GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <linux/units.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 /* Macros to iterate over CPU policies */
37 #define for_each_suitable_policy(__policy, __active)                     \
38         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39                 if ((__active) == !policy_is_inactive(__policy))
40
41 #define for_each_active_policy(__policy)                \
42         for_each_suitable_policy(__policy, true)
43 #define for_each_inactive_policy(__policy)              \
44         for_each_suitable_policy(__policy, false)
45
46 /* Iterate over governors */
47 static LIST_HEAD(cpufreq_governor_list);
48 #define for_each_governor(__governor)                           \
49         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50
51 static char default_governor[CPUFREQ_NAME_LEN];
52
53 /*
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63 bool cpufreq_supports_freq_invariance(void)
64 {
65         return static_branch_likely(&cpufreq_freq_invariance);
66 }
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73         return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
81 static int cpufreq_set_policy(struct cpufreq_policy *policy,
82                               struct cpufreq_governor *new_gov,
83                               unsigned int new_pol);
84
85 /*
86  * Two notifier lists: the "policy" list is involved in the
87  * validation process for a new CPU frequency policy; the
88  * "transition" list for kernel code that needs to handle
89  * changes to devices when the CPU clock speed changes.
90  * The mutex locks both lists.
91  */
92 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
93 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
94
95 static int off __read_mostly;
96 static int cpufreq_disabled(void)
97 {
98         return off;
99 }
100 void disable_cpufreq(void)
101 {
102         off = 1;
103 }
104 static DEFINE_MUTEX(cpufreq_governor_mutex);
105
106 bool have_governor_per_policy(void)
107 {
108         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
109 }
110 EXPORT_SYMBOL_GPL(have_governor_per_policy);
111
112 static struct kobject *cpufreq_global_kobject;
113
114 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
115 {
116         if (have_governor_per_policy())
117                 return &policy->kobj;
118         else
119                 return cpufreq_global_kobject;
120 }
121 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
122
123 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
124 {
125         struct kernel_cpustat kcpustat;
126         u64 cur_wall_time;
127         u64 idle_time;
128         u64 busy_time;
129
130         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
131
132         kcpustat_cpu_fetch(&kcpustat, cpu);
133
134         busy_time = kcpustat.cpustat[CPUTIME_USER];
135         busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
136         busy_time += kcpustat.cpustat[CPUTIME_IRQ];
137         busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
138         busy_time += kcpustat.cpustat[CPUTIME_STEAL];
139         busy_time += kcpustat.cpustat[CPUTIME_NICE];
140
141         idle_time = cur_wall_time - busy_time;
142         if (wall)
143                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
144
145         return div_u64(idle_time, NSEC_PER_USEC);
146 }
147
148 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
149 {
150         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
151
152         if (idle_time == -1ULL)
153                 return get_cpu_idle_time_jiffy(cpu, wall);
154         else if (!io_busy)
155                 idle_time += get_cpu_iowait_time_us(cpu, wall);
156
157         return idle_time;
158 }
159 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
160
161 /*
162  * This is a generic cpufreq init() routine which can be used by cpufreq
163  * drivers of SMP systems. It will do following:
164  * - validate & show freq table passed
165  * - set policies transition latency
166  * - policy->cpus with all possible CPUs
167  */
168 void cpufreq_generic_init(struct cpufreq_policy *policy,
169                 struct cpufreq_frequency_table *table,
170                 unsigned int transition_latency)
171 {
172         policy->freq_table = table;
173         policy->cpuinfo.transition_latency = transition_latency;
174
175         /*
176          * The driver only supports the SMP configuration where all processors
177          * share the clock and voltage and clock.
178          */
179         cpumask_setall(policy->cpus);
180 }
181 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
182
183 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
184 {
185         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
186
187         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
188 }
189 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
190
191 unsigned int cpufreq_generic_get(unsigned int cpu)
192 {
193         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
194
195         if (!policy || IS_ERR(policy->clk)) {
196                 pr_err("%s: No %s associated to cpu: %d\n",
197                        __func__, policy ? "clk" : "policy", cpu);
198                 return 0;
199         }
200
201         return clk_get_rate(policy->clk) / 1000;
202 }
203 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
204
205 /**
206  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
207  * @cpu: CPU to find the policy for.
208  *
209  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
210  * the kobject reference counter of that policy.  Return a valid policy on
211  * success or NULL on failure.
212  *
213  * The policy returned by this function has to be released with the help of
214  * cpufreq_cpu_put() to balance its kobject reference counter properly.
215  */
216 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
217 {
218         struct cpufreq_policy *policy = NULL;
219         unsigned long flags;
220
221         if (WARN_ON(cpu >= nr_cpu_ids))
222                 return NULL;
223
224         /* get the cpufreq driver */
225         read_lock_irqsave(&cpufreq_driver_lock, flags);
226
227         if (cpufreq_driver) {
228                 /* get the CPU */
229                 policy = cpufreq_cpu_get_raw(cpu);
230                 if (policy)
231                         kobject_get(&policy->kobj);
232         }
233
234         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
235
236         return policy;
237 }
238 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
239
240 /**
241  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
242  * @policy: cpufreq policy returned by cpufreq_cpu_get().
243  */
244 void cpufreq_cpu_put(struct cpufreq_policy *policy)
245 {
246         kobject_put(&policy->kobj);
247 }
248 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
249
250 /**
251  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
252  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
253  */
254 void cpufreq_cpu_release(struct cpufreq_policy *policy)
255 {
256         if (WARN_ON(!policy))
257                 return;
258
259         lockdep_assert_held(&policy->rwsem);
260
261         up_write(&policy->rwsem);
262
263         cpufreq_cpu_put(policy);
264 }
265
266 /**
267  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
268  * @cpu: CPU to find the policy for.
269  *
270  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
271  * if the policy returned by it is not NULL, acquire its rwsem for writing.
272  * Return the policy if it is active or release it and return NULL otherwise.
273  *
274  * The policy returned by this function has to be released with the help of
275  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
276  * counter properly.
277  */
278 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
279 {
280         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
281
282         if (!policy)
283                 return NULL;
284
285         down_write(&policy->rwsem);
286
287         if (policy_is_inactive(policy)) {
288                 cpufreq_cpu_release(policy);
289                 return NULL;
290         }
291
292         return policy;
293 }
294
295 /*********************************************************************
296  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
297  *********************************************************************/
298
299 /**
300  * adjust_jiffies - Adjust the system "loops_per_jiffy".
301  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
302  * @ci: Frequency change information.
303  *
304  * This function alters the system "loops_per_jiffy" for the clock
305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
306  * systems as each CPU might be scaled differently. So, use the arch
307  * per-CPU loops_per_jiffy value wherever possible.
308  */
309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312         static unsigned long l_p_j_ref;
313         static unsigned int l_p_j_ref_freq;
314
315         if (ci->flags & CPUFREQ_CONST_LOOPS)
316                 return;
317
318         if (!l_p_j_ref_freq) {
319                 l_p_j_ref = loops_per_jiffy;
320                 l_p_j_ref_freq = ci->old;
321                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322                          l_p_j_ref, l_p_j_ref_freq);
323         }
324         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326                                                                 ci->new);
327                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328                          loops_per_jiffy, ci->new);
329         }
330 #endif
331 }
332
333 /**
334  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
335  * @policy: cpufreq policy to enable fast frequency switching for.
336  * @freqs: contain details of the frequency update.
337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338  *
339  * This function calls the transition notifiers and adjust_jiffies().
340  *
341  * It is called twice on all CPU frequency changes that have external effects.
342  */
343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344                                       struct cpufreq_freqs *freqs,
345                                       unsigned int state)
346 {
347         int cpu;
348
349         BUG_ON(irqs_disabled());
350
351         if (cpufreq_disabled())
352                 return;
353
354         freqs->policy = policy;
355         freqs->flags = cpufreq_driver->flags;
356         pr_debug("notification %u of frequency transition to %u kHz\n",
357                  state, freqs->new);
358
359         switch (state) {
360         case CPUFREQ_PRECHANGE:
361                 /*
362                  * Detect if the driver reported a value as "old frequency"
363                  * which is not equal to what the cpufreq core thinks is
364                  * "old frequency".
365                  */
366                 if (policy->cur && policy->cur != freqs->old) {
367                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368                                  freqs->old, policy->cur);
369                         freqs->old = policy->cur;
370                 }
371
372                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373                                          CPUFREQ_PRECHANGE, freqs);
374
375                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376                 break;
377
378         case CPUFREQ_POSTCHANGE:
379                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381                          cpumask_pr_args(policy->cpus));
382
383                 for_each_cpu(cpu, policy->cpus)
384                         trace_cpu_frequency(freqs->new, cpu);
385
386                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387                                          CPUFREQ_POSTCHANGE, freqs);
388
389                 cpufreq_stats_record_transition(policy, freqs->new);
390                 policy->cur = freqs->new;
391         }
392 }
393
394 /* Do post notifications when there are chances that transition has failed */
395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396                 struct cpufreq_freqs *freqs, int transition_failed)
397 {
398         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399         if (!transition_failed)
400                 return;
401
402         swap(freqs->old, freqs->new);
403         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406
407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408                 struct cpufreq_freqs *freqs)
409 {
410
411         /*
412          * Catch double invocations of _begin() which lead to self-deadlock.
413          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414          * doesn't invoke _begin() on their behalf, and hence the chances of
415          * double invocations are very low. Moreover, there are scenarios
416          * where these checks can emit false-positive warnings in these
417          * drivers; so we avoid that by skipping them altogether.
418          */
419         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420                                 && current == policy->transition_task);
421
422 wait:
423         wait_event(policy->transition_wait, !policy->transition_ongoing);
424
425         spin_lock(&policy->transition_lock);
426
427         if (unlikely(policy->transition_ongoing)) {
428                 spin_unlock(&policy->transition_lock);
429                 goto wait;
430         }
431
432         policy->transition_ongoing = true;
433         policy->transition_task = current;
434
435         spin_unlock(&policy->transition_lock);
436
437         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440
441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442                 struct cpufreq_freqs *freqs, int transition_failed)
443 {
444         if (WARN_ON(!policy->transition_ongoing))
445                 return;
446
447         cpufreq_notify_post_transition(policy, freqs, transition_failed);
448
449         arch_set_freq_scale(policy->related_cpus,
450                             policy->cur,
451                             policy->cpuinfo.max_freq);
452
453         policy->transition_ongoing = false;
454         policy->transition_task = NULL;
455
456         wake_up(&policy->transition_wait);
457 }
458 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
459
460 /*
461  * Fast frequency switching status count.  Positive means "enabled", negative
462  * means "disabled" and 0 means "not decided yet".
463  */
464 static int cpufreq_fast_switch_count;
465 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
466
467 static void cpufreq_list_transition_notifiers(void)
468 {
469         struct notifier_block *nb;
470
471         pr_info("Registered transition notifiers:\n");
472
473         mutex_lock(&cpufreq_transition_notifier_list.mutex);
474
475         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
476                 pr_info("%pS\n", nb->notifier_call);
477
478         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
479 }
480
481 /**
482  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
483  * @policy: cpufreq policy to enable fast frequency switching for.
484  *
485  * Try to enable fast frequency switching for @policy.
486  *
487  * The attempt will fail if there is at least one transition notifier registered
488  * at this point, as fast frequency switching is quite fundamentally at odds
489  * with transition notifiers.  Thus if successful, it will make registration of
490  * transition notifiers fail going forward.
491  */
492 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
493 {
494         lockdep_assert_held(&policy->rwsem);
495
496         if (!policy->fast_switch_possible)
497                 return;
498
499         mutex_lock(&cpufreq_fast_switch_lock);
500         if (cpufreq_fast_switch_count >= 0) {
501                 cpufreq_fast_switch_count++;
502                 policy->fast_switch_enabled = true;
503         } else {
504                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
505                         policy->cpu);
506                 cpufreq_list_transition_notifiers();
507         }
508         mutex_unlock(&cpufreq_fast_switch_lock);
509 }
510 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
511
512 /**
513  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
514  * @policy: cpufreq policy to disable fast frequency switching for.
515  */
516 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
517 {
518         mutex_lock(&cpufreq_fast_switch_lock);
519         if (policy->fast_switch_enabled) {
520                 policy->fast_switch_enabled = false;
521                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
522                         cpufreq_fast_switch_count--;
523         }
524         mutex_unlock(&cpufreq_fast_switch_lock);
525 }
526 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
527
528 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
529                 unsigned int target_freq, unsigned int relation)
530 {
531         unsigned int idx;
532
533         target_freq = clamp_val(target_freq, policy->min, policy->max);
534
535         if (!cpufreq_driver->target_index)
536                 return target_freq;
537
538         idx = cpufreq_frequency_table_target(policy, target_freq, relation);
539         policy->cached_resolved_idx = idx;
540         policy->cached_target_freq = target_freq;
541         return policy->freq_table[idx].frequency;
542 }
543
544 /**
545  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
546  * one.
547  * @policy: associated policy to interrogate
548  * @target_freq: target frequency to resolve.
549  *
550  * The target to driver frequency mapping is cached in the policy.
551  *
552  * Return: Lowest driver-supported frequency greater than or equal to the
553  * given target_freq, subject to policy (min/max) and driver limitations.
554  */
555 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
556                                          unsigned int target_freq)
557 {
558         return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
559 }
560 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
561
562 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
563 {
564         unsigned int latency;
565
566         if (policy->transition_delay_us)
567                 return policy->transition_delay_us;
568
569         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
570         if (latency) {
571                 /*
572                  * For platforms that can change the frequency very fast (< 10
573                  * us), the above formula gives a decent transition delay. But
574                  * for platforms where transition_latency is in milliseconds, it
575                  * ends up giving unrealistic values.
576                  *
577                  * Cap the default transition delay to 10 ms, which seems to be
578                  * a reasonable amount of time after which we should reevaluate
579                  * the frequency.
580                  */
581                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
582         }
583
584         return LATENCY_MULTIPLIER;
585 }
586 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
587
588 /*********************************************************************
589  *                          SYSFS INTERFACE                          *
590  *********************************************************************/
591 static ssize_t show_boost(struct kobject *kobj,
592                           struct kobj_attribute *attr, char *buf)
593 {
594         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
595 }
596
597 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
598                            const char *buf, size_t count)
599 {
600         int ret, enable;
601
602         ret = sscanf(buf, "%d", &enable);
603         if (ret != 1 || enable < 0 || enable > 1)
604                 return -EINVAL;
605
606         if (cpufreq_boost_trigger_state(enable)) {
607                 pr_err("%s: Cannot %s BOOST!\n",
608                        __func__, enable ? "enable" : "disable");
609                 return -EINVAL;
610         }
611
612         pr_debug("%s: cpufreq BOOST %s\n",
613                  __func__, enable ? "enabled" : "disabled");
614
615         return count;
616 }
617 define_one_global_rw(boost);
618
619 static struct cpufreq_governor *find_governor(const char *str_governor)
620 {
621         struct cpufreq_governor *t;
622
623         for_each_governor(t)
624                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
625                         return t;
626
627         return NULL;
628 }
629
630 static struct cpufreq_governor *get_governor(const char *str_governor)
631 {
632         struct cpufreq_governor *t;
633
634         mutex_lock(&cpufreq_governor_mutex);
635         t = find_governor(str_governor);
636         if (!t)
637                 goto unlock;
638
639         if (!try_module_get(t->owner))
640                 t = NULL;
641
642 unlock:
643         mutex_unlock(&cpufreq_governor_mutex);
644
645         return t;
646 }
647
648 static unsigned int cpufreq_parse_policy(char *str_governor)
649 {
650         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
651                 return CPUFREQ_POLICY_PERFORMANCE;
652
653         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
654                 return CPUFREQ_POLICY_POWERSAVE;
655
656         return CPUFREQ_POLICY_UNKNOWN;
657 }
658
659 /**
660  * cpufreq_parse_governor - parse a governor string only for has_target()
661  * @str_governor: Governor name.
662  */
663 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
664 {
665         struct cpufreq_governor *t;
666
667         t = get_governor(str_governor);
668         if (t)
669                 return t;
670
671         if (request_module("cpufreq_%s", str_governor))
672                 return NULL;
673
674         return get_governor(str_governor);
675 }
676
677 /*
678  * cpufreq_per_cpu_attr_read() / show_##file_name() -
679  * print out cpufreq information
680  *
681  * Write out information from cpufreq_driver->policy[cpu]; object must be
682  * "unsigned int".
683  */
684
685 #define show_one(file_name, object)                     \
686 static ssize_t show_##file_name                         \
687 (struct cpufreq_policy *policy, char *buf)              \
688 {                                                       \
689         return sprintf(buf, "%u\n", policy->object);    \
690 }
691
692 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
693 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
694 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
695 show_one(scaling_min_freq, min);
696 show_one(scaling_max_freq, max);
697
698 __weak unsigned int arch_freq_get_on_cpu(int cpu)
699 {
700         return 0;
701 }
702
703 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
704 {
705         ssize_t ret;
706         unsigned int freq;
707
708         freq = arch_freq_get_on_cpu(policy->cpu);
709         if (freq)
710                 ret = sprintf(buf, "%u\n", freq);
711         else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
712                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
713         else
714                 ret = sprintf(buf, "%u\n", policy->cur);
715         return ret;
716 }
717
718 /*
719  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
720  */
721 #define store_one(file_name, object)                    \
722 static ssize_t store_##file_name                                        \
723 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
724 {                                                                       \
725         unsigned long val;                                              \
726         int ret;                                                        \
727                                                                         \
728         ret = sscanf(buf, "%lu", &val);                                 \
729         if (ret != 1)                                                   \
730                 return -EINVAL;                                         \
731                                                                         \
732         ret = freq_qos_update_request(policy->object##_freq_req, val);\
733         return ret >= 0 ? count : ret;                                  \
734 }
735
736 store_one(scaling_min_freq, min);
737 store_one(scaling_max_freq, max);
738
739 /*
740  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
741  */
742 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
743                                         char *buf)
744 {
745         unsigned int cur_freq = __cpufreq_get(policy);
746
747         if (cur_freq)
748                 return sprintf(buf, "%u\n", cur_freq);
749
750         return sprintf(buf, "<unknown>\n");
751 }
752
753 /*
754  * show_scaling_governor - show the current policy for the specified CPU
755  */
756 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
757 {
758         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
759                 return sprintf(buf, "powersave\n");
760         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
761                 return sprintf(buf, "performance\n");
762         else if (policy->governor)
763                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
764                                 policy->governor->name);
765         return -EINVAL;
766 }
767
768 /*
769  * store_scaling_governor - store policy for the specified CPU
770  */
771 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
772                                         const char *buf, size_t count)
773 {
774         char str_governor[16];
775         int ret;
776
777         ret = sscanf(buf, "%15s", str_governor);
778         if (ret != 1)
779                 return -EINVAL;
780
781         if (cpufreq_driver->setpolicy) {
782                 unsigned int new_pol;
783
784                 new_pol = cpufreq_parse_policy(str_governor);
785                 if (!new_pol)
786                         return -EINVAL;
787
788                 ret = cpufreq_set_policy(policy, NULL, new_pol);
789         } else {
790                 struct cpufreq_governor *new_gov;
791
792                 new_gov = cpufreq_parse_governor(str_governor);
793                 if (!new_gov)
794                         return -EINVAL;
795
796                 ret = cpufreq_set_policy(policy, new_gov,
797                                          CPUFREQ_POLICY_UNKNOWN);
798
799                 module_put(new_gov->owner);
800         }
801
802         return ret ? ret : count;
803 }
804
805 /*
806  * show_scaling_driver - show the cpufreq driver currently loaded
807  */
808 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
809 {
810         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
811 }
812
813 /*
814  * show_scaling_available_governors - show the available CPUfreq governors
815  */
816 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
817                                                 char *buf)
818 {
819         ssize_t i = 0;
820         struct cpufreq_governor *t;
821
822         if (!has_target()) {
823                 i += sprintf(buf, "performance powersave");
824                 goto out;
825         }
826
827         mutex_lock(&cpufreq_governor_mutex);
828         for_each_governor(t) {
829                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
830                     - (CPUFREQ_NAME_LEN + 2)))
831                         break;
832                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
833         }
834         mutex_unlock(&cpufreq_governor_mutex);
835 out:
836         i += sprintf(&buf[i], "\n");
837         return i;
838 }
839
840 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
841 {
842         ssize_t i = 0;
843         unsigned int cpu;
844
845         for_each_cpu(cpu, mask) {
846                 if (i)
847                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
848                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
849                 if (i >= (PAGE_SIZE - 5))
850                         break;
851         }
852         i += sprintf(&buf[i], "\n");
853         return i;
854 }
855 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
856
857 /*
858  * show_related_cpus - show the CPUs affected by each transition even if
859  * hw coordination is in use
860  */
861 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
862 {
863         return cpufreq_show_cpus(policy->related_cpus, buf);
864 }
865
866 /*
867  * show_affected_cpus - show the CPUs affected by each transition
868  */
869 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
870 {
871         return cpufreq_show_cpus(policy->cpus, buf);
872 }
873
874 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
875                                         const char *buf, size_t count)
876 {
877         unsigned int freq = 0;
878         unsigned int ret;
879
880         if (!policy->governor || !policy->governor->store_setspeed)
881                 return -EINVAL;
882
883         ret = sscanf(buf, "%u", &freq);
884         if (ret != 1)
885                 return -EINVAL;
886
887         policy->governor->store_setspeed(policy, freq);
888
889         return count;
890 }
891
892 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
893 {
894         if (!policy->governor || !policy->governor->show_setspeed)
895                 return sprintf(buf, "<unsupported>\n");
896
897         return policy->governor->show_setspeed(policy, buf);
898 }
899
900 /*
901  * show_bios_limit - show the current cpufreq HW/BIOS limitation
902  */
903 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
904 {
905         unsigned int limit;
906         int ret;
907         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
908         if (!ret)
909                 return sprintf(buf, "%u\n", limit);
910         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
911 }
912
913 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
914 cpufreq_freq_attr_ro(cpuinfo_min_freq);
915 cpufreq_freq_attr_ro(cpuinfo_max_freq);
916 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
917 cpufreq_freq_attr_ro(scaling_available_governors);
918 cpufreq_freq_attr_ro(scaling_driver);
919 cpufreq_freq_attr_ro(scaling_cur_freq);
920 cpufreq_freq_attr_ro(bios_limit);
921 cpufreq_freq_attr_ro(related_cpus);
922 cpufreq_freq_attr_ro(affected_cpus);
923 cpufreq_freq_attr_rw(scaling_min_freq);
924 cpufreq_freq_attr_rw(scaling_max_freq);
925 cpufreq_freq_attr_rw(scaling_governor);
926 cpufreq_freq_attr_rw(scaling_setspeed);
927
928 static struct attribute *cpufreq_attrs[] = {
929         &cpuinfo_min_freq.attr,
930         &cpuinfo_max_freq.attr,
931         &cpuinfo_transition_latency.attr,
932         &scaling_min_freq.attr,
933         &scaling_max_freq.attr,
934         &affected_cpus.attr,
935         &related_cpus.attr,
936         &scaling_governor.attr,
937         &scaling_driver.attr,
938         &scaling_available_governors.attr,
939         &scaling_setspeed.attr,
940         NULL
941 };
942 ATTRIBUTE_GROUPS(cpufreq);
943
944 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
945 #define to_attr(a) container_of(a, struct freq_attr, attr)
946
947 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
948 {
949         struct cpufreq_policy *policy = to_policy(kobj);
950         struct freq_attr *fattr = to_attr(attr);
951         ssize_t ret = -EBUSY;
952
953         if (!fattr->show)
954                 return -EIO;
955
956         down_read(&policy->rwsem);
957         if (likely(!policy_is_inactive(policy)))
958                 ret = fattr->show(policy, buf);
959         up_read(&policy->rwsem);
960
961         return ret;
962 }
963
964 static ssize_t store(struct kobject *kobj, struct attribute *attr,
965                      const char *buf, size_t count)
966 {
967         struct cpufreq_policy *policy = to_policy(kobj);
968         struct freq_attr *fattr = to_attr(attr);
969         ssize_t ret = -EBUSY;
970
971         if (!fattr->store)
972                 return -EIO;
973
974         /*
975          * cpus_read_trylock() is used here to work around a circular lock
976          * dependency problem with respect to the cpufreq_register_driver().
977          */
978         if (!cpus_read_trylock())
979                 return -EBUSY;
980
981         if (cpu_online(policy->cpu)) {
982                 down_write(&policy->rwsem);
983                 if (likely(!policy_is_inactive(policy)))
984                         ret = fattr->store(policy, buf, count);
985                 up_write(&policy->rwsem);
986         }
987
988         cpus_read_unlock();
989
990         return ret;
991 }
992
993 static void cpufreq_sysfs_release(struct kobject *kobj)
994 {
995         struct cpufreq_policy *policy = to_policy(kobj);
996         pr_debug("last reference is dropped\n");
997         complete(&policy->kobj_unregister);
998 }
999
1000 static const struct sysfs_ops sysfs_ops = {
1001         .show   = show,
1002         .store  = store,
1003 };
1004
1005 static struct kobj_type ktype_cpufreq = {
1006         .sysfs_ops      = &sysfs_ops,
1007         .default_groups = cpufreq_groups,
1008         .release        = cpufreq_sysfs_release,
1009 };
1010
1011 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1012                                 struct device *dev)
1013 {
1014         if (unlikely(!dev))
1015                 return;
1016
1017         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1018                 return;
1019
1020         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1021         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1022                 dev_err(dev, "cpufreq symlink creation failed\n");
1023 }
1024
1025 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1026                                    struct device *dev)
1027 {
1028         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1029         sysfs_remove_link(&dev->kobj, "cpufreq");
1030         cpumask_clear_cpu(cpu, policy->real_cpus);
1031 }
1032
1033 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1034 {
1035         struct freq_attr **drv_attr;
1036         int ret = 0;
1037
1038         /* set up files for this cpu device */
1039         drv_attr = cpufreq_driver->attr;
1040         while (drv_attr && *drv_attr) {
1041                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1042                 if (ret)
1043                         return ret;
1044                 drv_attr++;
1045         }
1046         if (cpufreq_driver->get) {
1047                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1048                 if (ret)
1049                         return ret;
1050         }
1051
1052         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1053         if (ret)
1054                 return ret;
1055
1056         if (cpufreq_driver->bios_limit) {
1057                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1058                 if (ret)
1059                         return ret;
1060         }
1061
1062         return 0;
1063 }
1064
1065 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1066 {
1067         struct cpufreq_governor *gov = NULL;
1068         unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1069         int ret;
1070
1071         if (has_target()) {
1072                 /* Update policy governor to the one used before hotplug. */
1073                 gov = get_governor(policy->last_governor);
1074                 if (gov) {
1075                         pr_debug("Restoring governor %s for cpu %d\n",
1076                                  gov->name, policy->cpu);
1077                 } else {
1078                         gov = get_governor(default_governor);
1079                 }
1080
1081                 if (!gov) {
1082                         gov = cpufreq_default_governor();
1083                         __module_get(gov->owner);
1084                 }
1085
1086         } else {
1087
1088                 /* Use the default policy if there is no last_policy. */
1089                 if (policy->last_policy) {
1090                         pol = policy->last_policy;
1091                 } else {
1092                         pol = cpufreq_parse_policy(default_governor);
1093                         /*
1094                          * In case the default governor is neither "performance"
1095                          * nor "powersave", fall back to the initial policy
1096                          * value set by the driver.
1097                          */
1098                         if (pol == CPUFREQ_POLICY_UNKNOWN)
1099                                 pol = policy->policy;
1100                 }
1101                 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1102                     pol != CPUFREQ_POLICY_POWERSAVE)
1103                         return -ENODATA;
1104         }
1105
1106         ret = cpufreq_set_policy(policy, gov, pol);
1107         if (gov)
1108                 module_put(gov->owner);
1109
1110         return ret;
1111 }
1112
1113 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1114 {
1115         int ret = 0;
1116
1117         /* Has this CPU been taken care of already? */
1118         if (cpumask_test_cpu(cpu, policy->cpus))
1119                 return 0;
1120
1121         down_write(&policy->rwsem);
1122         if (has_target())
1123                 cpufreq_stop_governor(policy);
1124
1125         cpumask_set_cpu(cpu, policy->cpus);
1126
1127         if (has_target()) {
1128                 ret = cpufreq_start_governor(policy);
1129                 if (ret)
1130                         pr_err("%s: Failed to start governor\n", __func__);
1131         }
1132         up_write(&policy->rwsem);
1133         return ret;
1134 }
1135
1136 void refresh_frequency_limits(struct cpufreq_policy *policy)
1137 {
1138         if (!policy_is_inactive(policy)) {
1139                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1140
1141                 cpufreq_set_policy(policy, policy->governor, policy->policy);
1142         }
1143 }
1144 EXPORT_SYMBOL(refresh_frequency_limits);
1145
1146 static void handle_update(struct work_struct *work)
1147 {
1148         struct cpufreq_policy *policy =
1149                 container_of(work, struct cpufreq_policy, update);
1150
1151         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1152         down_write(&policy->rwsem);
1153         refresh_frequency_limits(policy);
1154         up_write(&policy->rwsem);
1155 }
1156
1157 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1158                                 void *data)
1159 {
1160         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1161
1162         schedule_work(&policy->update);
1163         return 0;
1164 }
1165
1166 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1167                                 void *data)
1168 {
1169         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1170
1171         schedule_work(&policy->update);
1172         return 0;
1173 }
1174
1175 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1176 {
1177         struct kobject *kobj;
1178         struct completion *cmp;
1179
1180         down_write(&policy->rwsem);
1181         cpufreq_stats_free_table(policy);
1182         kobj = &policy->kobj;
1183         cmp = &policy->kobj_unregister;
1184         up_write(&policy->rwsem);
1185         kobject_put(kobj);
1186
1187         /*
1188          * We need to make sure that the underlying kobj is
1189          * actually not referenced anymore by anybody before we
1190          * proceed with unloading.
1191          */
1192         pr_debug("waiting for dropping of refcount\n");
1193         wait_for_completion(cmp);
1194         pr_debug("wait complete\n");
1195 }
1196
1197 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1198 {
1199         struct cpufreq_policy *policy;
1200         struct device *dev = get_cpu_device(cpu);
1201         int ret;
1202
1203         if (!dev)
1204                 return NULL;
1205
1206         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1207         if (!policy)
1208                 return NULL;
1209
1210         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1211                 goto err_free_policy;
1212
1213         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1214                 goto err_free_cpumask;
1215
1216         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1217                 goto err_free_rcpumask;
1218
1219         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1220                                    cpufreq_global_kobject, "policy%u", cpu);
1221         if (ret) {
1222                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1223                 /*
1224                  * The entire policy object will be freed below, but the extra
1225                  * memory allocated for the kobject name needs to be freed by
1226                  * releasing the kobject.
1227                  */
1228                 kobject_put(&policy->kobj);
1229                 goto err_free_real_cpus;
1230         }
1231
1232         freq_constraints_init(&policy->constraints);
1233
1234         policy->nb_min.notifier_call = cpufreq_notifier_min;
1235         policy->nb_max.notifier_call = cpufreq_notifier_max;
1236
1237         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1238                                     &policy->nb_min);
1239         if (ret) {
1240                 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1241                         ret, cpumask_pr_args(policy->cpus));
1242                 goto err_kobj_remove;
1243         }
1244
1245         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1246                                     &policy->nb_max);
1247         if (ret) {
1248                 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1249                         ret, cpumask_pr_args(policy->cpus));
1250                 goto err_min_qos_notifier;
1251         }
1252
1253         INIT_LIST_HEAD(&policy->policy_list);
1254         init_rwsem(&policy->rwsem);
1255         spin_lock_init(&policy->transition_lock);
1256         init_waitqueue_head(&policy->transition_wait);
1257         init_completion(&policy->kobj_unregister);
1258         INIT_WORK(&policy->update, handle_update);
1259
1260         policy->cpu = cpu;
1261         return policy;
1262
1263 err_min_qos_notifier:
1264         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1265                                  &policy->nb_min);
1266 err_kobj_remove:
1267         cpufreq_policy_put_kobj(policy);
1268 err_free_real_cpus:
1269         free_cpumask_var(policy->real_cpus);
1270 err_free_rcpumask:
1271         free_cpumask_var(policy->related_cpus);
1272 err_free_cpumask:
1273         free_cpumask_var(policy->cpus);
1274 err_free_policy:
1275         kfree(policy);
1276
1277         return NULL;
1278 }
1279
1280 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1281 {
1282         unsigned long flags;
1283         int cpu;
1284
1285         /* Remove policy from list */
1286         write_lock_irqsave(&cpufreq_driver_lock, flags);
1287         list_del(&policy->policy_list);
1288
1289         for_each_cpu(cpu, policy->related_cpus)
1290                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1291         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1292
1293         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1294                                  &policy->nb_max);
1295         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1296                                  &policy->nb_min);
1297
1298         /* Cancel any pending policy->update work before freeing the policy. */
1299         cancel_work_sync(&policy->update);
1300
1301         if (policy->max_freq_req) {
1302                 /*
1303                  * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1304                  * notification, since CPUFREQ_CREATE_POLICY notification was
1305                  * sent after adding max_freq_req earlier.
1306                  */
1307                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1308                                              CPUFREQ_REMOVE_POLICY, policy);
1309                 freq_qos_remove_request(policy->max_freq_req);
1310         }
1311
1312         freq_qos_remove_request(policy->min_freq_req);
1313         kfree(policy->min_freq_req);
1314
1315         cpufreq_policy_put_kobj(policy);
1316         free_cpumask_var(policy->real_cpus);
1317         free_cpumask_var(policy->related_cpus);
1318         free_cpumask_var(policy->cpus);
1319         kfree(policy);
1320 }
1321
1322 static int cpufreq_online(unsigned int cpu)
1323 {
1324         struct cpufreq_policy *policy;
1325         bool new_policy;
1326         unsigned long flags;
1327         unsigned int j;
1328         int ret;
1329
1330         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1331
1332         /* Check if this CPU already has a policy to manage it */
1333         policy = per_cpu(cpufreq_cpu_data, cpu);
1334         if (policy) {
1335                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1336                 if (!policy_is_inactive(policy))
1337                         return cpufreq_add_policy_cpu(policy, cpu);
1338
1339                 /* This is the only online CPU for the policy.  Start over. */
1340                 new_policy = false;
1341                 down_write(&policy->rwsem);
1342                 policy->cpu = cpu;
1343                 policy->governor = NULL;
1344         } else {
1345                 new_policy = true;
1346                 policy = cpufreq_policy_alloc(cpu);
1347                 if (!policy)
1348                         return -ENOMEM;
1349                 down_write(&policy->rwsem);
1350         }
1351
1352         if (!new_policy && cpufreq_driver->online) {
1353                 ret = cpufreq_driver->online(policy);
1354                 if (ret) {
1355                         pr_debug("%s: %d: initialization failed\n", __func__,
1356                                  __LINE__);
1357                         goto out_exit_policy;
1358                 }
1359
1360                 /* Recover policy->cpus using related_cpus */
1361                 cpumask_copy(policy->cpus, policy->related_cpus);
1362         } else {
1363                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1364
1365                 /*
1366                  * Call driver. From then on the cpufreq must be able
1367                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1368                  */
1369                 ret = cpufreq_driver->init(policy);
1370                 if (ret) {
1371                         pr_debug("%s: %d: initialization failed\n", __func__,
1372                                  __LINE__);
1373                         goto out_free_policy;
1374                 }
1375
1376                 /*
1377                  * The initialization has succeeded and the policy is online.
1378                  * If there is a problem with its frequency table, take it
1379                  * offline and drop it.
1380                  */
1381                 ret = cpufreq_table_validate_and_sort(policy);
1382                 if (ret)
1383                         goto out_offline_policy;
1384
1385                 /* related_cpus should at least include policy->cpus. */
1386                 cpumask_copy(policy->related_cpus, policy->cpus);
1387         }
1388
1389         /*
1390          * affected cpus must always be the one, which are online. We aren't
1391          * managing offline cpus here.
1392          */
1393         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1394
1395         if (new_policy) {
1396                 for_each_cpu(j, policy->related_cpus) {
1397                         per_cpu(cpufreq_cpu_data, j) = policy;
1398                         add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1399                 }
1400
1401                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1402                                                GFP_KERNEL);
1403                 if (!policy->min_freq_req) {
1404                         ret = -ENOMEM;
1405                         goto out_destroy_policy;
1406                 }
1407
1408                 ret = freq_qos_add_request(&policy->constraints,
1409                                            policy->min_freq_req, FREQ_QOS_MIN,
1410                                            FREQ_QOS_MIN_DEFAULT_VALUE);
1411                 if (ret < 0) {
1412                         /*
1413                          * So we don't call freq_qos_remove_request() for an
1414                          * uninitialized request.
1415                          */
1416                         kfree(policy->min_freq_req);
1417                         policy->min_freq_req = NULL;
1418                         goto out_destroy_policy;
1419                 }
1420
1421                 /*
1422                  * This must be initialized right here to avoid calling
1423                  * freq_qos_remove_request() on uninitialized request in case
1424                  * of errors.
1425                  */
1426                 policy->max_freq_req = policy->min_freq_req + 1;
1427
1428                 ret = freq_qos_add_request(&policy->constraints,
1429                                            policy->max_freq_req, FREQ_QOS_MAX,
1430                                            FREQ_QOS_MAX_DEFAULT_VALUE);
1431                 if (ret < 0) {
1432                         policy->max_freq_req = NULL;
1433                         goto out_destroy_policy;
1434                 }
1435
1436                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1437                                 CPUFREQ_CREATE_POLICY, policy);
1438         }
1439
1440         if (cpufreq_driver->get && has_target()) {
1441                 policy->cur = cpufreq_driver->get(policy->cpu);
1442                 if (!policy->cur) {
1443                         ret = -EIO;
1444                         pr_err("%s: ->get() failed\n", __func__);
1445                         goto out_destroy_policy;
1446                 }
1447         }
1448
1449         /*
1450          * Sometimes boot loaders set CPU frequency to a value outside of
1451          * frequency table present with cpufreq core. In such cases CPU might be
1452          * unstable if it has to run on that frequency for long duration of time
1453          * and so its better to set it to a frequency which is specified in
1454          * freq-table. This also makes cpufreq stats inconsistent as
1455          * cpufreq-stats would fail to register because current frequency of CPU
1456          * isn't found in freq-table.
1457          *
1458          * Because we don't want this change to effect boot process badly, we go
1459          * for the next freq which is >= policy->cur ('cur' must be set by now,
1460          * otherwise we will end up setting freq to lowest of the table as 'cur'
1461          * is initialized to zero).
1462          *
1463          * We are passing target-freq as "policy->cur - 1" otherwise
1464          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1465          * equal to target-freq.
1466          */
1467         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1468             && has_target()) {
1469                 unsigned int old_freq = policy->cur;
1470
1471                 /* Are we running at unknown frequency ? */
1472                 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1473                 if (ret == -EINVAL) {
1474                         ret = __cpufreq_driver_target(policy, old_freq - 1,
1475                                                       CPUFREQ_RELATION_L);
1476
1477                         /*
1478                          * Reaching here after boot in a few seconds may not
1479                          * mean that system will remain stable at "unknown"
1480                          * frequency for longer duration. Hence, a BUG_ON().
1481                          */
1482                         BUG_ON(ret);
1483                         pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1484                                 __func__, policy->cpu, old_freq, policy->cur);
1485                 }
1486         }
1487
1488         if (new_policy) {
1489                 ret = cpufreq_add_dev_interface(policy);
1490                 if (ret)
1491                         goto out_destroy_policy;
1492
1493                 cpufreq_stats_create_table(policy);
1494
1495                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1496                 list_add(&policy->policy_list, &cpufreq_policy_list);
1497                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1498
1499                 /*
1500                  * Register with the energy model before
1501                  * sched_cpufreq_governor_change() is called, which will result
1502                  * in rebuilding of the sched domains, which should only be done
1503                  * once the energy model is properly initialized for the policy
1504                  * first.
1505                  *
1506                  * Also, this should be called before the policy is registered
1507                  * with cooling framework.
1508                  */
1509                 if (cpufreq_driver->register_em)
1510                         cpufreq_driver->register_em(policy);
1511         }
1512
1513         ret = cpufreq_init_policy(policy);
1514         if (ret) {
1515                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1516                        __func__, cpu, ret);
1517                 goto out_destroy_policy;
1518         }
1519
1520         up_write(&policy->rwsem);
1521
1522         kobject_uevent(&policy->kobj, KOBJ_ADD);
1523
1524         /* Callback for handling stuff after policy is ready */
1525         if (cpufreq_driver->ready)
1526                 cpufreq_driver->ready(policy);
1527
1528         if (cpufreq_thermal_control_enabled(cpufreq_driver))
1529                 policy->cdev = of_cpufreq_cooling_register(policy);
1530
1531         pr_debug("initialization complete\n");
1532
1533         return 0;
1534
1535 out_destroy_policy:
1536         for_each_cpu(j, policy->real_cpus)
1537                 remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1538
1539         cpumask_clear(policy->cpus);
1540
1541 out_offline_policy:
1542         if (cpufreq_driver->offline)
1543                 cpufreq_driver->offline(policy);
1544
1545 out_exit_policy:
1546         if (cpufreq_driver->exit)
1547                 cpufreq_driver->exit(policy);
1548
1549 out_free_policy:
1550         up_write(&policy->rwsem);
1551
1552         cpufreq_policy_free(policy);
1553         return ret;
1554 }
1555
1556 /**
1557  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1558  * @dev: CPU device.
1559  * @sif: Subsystem interface structure pointer (not used)
1560  */
1561 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1562 {
1563         struct cpufreq_policy *policy;
1564         unsigned cpu = dev->id;
1565         int ret;
1566
1567         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1568
1569         if (cpu_online(cpu)) {
1570                 ret = cpufreq_online(cpu);
1571                 if (ret)
1572                         return ret;
1573         }
1574
1575         /* Create sysfs link on CPU registration */
1576         policy = per_cpu(cpufreq_cpu_data, cpu);
1577         if (policy)
1578                 add_cpu_dev_symlink(policy, cpu, dev);
1579
1580         return 0;
1581 }
1582
1583 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1584 {
1585         int ret;
1586
1587         if (has_target())
1588                 cpufreq_stop_governor(policy);
1589
1590         cpumask_clear_cpu(cpu, policy->cpus);
1591
1592         if (!policy_is_inactive(policy)) {
1593                 /* Nominate a new CPU if necessary. */
1594                 if (cpu == policy->cpu)
1595                         policy->cpu = cpumask_any(policy->cpus);
1596
1597                 /* Start the governor again for the active policy. */
1598                 if (has_target()) {
1599                         ret = cpufreq_start_governor(policy);
1600                         if (ret)
1601                                 pr_err("%s: Failed to start governor\n", __func__);
1602                 }
1603
1604                 return;
1605         }
1606
1607         if (has_target())
1608                 strncpy(policy->last_governor, policy->governor->name,
1609                         CPUFREQ_NAME_LEN);
1610         else
1611                 policy->last_policy = policy->policy;
1612
1613         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1614                 cpufreq_cooling_unregister(policy->cdev);
1615                 policy->cdev = NULL;
1616         }
1617
1618         if (has_target())
1619                 cpufreq_exit_governor(policy);
1620
1621         /*
1622          * Perform the ->offline() during light-weight tear-down, as
1623          * that allows fast recovery when the CPU comes back.
1624          */
1625         if (cpufreq_driver->offline) {
1626                 cpufreq_driver->offline(policy);
1627         } else if (cpufreq_driver->exit) {
1628                 cpufreq_driver->exit(policy);
1629                 policy->freq_table = NULL;
1630         }
1631 }
1632
1633 static int cpufreq_offline(unsigned int cpu)
1634 {
1635         struct cpufreq_policy *policy;
1636
1637         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1638
1639         policy = cpufreq_cpu_get_raw(cpu);
1640         if (!policy) {
1641                 pr_debug("%s: No cpu_data found\n", __func__);
1642                 return 0;
1643         }
1644
1645         down_write(&policy->rwsem);
1646
1647         __cpufreq_offline(cpu, policy);
1648
1649         up_write(&policy->rwsem);
1650         return 0;
1651 }
1652
1653 /*
1654  * cpufreq_remove_dev - remove a CPU device
1655  *
1656  * Removes the cpufreq interface for a CPU device.
1657  */
1658 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1659 {
1660         unsigned int cpu = dev->id;
1661         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1662
1663         if (!policy)
1664                 return;
1665
1666         down_write(&policy->rwsem);
1667
1668         if (cpu_online(cpu))
1669                 __cpufreq_offline(cpu, policy);
1670
1671         remove_cpu_dev_symlink(policy, cpu, dev);
1672
1673         if (!cpumask_empty(policy->real_cpus)) {
1674                 up_write(&policy->rwsem);
1675                 return;
1676         }
1677
1678         /* We did light-weight exit earlier, do full tear down now */
1679         if (cpufreq_driver->offline)
1680                 cpufreq_driver->exit(policy);
1681
1682         up_write(&policy->rwsem);
1683
1684         cpufreq_policy_free(policy);
1685 }
1686
1687 /**
1688  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1689  * @policy: Policy managing CPUs.
1690  * @new_freq: New CPU frequency.
1691  *
1692  * Adjust to the current frequency first and clean up later by either calling
1693  * cpufreq_update_policy(), or scheduling handle_update().
1694  */
1695 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1696                                 unsigned int new_freq)
1697 {
1698         struct cpufreq_freqs freqs;
1699
1700         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1701                  policy->cur, new_freq);
1702
1703         freqs.old = policy->cur;
1704         freqs.new = new_freq;
1705
1706         cpufreq_freq_transition_begin(policy, &freqs);
1707         cpufreq_freq_transition_end(policy, &freqs, 0);
1708 }
1709
1710 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1711 {
1712         unsigned int new_freq;
1713
1714         new_freq = cpufreq_driver->get(policy->cpu);
1715         if (!new_freq)
1716                 return 0;
1717
1718         /*
1719          * If fast frequency switching is used with the given policy, the check
1720          * against policy->cur is pointless, so skip it in that case.
1721          */
1722         if (policy->fast_switch_enabled || !has_target())
1723                 return new_freq;
1724
1725         if (policy->cur != new_freq) {
1726                 /*
1727                  * For some platforms, the frequency returned by hardware may be
1728                  * slightly different from what is provided in the frequency
1729                  * table, for example hardware may return 499 MHz instead of 500
1730                  * MHz. In such cases it is better to avoid getting into
1731                  * unnecessary frequency updates.
1732                  */
1733                 if (abs(policy->cur - new_freq) < HZ_PER_MHZ)
1734                         return policy->cur;
1735
1736                 cpufreq_out_of_sync(policy, new_freq);
1737                 if (update)
1738                         schedule_work(&policy->update);
1739         }
1740
1741         return new_freq;
1742 }
1743
1744 /**
1745  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1746  * @cpu: CPU number
1747  *
1748  * This is the last known freq, without actually getting it from the driver.
1749  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1750  */
1751 unsigned int cpufreq_quick_get(unsigned int cpu)
1752 {
1753         struct cpufreq_policy *policy;
1754         unsigned int ret_freq = 0;
1755         unsigned long flags;
1756
1757         read_lock_irqsave(&cpufreq_driver_lock, flags);
1758
1759         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1760                 ret_freq = cpufreq_driver->get(cpu);
1761                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1762                 return ret_freq;
1763         }
1764
1765         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1766
1767         policy = cpufreq_cpu_get(cpu);
1768         if (policy) {
1769                 ret_freq = policy->cur;
1770                 cpufreq_cpu_put(policy);
1771         }
1772
1773         return ret_freq;
1774 }
1775 EXPORT_SYMBOL(cpufreq_quick_get);
1776
1777 /**
1778  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1779  * @cpu: CPU number
1780  *
1781  * Just return the max possible frequency for a given CPU.
1782  */
1783 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1784 {
1785         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1786         unsigned int ret_freq = 0;
1787
1788         if (policy) {
1789                 ret_freq = policy->max;
1790                 cpufreq_cpu_put(policy);
1791         }
1792
1793         return ret_freq;
1794 }
1795 EXPORT_SYMBOL(cpufreq_quick_get_max);
1796
1797 /**
1798  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1799  * @cpu: CPU number
1800  *
1801  * The default return value is the max_freq field of cpuinfo.
1802  */
1803 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1804 {
1805         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1806         unsigned int ret_freq = 0;
1807
1808         if (policy) {
1809                 ret_freq = policy->cpuinfo.max_freq;
1810                 cpufreq_cpu_put(policy);
1811         }
1812
1813         return ret_freq;
1814 }
1815 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1816
1817 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1818 {
1819         if (unlikely(policy_is_inactive(policy)))
1820                 return 0;
1821
1822         return cpufreq_verify_current_freq(policy, true);
1823 }
1824
1825 /**
1826  * cpufreq_get - get the current CPU frequency (in kHz)
1827  * @cpu: CPU number
1828  *
1829  * Get the CPU current (static) CPU frequency
1830  */
1831 unsigned int cpufreq_get(unsigned int cpu)
1832 {
1833         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1834         unsigned int ret_freq = 0;
1835
1836         if (policy) {
1837                 down_read(&policy->rwsem);
1838                 if (cpufreq_driver->get)
1839                         ret_freq = __cpufreq_get(policy);
1840                 up_read(&policy->rwsem);
1841
1842                 cpufreq_cpu_put(policy);
1843         }
1844
1845         return ret_freq;
1846 }
1847 EXPORT_SYMBOL(cpufreq_get);
1848
1849 static struct subsys_interface cpufreq_interface = {
1850         .name           = "cpufreq",
1851         .subsys         = &cpu_subsys,
1852         .add_dev        = cpufreq_add_dev,
1853         .remove_dev     = cpufreq_remove_dev,
1854 };
1855
1856 /*
1857  * In case platform wants some specific frequency to be configured
1858  * during suspend..
1859  */
1860 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1861 {
1862         int ret;
1863
1864         if (!policy->suspend_freq) {
1865                 pr_debug("%s: suspend_freq not defined\n", __func__);
1866                 return 0;
1867         }
1868
1869         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1870                         policy->suspend_freq);
1871
1872         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1873                         CPUFREQ_RELATION_H);
1874         if (ret)
1875                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1876                                 __func__, policy->suspend_freq, ret);
1877
1878         return ret;
1879 }
1880 EXPORT_SYMBOL(cpufreq_generic_suspend);
1881
1882 /**
1883  * cpufreq_suspend() - Suspend CPUFreq governors.
1884  *
1885  * Called during system wide Suspend/Hibernate cycles for suspending governors
1886  * as some platforms can't change frequency after this point in suspend cycle.
1887  * Because some of the devices (like: i2c, regulators, etc) they use for
1888  * changing frequency are suspended quickly after this point.
1889  */
1890 void cpufreq_suspend(void)
1891 {
1892         struct cpufreq_policy *policy;
1893
1894         if (!cpufreq_driver)
1895                 return;
1896
1897         if (!has_target() && !cpufreq_driver->suspend)
1898                 goto suspend;
1899
1900         pr_debug("%s: Suspending Governors\n", __func__);
1901
1902         for_each_active_policy(policy) {
1903                 if (has_target()) {
1904                         down_write(&policy->rwsem);
1905                         cpufreq_stop_governor(policy);
1906                         up_write(&policy->rwsem);
1907                 }
1908
1909                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1910                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1911                                 cpufreq_driver->name);
1912         }
1913
1914 suspend:
1915         cpufreq_suspended = true;
1916 }
1917
1918 /**
1919  * cpufreq_resume() - Resume CPUFreq governors.
1920  *
1921  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1922  * are suspended with cpufreq_suspend().
1923  */
1924 void cpufreq_resume(void)
1925 {
1926         struct cpufreq_policy *policy;
1927         int ret;
1928
1929         if (!cpufreq_driver)
1930                 return;
1931
1932         if (unlikely(!cpufreq_suspended))
1933                 return;
1934
1935         cpufreq_suspended = false;
1936
1937         if (!has_target() && !cpufreq_driver->resume)
1938                 return;
1939
1940         pr_debug("%s: Resuming Governors\n", __func__);
1941
1942         for_each_active_policy(policy) {
1943                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1944                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1945                                 policy);
1946                 } else if (has_target()) {
1947                         down_write(&policy->rwsem);
1948                         ret = cpufreq_start_governor(policy);
1949                         up_write(&policy->rwsem);
1950
1951                         if (ret)
1952                                 pr_err("%s: Failed to start governor for policy: %p\n",
1953                                        __func__, policy);
1954                 }
1955         }
1956 }
1957
1958 /**
1959  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1960  * @flags: Flags to test against the current cpufreq driver's flags.
1961  *
1962  * Assumes that the driver is there, so callers must ensure that this is the
1963  * case.
1964  */
1965 bool cpufreq_driver_test_flags(u16 flags)
1966 {
1967         return !!(cpufreq_driver->flags & flags);
1968 }
1969
1970 /**
1971  * cpufreq_get_current_driver - Return the current driver's name.
1972  *
1973  * Return the name string of the currently registered cpufreq driver or NULL if
1974  * none.
1975  */
1976 const char *cpufreq_get_current_driver(void)
1977 {
1978         if (cpufreq_driver)
1979                 return cpufreq_driver->name;
1980
1981         return NULL;
1982 }
1983 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1984
1985 /**
1986  * cpufreq_get_driver_data - Return current driver data.
1987  *
1988  * Return the private data of the currently registered cpufreq driver, or NULL
1989  * if no cpufreq driver has been registered.
1990  */
1991 void *cpufreq_get_driver_data(void)
1992 {
1993         if (cpufreq_driver)
1994                 return cpufreq_driver->driver_data;
1995
1996         return NULL;
1997 }
1998 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1999
2000 /*********************************************************************
2001  *                     NOTIFIER LISTS INTERFACE                      *
2002  *********************************************************************/
2003
2004 /**
2005  * cpufreq_register_notifier - Register a notifier with cpufreq.
2006  * @nb: notifier function to register.
2007  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2008  *
2009  * Add a notifier to one of two lists: either a list of notifiers that run on
2010  * clock rate changes (once before and once after every transition), or a list
2011  * of notifiers that ron on cpufreq policy changes.
2012  *
2013  * This function may sleep and it has the same return values as
2014  * blocking_notifier_chain_register().
2015  */
2016 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2017 {
2018         int ret;
2019
2020         if (cpufreq_disabled())
2021                 return -EINVAL;
2022
2023         switch (list) {
2024         case CPUFREQ_TRANSITION_NOTIFIER:
2025                 mutex_lock(&cpufreq_fast_switch_lock);
2026
2027                 if (cpufreq_fast_switch_count > 0) {
2028                         mutex_unlock(&cpufreq_fast_switch_lock);
2029                         return -EBUSY;
2030                 }
2031                 ret = srcu_notifier_chain_register(
2032                                 &cpufreq_transition_notifier_list, nb);
2033                 if (!ret)
2034                         cpufreq_fast_switch_count--;
2035
2036                 mutex_unlock(&cpufreq_fast_switch_lock);
2037                 break;
2038         case CPUFREQ_POLICY_NOTIFIER:
2039                 ret = blocking_notifier_chain_register(
2040                                 &cpufreq_policy_notifier_list, nb);
2041                 break;
2042         default:
2043                 ret = -EINVAL;
2044         }
2045
2046         return ret;
2047 }
2048 EXPORT_SYMBOL(cpufreq_register_notifier);
2049
2050 /**
2051  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2052  * @nb: notifier block to be unregistered.
2053  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2054  *
2055  * Remove a notifier from one of the cpufreq notifier lists.
2056  *
2057  * This function may sleep and it has the same return values as
2058  * blocking_notifier_chain_unregister().
2059  */
2060 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2061 {
2062         int ret;
2063
2064         if (cpufreq_disabled())
2065                 return -EINVAL;
2066
2067         switch (list) {
2068         case CPUFREQ_TRANSITION_NOTIFIER:
2069                 mutex_lock(&cpufreq_fast_switch_lock);
2070
2071                 ret = srcu_notifier_chain_unregister(
2072                                 &cpufreq_transition_notifier_list, nb);
2073                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2074                         cpufreq_fast_switch_count++;
2075
2076                 mutex_unlock(&cpufreq_fast_switch_lock);
2077                 break;
2078         case CPUFREQ_POLICY_NOTIFIER:
2079                 ret = blocking_notifier_chain_unregister(
2080                                 &cpufreq_policy_notifier_list, nb);
2081                 break;
2082         default:
2083                 ret = -EINVAL;
2084         }
2085
2086         return ret;
2087 }
2088 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2089
2090
2091 /*********************************************************************
2092  *                              GOVERNORS                            *
2093  *********************************************************************/
2094
2095 /**
2096  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2097  * @policy: cpufreq policy to switch the frequency for.
2098  * @target_freq: New frequency to set (may be approximate).
2099  *
2100  * Carry out a fast frequency switch without sleeping.
2101  *
2102  * The driver's ->fast_switch() callback invoked by this function must be
2103  * suitable for being called from within RCU-sched read-side critical sections
2104  * and it is expected to select the minimum available frequency greater than or
2105  * equal to @target_freq (CPUFREQ_RELATION_L).
2106  *
2107  * This function must not be called if policy->fast_switch_enabled is unset.
2108  *
2109  * Governors calling this function must guarantee that it will never be invoked
2110  * twice in parallel for the same policy and that it will never be called in
2111  * parallel with either ->target() or ->target_index() for the same policy.
2112  *
2113  * Returns the actual frequency set for the CPU.
2114  *
2115  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2116  * error condition, the hardware configuration must be preserved.
2117  */
2118 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2119                                         unsigned int target_freq)
2120 {
2121         unsigned int freq;
2122         int cpu;
2123
2124         target_freq = clamp_val(target_freq, policy->min, policy->max);
2125         freq = cpufreq_driver->fast_switch(policy, target_freq);
2126
2127         if (!freq)
2128                 return 0;
2129
2130         policy->cur = freq;
2131         arch_set_freq_scale(policy->related_cpus, freq,
2132                             policy->cpuinfo.max_freq);
2133         cpufreq_stats_record_transition(policy, freq);
2134
2135         if (trace_cpu_frequency_enabled()) {
2136                 for_each_cpu(cpu, policy->cpus)
2137                         trace_cpu_frequency(freq, cpu);
2138         }
2139
2140         return freq;
2141 }
2142 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2143
2144 /**
2145  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2146  * @cpu: Target CPU.
2147  * @min_perf: Minimum (required) performance level (units of @capacity).
2148  * @target_perf: Target (desired) performance level (units of @capacity).
2149  * @capacity: Capacity of the target CPU.
2150  *
2151  * Carry out a fast performance level switch of @cpu without sleeping.
2152  *
2153  * The driver's ->adjust_perf() callback invoked by this function must be
2154  * suitable for being called from within RCU-sched read-side critical sections
2155  * and it is expected to select a suitable performance level equal to or above
2156  * @min_perf and preferably equal to or below @target_perf.
2157  *
2158  * This function must not be called if policy->fast_switch_enabled is unset.
2159  *
2160  * Governors calling this function must guarantee that it will never be invoked
2161  * twice in parallel for the same CPU and that it will never be called in
2162  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2163  * the same CPU.
2164  */
2165 void cpufreq_driver_adjust_perf(unsigned int cpu,
2166                                  unsigned long min_perf,
2167                                  unsigned long target_perf,
2168                                  unsigned long capacity)
2169 {
2170         cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2171 }
2172
2173 /**
2174  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2175  *
2176  * Return 'true' if the ->adjust_perf callback is present for the
2177  * current driver or 'false' otherwise.
2178  */
2179 bool cpufreq_driver_has_adjust_perf(void)
2180 {
2181         return !!cpufreq_driver->adjust_perf;
2182 }
2183
2184 /* Must set freqs->new to intermediate frequency */
2185 static int __target_intermediate(struct cpufreq_policy *policy,
2186                                  struct cpufreq_freqs *freqs, int index)
2187 {
2188         int ret;
2189
2190         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2191
2192         /* We don't need to switch to intermediate freq */
2193         if (!freqs->new)
2194                 return 0;
2195
2196         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2197                  __func__, policy->cpu, freqs->old, freqs->new);
2198
2199         cpufreq_freq_transition_begin(policy, freqs);
2200         ret = cpufreq_driver->target_intermediate(policy, index);
2201         cpufreq_freq_transition_end(policy, freqs, ret);
2202
2203         if (ret)
2204                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2205                        __func__, ret);
2206
2207         return ret;
2208 }
2209
2210 static int __target_index(struct cpufreq_policy *policy, int index)
2211 {
2212         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2213         unsigned int restore_freq, intermediate_freq = 0;
2214         unsigned int newfreq = policy->freq_table[index].frequency;
2215         int retval = -EINVAL;
2216         bool notify;
2217
2218         if (newfreq == policy->cur)
2219                 return 0;
2220
2221         /* Save last value to restore later on errors */
2222         restore_freq = policy->cur;
2223
2224         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2225         if (notify) {
2226                 /* Handle switching to intermediate frequency */
2227                 if (cpufreq_driver->get_intermediate) {
2228                         retval = __target_intermediate(policy, &freqs, index);
2229                         if (retval)
2230                                 return retval;
2231
2232                         intermediate_freq = freqs.new;
2233                         /* Set old freq to intermediate */
2234                         if (intermediate_freq)
2235                                 freqs.old = freqs.new;
2236                 }
2237
2238                 freqs.new = newfreq;
2239                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2240                          __func__, policy->cpu, freqs.old, freqs.new);
2241
2242                 cpufreq_freq_transition_begin(policy, &freqs);
2243         }
2244
2245         retval = cpufreq_driver->target_index(policy, index);
2246         if (retval)
2247                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2248                        retval);
2249
2250         if (notify) {
2251                 cpufreq_freq_transition_end(policy, &freqs, retval);
2252
2253                 /*
2254                  * Failed after setting to intermediate freq? Driver should have
2255                  * reverted back to initial frequency and so should we. Check
2256                  * here for intermediate_freq instead of get_intermediate, in
2257                  * case we haven't switched to intermediate freq at all.
2258                  */
2259                 if (unlikely(retval && intermediate_freq)) {
2260                         freqs.old = intermediate_freq;
2261                         freqs.new = restore_freq;
2262                         cpufreq_freq_transition_begin(policy, &freqs);
2263                         cpufreq_freq_transition_end(policy, &freqs, 0);
2264                 }
2265         }
2266
2267         return retval;
2268 }
2269
2270 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2271                             unsigned int target_freq,
2272                             unsigned int relation)
2273 {
2274         unsigned int old_target_freq = target_freq;
2275
2276         if (cpufreq_disabled())
2277                 return -ENODEV;
2278
2279         target_freq = __resolve_freq(policy, target_freq, relation);
2280
2281         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2282                  policy->cpu, target_freq, relation, old_target_freq);
2283
2284         /*
2285          * This might look like a redundant call as we are checking it again
2286          * after finding index. But it is left intentionally for cases where
2287          * exactly same freq is called again and so we can save on few function
2288          * calls.
2289          */
2290         if (target_freq == policy->cur &&
2291             !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2292                 return 0;
2293
2294         if (cpufreq_driver->target) {
2295                 /*
2296                  * If the driver hasn't setup a single inefficient frequency,
2297                  * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2298                  */
2299                 if (!policy->efficiencies_available)
2300                         relation &= ~CPUFREQ_RELATION_E;
2301
2302                 return cpufreq_driver->target(policy, target_freq, relation);
2303         }
2304
2305         if (!cpufreq_driver->target_index)
2306                 return -EINVAL;
2307
2308         return __target_index(policy, policy->cached_resolved_idx);
2309 }
2310 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2311
2312 int cpufreq_driver_target(struct cpufreq_policy *policy,
2313                           unsigned int target_freq,
2314                           unsigned int relation)
2315 {
2316         int ret;
2317
2318         down_write(&policy->rwsem);
2319
2320         ret = __cpufreq_driver_target(policy, target_freq, relation);
2321
2322         up_write(&policy->rwsem);
2323
2324         return ret;
2325 }
2326 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2327
2328 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2329 {
2330         return NULL;
2331 }
2332
2333 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2334 {
2335         int ret;
2336
2337         /* Don't start any governor operations if we are entering suspend */
2338         if (cpufreq_suspended)
2339                 return 0;
2340         /*
2341          * Governor might not be initiated here if ACPI _PPC changed
2342          * notification happened, so check it.
2343          */
2344         if (!policy->governor)
2345                 return -EINVAL;
2346
2347         /* Platform doesn't want dynamic frequency switching ? */
2348         if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2349             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2350                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2351
2352                 if (gov) {
2353                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2354                                 policy->governor->name, gov->name);
2355                         policy->governor = gov;
2356                 } else {
2357                         return -EINVAL;
2358                 }
2359         }
2360
2361         if (!try_module_get(policy->governor->owner))
2362                 return -EINVAL;
2363
2364         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2365
2366         if (policy->governor->init) {
2367                 ret = policy->governor->init(policy);
2368                 if (ret) {
2369                         module_put(policy->governor->owner);
2370                         return ret;
2371                 }
2372         }
2373
2374         policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2375
2376         return 0;
2377 }
2378
2379 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2380 {
2381         if (cpufreq_suspended || !policy->governor)
2382                 return;
2383
2384         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2385
2386         if (policy->governor->exit)
2387                 policy->governor->exit(policy);
2388
2389         module_put(policy->governor->owner);
2390 }
2391
2392 int cpufreq_start_governor(struct cpufreq_policy *policy)
2393 {
2394         int ret;
2395
2396         if (cpufreq_suspended)
2397                 return 0;
2398
2399         if (!policy->governor)
2400                 return -EINVAL;
2401
2402         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2403
2404         if (cpufreq_driver->get)
2405                 cpufreq_verify_current_freq(policy, false);
2406
2407         if (policy->governor->start) {
2408                 ret = policy->governor->start(policy);
2409                 if (ret)
2410                         return ret;
2411         }
2412
2413         if (policy->governor->limits)
2414                 policy->governor->limits(policy);
2415
2416         return 0;
2417 }
2418
2419 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2420 {
2421         if (cpufreq_suspended || !policy->governor)
2422                 return;
2423
2424         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2425
2426         if (policy->governor->stop)
2427                 policy->governor->stop(policy);
2428 }
2429
2430 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2431 {
2432         if (cpufreq_suspended || !policy->governor)
2433                 return;
2434
2435         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2436
2437         if (policy->governor->limits)
2438                 policy->governor->limits(policy);
2439 }
2440
2441 int cpufreq_register_governor(struct cpufreq_governor *governor)
2442 {
2443         int err;
2444
2445         if (!governor)
2446                 return -EINVAL;
2447
2448         if (cpufreq_disabled())
2449                 return -ENODEV;
2450
2451         mutex_lock(&cpufreq_governor_mutex);
2452
2453         err = -EBUSY;
2454         if (!find_governor(governor->name)) {
2455                 err = 0;
2456                 list_add(&governor->governor_list, &cpufreq_governor_list);
2457         }
2458
2459         mutex_unlock(&cpufreq_governor_mutex);
2460         return err;
2461 }
2462 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2463
2464 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2465 {
2466         struct cpufreq_policy *policy;
2467         unsigned long flags;
2468
2469         if (!governor)
2470                 return;
2471
2472         if (cpufreq_disabled())
2473                 return;
2474
2475         /* clear last_governor for all inactive policies */
2476         read_lock_irqsave(&cpufreq_driver_lock, flags);
2477         for_each_inactive_policy(policy) {
2478                 if (!strcmp(policy->last_governor, governor->name)) {
2479                         policy->governor = NULL;
2480                         strcpy(policy->last_governor, "\0");
2481                 }
2482         }
2483         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2484
2485         mutex_lock(&cpufreq_governor_mutex);
2486         list_del(&governor->governor_list);
2487         mutex_unlock(&cpufreq_governor_mutex);
2488 }
2489 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2490
2491
2492 /*********************************************************************
2493  *                          POLICY INTERFACE                         *
2494  *********************************************************************/
2495
2496 /**
2497  * cpufreq_get_policy - get the current cpufreq_policy
2498  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2499  *      is written
2500  * @cpu: CPU to find the policy for
2501  *
2502  * Reads the current cpufreq policy.
2503  */
2504 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2505 {
2506         struct cpufreq_policy *cpu_policy;
2507         if (!policy)
2508                 return -EINVAL;
2509
2510         cpu_policy = cpufreq_cpu_get(cpu);
2511         if (!cpu_policy)
2512                 return -EINVAL;
2513
2514         memcpy(policy, cpu_policy, sizeof(*policy));
2515
2516         cpufreq_cpu_put(cpu_policy);
2517         return 0;
2518 }
2519 EXPORT_SYMBOL(cpufreq_get_policy);
2520
2521 /**
2522  * cpufreq_set_policy - Modify cpufreq policy parameters.
2523  * @policy: Policy object to modify.
2524  * @new_gov: Policy governor pointer.
2525  * @new_pol: Policy value (for drivers with built-in governors).
2526  *
2527  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2528  * limits to be set for the policy, update @policy with the verified limits
2529  * values and either invoke the driver's ->setpolicy() callback (if present) or
2530  * carry out a governor update for @policy.  That is, run the current governor's
2531  * ->limits() callback (if @new_gov points to the same object as the one in
2532  * @policy) or replace the governor for @policy with @new_gov.
2533  *
2534  * The cpuinfo part of @policy is not updated by this function.
2535  */
2536 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2537                               struct cpufreq_governor *new_gov,
2538                               unsigned int new_pol)
2539 {
2540         struct cpufreq_policy_data new_data;
2541         struct cpufreq_governor *old_gov;
2542         int ret;
2543
2544         memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2545         new_data.freq_table = policy->freq_table;
2546         new_data.cpu = policy->cpu;
2547         /*
2548          * PM QoS framework collects all the requests from users and provide us
2549          * the final aggregated value here.
2550          */
2551         new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2552         new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2553
2554         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2555                  new_data.cpu, new_data.min, new_data.max);
2556
2557         /*
2558          * Verify that the CPU speed can be set within these limits and make sure
2559          * that min <= max.
2560          */
2561         ret = cpufreq_driver->verify(&new_data);
2562         if (ret)
2563                 return ret;
2564
2565         /*
2566          * Resolve policy min/max to available frequencies. It ensures
2567          * no frequency resolution will neither overshoot the requested maximum
2568          * nor undershoot the requested minimum.
2569          */
2570         policy->min = new_data.min;
2571         policy->max = new_data.max;
2572         policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2573         policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2574         trace_cpu_frequency_limits(policy);
2575
2576         policy->cached_target_freq = UINT_MAX;
2577
2578         pr_debug("new min and max freqs are %u - %u kHz\n",
2579                  policy->min, policy->max);
2580
2581         if (cpufreq_driver->setpolicy) {
2582                 policy->policy = new_pol;
2583                 pr_debug("setting range\n");
2584                 return cpufreq_driver->setpolicy(policy);
2585         }
2586
2587         if (new_gov == policy->governor) {
2588                 pr_debug("governor limits update\n");
2589                 cpufreq_governor_limits(policy);
2590                 return 0;
2591         }
2592
2593         pr_debug("governor switch\n");
2594
2595         /* save old, working values */
2596         old_gov = policy->governor;
2597         /* end old governor */
2598         if (old_gov) {
2599                 cpufreq_stop_governor(policy);
2600                 cpufreq_exit_governor(policy);
2601         }
2602
2603         /* start new governor */
2604         policy->governor = new_gov;
2605         ret = cpufreq_init_governor(policy);
2606         if (!ret) {
2607                 ret = cpufreq_start_governor(policy);
2608                 if (!ret) {
2609                         pr_debug("governor change\n");
2610                         sched_cpufreq_governor_change(policy, old_gov);
2611                         return 0;
2612                 }
2613                 cpufreq_exit_governor(policy);
2614         }
2615
2616         /* new governor failed, so re-start old one */
2617         pr_debug("starting governor %s failed\n", policy->governor->name);
2618         if (old_gov) {
2619                 policy->governor = old_gov;
2620                 if (cpufreq_init_governor(policy))
2621                         policy->governor = NULL;
2622                 else
2623                         cpufreq_start_governor(policy);
2624         }
2625
2626         return ret;
2627 }
2628
2629 /**
2630  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2631  * @cpu: CPU to re-evaluate the policy for.
2632  *
2633  * Update the current frequency for the cpufreq policy of @cpu and use
2634  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2635  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2636  * for the policy in question, among other things.
2637  */
2638 void cpufreq_update_policy(unsigned int cpu)
2639 {
2640         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2641
2642         if (!policy)
2643                 return;
2644
2645         /*
2646          * BIOS might change freq behind our back
2647          * -> ask driver for current freq and notify governors about a change
2648          */
2649         if (cpufreq_driver->get && has_target() &&
2650             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2651                 goto unlock;
2652
2653         refresh_frequency_limits(policy);
2654
2655 unlock:
2656         cpufreq_cpu_release(policy);
2657 }
2658 EXPORT_SYMBOL(cpufreq_update_policy);
2659
2660 /**
2661  * cpufreq_update_limits - Update policy limits for a given CPU.
2662  * @cpu: CPU to update the policy limits for.
2663  *
2664  * Invoke the driver's ->update_limits callback if present or call
2665  * cpufreq_update_policy() for @cpu.
2666  */
2667 void cpufreq_update_limits(unsigned int cpu)
2668 {
2669         if (cpufreq_driver->update_limits)
2670                 cpufreq_driver->update_limits(cpu);
2671         else
2672                 cpufreq_update_policy(cpu);
2673 }
2674 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2675
2676 /*********************************************************************
2677  *               BOOST                                               *
2678  *********************************************************************/
2679 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2680 {
2681         int ret;
2682
2683         if (!policy->freq_table)
2684                 return -ENXIO;
2685
2686         ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2687         if (ret) {
2688                 pr_err("%s: Policy frequency update failed\n", __func__);
2689                 return ret;
2690         }
2691
2692         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2693         if (ret < 0)
2694                 return ret;
2695
2696         return 0;
2697 }
2698
2699 int cpufreq_boost_trigger_state(int state)
2700 {
2701         struct cpufreq_policy *policy;
2702         unsigned long flags;
2703         int ret = 0;
2704
2705         if (cpufreq_driver->boost_enabled == state)
2706                 return 0;
2707
2708         write_lock_irqsave(&cpufreq_driver_lock, flags);
2709         cpufreq_driver->boost_enabled = state;
2710         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2711
2712         cpus_read_lock();
2713         for_each_active_policy(policy) {
2714                 ret = cpufreq_driver->set_boost(policy, state);
2715                 if (ret)
2716                         goto err_reset_state;
2717         }
2718         cpus_read_unlock();
2719
2720         return 0;
2721
2722 err_reset_state:
2723         cpus_read_unlock();
2724
2725         write_lock_irqsave(&cpufreq_driver_lock, flags);
2726         cpufreq_driver->boost_enabled = !state;
2727         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2728
2729         pr_err("%s: Cannot %s BOOST\n",
2730                __func__, state ? "enable" : "disable");
2731
2732         return ret;
2733 }
2734
2735 static bool cpufreq_boost_supported(void)
2736 {
2737         return cpufreq_driver->set_boost;
2738 }
2739
2740 static int create_boost_sysfs_file(void)
2741 {
2742         int ret;
2743
2744         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2745         if (ret)
2746                 pr_err("%s: cannot register global BOOST sysfs file\n",
2747                        __func__);
2748
2749         return ret;
2750 }
2751
2752 static void remove_boost_sysfs_file(void)
2753 {
2754         if (cpufreq_boost_supported())
2755                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2756 }
2757
2758 int cpufreq_enable_boost_support(void)
2759 {
2760         if (!cpufreq_driver)
2761                 return -EINVAL;
2762
2763         if (cpufreq_boost_supported())
2764                 return 0;
2765
2766         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2767
2768         /* This will get removed on driver unregister */
2769         return create_boost_sysfs_file();
2770 }
2771 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2772
2773 int cpufreq_boost_enabled(void)
2774 {
2775         return cpufreq_driver->boost_enabled;
2776 }
2777 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2778
2779 /*********************************************************************
2780  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2781  *********************************************************************/
2782 static enum cpuhp_state hp_online;
2783
2784 static int cpuhp_cpufreq_online(unsigned int cpu)
2785 {
2786         cpufreq_online(cpu);
2787
2788         return 0;
2789 }
2790
2791 static int cpuhp_cpufreq_offline(unsigned int cpu)
2792 {
2793         cpufreq_offline(cpu);
2794
2795         return 0;
2796 }
2797
2798 /**
2799  * cpufreq_register_driver - register a CPU Frequency driver
2800  * @driver_data: A struct cpufreq_driver containing the values#
2801  * submitted by the CPU Frequency driver.
2802  *
2803  * Registers a CPU Frequency driver to this core code. This code
2804  * returns zero on success, -EEXIST when another driver got here first
2805  * (and isn't unregistered in the meantime).
2806  *
2807  */
2808 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2809 {
2810         unsigned long flags;
2811         int ret;
2812
2813         if (cpufreq_disabled())
2814                 return -ENODEV;
2815
2816         /*
2817          * The cpufreq core depends heavily on the availability of device
2818          * structure, make sure they are available before proceeding further.
2819          */
2820         if (!get_cpu_device(0))
2821                 return -EPROBE_DEFER;
2822
2823         if (!driver_data || !driver_data->verify || !driver_data->init ||
2824             !(driver_data->setpolicy || driver_data->target_index ||
2825                     driver_data->target) ||
2826              (driver_data->setpolicy && (driver_data->target_index ||
2827                     driver_data->target)) ||
2828              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2829              (!driver_data->online != !driver_data->offline))
2830                 return -EINVAL;
2831
2832         pr_debug("trying to register driver %s\n", driver_data->name);
2833
2834         /* Protect against concurrent CPU online/offline. */
2835         cpus_read_lock();
2836
2837         write_lock_irqsave(&cpufreq_driver_lock, flags);
2838         if (cpufreq_driver) {
2839                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2840                 ret = -EEXIST;
2841                 goto out;
2842         }
2843         cpufreq_driver = driver_data;
2844         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2845
2846         /*
2847          * Mark support for the scheduler's frequency invariance engine for
2848          * drivers that implement target(), target_index() or fast_switch().
2849          */
2850         if (!cpufreq_driver->setpolicy) {
2851                 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2852                 pr_debug("supports frequency invariance");
2853         }
2854
2855         if (driver_data->setpolicy)
2856                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2857
2858         if (cpufreq_boost_supported()) {
2859                 ret = create_boost_sysfs_file();
2860                 if (ret)
2861                         goto err_null_driver;
2862         }
2863
2864         ret = subsys_interface_register(&cpufreq_interface);
2865         if (ret)
2866                 goto err_boost_unreg;
2867
2868         if (unlikely(list_empty(&cpufreq_policy_list))) {
2869                 /* if all ->init() calls failed, unregister */
2870                 ret = -ENODEV;
2871                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2872                          driver_data->name);
2873                 goto err_if_unreg;
2874         }
2875
2876         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2877                                                    "cpufreq:online",
2878                                                    cpuhp_cpufreq_online,
2879                                                    cpuhp_cpufreq_offline);
2880         if (ret < 0)
2881                 goto err_if_unreg;
2882         hp_online = ret;
2883         ret = 0;
2884
2885         pr_debug("driver %s up and running\n", driver_data->name);
2886         goto out;
2887
2888 err_if_unreg:
2889         subsys_interface_unregister(&cpufreq_interface);
2890 err_boost_unreg:
2891         remove_boost_sysfs_file();
2892 err_null_driver:
2893         write_lock_irqsave(&cpufreq_driver_lock, flags);
2894         cpufreq_driver = NULL;
2895         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2896 out:
2897         cpus_read_unlock();
2898         return ret;
2899 }
2900 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2901
2902 /*
2903  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2904  *
2905  * Unregister the current CPUFreq driver. Only call this if you have
2906  * the right to do so, i.e. if you have succeeded in initialising before!
2907  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2908  * currently not initialised.
2909  */
2910 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2911 {
2912         unsigned long flags;
2913
2914         if (!cpufreq_driver || (driver != cpufreq_driver))
2915                 return -EINVAL;
2916
2917         pr_debug("unregistering driver %s\n", driver->name);
2918
2919         /* Protect against concurrent cpu hotplug */
2920         cpus_read_lock();
2921         subsys_interface_unregister(&cpufreq_interface);
2922         remove_boost_sysfs_file();
2923         static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2924         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2925
2926         write_lock_irqsave(&cpufreq_driver_lock, flags);
2927
2928         cpufreq_driver = NULL;
2929
2930         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2931         cpus_read_unlock();
2932
2933         return 0;
2934 }
2935 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2936
2937 static int __init cpufreq_core_init(void)
2938 {
2939         struct cpufreq_governor *gov = cpufreq_default_governor();
2940
2941         if (cpufreq_disabled())
2942                 return -ENODEV;
2943
2944         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2945         BUG_ON(!cpufreq_global_kobject);
2946
2947         if (!strlen(default_governor))
2948                 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2949
2950         return 0;
2951 }
2952 module_param(off, int, 0444);
2953 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2954 core_initcall(cpufreq_core_init);