GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)                     \
37         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38                 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy)                \
41         for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)              \
43         for_each_suitable_policy(__policy, false)
44
45 #define for_each_policy(__policy)                       \
46         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)                           \
51         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53 static char default_governor[CPUFREQ_NAME_LEN];
54
55 /*
56  * The "cpufreq driver" - the arch- or hardware-dependent low
57  * level driver of CPUFreq support, and its spinlock. This lock
58  * also protects the cpufreq_cpu_data array.
59  */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63
64 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
65 bool cpufreq_supports_freq_invariance(void)
66 {
67         return static_branch_likely(&cpufreq_freq_invariance);
68 }
69
70 /* Flag to suspend/resume CPUFreq governors */
71 static bool cpufreq_suspended;
72
73 static inline bool has_target(void)
74 {
75         return cpufreq_driver->target_index || cpufreq_driver->target;
76 }
77
78 /* internal prototypes */
79 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
80 static int cpufreq_init_governor(struct cpufreq_policy *policy);
81 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83 static int cpufreq_set_policy(struct cpufreq_policy *policy,
84                               struct cpufreq_governor *new_gov,
85                               unsigned int new_pol);
86
87 /*
88  * Two notifier lists: the "policy" list is involved in the
89  * validation process for a new CPU frequency policy; the
90  * "transition" list for kernel code that needs to handle
91  * changes to devices when the CPU clock speed changes.
92  * The mutex locks both lists.
93  */
94 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
95 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
96
97 static int off __read_mostly;
98 static int cpufreq_disabled(void)
99 {
100         return off;
101 }
102 void disable_cpufreq(void)
103 {
104         off = 1;
105 }
106 static DEFINE_MUTEX(cpufreq_governor_mutex);
107
108 bool have_governor_per_policy(void)
109 {
110         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
111 }
112 EXPORT_SYMBOL_GPL(have_governor_per_policy);
113
114 static struct kobject *cpufreq_global_kobject;
115
116 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
117 {
118         if (have_governor_per_policy())
119                 return &policy->kobj;
120         else
121                 return cpufreq_global_kobject;
122 }
123 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
124
125 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
126 {
127         struct kernel_cpustat kcpustat;
128         u64 cur_wall_time;
129         u64 idle_time;
130         u64 busy_time;
131
132         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
133
134         kcpustat_cpu_fetch(&kcpustat, cpu);
135
136         busy_time = kcpustat.cpustat[CPUTIME_USER];
137         busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
138         busy_time += kcpustat.cpustat[CPUTIME_IRQ];
139         busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
140         busy_time += kcpustat.cpustat[CPUTIME_STEAL];
141         busy_time += kcpustat.cpustat[CPUTIME_NICE];
142
143         idle_time = cur_wall_time - busy_time;
144         if (wall)
145                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
146
147         return div_u64(idle_time, NSEC_PER_USEC);
148 }
149
150 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
151 {
152         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
153
154         if (idle_time == -1ULL)
155                 return get_cpu_idle_time_jiffy(cpu, wall);
156         else if (!io_busy)
157                 idle_time += get_cpu_iowait_time_us(cpu, wall);
158
159         return idle_time;
160 }
161 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
162
163 /*
164  * This is a generic cpufreq init() routine which can be used by cpufreq
165  * drivers of SMP systems. It will do following:
166  * - validate & show freq table passed
167  * - set policies transition latency
168  * - policy->cpus with all possible CPUs
169  */
170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171                 struct cpufreq_frequency_table *table,
172                 unsigned int transition_latency)
173 {
174         policy->freq_table = table;
175         policy->cpuinfo.transition_latency = transition_latency;
176
177         /*
178          * The driver only supports the SMP configuration where all processors
179          * share the clock and voltage and clock.
180          */
181         cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184
185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188
189         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192
193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196
197         if (!policy || IS_ERR(policy->clk)) {
198                 pr_err("%s: No %s associated to cpu: %d\n",
199                        __func__, policy ? "clk" : "policy", cpu);
200                 return 0;
201         }
202
203         return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206
207 /**
208  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209  * @cpu: CPU to find the policy for.
210  *
211  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212  * the kobject reference counter of that policy.  Return a valid policy on
213  * success or NULL on failure.
214  *
215  * The policy returned by this function has to be released with the help of
216  * cpufreq_cpu_put() to balance its kobject reference counter properly.
217  */
218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220         struct cpufreq_policy *policy = NULL;
221         unsigned long flags;
222
223         if (WARN_ON(cpu >= nr_cpu_ids))
224                 return NULL;
225
226         /* get the cpufreq driver */
227         read_lock_irqsave(&cpufreq_driver_lock, flags);
228
229         if (cpufreq_driver) {
230                 /* get the CPU */
231                 policy = cpufreq_cpu_get_raw(cpu);
232                 if (policy)
233                         kobject_get(&policy->kobj);
234         }
235
236         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237
238         return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241
242 /**
243  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244  * @policy: cpufreq policy returned by cpufreq_cpu_get().
245  */
246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248         kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251
252 /**
253  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255  */
256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258         if (WARN_ON(!policy))
259                 return;
260
261         lockdep_assert_held(&policy->rwsem);
262
263         up_write(&policy->rwsem);
264
265         cpufreq_cpu_put(policy);
266 }
267
268 /**
269  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270  * @cpu: CPU to find the policy for.
271  *
272  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273  * if the policy returned by it is not NULL, acquire its rwsem for writing.
274  * Return the policy if it is active or release it and return NULL otherwise.
275  *
276  * The policy returned by this function has to be released with the help of
277  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278  * counter properly.
279  */
280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283
284         if (!policy)
285                 return NULL;
286
287         down_write(&policy->rwsem);
288
289         if (policy_is_inactive(policy)) {
290                 cpufreq_cpu_release(policy);
291                 return NULL;
292         }
293
294         return policy;
295 }
296
297 /*********************************************************************
298  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
299  *********************************************************************/
300
301 /*
302  * adjust_jiffies - adjust the system "loops_per_jiffy"
303  *
304  * This function alters the system "loops_per_jiffy" for the clock
305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
306  * systems as each CPU might be scaled differently. So, use the arch
307  * per-CPU loops_per_jiffy value wherever possible.
308  */
309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312         static unsigned long l_p_j_ref;
313         static unsigned int l_p_j_ref_freq;
314
315         if (ci->flags & CPUFREQ_CONST_LOOPS)
316                 return;
317
318         if (!l_p_j_ref_freq) {
319                 l_p_j_ref = loops_per_jiffy;
320                 l_p_j_ref_freq = ci->old;
321                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322                          l_p_j_ref, l_p_j_ref_freq);
323         }
324         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326                                                                 ci->new);
327                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328                          loops_per_jiffy, ci->new);
329         }
330 #endif
331 }
332
333 /**
334  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335  * @policy: cpufreq policy to enable fast frequency switching for.
336  * @freqs: contain details of the frequency update.
337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338  *
339  * This function calls the transition notifiers and the "adjust_jiffies"
340  * function. It is called twice on all CPU frequency changes that have
341  * external effects.
342  */
343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344                                       struct cpufreq_freqs *freqs,
345                                       unsigned int state)
346 {
347         int cpu;
348
349         BUG_ON(irqs_disabled());
350
351         if (cpufreq_disabled())
352                 return;
353
354         freqs->policy = policy;
355         freqs->flags = cpufreq_driver->flags;
356         pr_debug("notification %u of frequency transition to %u kHz\n",
357                  state, freqs->new);
358
359         switch (state) {
360         case CPUFREQ_PRECHANGE:
361                 /*
362                  * Detect if the driver reported a value as "old frequency"
363                  * which is not equal to what the cpufreq core thinks is
364                  * "old frequency".
365                  */
366                 if (policy->cur && policy->cur != freqs->old) {
367                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368                                  freqs->old, policy->cur);
369                         freqs->old = policy->cur;
370                 }
371
372                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373                                          CPUFREQ_PRECHANGE, freqs);
374
375                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376                 break;
377
378         case CPUFREQ_POSTCHANGE:
379                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381                          cpumask_pr_args(policy->cpus));
382
383                 for_each_cpu(cpu, policy->cpus)
384                         trace_cpu_frequency(freqs->new, cpu);
385
386                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387                                          CPUFREQ_POSTCHANGE, freqs);
388
389                 cpufreq_stats_record_transition(policy, freqs->new);
390                 policy->cur = freqs->new;
391         }
392 }
393
394 /* Do post notifications when there are chances that transition has failed */
395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396                 struct cpufreq_freqs *freqs, int transition_failed)
397 {
398         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399         if (!transition_failed)
400                 return;
401
402         swap(freqs->old, freqs->new);
403         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406
407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408                 struct cpufreq_freqs *freqs)
409 {
410
411         /*
412          * Catch double invocations of _begin() which lead to self-deadlock.
413          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414          * doesn't invoke _begin() on their behalf, and hence the chances of
415          * double invocations are very low. Moreover, there are scenarios
416          * where these checks can emit false-positive warnings in these
417          * drivers; so we avoid that by skipping them altogether.
418          */
419         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420                                 && current == policy->transition_task);
421
422 wait:
423         wait_event(policy->transition_wait, !policy->transition_ongoing);
424
425         spin_lock(&policy->transition_lock);
426
427         if (unlikely(policy->transition_ongoing)) {
428                 spin_unlock(&policy->transition_lock);
429                 goto wait;
430         }
431
432         policy->transition_ongoing = true;
433         policy->transition_task = current;
434
435         spin_unlock(&policy->transition_lock);
436
437         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440
441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442                 struct cpufreq_freqs *freqs, int transition_failed)
443 {
444         if (WARN_ON(!policy->transition_ongoing))
445                 return;
446
447         cpufreq_notify_post_transition(policy, freqs, transition_failed);
448
449         arch_set_freq_scale(policy->related_cpus,
450                             policy->cur,
451                             policy->cpuinfo.max_freq);
452
453         policy->transition_ongoing = false;
454         policy->transition_task = NULL;
455
456         wake_up(&policy->transition_wait);
457 }
458 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
459
460 /*
461  * Fast frequency switching status count.  Positive means "enabled", negative
462  * means "disabled" and 0 means "not decided yet".
463  */
464 static int cpufreq_fast_switch_count;
465 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
466
467 static void cpufreq_list_transition_notifiers(void)
468 {
469         struct notifier_block *nb;
470
471         pr_info("Registered transition notifiers:\n");
472
473         mutex_lock(&cpufreq_transition_notifier_list.mutex);
474
475         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
476                 pr_info("%pS\n", nb->notifier_call);
477
478         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
479 }
480
481 /**
482  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
483  * @policy: cpufreq policy to enable fast frequency switching for.
484  *
485  * Try to enable fast frequency switching for @policy.
486  *
487  * The attempt will fail if there is at least one transition notifier registered
488  * at this point, as fast frequency switching is quite fundamentally at odds
489  * with transition notifiers.  Thus if successful, it will make registration of
490  * transition notifiers fail going forward.
491  */
492 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
493 {
494         lockdep_assert_held(&policy->rwsem);
495
496         if (!policy->fast_switch_possible)
497                 return;
498
499         mutex_lock(&cpufreq_fast_switch_lock);
500         if (cpufreq_fast_switch_count >= 0) {
501                 cpufreq_fast_switch_count++;
502                 policy->fast_switch_enabled = true;
503         } else {
504                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
505                         policy->cpu);
506                 cpufreq_list_transition_notifiers();
507         }
508         mutex_unlock(&cpufreq_fast_switch_lock);
509 }
510 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
511
512 /**
513  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
514  * @policy: cpufreq policy to disable fast frequency switching for.
515  */
516 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
517 {
518         mutex_lock(&cpufreq_fast_switch_lock);
519         if (policy->fast_switch_enabled) {
520                 policy->fast_switch_enabled = false;
521                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
522                         cpufreq_fast_switch_count--;
523         }
524         mutex_unlock(&cpufreq_fast_switch_lock);
525 }
526 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
527
528 /**
529  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
530  * one.
531  * @policy: associated policy to interrogate
532  * @target_freq: target frequency to resolve.
533  *
534  * The target to driver frequency mapping is cached in the policy.
535  *
536  * Return: Lowest driver-supported frequency greater than or equal to the
537  * given target_freq, subject to policy (min/max) and driver limitations.
538  */
539 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
540                                          unsigned int target_freq)
541 {
542         target_freq = clamp_val(target_freq, policy->min, policy->max);
543         policy->cached_target_freq = target_freq;
544
545         if (cpufreq_driver->target_index) {
546                 unsigned int idx;
547
548                 idx = cpufreq_frequency_table_target(policy, target_freq,
549                                                      CPUFREQ_RELATION_L);
550                 policy->cached_resolved_idx = idx;
551                 return policy->freq_table[idx].frequency;
552         }
553
554         if (cpufreq_driver->resolve_freq)
555                 return cpufreq_driver->resolve_freq(policy, target_freq);
556
557         return target_freq;
558 }
559 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
560
561 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
562 {
563         unsigned int latency;
564
565         if (policy->transition_delay_us)
566                 return policy->transition_delay_us;
567
568         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
569         if (latency) {
570                 /*
571                  * For platforms that can change the frequency very fast (< 10
572                  * us), the above formula gives a decent transition delay. But
573                  * for platforms where transition_latency is in milliseconds, it
574                  * ends up giving unrealistic values.
575                  *
576                  * Cap the default transition delay to 10 ms, which seems to be
577                  * a reasonable amount of time after which we should reevaluate
578                  * the frequency.
579                  */
580                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
581         }
582
583         return LATENCY_MULTIPLIER;
584 }
585 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
586
587 /*********************************************************************
588  *                          SYSFS INTERFACE                          *
589  *********************************************************************/
590 static ssize_t show_boost(struct kobject *kobj,
591                           struct kobj_attribute *attr, char *buf)
592 {
593         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
594 }
595
596 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
597                            const char *buf, size_t count)
598 {
599         int ret, enable;
600
601         ret = sscanf(buf, "%d", &enable);
602         if (ret != 1 || enable < 0 || enable > 1)
603                 return -EINVAL;
604
605         if (cpufreq_boost_trigger_state(enable)) {
606                 pr_err("%s: Cannot %s BOOST!\n",
607                        __func__, enable ? "enable" : "disable");
608                 return -EINVAL;
609         }
610
611         pr_debug("%s: cpufreq BOOST %s\n",
612                  __func__, enable ? "enabled" : "disabled");
613
614         return count;
615 }
616 define_one_global_rw(boost);
617
618 static struct cpufreq_governor *find_governor(const char *str_governor)
619 {
620         struct cpufreq_governor *t;
621
622         for_each_governor(t)
623                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
624                         return t;
625
626         return NULL;
627 }
628
629 static struct cpufreq_governor *get_governor(const char *str_governor)
630 {
631         struct cpufreq_governor *t;
632
633         mutex_lock(&cpufreq_governor_mutex);
634         t = find_governor(str_governor);
635         if (!t)
636                 goto unlock;
637
638         if (!try_module_get(t->owner))
639                 t = NULL;
640
641 unlock:
642         mutex_unlock(&cpufreq_governor_mutex);
643
644         return t;
645 }
646
647 static unsigned int cpufreq_parse_policy(char *str_governor)
648 {
649         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
650                 return CPUFREQ_POLICY_PERFORMANCE;
651
652         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
653                 return CPUFREQ_POLICY_POWERSAVE;
654
655         return CPUFREQ_POLICY_UNKNOWN;
656 }
657
658 /**
659  * cpufreq_parse_governor - parse a governor string only for has_target()
660  * @str_governor: Governor name.
661  */
662 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
663 {
664         struct cpufreq_governor *t;
665
666         t = get_governor(str_governor);
667         if (t)
668                 return t;
669
670         if (request_module("cpufreq_%s", str_governor))
671                 return NULL;
672
673         return get_governor(str_governor);
674 }
675
676 /*
677  * cpufreq_per_cpu_attr_read() / show_##file_name() -
678  * print out cpufreq information
679  *
680  * Write out information from cpufreq_driver->policy[cpu]; object must be
681  * "unsigned int".
682  */
683
684 #define show_one(file_name, object)                     \
685 static ssize_t show_##file_name                         \
686 (struct cpufreq_policy *policy, char *buf)              \
687 {                                                       \
688         return sprintf(buf, "%u\n", policy->object);    \
689 }
690
691 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
692 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
693 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
694 show_one(scaling_min_freq, min);
695 show_one(scaling_max_freq, max);
696
697 __weak unsigned int arch_freq_get_on_cpu(int cpu)
698 {
699         return 0;
700 }
701
702 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
703 {
704         ssize_t ret;
705         unsigned int freq;
706
707         freq = arch_freq_get_on_cpu(policy->cpu);
708         if (freq)
709                 ret = sprintf(buf, "%u\n", freq);
710         else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
711                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
712         else
713                 ret = sprintf(buf, "%u\n", policy->cur);
714         return ret;
715 }
716
717 /*
718  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
719  */
720 #define store_one(file_name, object)                    \
721 static ssize_t store_##file_name                                        \
722 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
723 {                                                                       \
724         unsigned long val;                                              \
725         int ret;                                                        \
726                                                                         \
727         ret = sscanf(buf, "%lu", &val);                                 \
728         if (ret != 1)                                                   \
729                 return -EINVAL;                                         \
730                                                                         \
731         ret = freq_qos_update_request(policy->object##_freq_req, val);\
732         return ret >= 0 ? count : ret;                                  \
733 }
734
735 store_one(scaling_min_freq, min);
736 store_one(scaling_max_freq, max);
737
738 /*
739  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
740  */
741 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
742                                         char *buf)
743 {
744         unsigned int cur_freq = __cpufreq_get(policy);
745
746         if (cur_freq)
747                 return sprintf(buf, "%u\n", cur_freq);
748
749         return sprintf(buf, "<unknown>\n");
750 }
751
752 /*
753  * show_scaling_governor - show the current policy for the specified CPU
754  */
755 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
756 {
757         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
758                 return sprintf(buf, "powersave\n");
759         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
760                 return sprintf(buf, "performance\n");
761         else if (policy->governor)
762                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
763                                 policy->governor->name);
764         return -EINVAL;
765 }
766
767 /*
768  * store_scaling_governor - store policy for the specified CPU
769  */
770 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
771                                         const char *buf, size_t count)
772 {
773         char str_governor[16];
774         int ret;
775
776         ret = sscanf(buf, "%15s", str_governor);
777         if (ret != 1)
778                 return -EINVAL;
779
780         if (cpufreq_driver->setpolicy) {
781                 unsigned int new_pol;
782
783                 new_pol = cpufreq_parse_policy(str_governor);
784                 if (!new_pol)
785                         return -EINVAL;
786
787                 ret = cpufreq_set_policy(policy, NULL, new_pol);
788         } else {
789                 struct cpufreq_governor *new_gov;
790
791                 new_gov = cpufreq_parse_governor(str_governor);
792                 if (!new_gov)
793                         return -EINVAL;
794
795                 ret = cpufreq_set_policy(policy, new_gov,
796                                          CPUFREQ_POLICY_UNKNOWN);
797
798                 module_put(new_gov->owner);
799         }
800
801         return ret ? ret : count;
802 }
803
804 /*
805  * show_scaling_driver - show the cpufreq driver currently loaded
806  */
807 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
808 {
809         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
810 }
811
812 /*
813  * show_scaling_available_governors - show the available CPUfreq governors
814  */
815 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
816                                                 char *buf)
817 {
818         ssize_t i = 0;
819         struct cpufreq_governor *t;
820
821         if (!has_target()) {
822                 i += sprintf(buf, "performance powersave");
823                 goto out;
824         }
825
826         mutex_lock(&cpufreq_governor_mutex);
827         for_each_governor(t) {
828                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
829                     - (CPUFREQ_NAME_LEN + 2)))
830                         break;
831                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
832         }
833         mutex_unlock(&cpufreq_governor_mutex);
834 out:
835         i += sprintf(&buf[i], "\n");
836         return i;
837 }
838
839 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
840 {
841         ssize_t i = 0;
842         unsigned int cpu;
843
844         for_each_cpu(cpu, mask) {
845                 if (i)
846                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
847                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
848                 if (i >= (PAGE_SIZE - 5))
849                         break;
850         }
851         i += sprintf(&buf[i], "\n");
852         return i;
853 }
854 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
855
856 /*
857  * show_related_cpus - show the CPUs affected by each transition even if
858  * hw coordination is in use
859  */
860 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
861 {
862         return cpufreq_show_cpus(policy->related_cpus, buf);
863 }
864
865 /*
866  * show_affected_cpus - show the CPUs affected by each transition
867  */
868 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
869 {
870         return cpufreq_show_cpus(policy->cpus, buf);
871 }
872
873 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
874                                         const char *buf, size_t count)
875 {
876         unsigned int freq = 0;
877         unsigned int ret;
878
879         if (!policy->governor || !policy->governor->store_setspeed)
880                 return -EINVAL;
881
882         ret = sscanf(buf, "%u", &freq);
883         if (ret != 1)
884                 return -EINVAL;
885
886         policy->governor->store_setspeed(policy, freq);
887
888         return count;
889 }
890
891 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
892 {
893         if (!policy->governor || !policy->governor->show_setspeed)
894                 return sprintf(buf, "<unsupported>\n");
895
896         return policy->governor->show_setspeed(policy, buf);
897 }
898
899 /*
900  * show_bios_limit - show the current cpufreq HW/BIOS limitation
901  */
902 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
903 {
904         unsigned int limit;
905         int ret;
906         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
907         if (!ret)
908                 return sprintf(buf, "%u\n", limit);
909         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
910 }
911
912 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
913 cpufreq_freq_attr_ro(cpuinfo_min_freq);
914 cpufreq_freq_attr_ro(cpuinfo_max_freq);
915 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
916 cpufreq_freq_attr_ro(scaling_available_governors);
917 cpufreq_freq_attr_ro(scaling_driver);
918 cpufreq_freq_attr_ro(scaling_cur_freq);
919 cpufreq_freq_attr_ro(bios_limit);
920 cpufreq_freq_attr_ro(related_cpus);
921 cpufreq_freq_attr_ro(affected_cpus);
922 cpufreq_freq_attr_rw(scaling_min_freq);
923 cpufreq_freq_attr_rw(scaling_max_freq);
924 cpufreq_freq_attr_rw(scaling_governor);
925 cpufreq_freq_attr_rw(scaling_setspeed);
926
927 static struct attribute *default_attrs[] = {
928         &cpuinfo_min_freq.attr,
929         &cpuinfo_max_freq.attr,
930         &cpuinfo_transition_latency.attr,
931         &scaling_min_freq.attr,
932         &scaling_max_freq.attr,
933         &affected_cpus.attr,
934         &related_cpus.attr,
935         &scaling_governor.attr,
936         &scaling_driver.attr,
937         &scaling_available_governors.attr,
938         &scaling_setspeed.attr,
939         NULL
940 };
941
942 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
943 #define to_attr(a) container_of(a, struct freq_attr, attr)
944
945 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
946 {
947         struct cpufreq_policy *policy = to_policy(kobj);
948         struct freq_attr *fattr = to_attr(attr);
949         ssize_t ret;
950
951         if (!fattr->show)
952                 return -EIO;
953
954         down_read(&policy->rwsem);
955         ret = fattr->show(policy, buf);
956         up_read(&policy->rwsem);
957
958         return ret;
959 }
960
961 static ssize_t store(struct kobject *kobj, struct attribute *attr,
962                      const char *buf, size_t count)
963 {
964         struct cpufreq_policy *policy = to_policy(kobj);
965         struct freq_attr *fattr = to_attr(attr);
966         ssize_t ret = -EINVAL;
967
968         if (!fattr->store)
969                 return -EIO;
970
971         /*
972          * cpus_read_trylock() is used here to work around a circular lock
973          * dependency problem with respect to the cpufreq_register_driver().
974          */
975         if (!cpus_read_trylock())
976                 return -EBUSY;
977
978         if (cpu_online(policy->cpu)) {
979                 down_write(&policy->rwsem);
980                 ret = fattr->store(policy, buf, count);
981                 up_write(&policy->rwsem);
982         }
983
984         cpus_read_unlock();
985
986         return ret;
987 }
988
989 static void cpufreq_sysfs_release(struct kobject *kobj)
990 {
991         struct cpufreq_policy *policy = to_policy(kobj);
992         pr_debug("last reference is dropped\n");
993         complete(&policy->kobj_unregister);
994 }
995
996 static const struct sysfs_ops sysfs_ops = {
997         .show   = show,
998         .store  = store,
999 };
1000
1001 static struct kobj_type ktype_cpufreq = {
1002         .sysfs_ops      = &sysfs_ops,
1003         .default_attrs  = default_attrs,
1004         .release        = cpufreq_sysfs_release,
1005 };
1006
1007 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1008                                 struct device *dev)
1009 {
1010         if (unlikely(!dev))
1011                 return;
1012
1013         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1014                 return;
1015
1016         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1017         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1018                 dev_err(dev, "cpufreq symlink creation failed\n");
1019 }
1020
1021 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1022                                    struct device *dev)
1023 {
1024         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1025         sysfs_remove_link(&dev->kobj, "cpufreq");
1026 }
1027
1028 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1029 {
1030         struct freq_attr **drv_attr;
1031         int ret = 0;
1032
1033         /* set up files for this cpu device */
1034         drv_attr = cpufreq_driver->attr;
1035         while (drv_attr && *drv_attr) {
1036                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1037                 if (ret)
1038                         return ret;
1039                 drv_attr++;
1040         }
1041         if (cpufreq_driver->get) {
1042                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1043                 if (ret)
1044                         return ret;
1045         }
1046
1047         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1048         if (ret)
1049                 return ret;
1050
1051         if (cpufreq_driver->bios_limit) {
1052                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1053                 if (ret)
1054                         return ret;
1055         }
1056
1057         return 0;
1058 }
1059
1060 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1061 {
1062         struct cpufreq_governor *gov = NULL;
1063         unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1064         int ret;
1065
1066         if (has_target()) {
1067                 /* Update policy governor to the one used before hotplug. */
1068                 gov = get_governor(policy->last_governor);
1069                 if (gov) {
1070                         pr_debug("Restoring governor %s for cpu %d\n",
1071                                  gov->name, policy->cpu);
1072                 } else {
1073                         gov = get_governor(default_governor);
1074                 }
1075
1076                 if (!gov) {
1077                         gov = cpufreq_default_governor();
1078                         __module_get(gov->owner);
1079                 }
1080
1081         } else {
1082
1083                 /* Use the default policy if there is no last_policy. */
1084                 if (policy->last_policy) {
1085                         pol = policy->last_policy;
1086                 } else {
1087                         pol = cpufreq_parse_policy(default_governor);
1088                         /*
1089                          * In case the default governor is neither "performance"
1090                          * nor "powersave", fall back to the initial policy
1091                          * value set by the driver.
1092                          */
1093                         if (pol == CPUFREQ_POLICY_UNKNOWN)
1094                                 pol = policy->policy;
1095                 }
1096                 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1097                     pol != CPUFREQ_POLICY_POWERSAVE)
1098                         return -ENODATA;
1099         }
1100
1101         ret = cpufreq_set_policy(policy, gov, pol);
1102         if (gov)
1103                 module_put(gov->owner);
1104
1105         return ret;
1106 }
1107
1108 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1109 {
1110         int ret = 0;
1111
1112         /* Has this CPU been taken care of already? */
1113         if (cpumask_test_cpu(cpu, policy->cpus))
1114                 return 0;
1115
1116         down_write(&policy->rwsem);
1117         if (has_target())
1118                 cpufreq_stop_governor(policy);
1119
1120         cpumask_set_cpu(cpu, policy->cpus);
1121
1122         if (has_target()) {
1123                 ret = cpufreq_start_governor(policy);
1124                 if (ret)
1125                         pr_err("%s: Failed to start governor\n", __func__);
1126         }
1127         up_write(&policy->rwsem);
1128         return ret;
1129 }
1130
1131 void refresh_frequency_limits(struct cpufreq_policy *policy)
1132 {
1133         if (!policy_is_inactive(policy)) {
1134                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1135
1136                 cpufreq_set_policy(policy, policy->governor, policy->policy);
1137         }
1138 }
1139 EXPORT_SYMBOL(refresh_frequency_limits);
1140
1141 static void handle_update(struct work_struct *work)
1142 {
1143         struct cpufreq_policy *policy =
1144                 container_of(work, struct cpufreq_policy, update);
1145
1146         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1147         down_write(&policy->rwsem);
1148         refresh_frequency_limits(policy);
1149         up_write(&policy->rwsem);
1150 }
1151
1152 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1153                                 void *data)
1154 {
1155         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1156
1157         schedule_work(&policy->update);
1158         return 0;
1159 }
1160
1161 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1162                                 void *data)
1163 {
1164         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1165
1166         schedule_work(&policy->update);
1167         return 0;
1168 }
1169
1170 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1171 {
1172         struct kobject *kobj;
1173         struct completion *cmp;
1174
1175         down_write(&policy->rwsem);
1176         cpufreq_stats_free_table(policy);
1177         kobj = &policy->kobj;
1178         cmp = &policy->kobj_unregister;
1179         up_write(&policy->rwsem);
1180         kobject_put(kobj);
1181
1182         /*
1183          * We need to make sure that the underlying kobj is
1184          * actually not referenced anymore by anybody before we
1185          * proceed with unloading.
1186          */
1187         pr_debug("waiting for dropping of refcount\n");
1188         wait_for_completion(cmp);
1189         pr_debug("wait complete\n");
1190 }
1191
1192 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1193 {
1194         struct cpufreq_policy *policy;
1195         struct device *dev = get_cpu_device(cpu);
1196         int ret;
1197
1198         if (!dev)
1199                 return NULL;
1200
1201         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1202         if (!policy)
1203                 return NULL;
1204
1205         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1206                 goto err_free_policy;
1207
1208         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1209                 goto err_free_cpumask;
1210
1211         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1212                 goto err_free_rcpumask;
1213
1214         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1215                                    cpufreq_global_kobject, "policy%u", cpu);
1216         if (ret) {
1217                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1218                 /*
1219                  * The entire policy object will be freed below, but the extra
1220                  * memory allocated for the kobject name needs to be freed by
1221                  * releasing the kobject.
1222                  */
1223                 kobject_put(&policy->kobj);
1224                 goto err_free_real_cpus;
1225         }
1226
1227         freq_constraints_init(&policy->constraints);
1228
1229         policy->nb_min.notifier_call = cpufreq_notifier_min;
1230         policy->nb_max.notifier_call = cpufreq_notifier_max;
1231
1232         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1233                                     &policy->nb_min);
1234         if (ret) {
1235                 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1236                         ret, cpumask_pr_args(policy->cpus));
1237                 goto err_kobj_remove;
1238         }
1239
1240         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1241                                     &policy->nb_max);
1242         if (ret) {
1243                 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1244                         ret, cpumask_pr_args(policy->cpus));
1245                 goto err_min_qos_notifier;
1246         }
1247
1248         INIT_LIST_HEAD(&policy->policy_list);
1249         init_rwsem(&policy->rwsem);
1250         spin_lock_init(&policy->transition_lock);
1251         init_waitqueue_head(&policy->transition_wait);
1252         init_completion(&policy->kobj_unregister);
1253         INIT_WORK(&policy->update, handle_update);
1254
1255         policy->cpu = cpu;
1256         return policy;
1257
1258 err_min_qos_notifier:
1259         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1260                                  &policy->nb_min);
1261 err_kobj_remove:
1262         cpufreq_policy_put_kobj(policy);
1263 err_free_real_cpus:
1264         free_cpumask_var(policy->real_cpus);
1265 err_free_rcpumask:
1266         free_cpumask_var(policy->related_cpus);
1267 err_free_cpumask:
1268         free_cpumask_var(policy->cpus);
1269 err_free_policy:
1270         kfree(policy);
1271
1272         return NULL;
1273 }
1274
1275 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1276 {
1277         unsigned long flags;
1278         int cpu;
1279
1280         /* Remove policy from list */
1281         write_lock_irqsave(&cpufreq_driver_lock, flags);
1282         list_del(&policy->policy_list);
1283
1284         for_each_cpu(cpu, policy->related_cpus)
1285                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1286         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1287
1288         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1289                                  &policy->nb_max);
1290         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1291                                  &policy->nb_min);
1292
1293         /* Cancel any pending policy->update work before freeing the policy. */
1294         cancel_work_sync(&policy->update);
1295
1296         if (policy->max_freq_req) {
1297                 /*
1298                  * CPUFREQ_CREATE_POLICY notification is sent only after
1299                  * successfully adding max_freq_req request.
1300                  */
1301                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1302                                              CPUFREQ_REMOVE_POLICY, policy);
1303                 freq_qos_remove_request(policy->max_freq_req);
1304         }
1305
1306         freq_qos_remove_request(policy->min_freq_req);
1307         kfree(policy->min_freq_req);
1308
1309         cpufreq_policy_put_kobj(policy);
1310         free_cpumask_var(policy->real_cpus);
1311         free_cpumask_var(policy->related_cpus);
1312         free_cpumask_var(policy->cpus);
1313         kfree(policy);
1314 }
1315
1316 static int cpufreq_online(unsigned int cpu)
1317 {
1318         struct cpufreq_policy *policy;
1319         bool new_policy;
1320         unsigned long flags;
1321         unsigned int j;
1322         int ret;
1323
1324         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1325
1326         /* Check if this CPU already has a policy to manage it */
1327         policy = per_cpu(cpufreq_cpu_data, cpu);
1328         if (policy) {
1329                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1330                 if (!policy_is_inactive(policy))
1331                         return cpufreq_add_policy_cpu(policy, cpu);
1332
1333                 /* This is the only online CPU for the policy.  Start over. */
1334                 new_policy = false;
1335                 down_write(&policy->rwsem);
1336                 policy->cpu = cpu;
1337                 policy->governor = NULL;
1338                 up_write(&policy->rwsem);
1339         } else {
1340                 new_policy = true;
1341                 policy = cpufreq_policy_alloc(cpu);
1342                 if (!policy)
1343                         return -ENOMEM;
1344         }
1345
1346         if (!new_policy && cpufreq_driver->online) {
1347                 ret = cpufreq_driver->online(policy);
1348                 if (ret) {
1349                         pr_debug("%s: %d: initialization failed\n", __func__,
1350                                  __LINE__);
1351                         goto out_exit_policy;
1352                 }
1353
1354                 /* Recover policy->cpus using related_cpus */
1355                 cpumask_copy(policy->cpus, policy->related_cpus);
1356         } else {
1357                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1358
1359                 /*
1360                  * Call driver. From then on the cpufreq must be able
1361                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1362                  */
1363                 ret = cpufreq_driver->init(policy);
1364                 if (ret) {
1365                         pr_debug("%s: %d: initialization failed\n", __func__,
1366                                  __LINE__);
1367                         goto out_free_policy;
1368                 }
1369
1370                 /*
1371                  * The initialization has succeeded and the policy is online.
1372                  * If there is a problem with its frequency table, take it
1373                  * offline and drop it.
1374                  */
1375                 ret = cpufreq_table_validate_and_sort(policy);
1376                 if (ret)
1377                         goto out_offline_policy;
1378
1379                 /* related_cpus should at least include policy->cpus. */
1380                 cpumask_copy(policy->related_cpus, policy->cpus);
1381         }
1382
1383         down_write(&policy->rwsem);
1384         /*
1385          * affected cpus must always be the one, which are online. We aren't
1386          * managing offline cpus here.
1387          */
1388         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1389
1390         if (new_policy) {
1391                 for_each_cpu(j, policy->related_cpus) {
1392                         per_cpu(cpufreq_cpu_data, j) = policy;
1393                         add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1394                 }
1395
1396                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1397                                                GFP_KERNEL);
1398                 if (!policy->min_freq_req)
1399                         goto out_destroy_policy;
1400
1401                 ret = freq_qos_add_request(&policy->constraints,
1402                                            policy->min_freq_req, FREQ_QOS_MIN,
1403                                            FREQ_QOS_MIN_DEFAULT_VALUE);
1404                 if (ret < 0) {
1405                         /*
1406                          * So we don't call freq_qos_remove_request() for an
1407                          * uninitialized request.
1408                          */
1409                         kfree(policy->min_freq_req);
1410                         policy->min_freq_req = NULL;
1411                         goto out_destroy_policy;
1412                 }
1413
1414                 /*
1415                  * This must be initialized right here to avoid calling
1416                  * freq_qos_remove_request() on uninitialized request in case
1417                  * of errors.
1418                  */
1419                 policy->max_freq_req = policy->min_freq_req + 1;
1420
1421                 ret = freq_qos_add_request(&policy->constraints,
1422                                            policy->max_freq_req, FREQ_QOS_MAX,
1423                                            FREQ_QOS_MAX_DEFAULT_VALUE);
1424                 if (ret < 0) {
1425                         policy->max_freq_req = NULL;
1426                         goto out_destroy_policy;
1427                 }
1428
1429                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1430                                 CPUFREQ_CREATE_POLICY, policy);
1431         }
1432
1433         if (cpufreq_driver->get && has_target()) {
1434                 policy->cur = cpufreq_driver->get(policy->cpu);
1435                 if (!policy->cur) {
1436                         pr_err("%s: ->get() failed\n", __func__);
1437                         goto out_destroy_policy;
1438                 }
1439         }
1440
1441         /*
1442          * Sometimes boot loaders set CPU frequency to a value outside of
1443          * frequency table present with cpufreq core. In such cases CPU might be
1444          * unstable if it has to run on that frequency for long duration of time
1445          * and so its better to set it to a frequency which is specified in
1446          * freq-table. This also makes cpufreq stats inconsistent as
1447          * cpufreq-stats would fail to register because current frequency of CPU
1448          * isn't found in freq-table.
1449          *
1450          * Because we don't want this change to effect boot process badly, we go
1451          * for the next freq which is >= policy->cur ('cur' must be set by now,
1452          * otherwise we will end up setting freq to lowest of the table as 'cur'
1453          * is initialized to zero).
1454          *
1455          * We are passing target-freq as "policy->cur - 1" otherwise
1456          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1457          * equal to target-freq.
1458          */
1459         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1460             && has_target()) {
1461                 unsigned int old_freq = policy->cur;
1462
1463                 /* Are we running at unknown frequency ? */
1464                 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1465                 if (ret == -EINVAL) {
1466                         ret = __cpufreq_driver_target(policy, old_freq - 1,
1467                                                       CPUFREQ_RELATION_L);
1468
1469                         /*
1470                          * Reaching here after boot in a few seconds may not
1471                          * mean that system will remain stable at "unknown"
1472                          * frequency for longer duration. Hence, a BUG_ON().
1473                          */
1474                         BUG_ON(ret);
1475                         pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1476                                 __func__, policy->cpu, old_freq, policy->cur);
1477                 }
1478         }
1479
1480         if (new_policy) {
1481                 ret = cpufreq_add_dev_interface(policy);
1482                 if (ret)
1483                         goto out_destroy_policy;
1484
1485                 cpufreq_stats_create_table(policy);
1486
1487                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1488                 list_add(&policy->policy_list, &cpufreq_policy_list);
1489                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1490         }
1491
1492         ret = cpufreq_init_policy(policy);
1493         if (ret) {
1494                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1495                        __func__, cpu, ret);
1496                 goto out_destroy_policy;
1497         }
1498
1499         up_write(&policy->rwsem);
1500
1501         kobject_uevent(&policy->kobj, KOBJ_ADD);
1502
1503         /* Callback for handling stuff after policy is ready */
1504         if (cpufreq_driver->ready)
1505                 cpufreq_driver->ready(policy);
1506
1507         if (cpufreq_thermal_control_enabled(cpufreq_driver))
1508                 policy->cdev = of_cpufreq_cooling_register(policy);
1509
1510         pr_debug("initialization complete\n");
1511
1512         return 0;
1513
1514 out_destroy_policy:
1515         for_each_cpu(j, policy->real_cpus)
1516                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1517
1518         up_write(&policy->rwsem);
1519
1520 out_offline_policy:
1521         if (cpufreq_driver->offline)
1522                 cpufreq_driver->offline(policy);
1523
1524 out_exit_policy:
1525         if (cpufreq_driver->exit)
1526                 cpufreq_driver->exit(policy);
1527
1528 out_free_policy:
1529         cpufreq_policy_free(policy);
1530         return ret;
1531 }
1532
1533 /**
1534  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1535  * @dev: CPU device.
1536  * @sif: Subsystem interface structure pointer (not used)
1537  */
1538 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1539 {
1540         struct cpufreq_policy *policy;
1541         unsigned cpu = dev->id;
1542         int ret;
1543
1544         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1545
1546         if (cpu_online(cpu)) {
1547                 ret = cpufreq_online(cpu);
1548                 if (ret)
1549                         return ret;
1550         }
1551
1552         /* Create sysfs link on CPU registration */
1553         policy = per_cpu(cpufreq_cpu_data, cpu);
1554         if (policy)
1555                 add_cpu_dev_symlink(policy, cpu, dev);
1556
1557         return 0;
1558 }
1559
1560 static int cpufreq_offline(unsigned int cpu)
1561 {
1562         struct cpufreq_policy *policy;
1563         int ret;
1564
1565         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1566
1567         policy = cpufreq_cpu_get_raw(cpu);
1568         if (!policy) {
1569                 pr_debug("%s: No cpu_data found\n", __func__);
1570                 return 0;
1571         }
1572
1573         down_write(&policy->rwsem);
1574         if (has_target())
1575                 cpufreq_stop_governor(policy);
1576
1577         cpumask_clear_cpu(cpu, policy->cpus);
1578
1579         if (policy_is_inactive(policy)) {
1580                 if (has_target())
1581                         strncpy(policy->last_governor, policy->governor->name,
1582                                 CPUFREQ_NAME_LEN);
1583                 else
1584                         policy->last_policy = policy->policy;
1585         } else if (cpu == policy->cpu) {
1586                 /* Nominate new CPU */
1587                 policy->cpu = cpumask_any(policy->cpus);
1588         }
1589
1590         /* Start governor again for active policy */
1591         if (!policy_is_inactive(policy)) {
1592                 if (has_target()) {
1593                         ret = cpufreq_start_governor(policy);
1594                         if (ret)
1595                                 pr_err("%s: Failed to start governor\n", __func__);
1596                 }
1597
1598                 goto unlock;
1599         }
1600
1601         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1602                 cpufreq_cooling_unregister(policy->cdev);
1603                 policy->cdev = NULL;
1604         }
1605
1606         if (cpufreq_driver->stop_cpu)
1607                 cpufreq_driver->stop_cpu(policy);
1608
1609         if (has_target())
1610                 cpufreq_exit_governor(policy);
1611
1612         /*
1613          * Perform the ->offline() during light-weight tear-down, as
1614          * that allows fast recovery when the CPU comes back.
1615          */
1616         if (cpufreq_driver->offline) {
1617                 cpufreq_driver->offline(policy);
1618         } else if (cpufreq_driver->exit) {
1619                 cpufreq_driver->exit(policy);
1620                 policy->freq_table = NULL;
1621         }
1622
1623 unlock:
1624         up_write(&policy->rwsem);
1625         return 0;
1626 }
1627
1628 /*
1629  * cpufreq_remove_dev - remove a CPU device
1630  *
1631  * Removes the cpufreq interface for a CPU device.
1632  */
1633 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1634 {
1635         unsigned int cpu = dev->id;
1636         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1637
1638         if (!policy)
1639                 return;
1640
1641         if (cpu_online(cpu))
1642                 cpufreq_offline(cpu);
1643
1644         cpumask_clear_cpu(cpu, policy->real_cpus);
1645         remove_cpu_dev_symlink(policy, dev);
1646
1647         if (cpumask_empty(policy->real_cpus)) {
1648                 /* We did light-weight exit earlier, do full tear down now */
1649                 if (cpufreq_driver->offline)
1650                         cpufreq_driver->exit(policy);
1651
1652                 cpufreq_policy_free(policy);
1653         }
1654 }
1655
1656 /**
1657  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1658  *      in deep trouble.
1659  *      @policy: policy managing CPUs
1660  *      @new_freq: CPU frequency the CPU actually runs at
1661  *
1662  *      We adjust to current frequency first, and need to clean up later.
1663  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1664  */
1665 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1666                                 unsigned int new_freq)
1667 {
1668         struct cpufreq_freqs freqs;
1669
1670         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1671                  policy->cur, new_freq);
1672
1673         freqs.old = policy->cur;
1674         freqs.new = new_freq;
1675
1676         cpufreq_freq_transition_begin(policy, &freqs);
1677         cpufreq_freq_transition_end(policy, &freqs, 0);
1678 }
1679
1680 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1681 {
1682         unsigned int new_freq;
1683
1684         new_freq = cpufreq_driver->get(policy->cpu);
1685         if (!new_freq)
1686                 return 0;
1687
1688         /*
1689          * If fast frequency switching is used with the given policy, the check
1690          * against policy->cur is pointless, so skip it in that case.
1691          */
1692         if (policy->fast_switch_enabled || !has_target())
1693                 return new_freq;
1694
1695         if (policy->cur != new_freq) {
1696                 cpufreq_out_of_sync(policy, new_freq);
1697                 if (update)
1698                         schedule_work(&policy->update);
1699         }
1700
1701         return new_freq;
1702 }
1703
1704 /**
1705  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1706  * @cpu: CPU number
1707  *
1708  * This is the last known freq, without actually getting it from the driver.
1709  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1710  */
1711 unsigned int cpufreq_quick_get(unsigned int cpu)
1712 {
1713         struct cpufreq_policy *policy;
1714         unsigned int ret_freq = 0;
1715         unsigned long flags;
1716
1717         read_lock_irqsave(&cpufreq_driver_lock, flags);
1718
1719         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1720                 ret_freq = cpufreq_driver->get(cpu);
1721                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1722                 return ret_freq;
1723         }
1724
1725         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1726
1727         policy = cpufreq_cpu_get(cpu);
1728         if (policy) {
1729                 ret_freq = policy->cur;
1730                 cpufreq_cpu_put(policy);
1731         }
1732
1733         return ret_freq;
1734 }
1735 EXPORT_SYMBOL(cpufreq_quick_get);
1736
1737 /**
1738  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1739  * @cpu: CPU number
1740  *
1741  * Just return the max possible frequency for a given CPU.
1742  */
1743 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1744 {
1745         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1746         unsigned int ret_freq = 0;
1747
1748         if (policy) {
1749                 ret_freq = policy->max;
1750                 cpufreq_cpu_put(policy);
1751         }
1752
1753         return ret_freq;
1754 }
1755 EXPORT_SYMBOL(cpufreq_quick_get_max);
1756
1757 /**
1758  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1759  * @cpu: CPU number
1760  *
1761  * The default return value is the max_freq field of cpuinfo.
1762  */
1763 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1764 {
1765         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1766         unsigned int ret_freq = 0;
1767
1768         if (policy) {
1769                 ret_freq = policy->cpuinfo.max_freq;
1770                 cpufreq_cpu_put(policy);
1771         }
1772
1773         return ret_freq;
1774 }
1775 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1776
1777 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1778 {
1779         if (unlikely(policy_is_inactive(policy)))
1780                 return 0;
1781
1782         return cpufreq_verify_current_freq(policy, true);
1783 }
1784
1785 /**
1786  * cpufreq_get - get the current CPU frequency (in kHz)
1787  * @cpu: CPU number
1788  *
1789  * Get the CPU current (static) CPU frequency
1790  */
1791 unsigned int cpufreq_get(unsigned int cpu)
1792 {
1793         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1794         unsigned int ret_freq = 0;
1795
1796         if (policy) {
1797                 down_read(&policy->rwsem);
1798                 if (cpufreq_driver->get)
1799                         ret_freq = __cpufreq_get(policy);
1800                 up_read(&policy->rwsem);
1801
1802                 cpufreq_cpu_put(policy);
1803         }
1804
1805         return ret_freq;
1806 }
1807 EXPORT_SYMBOL(cpufreq_get);
1808
1809 static struct subsys_interface cpufreq_interface = {
1810         .name           = "cpufreq",
1811         .subsys         = &cpu_subsys,
1812         .add_dev        = cpufreq_add_dev,
1813         .remove_dev     = cpufreq_remove_dev,
1814 };
1815
1816 /*
1817  * In case platform wants some specific frequency to be configured
1818  * during suspend..
1819  */
1820 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1821 {
1822         int ret;
1823
1824         if (!policy->suspend_freq) {
1825                 pr_debug("%s: suspend_freq not defined\n", __func__);
1826                 return 0;
1827         }
1828
1829         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1830                         policy->suspend_freq);
1831
1832         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1833                         CPUFREQ_RELATION_H);
1834         if (ret)
1835                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1836                                 __func__, policy->suspend_freq, ret);
1837
1838         return ret;
1839 }
1840 EXPORT_SYMBOL(cpufreq_generic_suspend);
1841
1842 /**
1843  * cpufreq_suspend() - Suspend CPUFreq governors
1844  *
1845  * Called during system wide Suspend/Hibernate cycles for suspending governors
1846  * as some platforms can't change frequency after this point in suspend cycle.
1847  * Because some of the devices (like: i2c, regulators, etc) they use for
1848  * changing frequency are suspended quickly after this point.
1849  */
1850 void cpufreq_suspend(void)
1851 {
1852         struct cpufreq_policy *policy;
1853
1854         if (!cpufreq_driver)
1855                 return;
1856
1857         if (!has_target() && !cpufreq_driver->suspend)
1858                 goto suspend;
1859
1860         pr_debug("%s: Suspending Governors\n", __func__);
1861
1862         for_each_active_policy(policy) {
1863                 if (has_target()) {
1864                         down_write(&policy->rwsem);
1865                         cpufreq_stop_governor(policy);
1866                         up_write(&policy->rwsem);
1867                 }
1868
1869                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1870                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1871                                 cpufreq_driver->name);
1872         }
1873
1874 suspend:
1875         cpufreq_suspended = true;
1876 }
1877
1878 /**
1879  * cpufreq_resume() - Resume CPUFreq governors
1880  *
1881  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1882  * are suspended with cpufreq_suspend().
1883  */
1884 void cpufreq_resume(void)
1885 {
1886         struct cpufreq_policy *policy;
1887         int ret;
1888
1889         if (!cpufreq_driver)
1890                 return;
1891
1892         if (unlikely(!cpufreq_suspended))
1893                 return;
1894
1895         cpufreq_suspended = false;
1896
1897         if (!has_target() && !cpufreq_driver->resume)
1898                 return;
1899
1900         pr_debug("%s: Resuming Governors\n", __func__);
1901
1902         for_each_active_policy(policy) {
1903                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1904                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1905                                 policy);
1906                 } else if (has_target()) {
1907                         down_write(&policy->rwsem);
1908                         ret = cpufreq_start_governor(policy);
1909                         up_write(&policy->rwsem);
1910
1911                         if (ret)
1912                                 pr_err("%s: Failed to start governor for policy: %p\n",
1913                                        __func__, policy);
1914                 }
1915         }
1916 }
1917
1918 /**
1919  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1920  * @flags: Flags to test against the current cpufreq driver's flags.
1921  *
1922  * Assumes that the driver is there, so callers must ensure that this is the
1923  * case.
1924  */
1925 bool cpufreq_driver_test_flags(u16 flags)
1926 {
1927         return !!(cpufreq_driver->flags & flags);
1928 }
1929
1930 /**
1931  *      cpufreq_get_current_driver - return current driver's name
1932  *
1933  *      Return the name string of the currently loaded cpufreq driver
1934  *      or NULL, if none.
1935  */
1936 const char *cpufreq_get_current_driver(void)
1937 {
1938         if (cpufreq_driver)
1939                 return cpufreq_driver->name;
1940
1941         return NULL;
1942 }
1943 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1944
1945 /**
1946  *      cpufreq_get_driver_data - return current driver data
1947  *
1948  *      Return the private data of the currently loaded cpufreq
1949  *      driver, or NULL if no cpufreq driver is loaded.
1950  */
1951 void *cpufreq_get_driver_data(void)
1952 {
1953         if (cpufreq_driver)
1954                 return cpufreq_driver->driver_data;
1955
1956         return NULL;
1957 }
1958 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1959
1960 /*********************************************************************
1961  *                     NOTIFIER LISTS INTERFACE                      *
1962  *********************************************************************/
1963
1964 /**
1965  *      cpufreq_register_notifier - register a driver with cpufreq
1966  *      @nb: notifier function to register
1967  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1968  *
1969  *      Add a driver to one of two lists: either a list of drivers that
1970  *      are notified about clock rate changes (once before and once after
1971  *      the transition), or a list of drivers that are notified about
1972  *      changes in cpufreq policy.
1973  *
1974  *      This function may sleep, and has the same return conditions as
1975  *      blocking_notifier_chain_register.
1976  */
1977 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1978 {
1979         int ret;
1980
1981         if (cpufreq_disabled())
1982                 return -EINVAL;
1983
1984         switch (list) {
1985         case CPUFREQ_TRANSITION_NOTIFIER:
1986                 mutex_lock(&cpufreq_fast_switch_lock);
1987
1988                 if (cpufreq_fast_switch_count > 0) {
1989                         mutex_unlock(&cpufreq_fast_switch_lock);
1990                         return -EBUSY;
1991                 }
1992                 ret = srcu_notifier_chain_register(
1993                                 &cpufreq_transition_notifier_list, nb);
1994                 if (!ret)
1995                         cpufreq_fast_switch_count--;
1996
1997                 mutex_unlock(&cpufreq_fast_switch_lock);
1998                 break;
1999         case CPUFREQ_POLICY_NOTIFIER:
2000                 ret = blocking_notifier_chain_register(
2001                                 &cpufreq_policy_notifier_list, nb);
2002                 break;
2003         default:
2004                 ret = -EINVAL;
2005         }
2006
2007         return ret;
2008 }
2009 EXPORT_SYMBOL(cpufreq_register_notifier);
2010
2011 /**
2012  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
2013  *      @nb: notifier block to be unregistered
2014  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
2015  *
2016  *      Remove a driver from the CPU frequency notifier list.
2017  *
2018  *      This function may sleep, and has the same return conditions as
2019  *      blocking_notifier_chain_unregister.
2020  */
2021 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2022 {
2023         int ret;
2024
2025         if (cpufreq_disabled())
2026                 return -EINVAL;
2027
2028         switch (list) {
2029         case CPUFREQ_TRANSITION_NOTIFIER:
2030                 mutex_lock(&cpufreq_fast_switch_lock);
2031
2032                 ret = srcu_notifier_chain_unregister(
2033                                 &cpufreq_transition_notifier_list, nb);
2034                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2035                         cpufreq_fast_switch_count++;
2036
2037                 mutex_unlock(&cpufreq_fast_switch_lock);
2038                 break;
2039         case CPUFREQ_POLICY_NOTIFIER:
2040                 ret = blocking_notifier_chain_unregister(
2041                                 &cpufreq_policy_notifier_list, nb);
2042                 break;
2043         default:
2044                 ret = -EINVAL;
2045         }
2046
2047         return ret;
2048 }
2049 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2050
2051
2052 /*********************************************************************
2053  *                              GOVERNORS                            *
2054  *********************************************************************/
2055
2056 /**
2057  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2058  * @policy: cpufreq policy to switch the frequency for.
2059  * @target_freq: New frequency to set (may be approximate).
2060  *
2061  * Carry out a fast frequency switch without sleeping.
2062  *
2063  * The driver's ->fast_switch() callback invoked by this function must be
2064  * suitable for being called from within RCU-sched read-side critical sections
2065  * and it is expected to select the minimum available frequency greater than or
2066  * equal to @target_freq (CPUFREQ_RELATION_L).
2067  *
2068  * This function must not be called if policy->fast_switch_enabled is unset.
2069  *
2070  * Governors calling this function must guarantee that it will never be invoked
2071  * twice in parallel for the same policy and that it will never be called in
2072  * parallel with either ->target() or ->target_index() for the same policy.
2073  *
2074  * Returns the actual frequency set for the CPU.
2075  *
2076  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2077  * error condition, the hardware configuration must be preserved.
2078  */
2079 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2080                                         unsigned int target_freq)
2081 {
2082         unsigned int freq;
2083         int cpu;
2084
2085         target_freq = clamp_val(target_freq, policy->min, policy->max);
2086         freq = cpufreq_driver->fast_switch(policy, target_freq);
2087
2088         if (!freq)
2089                 return 0;
2090
2091         policy->cur = freq;
2092         arch_set_freq_scale(policy->related_cpus, freq,
2093                             policy->cpuinfo.max_freq);
2094         cpufreq_stats_record_transition(policy, freq);
2095
2096         if (trace_cpu_frequency_enabled()) {
2097                 for_each_cpu(cpu, policy->cpus)
2098                         trace_cpu_frequency(freq, cpu);
2099         }
2100
2101         return freq;
2102 }
2103 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2104
2105 /* Must set freqs->new to intermediate frequency */
2106 static int __target_intermediate(struct cpufreq_policy *policy,
2107                                  struct cpufreq_freqs *freqs, int index)
2108 {
2109         int ret;
2110
2111         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2112
2113         /* We don't need to switch to intermediate freq */
2114         if (!freqs->new)
2115                 return 0;
2116
2117         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2118                  __func__, policy->cpu, freqs->old, freqs->new);
2119
2120         cpufreq_freq_transition_begin(policy, freqs);
2121         ret = cpufreq_driver->target_intermediate(policy, index);
2122         cpufreq_freq_transition_end(policy, freqs, ret);
2123
2124         if (ret)
2125                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2126                        __func__, ret);
2127
2128         return ret;
2129 }
2130
2131 static int __target_index(struct cpufreq_policy *policy, int index)
2132 {
2133         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2134         unsigned int intermediate_freq = 0;
2135         unsigned int newfreq = policy->freq_table[index].frequency;
2136         int retval = -EINVAL;
2137         bool notify;
2138
2139         if (newfreq == policy->cur)
2140                 return 0;
2141
2142         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2143         if (notify) {
2144                 /* Handle switching to intermediate frequency */
2145                 if (cpufreq_driver->get_intermediate) {
2146                         retval = __target_intermediate(policy, &freqs, index);
2147                         if (retval)
2148                                 return retval;
2149
2150                         intermediate_freq = freqs.new;
2151                         /* Set old freq to intermediate */
2152                         if (intermediate_freq)
2153                                 freqs.old = freqs.new;
2154                 }
2155
2156                 freqs.new = newfreq;
2157                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2158                          __func__, policy->cpu, freqs.old, freqs.new);
2159
2160                 cpufreq_freq_transition_begin(policy, &freqs);
2161         }
2162
2163         retval = cpufreq_driver->target_index(policy, index);
2164         if (retval)
2165                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2166                        retval);
2167
2168         if (notify) {
2169                 cpufreq_freq_transition_end(policy, &freqs, retval);
2170
2171                 /*
2172                  * Failed after setting to intermediate freq? Driver should have
2173                  * reverted back to initial frequency and so should we. Check
2174                  * here for intermediate_freq instead of get_intermediate, in
2175                  * case we haven't switched to intermediate freq at all.
2176                  */
2177                 if (unlikely(retval && intermediate_freq)) {
2178                         freqs.old = intermediate_freq;
2179                         freqs.new = policy->restore_freq;
2180                         cpufreq_freq_transition_begin(policy, &freqs);
2181                         cpufreq_freq_transition_end(policy, &freqs, 0);
2182                 }
2183         }
2184
2185         return retval;
2186 }
2187
2188 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2189                             unsigned int target_freq,
2190                             unsigned int relation)
2191 {
2192         unsigned int old_target_freq = target_freq;
2193         int index;
2194
2195         if (cpufreq_disabled())
2196                 return -ENODEV;
2197
2198         /* Make sure that target_freq is within supported range */
2199         target_freq = clamp_val(target_freq, policy->min, policy->max);
2200
2201         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2202                  policy->cpu, target_freq, relation, old_target_freq);
2203
2204         /*
2205          * This might look like a redundant call as we are checking it again
2206          * after finding index. But it is left intentionally for cases where
2207          * exactly same freq is called again and so we can save on few function
2208          * calls.
2209          */
2210         if (target_freq == policy->cur &&
2211             !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2212                 return 0;
2213
2214         /* Save last value to restore later on errors */
2215         policy->restore_freq = policy->cur;
2216
2217         if (cpufreq_driver->target)
2218                 return cpufreq_driver->target(policy, target_freq, relation);
2219
2220         if (!cpufreq_driver->target_index)
2221                 return -EINVAL;
2222
2223         index = cpufreq_frequency_table_target(policy, target_freq, relation);
2224
2225         return __target_index(policy, index);
2226 }
2227 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2228
2229 int cpufreq_driver_target(struct cpufreq_policy *policy,
2230                           unsigned int target_freq,
2231                           unsigned int relation)
2232 {
2233         int ret;
2234
2235         down_write(&policy->rwsem);
2236
2237         ret = __cpufreq_driver_target(policy, target_freq, relation);
2238
2239         up_write(&policy->rwsem);
2240
2241         return ret;
2242 }
2243 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2244
2245 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2246 {
2247         return NULL;
2248 }
2249
2250 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2251 {
2252         int ret;
2253
2254         /* Don't start any governor operations if we are entering suspend */
2255         if (cpufreq_suspended)
2256                 return 0;
2257         /*
2258          * Governor might not be initiated here if ACPI _PPC changed
2259          * notification happened, so check it.
2260          */
2261         if (!policy->governor)
2262                 return -EINVAL;
2263
2264         /* Platform doesn't want dynamic frequency switching ? */
2265         if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2266             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2267                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2268
2269                 if (gov) {
2270                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2271                                 policy->governor->name, gov->name);
2272                         policy->governor = gov;
2273                 } else {
2274                         return -EINVAL;
2275                 }
2276         }
2277
2278         if (!try_module_get(policy->governor->owner))
2279                 return -EINVAL;
2280
2281         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2282
2283         if (policy->governor->init) {
2284                 ret = policy->governor->init(policy);
2285                 if (ret) {
2286                         module_put(policy->governor->owner);
2287                         return ret;
2288                 }
2289         }
2290
2291         policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2292
2293         return 0;
2294 }
2295
2296 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2297 {
2298         if (cpufreq_suspended || !policy->governor)
2299                 return;
2300
2301         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2302
2303         if (policy->governor->exit)
2304                 policy->governor->exit(policy);
2305
2306         module_put(policy->governor->owner);
2307 }
2308
2309 int cpufreq_start_governor(struct cpufreq_policy *policy)
2310 {
2311         int ret;
2312
2313         if (cpufreq_suspended)
2314                 return 0;
2315
2316         if (!policy->governor)
2317                 return -EINVAL;
2318
2319         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2320
2321         if (cpufreq_driver->get)
2322                 cpufreq_verify_current_freq(policy, false);
2323
2324         if (policy->governor->start) {
2325                 ret = policy->governor->start(policy);
2326                 if (ret)
2327                         return ret;
2328         }
2329
2330         if (policy->governor->limits)
2331                 policy->governor->limits(policy);
2332
2333         return 0;
2334 }
2335
2336 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2337 {
2338         if (cpufreq_suspended || !policy->governor)
2339                 return;
2340
2341         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2342
2343         if (policy->governor->stop)
2344                 policy->governor->stop(policy);
2345 }
2346
2347 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2348 {
2349         if (cpufreq_suspended || !policy->governor)
2350                 return;
2351
2352         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2353
2354         if (policy->governor->limits)
2355                 policy->governor->limits(policy);
2356 }
2357
2358 int cpufreq_register_governor(struct cpufreq_governor *governor)
2359 {
2360         int err;
2361
2362         if (!governor)
2363                 return -EINVAL;
2364
2365         if (cpufreq_disabled())
2366                 return -ENODEV;
2367
2368         mutex_lock(&cpufreq_governor_mutex);
2369
2370         err = -EBUSY;
2371         if (!find_governor(governor->name)) {
2372                 err = 0;
2373                 list_add(&governor->governor_list, &cpufreq_governor_list);
2374         }
2375
2376         mutex_unlock(&cpufreq_governor_mutex);
2377         return err;
2378 }
2379 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2380
2381 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2382 {
2383         struct cpufreq_policy *policy;
2384         unsigned long flags;
2385
2386         if (!governor)
2387                 return;
2388
2389         if (cpufreq_disabled())
2390                 return;
2391
2392         /* clear last_governor for all inactive policies */
2393         read_lock_irqsave(&cpufreq_driver_lock, flags);
2394         for_each_inactive_policy(policy) {
2395                 if (!strcmp(policy->last_governor, governor->name)) {
2396                         policy->governor = NULL;
2397                         strcpy(policy->last_governor, "\0");
2398                 }
2399         }
2400         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2401
2402         mutex_lock(&cpufreq_governor_mutex);
2403         list_del(&governor->governor_list);
2404         mutex_unlock(&cpufreq_governor_mutex);
2405 }
2406 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2407
2408
2409 /*********************************************************************
2410  *                          POLICY INTERFACE                         *
2411  *********************************************************************/
2412
2413 /**
2414  * cpufreq_get_policy - get the current cpufreq_policy
2415  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2416  *      is written
2417  * @cpu: CPU to find the policy for
2418  *
2419  * Reads the current cpufreq policy.
2420  */
2421 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2422 {
2423         struct cpufreq_policy *cpu_policy;
2424         if (!policy)
2425                 return -EINVAL;
2426
2427         cpu_policy = cpufreq_cpu_get(cpu);
2428         if (!cpu_policy)
2429                 return -EINVAL;
2430
2431         memcpy(policy, cpu_policy, sizeof(*policy));
2432
2433         cpufreq_cpu_put(cpu_policy);
2434         return 0;
2435 }
2436 EXPORT_SYMBOL(cpufreq_get_policy);
2437
2438 /**
2439  * cpufreq_set_policy - Modify cpufreq policy parameters.
2440  * @policy: Policy object to modify.
2441  * @new_gov: Policy governor pointer.
2442  * @new_pol: Policy value (for drivers with built-in governors).
2443  *
2444  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2445  * limits to be set for the policy, update @policy with the verified limits
2446  * values and either invoke the driver's ->setpolicy() callback (if present) or
2447  * carry out a governor update for @policy.  That is, run the current governor's
2448  * ->limits() callback (if @new_gov points to the same object as the one in
2449  * @policy) or replace the governor for @policy with @new_gov.
2450  *
2451  * The cpuinfo part of @policy is not updated by this function.
2452  */
2453 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2454                               struct cpufreq_governor *new_gov,
2455                               unsigned int new_pol)
2456 {
2457         struct cpufreq_policy_data new_data;
2458         struct cpufreq_governor *old_gov;
2459         int ret;
2460
2461         memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2462         new_data.freq_table = policy->freq_table;
2463         new_data.cpu = policy->cpu;
2464         /*
2465          * PM QoS framework collects all the requests from users and provide us
2466          * the final aggregated value here.
2467          */
2468         new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2469         new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2470
2471         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2472                  new_data.cpu, new_data.min, new_data.max);
2473
2474         /*
2475          * Verify that the CPU speed can be set within these limits and make sure
2476          * that min <= max.
2477          */
2478         ret = cpufreq_driver->verify(&new_data);
2479         if (ret)
2480                 return ret;
2481
2482         policy->min = new_data.min;
2483         policy->max = new_data.max;
2484         trace_cpu_frequency_limits(policy);
2485
2486         policy->cached_target_freq = UINT_MAX;
2487
2488         pr_debug("new min and max freqs are %u - %u kHz\n",
2489                  policy->min, policy->max);
2490
2491         if (cpufreq_driver->setpolicy) {
2492                 policy->policy = new_pol;
2493                 pr_debug("setting range\n");
2494                 return cpufreq_driver->setpolicy(policy);
2495         }
2496
2497         if (new_gov == policy->governor) {
2498                 pr_debug("governor limits update\n");
2499                 cpufreq_governor_limits(policy);
2500                 return 0;
2501         }
2502
2503         pr_debug("governor switch\n");
2504
2505         /* save old, working values */
2506         old_gov = policy->governor;
2507         /* end old governor */
2508         if (old_gov) {
2509                 cpufreq_stop_governor(policy);
2510                 cpufreq_exit_governor(policy);
2511         }
2512
2513         /* start new governor */
2514         policy->governor = new_gov;
2515         ret = cpufreq_init_governor(policy);
2516         if (!ret) {
2517                 ret = cpufreq_start_governor(policy);
2518                 if (!ret) {
2519                         pr_debug("governor change\n");
2520                         sched_cpufreq_governor_change(policy, old_gov);
2521                         return 0;
2522                 }
2523                 cpufreq_exit_governor(policy);
2524         }
2525
2526         /* new governor failed, so re-start old one */
2527         pr_debug("starting governor %s failed\n", policy->governor->name);
2528         if (old_gov) {
2529                 policy->governor = old_gov;
2530                 if (cpufreq_init_governor(policy))
2531                         policy->governor = NULL;
2532                 else
2533                         cpufreq_start_governor(policy);
2534         }
2535
2536         return ret;
2537 }
2538
2539 /**
2540  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2541  * @cpu: CPU to re-evaluate the policy for.
2542  *
2543  * Update the current frequency for the cpufreq policy of @cpu and use
2544  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2545  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2546  * for the policy in question, among other things.
2547  */
2548 void cpufreq_update_policy(unsigned int cpu)
2549 {
2550         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2551
2552         if (!policy)
2553                 return;
2554
2555         /*
2556          * BIOS might change freq behind our back
2557          * -> ask driver for current freq and notify governors about a change
2558          */
2559         if (cpufreq_driver->get && has_target() &&
2560             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2561                 goto unlock;
2562
2563         refresh_frequency_limits(policy);
2564
2565 unlock:
2566         cpufreq_cpu_release(policy);
2567 }
2568 EXPORT_SYMBOL(cpufreq_update_policy);
2569
2570 /**
2571  * cpufreq_update_limits - Update policy limits for a given CPU.
2572  * @cpu: CPU to update the policy limits for.
2573  *
2574  * Invoke the driver's ->update_limits callback if present or call
2575  * cpufreq_update_policy() for @cpu.
2576  */
2577 void cpufreq_update_limits(unsigned int cpu)
2578 {
2579         if (cpufreq_driver->update_limits)
2580                 cpufreq_driver->update_limits(cpu);
2581         else
2582                 cpufreq_update_policy(cpu);
2583 }
2584 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2585
2586 /*********************************************************************
2587  *               BOOST                                               *
2588  *********************************************************************/
2589 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2590 {
2591         int ret;
2592
2593         if (!policy->freq_table)
2594                 return -ENXIO;
2595
2596         ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2597         if (ret) {
2598                 pr_err("%s: Policy frequency update failed\n", __func__);
2599                 return ret;
2600         }
2601
2602         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2603         if (ret < 0)
2604                 return ret;
2605
2606         return 0;
2607 }
2608
2609 int cpufreq_boost_trigger_state(int state)
2610 {
2611         struct cpufreq_policy *policy;
2612         unsigned long flags;
2613         int ret = 0;
2614
2615         if (cpufreq_driver->boost_enabled == state)
2616                 return 0;
2617
2618         write_lock_irqsave(&cpufreq_driver_lock, flags);
2619         cpufreq_driver->boost_enabled = state;
2620         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2621
2622         get_online_cpus();
2623         for_each_active_policy(policy) {
2624                 ret = cpufreq_driver->set_boost(policy, state);
2625                 if (ret)
2626                         goto err_reset_state;
2627         }
2628         put_online_cpus();
2629
2630         return 0;
2631
2632 err_reset_state:
2633         put_online_cpus();
2634
2635         write_lock_irqsave(&cpufreq_driver_lock, flags);
2636         cpufreq_driver->boost_enabled = !state;
2637         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2638
2639         pr_err("%s: Cannot %s BOOST\n",
2640                __func__, state ? "enable" : "disable");
2641
2642         return ret;
2643 }
2644
2645 static bool cpufreq_boost_supported(void)
2646 {
2647         return cpufreq_driver->set_boost;
2648 }
2649
2650 static int create_boost_sysfs_file(void)
2651 {
2652         int ret;
2653
2654         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2655         if (ret)
2656                 pr_err("%s: cannot register global BOOST sysfs file\n",
2657                        __func__);
2658
2659         return ret;
2660 }
2661
2662 static void remove_boost_sysfs_file(void)
2663 {
2664         if (cpufreq_boost_supported())
2665                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2666 }
2667
2668 int cpufreq_enable_boost_support(void)
2669 {
2670         if (!cpufreq_driver)
2671                 return -EINVAL;
2672
2673         if (cpufreq_boost_supported())
2674                 return 0;
2675
2676         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2677
2678         /* This will get removed on driver unregister */
2679         return create_boost_sysfs_file();
2680 }
2681 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2682
2683 int cpufreq_boost_enabled(void)
2684 {
2685         return cpufreq_driver->boost_enabled;
2686 }
2687 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2688
2689 /*********************************************************************
2690  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2691  *********************************************************************/
2692 static enum cpuhp_state hp_online;
2693
2694 static int cpuhp_cpufreq_online(unsigned int cpu)
2695 {
2696         cpufreq_online(cpu);
2697
2698         return 0;
2699 }
2700
2701 static int cpuhp_cpufreq_offline(unsigned int cpu)
2702 {
2703         cpufreq_offline(cpu);
2704
2705         return 0;
2706 }
2707
2708 /**
2709  * cpufreq_register_driver - register a CPU Frequency driver
2710  * @driver_data: A struct cpufreq_driver containing the values#
2711  * submitted by the CPU Frequency driver.
2712  *
2713  * Registers a CPU Frequency driver to this core code. This code
2714  * returns zero on success, -EEXIST when another driver got here first
2715  * (and isn't unregistered in the meantime).
2716  *
2717  */
2718 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2719 {
2720         unsigned long flags;
2721         int ret;
2722
2723         if (cpufreq_disabled())
2724                 return -ENODEV;
2725
2726         /*
2727          * The cpufreq core depends heavily on the availability of device
2728          * structure, make sure they are available before proceeding further.
2729          */
2730         if (!get_cpu_device(0))
2731                 return -EPROBE_DEFER;
2732
2733         if (!driver_data || !driver_data->verify || !driver_data->init ||
2734             !(driver_data->setpolicy || driver_data->target_index ||
2735                     driver_data->target) ||
2736              (driver_data->setpolicy && (driver_data->target_index ||
2737                     driver_data->target)) ||
2738              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2739              (!driver_data->online != !driver_data->offline))
2740                 return -EINVAL;
2741
2742         pr_debug("trying to register driver %s\n", driver_data->name);
2743
2744         /* Protect against concurrent CPU online/offline. */
2745         cpus_read_lock();
2746
2747         write_lock_irqsave(&cpufreq_driver_lock, flags);
2748         if (cpufreq_driver) {
2749                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2750                 ret = -EEXIST;
2751                 goto out;
2752         }
2753         cpufreq_driver = driver_data;
2754         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755
2756         /*
2757          * Mark support for the scheduler's frequency invariance engine for
2758          * drivers that implement target(), target_index() or fast_switch().
2759          */
2760         if (!cpufreq_driver->setpolicy) {
2761                 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2762                 pr_debug("supports frequency invariance");
2763         }
2764
2765         if (driver_data->setpolicy)
2766                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2767
2768         if (cpufreq_boost_supported()) {
2769                 ret = create_boost_sysfs_file();
2770                 if (ret)
2771                         goto err_null_driver;
2772         }
2773
2774         ret = subsys_interface_register(&cpufreq_interface);
2775         if (ret)
2776                 goto err_boost_unreg;
2777
2778         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2779             list_empty(&cpufreq_policy_list)) {
2780                 /* if all ->init() calls failed, unregister */
2781                 ret = -ENODEV;
2782                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2783                          driver_data->name);
2784                 goto err_if_unreg;
2785         }
2786
2787         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2788                                                    "cpufreq:online",
2789                                                    cpuhp_cpufreq_online,
2790                                                    cpuhp_cpufreq_offline);
2791         if (ret < 0)
2792                 goto err_if_unreg;
2793         hp_online = ret;
2794         ret = 0;
2795
2796         pr_debug("driver %s up and running\n", driver_data->name);
2797         goto out;
2798
2799 err_if_unreg:
2800         subsys_interface_unregister(&cpufreq_interface);
2801 err_boost_unreg:
2802         remove_boost_sysfs_file();
2803 err_null_driver:
2804         write_lock_irqsave(&cpufreq_driver_lock, flags);
2805         cpufreq_driver = NULL;
2806         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2807 out:
2808         cpus_read_unlock();
2809         return ret;
2810 }
2811 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2812
2813 /*
2814  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2815  *
2816  * Unregister the current CPUFreq driver. Only call this if you have
2817  * the right to do so, i.e. if you have succeeded in initialising before!
2818  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2819  * currently not initialised.
2820  */
2821 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2822 {
2823         unsigned long flags;
2824
2825         if (!cpufreq_driver || (driver != cpufreq_driver))
2826                 return -EINVAL;
2827
2828         pr_debug("unregistering driver %s\n", driver->name);
2829
2830         /* Protect against concurrent cpu hotplug */
2831         cpus_read_lock();
2832         subsys_interface_unregister(&cpufreq_interface);
2833         remove_boost_sysfs_file();
2834         static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2835         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2836
2837         write_lock_irqsave(&cpufreq_driver_lock, flags);
2838
2839         cpufreq_driver = NULL;
2840
2841         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2842         cpus_read_unlock();
2843
2844         return 0;
2845 }
2846 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2847
2848 static int __init cpufreq_core_init(void)
2849 {
2850         struct cpufreq_governor *gov = cpufreq_default_governor();
2851
2852         if (cpufreq_disabled())
2853                 return -ENODEV;
2854
2855         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2856         BUG_ON(!cpufreq_global_kobject);
2857
2858         if (!strlen(default_governor))
2859                 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2860
2861         return 0;
2862 }
2863 module_param(off, int, 0444);
2864 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2865 core_initcall(cpufreq_core_init);