)
2089                         cpufreq_fast_switch_count--;
2090
2091                 mutex_unlock(&cpufreq_fast_switch_lock);
2092                 break;
2093         case CPUFREQ_POLICY_NOTIFIER:
2094                 ret = blocking_notifier_chain_register(
2095                                 &cpufreq_policy_notifier_list, nb);
2096                 break;
2097         default:
2098                 ret = -EINVAL;
2099         }
2100
2101         return ret;
2102 }
2103 EXPORT_SYMBOL(cpufreq_register_notifier);
2104
2105 /**
2106  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2107  * @nb: notifier block to be unregistered.
2108  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2109  *
2110  * Remove a notifier from one of the cpufreq notifier lists.
2111  *
2112  * This function may sleep and it has the same return values as
2113  * blocking_notifier_chain_unregister().
2114  */
2115 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2116 {
2117         int ret;
2118
2119         if (cpufreq_disabled())
2120                 return -EINVAL;
2121
2122         switch (list) {
2123         case CPUFREQ_TRANSITION_NOTIFIER:
2124                 mutex_lock(&cpufreq_fast_switch_lock);
2125
2126                 ret = srcu_notifier_chain_unregister(
2127                                 &cpufreq_transition_notifier_list, nb);
2128                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2129                         cpufreq_fast_switch_count++;
2130
2131                 mutex_unlock(&cpufreq_fast_switch_lock);
2132                 break;
2133         case CPUFREQ_POLICY_NOTIFIER:
2134                 ret = blocking_notifier_chain_unregister(
2135                                 &cpufreq_policy_notifier_list, nb);
2136                 break;
2137         default:
2138                 ret = -EINVAL;
2139         }
2140
2141         return ret;
2142 }
2143 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2144
2145
2146 /*********************************************************************
2147  *                              GOVERNORS                            *
2148  *********************************************************************/
2149
2150 /**
2151  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2152  * @policy: cpufreq policy to switch the frequency for.
2153  * @target_freq: New frequency to set (may be approximate).
2154  *
2155  * Carry out a fast frequency switch without sleeping.
2156  *
2157  * The driver's ->fast_switch() callback invoked by this function must be
2158  * suitable for being called from within RCU-sched read-side critical sections
2159  * and it is expected to select the minimum available frequency greater than or
2160  * equal to @target_freq (CPUFREQ_RELATION_L).
2161  *
2162  * This function must not be called if policy->fast_switch_enabled is unset.
2163  *
2164  * Governors calling this function must guarantee that it will never be invoked
2165  * twice in parallel for the same policy and that it will never be called in
2166  * parallel with either ->target() or ->target_index() for the same policy.
2167  *
2168  * Returns the actual frequency set for the CPU.
2169  *
2170  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2171  * error condition, the hardware configuration must be preserved.
2172  */
2173 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2174                                         unsigned int target_freq)
2175 {
2176         unsigned int freq;
2177         int cpu;
2178
2179         target_freq = clamp_val(target_freq, policy->min, policy->max);
2180         freq = cpufreq_driver->fast_switch(policy, target_freq);
2181
2182         if (!freq)
2183                 return 0;
2184
2185         policy->cur = freq;
2186         arch_set_freq_scale(policy->related_cpus, freq,
2187                             arch_scale_freq_ref(policy->cpu));
2188         cpufreq_stats_record_transition(policy, freq);
2189
2190         if (trace_cpu_frequency_enabled()) {
2191                 for_each_cpu(cpu, policy->cpus)
2192                         trace_cpu_frequency(freq, cpu);
2193         }
2194
2195         return freq;
2196 }
2197 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2198
2199 /**
2200  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2201  * @cpu: Target CPU.
2202  * @min_perf: Minimum (required) performance level (units of @capacity).
2203  * @target_perf: Target (desired) performance level (units of @capacity).
2204  * @capacity: Capacity of the target CPU.
2205  *
2206  * Carry out a fast performance level switch of @cpu without sleeping.
2207  *
2208  * The driver's ->adjust_perf() callback invoked by this function must be
2209  * suitable for being called from within RCU-sched read-side critical sections
2210  * and it is expected to select a suitable performance level equal to or above
2211  * @min_perf and preferably equal to or below @target_perf.
2212  *
2213  * This function must not be called if policy->fast_switch_enabled is unset.
2214  *
2215  * Governors calling this function must guarantee that it will never be invoked
2216  * twice in parallel for the same CPU and that it will never be called in
2217  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2218  * the same CPU.
2219  */
2220 void cpufreq_driver_adjust_perf(unsigned int cpu,
2221                                  unsigned long min_perf,
2222                                  unsigned long target_perf,
2223                                  unsigned long capacity)
2224 {
2225         cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2226 }
2227
2228 /**
2229  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2230  *
2231  * Return 'true' if the ->adjust_perf callback is present for the
2232  * current driver or 'false' otherwise.
2233  */
2234 bool cpufreq_driver_has_adjust_perf(void)
2235 {
2236         return !!cpufreq_driver->adjust_perf;
2237 }
2238
2239 /* Must set freqs->new to intermediate frequency */
2240 static int __target_intermediate(struct cpufreq_policy *policy,
2241                                  struct cpufreq_freqs *freqs, int index)
2242 {
2243         int ret;
2244
2245         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2246
2247         /* We don't need to switch to intermediate freq */
2248         if (!freqs->new)
2249                 return 0;
2250
2251         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2252                  __func__, policy->cpu, freqs->old, freqs->new);
2253
2254         cpufreq_freq_transition_begin(policy, freqs);
2255         ret = cpufreq_driver->target_intermediate(policy, index);
2256         cpufreq_freq_transition_end(policy, freqs, ret);
2257
2258         if (ret)
2259                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2260                        __func__, ret);
2261
2262         return ret;
2263 }
2264
2265 static int __target_index(struct cpufreq_policy *policy, int index)
2266 {
2267         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2268         unsigned int restore_freq, intermediate_freq = 0;
2269         unsigned int newfreq = policy->freq_table[index].frequency;
2270         int retval = -EINVAL;
2271         bool notify;
2272
2273         if (newfreq == policy->cur)
2274                 return 0;
2275
2276         /* Save last value to restore later on errors */
2277         restore_freq = policy->cur;
2278
2279         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2280         if (notify) {
2281                 /* Handle switching to intermediate frequency */
2282                 if (cpufreq_driver->get_intermediate) {
2283                         retval = __target_intermediate(policy, &freqs, index);
2284                         if (retval)
2285                                 return retval;
2286
2287                         intermediate_freq = freqs.new;
2288                         /* Set old freq to intermediate */
2289                         if (intermediate_freq)
2290                                 freqs.old = freqs.new;
2291                 }
2292
2293                 freqs.new = newfreq;
2294                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2295                          __func__, policy->cpu, freqs.old, freqs.new);
2296
2297                 cpufreq_freq_transition_begin(policy, &freqs);
2298         }
2299
2300         retval = cpufreq_driver->target_index(policy, index);
2301         if (retval)
2302                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2303                        retval);
2304
2305         if (notify) {
2306                 cpufreq_freq_transition_end(policy, &freqs, retval);
2307
2308                 /*
2309                  * Failed after setting to intermediate freq? Driver should have
2310                  * reverted back to initial frequency and so should we. Check
2311                  * here for intermediate_freq instead of get_intermediate, in
2312                  * case we haven't switched to intermediate freq at all.
2313                  */
2314                 if (unlikely(retval && intermediate_freq)) {
2315                         freqs.old = intermediate_freq;
2316                         freqs.new = restore_freq;
2317                         cpufreq_freq_transition_begin(policy, &freqs);
2318                         cpufreq_freq_transition_end(policy, &freqs, 0);
2319                 }
2320         }
2321
2322         return retval;
2323 }
2324
2325 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2326                             unsigned int target_freq,
2327                             unsigned int relation)
2328 {
2329         unsigned int old_target_freq = target_freq;
2330
2331         if (cpufreq_disabled())
2332                 return -ENODEV;
2333
2334         target_freq = __resolve_freq(policy, target_freq, relation);
2335
2336         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2337                  policy->cpu, target_freq, relation, old_target_freq);
2338
2339         /*
2340          * This might look like a redundant call as we are checking it again
2341          * after finding index. But it is left intentionally for cases where
2342          * exactly same freq is called again and so we can save on few function
2343          * calls.
2344          */
2345         if (target_freq == policy->cur &&
2346             !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2347                 return 0;
2348
2349         if (cpufreq_driver->target) {
2350                 /*
2351                  * If the driver hasn't setup a single inefficient frequency,
2352                  * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2353                  */
2354                 if (!policy->efficiencies_available)
2355                         relation &= ~CPUFREQ_RELATION_E;
2356
2357                 return cpufreq_driver->target(policy, target_freq, relation);
2358         }
2359
2360         if (!cpufreq_driver->target_index)
2361                 return -EINVAL;
2362
2363         return __target_index(policy, policy->cached_resolved_idx);
2364 }
2365 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2366
2367 int cpufreq_driver_target(struct cpufreq_policy *policy,
2368                           unsigned int target_freq,
2369                           unsigned int relation)
2370 {
2371         int ret;
2372
2373         down_write(&policy->rwsem);
2374
2375         ret = __cpufreq_driver_target(policy, target_freq, relation);
2376
2377         up_write(&policy->rwsem);
2378
2379         return ret;
2380 }
2381 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2382
2383 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2384 {
2385         return NULL;
2386 }
2387
2388 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2389 {
2390         int ret;
2391
2392         /* Don't start any governor operations if we are entering suspend */
2393         if (cpufreq_suspended)
2394                 return 0;
2395         /*
2396          * Governor might not be initiated here if ACPI _PPC changed
2397          * notification happened, so check it.
2398          */
2399         if (!policy->governor)
2400                 return -EINVAL;
2401
2402         /* Platform doesn't want dynamic frequency switching ? */
2403         if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2404             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2405                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2406
2407                 if (gov) {
2408                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2409                                 policy->governor->name, gov->name);
2410                         policy->governor = gov;
2411                 } else {
2412                         return -EINVAL;
2413                 }
2414         }
2415
2416         if (!try_module_get(policy->governor->owner))
2417                 return -EINVAL;
2418
2419         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2420
2421         if (policy->governor->init) {
2422                 ret = policy->governor->init(policy);
2423                 if (ret) {
2424                         module_put(policy->governor->owner);
2425                         return ret;
2426                 }
2427         }
2428
2429         policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2430
2431         return 0;
2432 }
2433
2434 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2435 {
2436         if (cpufreq_suspended || !policy->governor)
2437                 return;
2438
2439         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2440
2441         if (policy->governor->exit)
2442                 policy->governor->exit(policy);
2443
2444         module_put(policy->governor->owner);
2445 }
2446
2447 int cpufreq_start_governor(struct cpufreq_policy *policy)
2448 {
2449         int ret;
2450
2451         if (cpufreq_suspended)
2452                 return 0;
2453
2454         if (!policy->governor)
2455                 return -EINVAL;
2456
2457         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2458
2459         if (cpufreq_driver->get)
2460                 cpufreq_verify_current_freq(policy, false);
2461
2462         if (policy->governor->start) {
2463                 ret = policy->governor->start(policy);
2464                 if (ret)
2465                         return ret;
2466         }
2467
2468         if (policy->governor->limits)
2469                 policy->governor->limits(policy);
2470
2471         return 0;
2472 }
2473
2474 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2475 {
2476         if (cpufreq_suspended || !policy->governor)
2477                 return;
2478
2479         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2480
2481         if (policy->governor->stop)
2482                 policy->governor->stop(policy);
2483 }
2484
2485 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2486 {
2487         if (cpufreq_suspended || !policy->governor)
2488                 return;
2489
2490         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2491
2492         if (policy->governor->limits)
2493                 policy->governor->limits(policy);
2494 }
2495
2496 int cpufreq_register_governor(struct cpufreq_governor *governor)
2497 {
2498         int err;
2499
2500         if (!governor)
2501                 return -EINVAL;
2502
2503         if (cpufreq_disabled())
2504                 return -ENODEV;
2505
2506         mutex_lock(&cpufreq_governor_mutex);
2507
2508         err = -EBUSY;
2509         if (!find_governor(governor->name)) {
2510                 err = 0;
2511                 list_add(&governor->governor_list, &cpufreq_governor_list);
2512         }
2513
2514         mutex_unlock(&cpufreq_governor_mutex);
2515         return err;
2516 }
2517 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2518
2519 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2520 {
2521         struct cpufreq_policy *policy;
2522         unsigned long flags;
2523
2524         if (!governor)
2525                 return;
2526
2527         if (cpufreq_disabled())
2528                 return;
2529
2530         /* clear last_governor for all inactive policies */
2531         read_lock_irqsave(&cpufreq_driver_lock, flags);
2532         for_each_inactive_policy(policy) {
2533                 if (!strcmp(policy->last_governor, governor->name)) {
2534                         policy->governor = NULL;
2535                         strcpy(policy->last_governor, "\0");
2536                 }
2537         }
2538         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2539
2540         mutex_lock(&cpufreq_governor_mutex);
2541         list_del(&governor->governor_list);
2542         mutex_unlock(&cpufreq_governor_mutex);
2543 }
2544 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2545
2546
2547 /*********************************************************************
2548  *                          POLICY INTERFACE                         *
2549  *********************************************************************/
2550
2551 /**
2552  * cpufreq_get_policy - get the current cpufreq_policy
2553  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2554  *      is written
2555  * @cpu: CPU to find the policy for
2556  *
2557  * Reads the current cpufreq policy.
2558  */
2559 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2560 {
2561         struct cpufreq_policy *cpu_policy;
2562         if (!policy)
2563                 return -EINVAL;
2564
2565         cpu_policy = cpufreq_cpu_get(cpu);
2566         if (!cpu_policy)
2567                 return -EINVAL;
2568
2569         memcpy(policy, cpu_policy, sizeof(*policy));
2570
2571         cpufreq_cpu_put(cpu_policy);
2572         return 0;
2573 }
2574 EXPORT_SYMBOL(cpufreq_get_policy);
2575
2576 /**
2577  * cpufreq_set_policy - Modify cpufreq policy parameters.
2578  * @policy: Policy object to modify.
2579  * @new_gov: Policy governor pointer.
2580  * @new_pol: Policy value (for drivers with built-in governors).
2581  *
2582  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2583  * limits to be set for the policy, update @policy with the verified limits
2584  * values and either invoke the driver's ->setpolicy() callback (if present) or
2585  * carry out a governor update for @policy.  That is, run the current governor's
2586  * ->limits() callback (if @new_gov points to the same object as the one in
2587  * @policy) or replace the governor for @policy with @new_gov.
2588  *
2589  * The cpuinfo part of @policy is not updated by this function.
2590  */
2591 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2592                               struct cpufreq_governor *new_gov,
2593                               unsigned int new_pol)
2594 {
2595         struct cpufreq_policy_data new_data;
2596         struct cpufreq_governor *old_gov;
2597         int ret;
2598
2599         memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2600         new_data.freq_table = policy->freq_table;
2601         new_data.cpu = policy->cpu;
2602         /*
2603          * PM QoS framework collects all the requests from users and provide us
2604          * the final aggregated value here.
2605          */
2606         new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2607         new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2608
2609         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2610                  new_data.cpu, new_data.min, new_data.max);
2611
2612         /*
2613          * Verify that the CPU speed can be set within these limits and make sure
2614          * that min <= max.
2615          */
2616         ret = cpufreq_driver->verify(&new_data);
2617         if (ret)
2618                 return ret;
2619
2620         /*
2621          * Resolve policy min/max to available frequencies. It ensures
2622          * no frequency resolution will neither overshoot the requested maximum
2623          * nor undershoot the requested minimum.
2624          */
2625         policy->min = new_data.min;
2626         policy->max = new_data.max;
2627         policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2628         policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2629         trace_cpu_frequency_limits(policy);
2630
2631         policy->cached_target_freq = UINT_MAX;
2632
2633         pr_debug("new min and max freqs are %u - %u kHz\n",
2634                  policy->min, policy->max);
2635
2636         if (cpufreq_driver->setpolicy) {
2637                 policy->policy = new_pol;
2638                 pr_debug("setting range\n");
2639                 return cpufreq_driver->setpolicy(policy);
2640         }
2641
2642         if (new_gov == policy->governor) {
2643                 pr_debug("governor limits update\n");
2644                 cpufreq_governor_limits(policy);
2645                 return 0;
2646         }
2647
2648         pr_debug("governor switch\n");
2649
2650         /* save old, working values */
2651         old_gov = policy->governor;
2652         /* end old governor */
2653         if (old_gov) {
2654                 cpufreq_stop_governor(policy);
2655                 cpufreq_exit_governor(policy);
2656         }
2657
2658         /* start new governor */
2659         policy->governor = new_gov;
2660         ret = cpufreq_init_governor(policy);
2661         if (!ret) {
2662                 ret = cpufreq_start_governor(policy);
2663                 if (!ret) {
2664                         pr_debug("governor change\n");
2665                         return 0;
2666                 }
2667                 cpufreq_exit_governor(policy);
2668         }
2669
2670         /* new governor failed, so re-start old one */
2671         pr_debug("starting governor %s failed\n", policy->governor->name);
2672         if (old_gov) {
2673                 policy->governor = old_gov;
2674                 if (cpufreq_init_governor(policy))
2675                         policy->governor = NULL;
2676                 else
2677                         cpufreq_start_governor(policy);
2678         }
2679
2680         return ret;
2681 }
2682
2683 /**
2684  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2685  * @cpu: CPU to re-evaluate the policy for.
2686  *
2687  * Update the current frequency for the cpufreq policy of @cpu and use
2688  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2689  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2690  * for the policy in question, among other things.
2691  */
2692 void cpufreq_update_policy(unsigned int cpu)
2693 {
2694         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2695
2696         if (!policy)
2697                 return;
2698
2699         /*
2700          * BIOS might change freq behind our back
2701          * -> ask driver for current freq and notify governors about a change
2702          */
2703         if (cpufreq_driver->get && has_target() &&
2704             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2705                 goto unlock;
2706
2707         refresh_frequency_limits(policy);
2708
2709 unlock:
2710         cpufreq_cpu_release(policy);
2711 }
2712 EXPORT_SYMBOL(cpufreq_update_policy);
2713
2714 /**
2715  * cpufreq_update_limits - Update policy limits for a given CPU.
2716  * @cpu: CPU to update the policy limits for.
2717  *
2718  * Invoke the driver's ->update_limits callback if present or call
2719  * cpufreq_update_policy() for @cpu.
2720  */
2721 void cpufreq_update_limits(unsigned int cpu)
2722 {
2723         if (cpufreq_driver->update_limits)
2724                 cpufreq_driver->update_limits(cpu);
2725         else
2726                 cpufreq_update_policy(cpu);
2727 }
2728 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2729
2730 /*********************************************************************
2731  *               BOOST                                               *
2732  *********************************************************************/
2733 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2734 {
2735         int ret;
2736
2737         if (!policy->freq_table)
2738                 return -ENXIO;
2739
2740         ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2741         if (ret) {
2742                 pr_err("%s: Policy frequency update failed\n", __func__);
2743                 return ret;
2744         }
2745
2746         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2747         if (ret < 0)
2748                 return ret;
2749
2750         return 0;
2751 }
2752
2753 int cpufreq_boost_trigger_state(int state)
2754 {
2755         struct cpufreq_policy *policy;
2756         unsigned long flags;
2757         int ret = 0;
2758
2759         if (cpufreq_driver->boost_enabled == state)
2760                 return 0;
2761
2762         write_lock_irqsave(&cpufreq_driver_lock, flags);
2763         cpufreq_driver->boost_enabled = state;
2764         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2765
2766         cpus_read_lock();
2767         for_each_active_policy(policy) {
2768                 policy->boost_enabled = state;
2769                 ret = cpufreq_driver->set_boost(policy, state);
2770                 if (ret) {
2771                         policy->boost_enabled = !policy->boost_enabled;
2772                         goto err_reset_state;
2773                 }
2774         }
2775         cpus_read_unlock();
2776
2777         return 0;
2778
2779 err_reset_state:
2780         cpus_read_unlock();
2781
2782         write_lock_irqsave(&cpufreq_driver_lock, flags);
2783         cpufreq_driver->boost_enabled = !state;
2784         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2785
2786         pr_err("%s: Cannot %s BOOST\n",
2787                __func__, state ? "enable" : "disable");
2788
2789         return ret;
2790 }
2791
2792 static bool cpufreq_boost_supported(void)
2793 {
2794         return cpufreq_driver->set_boost;
2795 }
2796
2797 static int create_boost_sysfs_file(void)
2798 {
2799         int ret;
2800
2801         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2802         if (ret)
2803                 pr_err("%s: cannot register global BOOST sysfs file\n",
2804                        __func__);
2805
2806         return ret;
2807 }
2808
2809 static void remove_boost_sysfs_file(void)
2810 {
2811         if (cpufreq_boost_supported())
2812                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2813 }
2814
2815 int cpufreq_enable_boost_support(void)
2816 {
2817         if (!cpufreq_driver)
2818                 return -EINVAL;
2819
2820         if (cpufreq_boost_supported())
2821                 return 0;
2822
2823         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2824
2825         /* This will get removed on driver unregister */
2826         return create_boost_sysfs_file();
2827 }
2828 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2829
2830 int cpufreq_boost_enabled(void)
2831 {
2832         return cpufreq_driver->boost_enabled;
2833 }
2834 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2835
2836 /*********************************************************************
2837  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2838  *********************************************************************/
2839 static enum cpuhp_state hp_online;
2840
2841 static int cpuhp_cpufreq_online(unsigned int cpu)
2842 {
2843         cpufreq_online(cpu);
2844
2845         return 0;
2846 }
2847
2848 static int cpuhp_cpufreq_offline(unsigned int cpu)
2849 {
2850         cpufreq_offline(cpu);
2851
2852         return 0;
2853 }
2854
2855 /**
2856  * cpufreq_register_driver - register a CPU Frequency driver
2857  * @driver_data: A struct cpufreq_driver containing the values#
2858  * submitted by the CPU Frequency driver.
2859  *
2860  * Registers a CPU Frequency driver to this core code. This code
2861  * returns zero on success, -EEXIST when another driver got here first
2862  * (and isn't unregistered in the meantime).
2863  *
2864  */
2865 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2866 {
2867         unsigned long flags;
2868         int ret;
2869
2870         if (cpufreq_disabled())
2871                 return -ENODEV;
2872
2873         /*
2874          * The cpufreq core depends heavily on the availability of device
2875          * structure, make sure they are available before proceeding further.
2876          */
2877         if (!get_cpu_device(0))
2878                 return -EPROBE_DEFER;
2879
2880         if (!driver_data || !driver_data->verify || !driver_data->init ||
2881             !(driver_data->setpolicy || driver_data->target_index ||
2882                     driver_data->target) ||
2883              (driver_data->setpolicy && (driver_data->target_index ||
2884                     driver_data->target)) ||
2885              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2886              (!driver_data->online != !driver_data->offline) ||
2887                  (driver_data->adjust_perf && !driver_data->fast_switch))
2888                 return -EINVAL;
2889
2890         pr_debug("trying to register driver %s\n", driver_data->name);
2891
2892         /* Protect against concurrent CPU online/offline. */
2893         cpus_read_lock();
2894
2895         write_lock_irqsave(&cpufreq_driver_lock, flags);
2896         if (cpufreq_driver) {
2897                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2898                 ret = -EEXIST;
2899                 goto out;
2900         }
2901         cpufreq_driver = driver_data;
2902         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2903
2904         /*
2905          * Mark support for the scheduler's frequency invariance engine for
2906          * drivers that implement target(), target_index() or fast_switch().
2907          */
2908         if (!cpufreq_driver->setpolicy) {
2909                 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2910                 pr_debug("supports frequency invariance");
2911         }
2912
2913         if (driver_data->setpolicy)
2914                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2915
2916         if (cpufreq_boost_supported()) {
2917                 ret = create_boost_sysfs_file();
2918                 if (ret)
2919                         goto err_null_driver;
2920         }
2921
2922         ret = subsys_interface_register(&cpufreq_interface);
2923         if (ret)
2924                 goto err_boost_unreg;
2925
2926         if (unlikely(list_empty(&cpufreq_policy_list))) {
2927                 /* if all ->init() calls failed, unregister */
2928                 ret = -ENODEV;
2929                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2930                          driver_data->name);
2931                 goto err_if_unreg;
2932         }
2933
2934         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2935                                                    "cpufreq:online",
2936                                                    cpuhp_cpufreq_online,
2937                                                    cpuhp_cpufreq_offline);
2938         if (ret < 0)
2939                 goto err_if_unreg;
2940         hp_online = ret;
2941         ret = 0;
2942
2943         pr_debug("driver %s up and running\n", driver_data->name);
2944         goto out;
2945
2946 err_if_unreg:
2947         subsys_interface_unregister(&cpufreq_interface);
2948 err_boost_unreg:
2949         remove_boost_sysfs_file();
2950 err_null_driver:
2951         write_lock_irqsave(&cpufreq_driver_lock, flags);
2952         cpufreq_driver = NULL;
2953         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2954 out:
2955         cpus_read_unlock();
2956         return ret;
2957 }
2958 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2959
2960 /*
2961  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2962  *
2963  * Unregister the current CPUFreq driver. Only call this if you have
2964  * the right to do so, i.e. if you have succeeded in initialising before!
2965  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2966  * currently not initialised.
2967  */
2968 void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2969 {
2970         unsigned long flags;
2971
2972         if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2973                 return;
2974
2975         pr_debug("unregistering driver %s\n", driver->name);
2976
2977         /* Protect against concurrent cpu hotplug */
2978         cpus_read_lock();
2979         subsys_interface_unregister(&cpufreq_interface);
2980         remove_boost_sysfs_file();
2981         static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2982         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2983
2984         write_lock_irqsave(&cpufreq_driver_lock, flags);
2985
2986         cpufreq_driver = NULL;
2987
2988         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2989         cpus_read_unlock();
2990 }
2991 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2992
2993 static int __init cpufreq_core_init(void)
2994 {
2995         struct cpufreq_governor *gov = cpufreq_default_governor();
2996         struct device *dev_root;
2997
2998         if (cpufreq_disabled())
2999                 return -ENODEV;
3000
3001         dev_root = bus_get_dev_root(&cpu_subsys);
3002         if (dev_root) {
3003                 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3004                 put_device(dev_root);
3005         }
3006         BUG_ON(!cpufreq_global_kobject);
3007
3008         if (!strlen(default_governor))
3009                 strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3010
3011         return 0;
3012 }
3013 module_param(off, int, 0444);
3014 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3015 core_initcall(cpufreq_core_init);