GNU Linux-libre 5.4.241-gnu1
[releases.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)                     \
37         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38                 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy)                \
41         for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)              \
43         for_each_suitable_policy(__policy, false)
44
45 #define for_each_policy(__policy)                       \
46         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)                           \
51         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53 /**
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 /* Flag to suspend/resume CPUFreq governors */
63 static bool cpufreq_suspended;
64
65 static inline bool has_target(void)
66 {
67         return cpufreq_driver->target_index || cpufreq_driver->target;
68 }
69
70 /* internal prototypes */
71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
72 static int cpufreq_init_governor(struct cpufreq_policy *policy);
73 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
74 static int cpufreq_start_governor(struct cpufreq_policy *policy);
75 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77 static int cpufreq_set_policy(struct cpufreq_policy *policy,
78                               struct cpufreq_governor *new_gov,
79                               unsigned int new_pol);
80
81 /**
82  * Two notifier lists: the "policy" list is involved in the
83  * validation process for a new CPU frequency policy; the
84  * "transition" list for kernel code that needs to handle
85  * changes to devices when the CPU clock speed changes.
86  * The mutex locks both lists.
87  */
88 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
89 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
90
91 static int off __read_mostly;
92 static int cpufreq_disabled(void)
93 {
94         return off;
95 }
96 void disable_cpufreq(void)
97 {
98         off = 1;
99 }
100 static DEFINE_MUTEX(cpufreq_governor_mutex);
101
102 bool have_governor_per_policy(void)
103 {
104         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
105 }
106 EXPORT_SYMBOL_GPL(have_governor_per_policy);
107
108 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
109 {
110         if (have_governor_per_policy())
111                 return &policy->kobj;
112         else
113                 return cpufreq_global_kobject;
114 }
115 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
116
117 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
118 {
119         u64 idle_time;
120         u64 cur_wall_time;
121         u64 busy_time;
122
123         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
124
125         busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
126         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
127         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
128         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
129         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
130         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
131
132         idle_time = cur_wall_time - busy_time;
133         if (wall)
134                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
135
136         return div_u64(idle_time, NSEC_PER_USEC);
137 }
138
139 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
140 {
141         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
142
143         if (idle_time == -1ULL)
144                 return get_cpu_idle_time_jiffy(cpu, wall);
145         else if (!io_busy)
146                 idle_time += get_cpu_iowait_time_us(cpu, wall);
147
148         return idle_time;
149 }
150 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
151
152 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
153                 unsigned long max_freq)
154 {
155 }
156 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
157
158 /*
159  * This is a generic cpufreq init() routine which can be used by cpufreq
160  * drivers of SMP systems. It will do following:
161  * - validate & show freq table passed
162  * - set policies transition latency
163  * - policy->cpus with all possible CPUs
164  */
165 void cpufreq_generic_init(struct cpufreq_policy *policy,
166                 struct cpufreq_frequency_table *table,
167                 unsigned int transition_latency)
168 {
169         policy->freq_table = table;
170         policy->cpuinfo.transition_latency = transition_latency;
171
172         /*
173          * The driver only supports the SMP configuration where all processors
174          * share the clock and voltage and clock.
175          */
176         cpumask_setall(policy->cpus);
177 }
178 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
179
180 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
181 {
182         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
183
184         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
185 }
186 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
187
188 unsigned int cpufreq_generic_get(unsigned int cpu)
189 {
190         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
191
192         if (!policy || IS_ERR(policy->clk)) {
193                 pr_err("%s: No %s associated to cpu: %d\n",
194                        __func__, policy ? "clk" : "policy", cpu);
195                 return 0;
196         }
197
198         return clk_get_rate(policy->clk) / 1000;
199 }
200 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
201
202 /**
203  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
204  * @cpu: CPU to find the policy for.
205  *
206  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
207  * the kobject reference counter of that policy.  Return a valid policy on
208  * success or NULL on failure.
209  *
210  * The policy returned by this function has to be released with the help of
211  * cpufreq_cpu_put() to balance its kobject reference counter properly.
212  */
213 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
214 {
215         struct cpufreq_policy *policy = NULL;
216         unsigned long flags;
217
218         if (WARN_ON(cpu >= nr_cpu_ids))
219                 return NULL;
220
221         /* get the cpufreq driver */
222         read_lock_irqsave(&cpufreq_driver_lock, flags);
223
224         if (cpufreq_driver) {
225                 /* get the CPU */
226                 policy = cpufreq_cpu_get_raw(cpu);
227                 if (policy)
228                         kobject_get(&policy->kobj);
229         }
230
231         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
232
233         return policy;
234 }
235 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
236
237 /**
238  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
239  * @policy: cpufreq policy returned by cpufreq_cpu_get().
240  */
241 void cpufreq_cpu_put(struct cpufreq_policy *policy)
242 {
243         kobject_put(&policy->kobj);
244 }
245 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
246
247 /**
248  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
249  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
250  */
251 void cpufreq_cpu_release(struct cpufreq_policy *policy)
252 {
253         if (WARN_ON(!policy))
254                 return;
255
256         lockdep_assert_held(&policy->rwsem);
257
258         up_write(&policy->rwsem);
259
260         cpufreq_cpu_put(policy);
261 }
262
263 /**
264  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
265  * @cpu: CPU to find the policy for.
266  *
267  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
268  * if the policy returned by it is not NULL, acquire its rwsem for writing.
269  * Return the policy if it is active or release it and return NULL otherwise.
270  *
271  * The policy returned by this function has to be released with the help of
272  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
273  * counter properly.
274  */
275 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
276 {
277         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
278
279         if (!policy)
280                 return NULL;
281
282         down_write(&policy->rwsem);
283
284         if (policy_is_inactive(policy)) {
285                 cpufreq_cpu_release(policy);
286                 return NULL;
287         }
288
289         return policy;
290 }
291
292 /*********************************************************************
293  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
294  *********************************************************************/
295
296 /**
297  * adjust_jiffies - adjust the system "loops_per_jiffy"
298  *
299  * This function alters the system "loops_per_jiffy" for the clock
300  * speed change. Note that loops_per_jiffy cannot be updated on SMP
301  * systems as each CPU might be scaled differently. So, use the arch
302  * per-CPU loops_per_jiffy value wherever possible.
303  */
304 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
305 {
306 #ifndef CONFIG_SMP
307         static unsigned long l_p_j_ref;
308         static unsigned int l_p_j_ref_freq;
309
310         if (ci->flags & CPUFREQ_CONST_LOOPS)
311                 return;
312
313         if (!l_p_j_ref_freq) {
314                 l_p_j_ref = loops_per_jiffy;
315                 l_p_j_ref_freq = ci->old;
316                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
317                          l_p_j_ref, l_p_j_ref_freq);
318         }
319         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
320                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
321                                                                 ci->new);
322                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
323                          loops_per_jiffy, ci->new);
324         }
325 #endif
326 }
327
328 /**
329  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
330  * @policy: cpufreq policy to enable fast frequency switching for.
331  * @freqs: contain details of the frequency update.
332  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
333  *
334  * This function calls the transition notifiers and the "adjust_jiffies"
335  * function. It is called twice on all CPU frequency changes that have
336  * external effects.
337  */
338 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
339                                       struct cpufreq_freqs *freqs,
340                                       unsigned int state)
341 {
342         int cpu;
343
344         BUG_ON(irqs_disabled());
345
346         if (cpufreq_disabled())
347                 return;
348
349         freqs->policy = policy;
350         freqs->flags = cpufreq_driver->flags;
351         pr_debug("notification %u of frequency transition to %u kHz\n",
352                  state, freqs->new);
353
354         switch (state) {
355         case CPUFREQ_PRECHANGE:
356                 /*
357                  * Detect if the driver reported a value as "old frequency"
358                  * which is not equal to what the cpufreq core thinks is
359                  * "old frequency".
360                  */
361                 if (policy->cur && policy->cur != freqs->old) {
362                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
363                                  freqs->old, policy->cur);
364                         freqs->old = policy->cur;
365                 }
366
367                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
368                                          CPUFREQ_PRECHANGE, freqs);
369
370                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
371                 break;
372
373         case CPUFREQ_POSTCHANGE:
374                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
375                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
376                          cpumask_pr_args(policy->cpus));
377
378                 for_each_cpu(cpu, policy->cpus)
379                         trace_cpu_frequency(freqs->new, cpu);
380
381                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
382                                          CPUFREQ_POSTCHANGE, freqs);
383
384                 cpufreq_stats_record_transition(policy, freqs->new);
385                 policy->cur = freqs->new;
386         }
387 }
388
389 /* Do post notifications when there are chances that transition has failed */
390 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
391                 struct cpufreq_freqs *freqs, int transition_failed)
392 {
393         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
394         if (!transition_failed)
395                 return;
396
397         swap(freqs->old, freqs->new);
398         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
399         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
400 }
401
402 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
403                 struct cpufreq_freqs *freqs)
404 {
405
406         /*
407          * Catch double invocations of _begin() which lead to self-deadlock.
408          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
409          * doesn't invoke _begin() on their behalf, and hence the chances of
410          * double invocations are very low. Moreover, there are scenarios
411          * where these checks can emit false-positive warnings in these
412          * drivers; so we avoid that by skipping them altogether.
413          */
414         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
415                                 && current == policy->transition_task);
416
417 wait:
418         wait_event(policy->transition_wait, !policy->transition_ongoing);
419
420         spin_lock(&policy->transition_lock);
421
422         if (unlikely(policy->transition_ongoing)) {
423                 spin_unlock(&policy->transition_lock);
424                 goto wait;
425         }
426
427         policy->transition_ongoing = true;
428         policy->transition_task = current;
429
430         spin_unlock(&policy->transition_lock);
431
432         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
433 }
434 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
435
436 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
437                 struct cpufreq_freqs *freqs, int transition_failed)
438 {
439         if (WARN_ON(!policy->transition_ongoing))
440                 return;
441
442         cpufreq_notify_post_transition(policy, freqs, transition_failed);
443
444         policy->transition_ongoing = false;
445         policy->transition_task = NULL;
446
447         wake_up(&policy->transition_wait);
448 }
449 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
450
451 /*
452  * Fast frequency switching status count.  Positive means "enabled", negative
453  * means "disabled" and 0 means "not decided yet".
454  */
455 static int cpufreq_fast_switch_count;
456 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
457
458 static void cpufreq_list_transition_notifiers(void)
459 {
460         struct notifier_block *nb;
461
462         pr_info("Registered transition notifiers:\n");
463
464         mutex_lock(&cpufreq_transition_notifier_list.mutex);
465
466         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
467                 pr_info("%pS\n", nb->notifier_call);
468
469         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
470 }
471
472 /**
473  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
474  * @policy: cpufreq policy to enable fast frequency switching for.
475  *
476  * Try to enable fast frequency switching for @policy.
477  *
478  * The attempt will fail if there is at least one transition notifier registered
479  * at this point, as fast frequency switching is quite fundamentally at odds
480  * with transition notifiers.  Thus if successful, it will make registration of
481  * transition notifiers fail going forward.
482  */
483 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
484 {
485         lockdep_assert_held(&policy->rwsem);
486
487         if (!policy->fast_switch_possible)
488                 return;
489
490         mutex_lock(&cpufreq_fast_switch_lock);
491         if (cpufreq_fast_switch_count >= 0) {
492                 cpufreq_fast_switch_count++;
493                 policy->fast_switch_enabled = true;
494         } else {
495                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
496                         policy->cpu);
497                 cpufreq_list_transition_notifiers();
498         }
499         mutex_unlock(&cpufreq_fast_switch_lock);
500 }
501 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
502
503 /**
504  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
505  * @policy: cpufreq policy to disable fast frequency switching for.
506  */
507 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
508 {
509         mutex_lock(&cpufreq_fast_switch_lock);
510         if (policy->fast_switch_enabled) {
511                 policy->fast_switch_enabled = false;
512                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
513                         cpufreq_fast_switch_count--;
514         }
515         mutex_unlock(&cpufreq_fast_switch_lock);
516 }
517 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
518
519 /**
520  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
521  * one.
522  * @target_freq: target frequency to resolve.
523  *
524  * The target to driver frequency mapping is cached in the policy.
525  *
526  * Return: Lowest driver-supported frequency greater than or equal to the
527  * given target_freq, subject to policy (min/max) and driver limitations.
528  */
529 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
530                                          unsigned int target_freq)
531 {
532         target_freq = clamp_val(target_freq, policy->min, policy->max);
533         policy->cached_target_freq = target_freq;
534
535         if (cpufreq_driver->target_index) {
536                 int idx;
537
538                 idx = cpufreq_frequency_table_target(policy, target_freq,
539                                                      CPUFREQ_RELATION_L);
540                 policy->cached_resolved_idx = idx;
541                 return policy->freq_table[idx].frequency;
542         }
543
544         if (cpufreq_driver->resolve_freq)
545                 return cpufreq_driver->resolve_freq(policy, target_freq);
546
547         return target_freq;
548 }
549 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
550
551 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
552 {
553         unsigned int latency;
554
555         if (policy->transition_delay_us)
556                 return policy->transition_delay_us;
557
558         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
559         if (latency) {
560                 /*
561                  * For platforms that can change the frequency very fast (< 10
562                  * us), the above formula gives a decent transition delay. But
563                  * for platforms where transition_latency is in milliseconds, it
564                  * ends up giving unrealistic values.
565                  *
566                  * Cap the default transition delay to 10 ms, which seems to be
567                  * a reasonable amount of time after which we should reevaluate
568                  * the frequency.
569                  */
570                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
571         }
572
573         return LATENCY_MULTIPLIER;
574 }
575 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
576
577 /*********************************************************************
578  *                          SYSFS INTERFACE                          *
579  *********************************************************************/
580 static ssize_t show_boost(struct kobject *kobj,
581                           struct kobj_attribute *attr, char *buf)
582 {
583         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
584 }
585
586 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
587                            const char *buf, size_t count)
588 {
589         int ret, enable;
590
591         ret = sscanf(buf, "%d", &enable);
592         if (ret != 1 || enable < 0 || enable > 1)
593                 return -EINVAL;
594
595         if (cpufreq_boost_trigger_state(enable)) {
596                 pr_err("%s: Cannot %s BOOST!\n",
597                        __func__, enable ? "enable" : "disable");
598                 return -EINVAL;
599         }
600
601         pr_debug("%s: cpufreq BOOST %s\n",
602                  __func__, enable ? "enabled" : "disabled");
603
604         return count;
605 }
606 define_one_global_rw(boost);
607
608 static struct cpufreq_governor *find_governor(const char *str_governor)
609 {
610         struct cpufreq_governor *t;
611
612         for_each_governor(t)
613                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
614                         return t;
615
616         return NULL;
617 }
618
619 static struct cpufreq_governor *get_governor(const char *str_governor)
620 {
621         struct cpufreq_governor *t;
622
623         mutex_lock(&cpufreq_governor_mutex);
624         t = find_governor(str_governor);
625         if (!t)
626                 goto unlock;
627
628         if (!try_module_get(t->owner))
629                 t = NULL;
630
631 unlock:
632         mutex_unlock(&cpufreq_governor_mutex);
633
634         return t;
635 }
636
637 static unsigned int cpufreq_parse_policy(char *str_governor)
638 {
639         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
640                 return CPUFREQ_POLICY_PERFORMANCE;
641
642         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
643                 return CPUFREQ_POLICY_POWERSAVE;
644
645         return CPUFREQ_POLICY_UNKNOWN;
646 }
647
648 /**
649  * cpufreq_parse_governor - parse a governor string only for has_target()
650  * @str_governor: Governor name.
651  */
652 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
653 {
654         struct cpufreq_governor *t;
655
656         t = get_governor(str_governor);
657         if (t)
658                 return t;
659
660         if (request_module("cpufreq_%s", str_governor))
661                 return NULL;
662
663         return get_governor(str_governor);
664 }
665
666 /**
667  * cpufreq_per_cpu_attr_read() / show_##file_name() -
668  * print out cpufreq information
669  *
670  * Write out information from cpufreq_driver->policy[cpu]; object must be
671  * "unsigned int".
672  */
673
674 #define show_one(file_name, object)                     \
675 static ssize_t show_##file_name                         \
676 (struct cpufreq_policy *policy, char *buf)              \
677 {                                                       \
678         return sprintf(buf, "%u\n", policy->object);    \
679 }
680
681 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
682 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
683 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
684 show_one(scaling_min_freq, min);
685 show_one(scaling_max_freq, max);
686
687 __weak unsigned int arch_freq_get_on_cpu(int cpu)
688 {
689         return 0;
690 }
691
692 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
693 {
694         ssize_t ret;
695         unsigned int freq;
696
697         freq = arch_freq_get_on_cpu(policy->cpu);
698         if (freq)
699                 ret = sprintf(buf, "%u\n", freq);
700         else if (cpufreq_driver && cpufreq_driver->setpolicy &&
701                         cpufreq_driver->get)
702                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
703         else
704                 ret = sprintf(buf, "%u\n", policy->cur);
705         return ret;
706 }
707
708 /**
709  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
710  */
711 #define store_one(file_name, object)                    \
712 static ssize_t store_##file_name                                        \
713 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
714 {                                                                       \
715         unsigned long val;                                              \
716         int ret;                                                        \
717                                                                         \
718         ret = sscanf(buf, "%lu", &val);                                 \
719         if (ret != 1)                                                   \
720                 return -EINVAL;                                         \
721                                                                         \
722         ret = freq_qos_update_request(policy->object##_freq_req, val);\
723         return ret >= 0 ? count : ret;                                  \
724 }
725
726 store_one(scaling_min_freq, min);
727 store_one(scaling_max_freq, max);
728
729 /**
730  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
731  */
732 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
733                                         char *buf)
734 {
735         unsigned int cur_freq = __cpufreq_get(policy);
736
737         if (cur_freq)
738                 return sprintf(buf, "%u\n", cur_freq);
739
740         return sprintf(buf, "<unknown>\n");
741 }
742
743 /**
744  * show_scaling_governor - show the current policy for the specified CPU
745  */
746 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
747 {
748         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
749                 return sprintf(buf, "powersave\n");
750         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
751                 return sprintf(buf, "performance\n");
752         else if (policy->governor)
753                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
754                                 policy->governor->name);
755         return -EINVAL;
756 }
757
758 /**
759  * store_scaling_governor - store policy for the specified CPU
760  */
761 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
762                                         const char *buf, size_t count)
763 {
764         char str_governor[16];
765         int ret;
766
767         ret = sscanf(buf, "%15s", str_governor);
768         if (ret != 1)
769                 return -EINVAL;
770
771         if (cpufreq_driver->setpolicy) {
772                 unsigned int new_pol;
773
774                 new_pol = cpufreq_parse_policy(str_governor);
775                 if (!new_pol)
776                         return -EINVAL;
777
778                 ret = cpufreq_set_policy(policy, NULL, new_pol);
779         } else {
780                 struct cpufreq_governor *new_gov;
781
782                 new_gov = cpufreq_parse_governor(str_governor);
783                 if (!new_gov)
784                         return -EINVAL;
785
786                 ret = cpufreq_set_policy(policy, new_gov,
787                                          CPUFREQ_POLICY_UNKNOWN);
788
789                 module_put(new_gov->owner);
790         }
791
792         return ret ? ret : count;
793 }
794
795 /**
796  * show_scaling_driver - show the cpufreq driver currently loaded
797  */
798 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
799 {
800         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
801 }
802
803 /**
804  * show_scaling_available_governors - show the available CPUfreq governors
805  */
806 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
807                                                 char *buf)
808 {
809         ssize_t i = 0;
810         struct cpufreq_governor *t;
811
812         if (!has_target()) {
813                 i += sprintf(buf, "performance powersave");
814                 goto out;
815         }
816
817         mutex_lock(&cpufreq_governor_mutex);
818         for_each_governor(t) {
819                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
820                     - (CPUFREQ_NAME_LEN + 2)))
821                         break;
822                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
823         }
824         mutex_unlock(&cpufreq_governor_mutex);
825 out:
826         i += sprintf(&buf[i], "\n");
827         return i;
828 }
829
830 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
831 {
832         ssize_t i = 0;
833         unsigned int cpu;
834
835         for_each_cpu(cpu, mask) {
836                 if (i)
837                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
838                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
839                 if (i >= (PAGE_SIZE - 5))
840                         break;
841         }
842         i += sprintf(&buf[i], "\n");
843         return i;
844 }
845 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
846
847 /**
848  * show_related_cpus - show the CPUs affected by each transition even if
849  * hw coordination is in use
850  */
851 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
852 {
853         return cpufreq_show_cpus(policy->related_cpus, buf);
854 }
855
856 /**
857  * show_affected_cpus - show the CPUs affected by each transition
858  */
859 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
860 {
861         return cpufreq_show_cpus(policy->cpus, buf);
862 }
863
864 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
865                                         const char *buf, size_t count)
866 {
867         unsigned int freq = 0;
868         unsigned int ret;
869
870         if (!policy->governor || !policy->governor->store_setspeed)
871                 return -EINVAL;
872
873         ret = sscanf(buf, "%u", &freq);
874         if (ret != 1)
875                 return -EINVAL;
876
877         policy->governor->store_setspeed(policy, freq);
878
879         return count;
880 }
881
882 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
883 {
884         if (!policy->governor || !policy->governor->show_setspeed)
885                 return sprintf(buf, "<unsupported>\n");
886
887         return policy->governor->show_setspeed(policy, buf);
888 }
889
890 /**
891  * show_bios_limit - show the current cpufreq HW/BIOS limitation
892  */
893 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
894 {
895         unsigned int limit;
896         int ret;
897         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
898         if (!ret)
899                 return sprintf(buf, "%u\n", limit);
900         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
901 }
902
903 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
904 cpufreq_freq_attr_ro(cpuinfo_min_freq);
905 cpufreq_freq_attr_ro(cpuinfo_max_freq);
906 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
907 cpufreq_freq_attr_ro(scaling_available_governors);
908 cpufreq_freq_attr_ro(scaling_driver);
909 cpufreq_freq_attr_ro(scaling_cur_freq);
910 cpufreq_freq_attr_ro(bios_limit);
911 cpufreq_freq_attr_ro(related_cpus);
912 cpufreq_freq_attr_ro(affected_cpus);
913 cpufreq_freq_attr_rw(scaling_min_freq);
914 cpufreq_freq_attr_rw(scaling_max_freq);
915 cpufreq_freq_attr_rw(scaling_governor);
916 cpufreq_freq_attr_rw(scaling_setspeed);
917
918 static struct attribute *default_attrs[] = {
919         &cpuinfo_min_freq.attr,
920         &cpuinfo_max_freq.attr,
921         &cpuinfo_transition_latency.attr,
922         &scaling_min_freq.attr,
923         &scaling_max_freq.attr,
924         &affected_cpus.attr,
925         &related_cpus.attr,
926         &scaling_governor.attr,
927         &scaling_driver.attr,
928         &scaling_available_governors.attr,
929         &scaling_setspeed.attr,
930         NULL
931 };
932
933 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
934 #define to_attr(a) container_of(a, struct freq_attr, attr)
935
936 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
937 {
938         struct cpufreq_policy *policy = to_policy(kobj);
939         struct freq_attr *fattr = to_attr(attr);
940         ssize_t ret;
941
942         if (!fattr->show)
943                 return -EIO;
944
945         down_read(&policy->rwsem);
946         ret = fattr->show(policy, buf);
947         up_read(&policy->rwsem);
948
949         return ret;
950 }
951
952 static ssize_t store(struct kobject *kobj, struct attribute *attr,
953                      const char *buf, size_t count)
954 {
955         struct cpufreq_policy *policy = to_policy(kobj);
956         struct freq_attr *fattr = to_attr(attr);
957         ssize_t ret = -EINVAL;
958
959         if (!fattr->store)
960                 return -EIO;
961
962         /*
963          * cpus_read_trylock() is used here to work around a circular lock
964          * dependency problem with respect to the cpufreq_register_driver().
965          */
966         if (!cpus_read_trylock())
967                 return -EBUSY;
968
969         if (cpu_online(policy->cpu)) {
970                 down_write(&policy->rwsem);
971                 ret = fattr->store(policy, buf, count);
972                 up_write(&policy->rwsem);
973         }
974
975         cpus_read_unlock();
976
977         return ret;
978 }
979
980 static void cpufreq_sysfs_release(struct kobject *kobj)
981 {
982         struct cpufreq_policy *policy = to_policy(kobj);
983         pr_debug("last reference is dropped\n");
984         complete(&policy->kobj_unregister);
985 }
986
987 static const struct sysfs_ops sysfs_ops = {
988         .show   = show,
989         .store  = store,
990 };
991
992 static struct kobj_type ktype_cpufreq = {
993         .sysfs_ops      = &sysfs_ops,
994         .default_attrs  = default_attrs,
995         .release        = cpufreq_sysfs_release,
996 };
997
998 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
999                                 struct device *dev)
1000 {
1001         if (unlikely(!dev))
1002                 return;
1003
1004         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1005                 return;
1006
1007         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1008         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1009                 dev_err(dev, "cpufreq symlink creation failed\n");
1010 }
1011
1012 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1013                                    struct device *dev)
1014 {
1015         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1016         sysfs_remove_link(&dev->kobj, "cpufreq");
1017 }
1018
1019 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1020 {
1021         struct freq_attr **drv_attr;
1022         int ret = 0;
1023
1024         /* set up files for this cpu device */
1025         drv_attr = cpufreq_driver->attr;
1026         while (drv_attr && *drv_attr) {
1027                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1028                 if (ret)
1029                         return ret;
1030                 drv_attr++;
1031         }
1032         if (cpufreq_driver->get) {
1033                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1034                 if (ret)
1035                         return ret;
1036         }
1037
1038         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1039         if (ret)
1040                 return ret;
1041
1042         if (cpufreq_driver->bios_limit) {
1043                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1044                 if (ret)
1045                         return ret;
1046         }
1047
1048         return 0;
1049 }
1050
1051 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1052 {
1053         return NULL;
1054 }
1055
1056 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1057 {
1058         struct cpufreq_governor *def_gov = cpufreq_default_governor();
1059         struct cpufreq_governor *gov = NULL;
1060         unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1061         int ret;
1062
1063         if (has_target()) {
1064                 /* Update policy governor to the one used before hotplug. */
1065                 gov = get_governor(policy->last_governor);
1066                 if (gov) {
1067                         pr_debug("Restoring governor %s for cpu %d\n",
1068                                  policy->governor->name, policy->cpu);
1069                 } else if (def_gov) {
1070                         gov = def_gov;
1071                         __module_get(gov->owner);
1072                 } else {
1073                         return -ENODATA;
1074                 }
1075         } else {
1076                 /* Use the default policy if there is no last_policy. */
1077                 if (policy->last_policy) {
1078                         pol = policy->last_policy;
1079                 } else if (def_gov) {
1080                         pol = cpufreq_parse_policy(def_gov->name);
1081                         /*
1082                          * In case the default governor is neiter "performance"
1083                          * nor "powersave", fall back to the initial policy
1084                          * value set by the driver.
1085                          */
1086                         if (pol == CPUFREQ_POLICY_UNKNOWN)
1087                                 pol = policy->policy;
1088                 }
1089                 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1090                     pol != CPUFREQ_POLICY_POWERSAVE)
1091                         return -ENODATA;
1092         }
1093
1094         ret = cpufreq_set_policy(policy, gov, pol);
1095         if (gov)
1096                 module_put(gov->owner);
1097
1098         return ret;
1099 }
1100
1101 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1102 {
1103         int ret = 0;
1104
1105         /* Has this CPU been taken care of already? */
1106         if (cpumask_test_cpu(cpu, policy->cpus))
1107                 return 0;
1108
1109         down_write(&policy->rwsem);
1110         if (has_target())
1111                 cpufreq_stop_governor(policy);
1112
1113         cpumask_set_cpu(cpu, policy->cpus);
1114
1115         if (has_target()) {
1116                 ret = cpufreq_start_governor(policy);
1117                 if (ret)
1118                         pr_err("%s: Failed to start governor\n", __func__);
1119         }
1120         up_write(&policy->rwsem);
1121         return ret;
1122 }
1123
1124 void refresh_frequency_limits(struct cpufreq_policy *policy)
1125 {
1126         if (!policy_is_inactive(policy)) {
1127                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1128
1129                 cpufreq_set_policy(policy, policy->governor, policy->policy);
1130         }
1131 }
1132 EXPORT_SYMBOL(refresh_frequency_limits);
1133
1134 static void handle_update(struct work_struct *work)
1135 {
1136         struct cpufreq_policy *policy =
1137                 container_of(work, struct cpufreq_policy, update);
1138
1139         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1140         down_write(&policy->rwsem);
1141         refresh_frequency_limits(policy);
1142         up_write(&policy->rwsem);
1143 }
1144
1145 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1146                                 void *data)
1147 {
1148         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1149
1150         schedule_work(&policy->update);
1151         return 0;
1152 }
1153
1154 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1155                                 void *data)
1156 {
1157         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1158
1159         schedule_work(&policy->update);
1160         return 0;
1161 }
1162
1163 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1164 {
1165         struct kobject *kobj;
1166         struct completion *cmp;
1167
1168         down_write(&policy->rwsem);
1169         cpufreq_stats_free_table(policy);
1170         kobj = &policy->kobj;
1171         cmp = &policy->kobj_unregister;
1172         up_write(&policy->rwsem);
1173         kobject_put(kobj);
1174
1175         /*
1176          * We need to make sure that the underlying kobj is
1177          * actually not referenced anymore by anybody before we
1178          * proceed with unloading.
1179          */
1180         pr_debug("waiting for dropping of refcount\n");
1181         wait_for_completion(cmp);
1182         pr_debug("wait complete\n");
1183 }
1184
1185 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1186 {
1187         struct cpufreq_policy *policy;
1188         struct device *dev = get_cpu_device(cpu);
1189         int ret;
1190
1191         if (!dev)
1192                 return NULL;
1193
1194         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1195         if (!policy)
1196                 return NULL;
1197
1198         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1199                 goto err_free_policy;
1200
1201         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1202                 goto err_free_cpumask;
1203
1204         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1205                 goto err_free_rcpumask;
1206
1207         init_completion(&policy->kobj_unregister);
1208         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1209                                    cpufreq_global_kobject, "policy%u", cpu);
1210         if (ret) {
1211                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1212                 /*
1213                  * The entire policy object will be freed below, but the extra
1214                  * memory allocated for the kobject name needs to be freed by
1215                  * releasing the kobject.
1216                  */
1217                 kobject_put(&policy->kobj);
1218                 goto err_free_real_cpus;
1219         }
1220
1221         freq_constraints_init(&policy->constraints);
1222
1223         policy->nb_min.notifier_call = cpufreq_notifier_min;
1224         policy->nb_max.notifier_call = cpufreq_notifier_max;
1225
1226         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1227                                     &policy->nb_min);
1228         if (ret) {
1229                 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1230                         ret, cpumask_pr_args(policy->cpus));
1231                 goto err_kobj_remove;
1232         }
1233
1234         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1235                                     &policy->nb_max);
1236         if (ret) {
1237                 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1238                         ret, cpumask_pr_args(policy->cpus));
1239                 goto err_min_qos_notifier;
1240         }
1241
1242         INIT_LIST_HEAD(&policy->policy_list);
1243         init_rwsem(&policy->rwsem);
1244         spin_lock_init(&policy->transition_lock);
1245         init_waitqueue_head(&policy->transition_wait);
1246         INIT_WORK(&policy->update, handle_update);
1247
1248         policy->cpu = cpu;
1249         return policy;
1250
1251 err_min_qos_notifier:
1252         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1253                                  &policy->nb_min);
1254 err_kobj_remove:
1255         cpufreq_policy_put_kobj(policy);
1256 err_free_real_cpus:
1257         free_cpumask_var(policy->real_cpus);
1258 err_free_rcpumask:
1259         free_cpumask_var(policy->related_cpus);
1260 err_free_cpumask:
1261         free_cpumask_var(policy->cpus);
1262 err_free_policy:
1263         kfree(policy);
1264
1265         return NULL;
1266 }
1267
1268 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1269 {
1270         unsigned long flags;
1271         int cpu;
1272
1273         /* Remove policy from list */
1274         write_lock_irqsave(&cpufreq_driver_lock, flags);
1275         list_del(&policy->policy_list);
1276
1277         for_each_cpu(cpu, policy->related_cpus)
1278                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1279         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1280
1281         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1282                                  &policy->nb_max);
1283         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1284                                  &policy->nb_min);
1285
1286         /* Cancel any pending policy->update work before freeing the policy. */
1287         cancel_work_sync(&policy->update);
1288
1289         if (policy->max_freq_req) {
1290                 /*
1291                  * CPUFREQ_CREATE_POLICY notification is sent only after
1292                  * successfully adding max_freq_req request.
1293                  */
1294                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1295                                              CPUFREQ_REMOVE_POLICY, policy);
1296                 freq_qos_remove_request(policy->max_freq_req);
1297         }
1298
1299         freq_qos_remove_request(policy->min_freq_req);
1300         kfree(policy->min_freq_req);
1301
1302         cpufreq_policy_put_kobj(policy);
1303         free_cpumask_var(policy->real_cpus);
1304         free_cpumask_var(policy->related_cpus);
1305         free_cpumask_var(policy->cpus);
1306         kfree(policy);
1307 }
1308
1309 static int cpufreq_online(unsigned int cpu)
1310 {
1311         struct cpufreq_policy *policy;
1312         bool new_policy;
1313         unsigned long flags;
1314         unsigned int j;
1315         int ret;
1316
1317         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1318
1319         /* Check if this CPU already has a policy to manage it */
1320         policy = per_cpu(cpufreq_cpu_data, cpu);
1321         if (policy) {
1322                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1323                 if (!policy_is_inactive(policy))
1324                         return cpufreq_add_policy_cpu(policy, cpu);
1325
1326                 /* This is the only online CPU for the policy.  Start over. */
1327                 new_policy = false;
1328                 down_write(&policy->rwsem);
1329                 policy->cpu = cpu;
1330                 policy->governor = NULL;
1331                 up_write(&policy->rwsem);
1332         } else {
1333                 new_policy = true;
1334                 policy = cpufreq_policy_alloc(cpu);
1335                 if (!policy)
1336                         return -ENOMEM;
1337         }
1338
1339         if (!new_policy && cpufreq_driver->online) {
1340                 ret = cpufreq_driver->online(policy);
1341                 if (ret) {
1342                         pr_debug("%s: %d: initialization failed\n", __func__,
1343                                  __LINE__);
1344                         goto out_exit_policy;
1345                 }
1346
1347                 /* Recover policy->cpus using related_cpus */
1348                 cpumask_copy(policy->cpus, policy->related_cpus);
1349         } else {
1350                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1351
1352                 /*
1353                  * Call driver. From then on the cpufreq must be able
1354                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1355                  */
1356                 ret = cpufreq_driver->init(policy);
1357                 if (ret) {
1358                         pr_debug("%s: %d: initialization failed\n", __func__,
1359                                  __LINE__);
1360                         goto out_free_policy;
1361                 }
1362
1363                 /*
1364                  * The initialization has succeeded and the policy is online.
1365                  * If there is a problem with its frequency table, take it
1366                  * offline and drop it.
1367                  */
1368                 ret = cpufreq_table_validate_and_sort(policy);
1369                 if (ret)
1370                         goto out_offline_policy;
1371
1372                 /* related_cpus should at least include policy->cpus. */
1373                 cpumask_copy(policy->related_cpus, policy->cpus);
1374         }
1375
1376         down_write(&policy->rwsem);
1377         /*
1378          * affected cpus must always be the one, which are online. We aren't
1379          * managing offline cpus here.
1380          */
1381         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1382
1383         if (new_policy) {
1384                 for_each_cpu(j, policy->related_cpus) {
1385                         per_cpu(cpufreq_cpu_data, j) = policy;
1386                         add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1387                 }
1388
1389                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1390                                                GFP_KERNEL);
1391                 if (!policy->min_freq_req)
1392                         goto out_destroy_policy;
1393
1394                 ret = freq_qos_add_request(&policy->constraints,
1395                                            policy->min_freq_req, FREQ_QOS_MIN,
1396                                            FREQ_QOS_MIN_DEFAULT_VALUE);
1397                 if (ret < 0) {
1398                         /*
1399                          * So we don't call freq_qos_remove_request() for an
1400                          * uninitialized request.
1401                          */
1402                         kfree(policy->min_freq_req);
1403                         policy->min_freq_req = NULL;
1404                         goto out_destroy_policy;
1405                 }
1406
1407                 /*
1408                  * This must be initialized right here to avoid calling
1409                  * freq_qos_remove_request() on uninitialized request in case
1410                  * of errors.
1411                  */
1412                 policy->max_freq_req = policy->min_freq_req + 1;
1413
1414                 ret = freq_qos_add_request(&policy->constraints,
1415                                            policy->max_freq_req, FREQ_QOS_MAX,
1416                                            FREQ_QOS_MAX_DEFAULT_VALUE);
1417                 if (ret < 0) {
1418                         policy->max_freq_req = NULL;
1419                         goto out_destroy_policy;
1420                 }
1421
1422                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1423                                 CPUFREQ_CREATE_POLICY, policy);
1424         }
1425
1426         if (cpufreq_driver->get && has_target()) {
1427                 policy->cur = cpufreq_driver->get(policy->cpu);
1428                 if (!policy->cur) {
1429                         pr_err("%s: ->get() failed\n", __func__);
1430                         goto out_destroy_policy;
1431                 }
1432         }
1433
1434         /*
1435          * Sometimes boot loaders set CPU frequency to a value outside of
1436          * frequency table present with cpufreq core. In such cases CPU might be
1437          * unstable if it has to run on that frequency for long duration of time
1438          * and so its better to set it to a frequency which is specified in
1439          * freq-table. This also makes cpufreq stats inconsistent as
1440          * cpufreq-stats would fail to register because current frequency of CPU
1441          * isn't found in freq-table.
1442          *
1443          * Because we don't want this change to effect boot process badly, we go
1444          * for the next freq which is >= policy->cur ('cur' must be set by now,
1445          * otherwise we will end up setting freq to lowest of the table as 'cur'
1446          * is initialized to zero).
1447          *
1448          * We are passing target-freq as "policy->cur - 1" otherwise
1449          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1450          * equal to target-freq.
1451          */
1452         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1453             && has_target()) {
1454                 /* Are we running at unknown frequency ? */
1455                 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1456                 if (ret == -EINVAL) {
1457                         /* Warn user and fix it */
1458                         pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1459                                 __func__, policy->cpu, policy->cur);
1460                         ret = __cpufreq_driver_target(policy, policy->cur - 1,
1461                                 CPUFREQ_RELATION_L);
1462
1463                         /*
1464                          * Reaching here after boot in a few seconds may not
1465                          * mean that system will remain stable at "unknown"
1466                          * frequency for longer duration. Hence, a BUG_ON().
1467                          */
1468                         BUG_ON(ret);
1469                         pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1470                                 __func__, policy->cpu, policy->cur);
1471                 }
1472         }
1473
1474         if (new_policy) {
1475                 ret = cpufreq_add_dev_interface(policy);
1476                 if (ret)
1477                         goto out_destroy_policy;
1478
1479                 cpufreq_stats_create_table(policy);
1480
1481                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1482                 list_add(&policy->policy_list, &cpufreq_policy_list);
1483                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1484         }
1485
1486         ret = cpufreq_init_policy(policy);
1487         if (ret) {
1488                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1489                        __func__, cpu, ret);
1490                 goto out_destroy_policy;
1491         }
1492
1493         up_write(&policy->rwsem);
1494
1495         kobject_uevent(&policy->kobj, KOBJ_ADD);
1496
1497         /* Callback for handling stuff after policy is ready */
1498         if (cpufreq_driver->ready)
1499                 cpufreq_driver->ready(policy);
1500
1501         if (cpufreq_thermal_control_enabled(cpufreq_driver))
1502                 policy->cdev = of_cpufreq_cooling_register(policy);
1503
1504         pr_debug("initialization complete\n");
1505
1506         return 0;
1507
1508 out_destroy_policy:
1509         for_each_cpu(j, policy->real_cpus)
1510                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1511
1512         up_write(&policy->rwsem);
1513
1514 out_offline_policy:
1515         if (cpufreq_driver->offline)
1516                 cpufreq_driver->offline(policy);
1517
1518 out_exit_policy:
1519         if (cpufreq_driver->exit)
1520                 cpufreq_driver->exit(policy);
1521
1522 out_free_policy:
1523         cpufreq_policy_free(policy);
1524         return ret;
1525 }
1526
1527 /**
1528  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1529  * @dev: CPU device.
1530  * @sif: Subsystem interface structure pointer (not used)
1531  */
1532 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1533 {
1534         struct cpufreq_policy *policy;
1535         unsigned cpu = dev->id;
1536         int ret;
1537
1538         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1539
1540         if (cpu_online(cpu)) {
1541                 ret = cpufreq_online(cpu);
1542                 if (ret)
1543                         return ret;
1544         }
1545
1546         /* Create sysfs link on CPU registration */
1547         policy = per_cpu(cpufreq_cpu_data, cpu);
1548         if (policy)
1549                 add_cpu_dev_symlink(policy, cpu, dev);
1550
1551         return 0;
1552 }
1553
1554 static int cpufreq_offline(unsigned int cpu)
1555 {
1556         struct cpufreq_policy *policy;
1557         int ret;
1558
1559         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1560
1561         policy = cpufreq_cpu_get_raw(cpu);
1562         if (!policy) {
1563                 pr_debug("%s: No cpu_data found\n", __func__);
1564                 return 0;
1565         }
1566
1567         down_write(&policy->rwsem);
1568         if (has_target())
1569                 cpufreq_stop_governor(policy);
1570
1571         cpumask_clear_cpu(cpu, policy->cpus);
1572
1573         if (policy_is_inactive(policy)) {
1574                 if (has_target())
1575                         strncpy(policy->last_governor, policy->governor->name,
1576                                 CPUFREQ_NAME_LEN);
1577                 else
1578                         policy->last_policy = policy->policy;
1579         } else if (cpu == policy->cpu) {
1580                 /* Nominate new CPU */
1581                 policy->cpu = cpumask_any(policy->cpus);
1582         }
1583
1584         /* Start governor again for active policy */
1585         if (!policy_is_inactive(policy)) {
1586                 if (has_target()) {
1587                         ret = cpufreq_start_governor(policy);
1588                         if (ret)
1589                                 pr_err("%s: Failed to start governor\n", __func__);
1590                 }
1591
1592                 goto unlock;
1593         }
1594
1595         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1596                 cpufreq_cooling_unregister(policy->cdev);
1597                 policy->cdev = NULL;
1598         }
1599
1600         if (cpufreq_driver->stop_cpu)
1601                 cpufreq_driver->stop_cpu(policy);
1602
1603         if (has_target())
1604                 cpufreq_exit_governor(policy);
1605
1606         /*
1607          * Perform the ->offline() during light-weight tear-down, as
1608          * that allows fast recovery when the CPU comes back.
1609          */
1610         if (cpufreq_driver->offline) {
1611                 cpufreq_driver->offline(policy);
1612         } else if (cpufreq_driver->exit) {
1613                 cpufreq_driver->exit(policy);
1614                 policy->freq_table = NULL;
1615         }
1616
1617 unlock:
1618         up_write(&policy->rwsem);
1619         return 0;
1620 }
1621
1622 /**
1623  * cpufreq_remove_dev - remove a CPU device
1624  *
1625  * Removes the cpufreq interface for a CPU device.
1626  */
1627 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1628 {
1629         unsigned int cpu = dev->id;
1630         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1631
1632         if (!policy)
1633                 return;
1634
1635         if (cpu_online(cpu))
1636                 cpufreq_offline(cpu);
1637
1638         cpumask_clear_cpu(cpu, policy->real_cpus);
1639         remove_cpu_dev_symlink(policy, dev);
1640
1641         if (cpumask_empty(policy->real_cpus)) {
1642                 /* We did light-weight exit earlier, do full tear down now */
1643                 if (cpufreq_driver->offline)
1644                         cpufreq_driver->exit(policy);
1645
1646                 cpufreq_policy_free(policy);
1647         }
1648 }
1649
1650 /**
1651  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1652  *      in deep trouble.
1653  *      @policy: policy managing CPUs
1654  *      @new_freq: CPU frequency the CPU actually runs at
1655  *
1656  *      We adjust to current frequency first, and need to clean up later.
1657  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1658  */
1659 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1660                                 unsigned int new_freq)
1661 {
1662         struct cpufreq_freqs freqs;
1663
1664         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1665                  policy->cur, new_freq);
1666
1667         freqs.old = policy->cur;
1668         freqs.new = new_freq;
1669
1670         cpufreq_freq_transition_begin(policy, &freqs);
1671         cpufreq_freq_transition_end(policy, &freqs, 0);
1672 }
1673
1674 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1675 {
1676         unsigned int new_freq;
1677
1678         new_freq = cpufreq_driver->get(policy->cpu);
1679         if (!new_freq)
1680                 return 0;
1681
1682         /*
1683          * If fast frequency switching is used with the given policy, the check
1684          * against policy->cur is pointless, so skip it in that case.
1685          */
1686         if (policy->fast_switch_enabled || !has_target())
1687                 return new_freq;
1688
1689         if (policy->cur != new_freq) {
1690                 cpufreq_out_of_sync(policy, new_freq);
1691                 if (update)
1692                         schedule_work(&policy->update);
1693         }
1694
1695         return new_freq;
1696 }
1697
1698 /**
1699  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1700  * @cpu: CPU number
1701  *
1702  * This is the last known freq, without actually getting it from the driver.
1703  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1704  */
1705 unsigned int cpufreq_quick_get(unsigned int cpu)
1706 {
1707         struct cpufreq_policy *policy;
1708         unsigned int ret_freq = 0;
1709         unsigned long flags;
1710
1711         read_lock_irqsave(&cpufreq_driver_lock, flags);
1712
1713         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1714                 ret_freq = cpufreq_driver->get(cpu);
1715                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1716                 return ret_freq;
1717         }
1718
1719         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1720
1721         policy = cpufreq_cpu_get(cpu);
1722         if (policy) {
1723                 ret_freq = policy->cur;
1724                 cpufreq_cpu_put(policy);
1725         }
1726
1727         return ret_freq;
1728 }
1729 EXPORT_SYMBOL(cpufreq_quick_get);
1730
1731 /**
1732  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1733  * @cpu: CPU number
1734  *
1735  * Just return the max possible frequency for a given CPU.
1736  */
1737 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1738 {
1739         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1740         unsigned int ret_freq = 0;
1741
1742         if (policy) {
1743                 ret_freq = policy->max;
1744                 cpufreq_cpu_put(policy);
1745         }
1746
1747         return ret_freq;
1748 }
1749 EXPORT_SYMBOL(cpufreq_quick_get_max);
1750
1751 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1752 {
1753         if (unlikely(policy_is_inactive(policy)))
1754                 return 0;
1755
1756         return cpufreq_verify_current_freq(policy, true);
1757 }
1758
1759 /**
1760  * cpufreq_get - get the current CPU frequency (in kHz)
1761  * @cpu: CPU number
1762  *
1763  * Get the CPU current (static) CPU frequency
1764  */
1765 unsigned int cpufreq_get(unsigned int cpu)
1766 {
1767         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1768         unsigned int ret_freq = 0;
1769
1770         if (policy) {
1771                 down_read(&policy->rwsem);
1772                 if (cpufreq_driver->get)
1773                         ret_freq = __cpufreq_get(policy);
1774                 up_read(&policy->rwsem);
1775
1776                 cpufreq_cpu_put(policy);
1777         }
1778
1779         return ret_freq;
1780 }
1781 EXPORT_SYMBOL(cpufreq_get);
1782
1783 static struct subsys_interface cpufreq_interface = {
1784         .name           = "cpufreq",
1785         .subsys         = &cpu_subsys,
1786         .add_dev        = cpufreq_add_dev,
1787         .remove_dev     = cpufreq_remove_dev,
1788 };
1789
1790 /*
1791  * In case platform wants some specific frequency to be configured
1792  * during suspend..
1793  */
1794 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1795 {
1796         int ret;
1797
1798         if (!policy->suspend_freq) {
1799                 pr_debug("%s: suspend_freq not defined\n", __func__);
1800                 return 0;
1801         }
1802
1803         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1804                         policy->suspend_freq);
1805
1806         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1807                         CPUFREQ_RELATION_H);
1808         if (ret)
1809                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1810                                 __func__, policy->suspend_freq, ret);
1811
1812         return ret;
1813 }
1814 EXPORT_SYMBOL(cpufreq_generic_suspend);
1815
1816 /**
1817  * cpufreq_suspend() - Suspend CPUFreq governors
1818  *
1819  * Called during system wide Suspend/Hibernate cycles for suspending governors
1820  * as some platforms can't change frequency after this point in suspend cycle.
1821  * Because some of the devices (like: i2c, regulators, etc) they use for
1822  * changing frequency are suspended quickly after this point.
1823  */
1824 void cpufreq_suspend(void)
1825 {
1826         struct cpufreq_policy *policy;
1827
1828         if (!cpufreq_driver)
1829                 return;
1830
1831         if (!has_target() && !cpufreq_driver->suspend)
1832                 goto suspend;
1833
1834         pr_debug("%s: Suspending Governors\n", __func__);
1835
1836         for_each_active_policy(policy) {
1837                 if (has_target()) {
1838                         down_write(&policy->rwsem);
1839                         cpufreq_stop_governor(policy);
1840                         up_write(&policy->rwsem);
1841                 }
1842
1843                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1844                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1845                                 cpufreq_driver->name);
1846         }
1847
1848 suspend:
1849         cpufreq_suspended = true;
1850 }
1851
1852 /**
1853  * cpufreq_resume() - Resume CPUFreq governors
1854  *
1855  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1856  * are suspended with cpufreq_suspend().
1857  */
1858 void cpufreq_resume(void)
1859 {
1860         struct cpufreq_policy *policy;
1861         int ret;
1862
1863         if (!cpufreq_driver)
1864                 return;
1865
1866         if (unlikely(!cpufreq_suspended))
1867                 return;
1868
1869         cpufreq_suspended = false;
1870
1871         if (!has_target() && !cpufreq_driver->resume)
1872                 return;
1873
1874         pr_debug("%s: Resuming Governors\n", __func__);
1875
1876         for_each_active_policy(policy) {
1877                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1878                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1879                                 policy);
1880                 } else if (has_target()) {
1881                         down_write(&policy->rwsem);
1882                         ret = cpufreq_start_governor(policy);
1883                         up_write(&policy->rwsem);
1884
1885                         if (ret)
1886                                 pr_err("%s: Failed to start governor for policy: %p\n",
1887                                        __func__, policy);
1888                 }
1889         }
1890 }
1891
1892 /**
1893  *      cpufreq_get_current_driver - return current driver's name
1894  *
1895  *      Return the name string of the currently loaded cpufreq driver
1896  *      or NULL, if none.
1897  */
1898 const char *cpufreq_get_current_driver(void)
1899 {
1900         if (cpufreq_driver)
1901                 return cpufreq_driver->name;
1902
1903         return NULL;
1904 }
1905 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1906
1907 /**
1908  *      cpufreq_get_driver_data - return current driver data
1909  *
1910  *      Return the private data of the currently loaded cpufreq
1911  *      driver, or NULL if no cpufreq driver is loaded.
1912  */
1913 void *cpufreq_get_driver_data(void)
1914 {
1915         if (cpufreq_driver)
1916                 return cpufreq_driver->driver_data;
1917
1918         return NULL;
1919 }
1920 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1921
1922 /*********************************************************************
1923  *                     NOTIFIER LISTS INTERFACE                      *
1924  *********************************************************************/
1925
1926 /**
1927  *      cpufreq_register_notifier - register a driver with cpufreq
1928  *      @nb: notifier function to register
1929  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1930  *
1931  *      Add a driver to one of two lists: either a list of drivers that
1932  *      are notified about clock rate changes (once before and once after
1933  *      the transition), or a list of drivers that are notified about
1934  *      changes in cpufreq policy.
1935  *
1936  *      This function may sleep, and has the same return conditions as
1937  *      blocking_notifier_chain_register.
1938  */
1939 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1940 {
1941         int ret;
1942
1943         if (cpufreq_disabled())
1944                 return -EINVAL;
1945
1946         switch (list) {
1947         case CPUFREQ_TRANSITION_NOTIFIER:
1948                 mutex_lock(&cpufreq_fast_switch_lock);
1949
1950                 if (cpufreq_fast_switch_count > 0) {
1951                         mutex_unlock(&cpufreq_fast_switch_lock);
1952                         return -EBUSY;
1953                 }
1954                 ret = srcu_notifier_chain_register(
1955                                 &cpufreq_transition_notifier_list, nb);
1956                 if (!ret)
1957                         cpufreq_fast_switch_count--;
1958
1959                 mutex_unlock(&cpufreq_fast_switch_lock);
1960                 break;
1961         case CPUFREQ_POLICY_NOTIFIER:
1962                 ret = blocking_notifier_chain_register(
1963                                 &cpufreq_policy_notifier_list, nb);
1964                 break;
1965         default:
1966                 ret = -EINVAL;
1967         }
1968
1969         return ret;
1970 }
1971 EXPORT_SYMBOL(cpufreq_register_notifier);
1972
1973 /**
1974  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1975  *      @nb: notifier block to be unregistered
1976  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1977  *
1978  *      Remove a driver from the CPU frequency notifier list.
1979  *
1980  *      This function may sleep, and has the same return conditions as
1981  *      blocking_notifier_chain_unregister.
1982  */
1983 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1984 {
1985         int ret;
1986
1987         if (cpufreq_disabled())
1988                 return -EINVAL;
1989
1990         switch (list) {
1991         case CPUFREQ_TRANSITION_NOTIFIER:
1992                 mutex_lock(&cpufreq_fast_switch_lock);
1993
1994                 ret = srcu_notifier_chain_unregister(
1995                                 &cpufreq_transition_notifier_list, nb);
1996                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1997                         cpufreq_fast_switch_count++;
1998
1999                 mutex_unlock(&cpufreq_fast_switch_lock);
2000                 break;
2001         case CPUFREQ_POLICY_NOTIFIER:
2002                 ret = blocking_notifier_chain_unregister(
2003                                 &cpufreq_policy_notifier_list, nb);
2004                 break;
2005         default:
2006                 ret = -EINVAL;
2007         }
2008
2009         return ret;
2010 }
2011 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2012
2013
2014 /*********************************************************************
2015  *                              GOVERNORS                            *
2016  *********************************************************************/
2017
2018 /**
2019  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2020  * @policy: cpufreq policy to switch the frequency for.
2021  * @target_freq: New frequency to set (may be approximate).
2022  *
2023  * Carry out a fast frequency switch without sleeping.
2024  *
2025  * The driver's ->fast_switch() callback invoked by this function must be
2026  * suitable for being called from within RCU-sched read-side critical sections
2027  * and it is expected to select the minimum available frequency greater than or
2028  * equal to @target_freq (CPUFREQ_RELATION_L).
2029  *
2030  * This function must not be called if policy->fast_switch_enabled is unset.
2031  *
2032  * Governors calling this function must guarantee that it will never be invoked
2033  * twice in parallel for the same policy and that it will never be called in
2034  * parallel with either ->target() or ->target_index() for the same policy.
2035  *
2036  * Returns the actual frequency set for the CPU.
2037  *
2038  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2039  * error condition, the hardware configuration must be preserved.
2040  */
2041 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2042                                         unsigned int target_freq)
2043 {
2044         target_freq = clamp_val(target_freq, policy->min, policy->max);
2045
2046         return cpufreq_driver->fast_switch(policy, target_freq);
2047 }
2048 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2049
2050 /* Must set freqs->new to intermediate frequency */
2051 static int __target_intermediate(struct cpufreq_policy *policy,
2052                                  struct cpufreq_freqs *freqs, int index)
2053 {
2054         int ret;
2055
2056         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2057
2058         /* We don't need to switch to intermediate freq */
2059         if (!freqs->new)
2060                 return 0;
2061
2062         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2063                  __func__, policy->cpu, freqs->old, freqs->new);
2064
2065         cpufreq_freq_transition_begin(policy, freqs);
2066         ret = cpufreq_driver->target_intermediate(policy, index);
2067         cpufreq_freq_transition_end(policy, freqs, ret);
2068
2069         if (ret)
2070                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2071                        __func__, ret);
2072
2073         return ret;
2074 }
2075
2076 static int __target_index(struct cpufreq_policy *policy, int index)
2077 {
2078         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2079         unsigned int intermediate_freq = 0;
2080         unsigned int newfreq = policy->freq_table[index].frequency;
2081         int retval = -EINVAL;
2082         bool notify;
2083
2084         if (newfreq == policy->cur)
2085                 return 0;
2086
2087         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2088         if (notify) {
2089                 /* Handle switching to intermediate frequency */
2090                 if (cpufreq_driver->get_intermediate) {
2091                         retval = __target_intermediate(policy, &freqs, index);
2092                         if (retval)
2093                                 return retval;
2094
2095                         intermediate_freq = freqs.new;
2096                         /* Set old freq to intermediate */
2097                         if (intermediate_freq)
2098                                 freqs.old = freqs.new;
2099                 }
2100
2101                 freqs.new = newfreq;
2102                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2103                          __func__, policy->cpu, freqs.old, freqs.new);
2104
2105                 cpufreq_freq_transition_begin(policy, &freqs);
2106         }
2107
2108         retval = cpufreq_driver->target_index(policy, index);
2109         if (retval)
2110                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2111                        retval);
2112
2113         if (notify) {
2114                 cpufreq_freq_transition_end(policy, &freqs, retval);
2115
2116                 /*
2117                  * Failed after setting to intermediate freq? Driver should have
2118                  * reverted back to initial frequency and so should we. Check
2119                  * here for intermediate_freq instead of get_intermediate, in
2120                  * case we haven't switched to intermediate freq at all.
2121                  */
2122                 if (unlikely(retval && intermediate_freq)) {
2123                         freqs.old = intermediate_freq;
2124                         freqs.new = policy->restore_freq;
2125                         cpufreq_freq_transition_begin(policy, &freqs);
2126                         cpufreq_freq_transition_end(policy, &freqs, 0);
2127                 }
2128         }
2129
2130         return retval;
2131 }
2132
2133 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2134                             unsigned int target_freq,
2135                             unsigned int relation)
2136 {
2137         unsigned int old_target_freq = target_freq;
2138         int index;
2139
2140         if (cpufreq_disabled())
2141                 return -ENODEV;
2142
2143         /* Make sure that target_freq is within supported range */
2144         target_freq = clamp_val(target_freq, policy->min, policy->max);
2145
2146         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2147                  policy->cpu, target_freq, relation, old_target_freq);
2148
2149         /*
2150          * This might look like a redundant call as we are checking it again
2151          * after finding index. But it is left intentionally for cases where
2152          * exactly same freq is called again and so we can save on few function
2153          * calls.
2154          */
2155         if (target_freq == policy->cur)
2156                 return 0;
2157
2158         /* Save last value to restore later on errors */
2159         policy->restore_freq = policy->cur;
2160
2161         if (cpufreq_driver->target)
2162                 return cpufreq_driver->target(policy, target_freq, relation);
2163
2164         if (!cpufreq_driver->target_index)
2165                 return -EINVAL;
2166
2167         index = cpufreq_frequency_table_target(policy, target_freq, relation);
2168
2169         return __target_index(policy, index);
2170 }
2171 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2172
2173 int cpufreq_driver_target(struct cpufreq_policy *policy,
2174                           unsigned int target_freq,
2175                           unsigned int relation)
2176 {
2177         int ret;
2178
2179         down_write(&policy->rwsem);
2180
2181         ret = __cpufreq_driver_target(policy, target_freq, relation);
2182
2183         up_write(&policy->rwsem);
2184
2185         return ret;
2186 }
2187 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2188
2189 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2190 {
2191         return NULL;
2192 }
2193
2194 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2195 {
2196         int ret;
2197
2198         /* Don't start any governor operations if we are entering suspend */
2199         if (cpufreq_suspended)
2200                 return 0;
2201         /*
2202          * Governor might not be initiated here if ACPI _PPC changed
2203          * notification happened, so check it.
2204          */
2205         if (!policy->governor)
2206                 return -EINVAL;
2207
2208         /* Platform doesn't want dynamic frequency switching ? */
2209         if (policy->governor->dynamic_switching &&
2210             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2211                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2212
2213                 if (gov) {
2214                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2215                                 policy->governor->name, gov->name);
2216                         policy->governor = gov;
2217                 } else {
2218                         return -EINVAL;
2219                 }
2220         }
2221
2222         if (!try_module_get(policy->governor->owner))
2223                 return -EINVAL;
2224
2225         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2226
2227         if (policy->governor->init) {
2228                 ret = policy->governor->init(policy);
2229                 if (ret) {
2230                         module_put(policy->governor->owner);
2231                         return ret;
2232                 }
2233         }
2234
2235         return 0;
2236 }
2237
2238 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2239 {
2240         if (cpufreq_suspended || !policy->governor)
2241                 return;
2242
2243         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2244
2245         if (policy->governor->exit)
2246                 policy->governor->exit(policy);
2247
2248         module_put(policy->governor->owner);
2249 }
2250
2251 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2252 {
2253         int ret;
2254
2255         if (cpufreq_suspended)
2256                 return 0;
2257
2258         if (!policy->governor)
2259                 return -EINVAL;
2260
2261         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2262
2263         if (cpufreq_driver->get)
2264                 cpufreq_verify_current_freq(policy, false);
2265
2266         if (policy->governor->start) {
2267                 ret = policy->governor->start(policy);
2268                 if (ret)
2269                         return ret;
2270         }
2271
2272         if (policy->governor->limits)
2273                 policy->governor->limits(policy);
2274
2275         return 0;
2276 }
2277
2278 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2279 {
2280         if (cpufreq_suspended || !policy->governor)
2281                 return;
2282
2283         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2284
2285         if (policy->governor->stop)
2286                 policy->governor->stop(policy);
2287 }
2288
2289 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2290 {
2291         if (cpufreq_suspended || !policy->governor)
2292                 return;
2293
2294         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2295
2296         if (policy->governor->limits)
2297                 policy->governor->limits(policy);
2298 }
2299
2300 int cpufreq_register_governor(struct cpufreq_governor *governor)
2301 {
2302         int err;
2303
2304         if (!governor)
2305                 return -EINVAL;
2306
2307         if (cpufreq_disabled())
2308                 return -ENODEV;
2309
2310         mutex_lock(&cpufreq_governor_mutex);
2311
2312         err = -EBUSY;
2313         if (!find_governor(governor->name)) {
2314                 err = 0;
2315                 list_add(&governor->governor_list, &cpufreq_governor_list);
2316         }
2317
2318         mutex_unlock(&cpufreq_governor_mutex);
2319         return err;
2320 }
2321 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2322
2323 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2324 {
2325         struct cpufreq_policy *policy;
2326         unsigned long flags;
2327
2328         if (!governor)
2329                 return;
2330
2331         if (cpufreq_disabled())
2332                 return;
2333
2334         /* clear last_governor for all inactive policies */
2335         read_lock_irqsave(&cpufreq_driver_lock, flags);
2336         for_each_inactive_policy(policy) {
2337                 if (!strcmp(policy->last_governor, governor->name)) {
2338                         policy->governor = NULL;
2339                         strcpy(policy->last_governor, "\0");
2340                 }
2341         }
2342         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2343
2344         mutex_lock(&cpufreq_governor_mutex);
2345         list_del(&governor->governor_list);
2346         mutex_unlock(&cpufreq_governor_mutex);
2347 }
2348 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2349
2350
2351 /*********************************************************************
2352  *                          POLICY INTERFACE                         *
2353  *********************************************************************/
2354
2355 /**
2356  * cpufreq_get_policy - get the current cpufreq_policy
2357  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2358  *      is written
2359  *
2360  * Reads the current cpufreq policy.
2361  */
2362 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2363 {
2364         struct cpufreq_policy *cpu_policy;
2365         if (!policy)
2366                 return -EINVAL;
2367
2368         cpu_policy = cpufreq_cpu_get(cpu);
2369         if (!cpu_policy)
2370                 return -EINVAL;
2371
2372         memcpy(policy, cpu_policy, sizeof(*policy));
2373
2374         cpufreq_cpu_put(cpu_policy);
2375         return 0;
2376 }
2377 EXPORT_SYMBOL(cpufreq_get_policy);
2378
2379 /**
2380  * cpufreq_set_policy - Modify cpufreq policy parameters.
2381  * @policy: Policy object to modify.
2382  * @new_gov: Policy governor pointer.
2383  * @new_pol: Policy value (for drivers with built-in governors).
2384  *
2385  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2386  * limits to be set for the policy, update @policy with the verified limits
2387  * values and either invoke the driver's ->setpolicy() callback (if present) or
2388  * carry out a governor update for @policy.  That is, run the current governor's
2389  * ->limits() callback (if @new_gov points to the same object as the one in
2390  * @policy) or replace the governor for @policy with @new_gov.
2391  *
2392  * The cpuinfo part of @policy is not updated by this function.
2393  */
2394 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2395                               struct cpufreq_governor *new_gov,
2396                               unsigned int new_pol)
2397 {
2398         struct cpufreq_policy_data new_data;
2399         struct cpufreq_governor *old_gov;
2400         int ret;
2401
2402         memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2403         new_data.freq_table = policy->freq_table;
2404         new_data.cpu = policy->cpu;
2405         /*
2406          * PM QoS framework collects all the requests from users and provide us
2407          * the final aggregated value here.
2408          */
2409         new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2410         new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2411
2412         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2413                  new_data.cpu, new_data.min, new_data.max);
2414
2415         /* verify the cpu speed can be set within this limit */
2416         ret = cpufreq_driver->verify(&new_data);
2417         if (ret)
2418                 return ret;
2419
2420         policy->min = new_data.min;
2421         policy->max = new_data.max;
2422         trace_cpu_frequency_limits(policy);
2423
2424         policy->cached_target_freq = UINT_MAX;
2425
2426         pr_debug("new min and max freqs are %u - %u kHz\n",
2427                  policy->min, policy->max);
2428
2429         if (cpufreq_driver->setpolicy) {
2430                 policy->policy = new_pol;
2431                 pr_debug("setting range\n");
2432                 return cpufreq_driver->setpolicy(policy);
2433         }
2434
2435         if (new_gov == policy->governor) {
2436                 pr_debug("governor limits update\n");
2437                 cpufreq_governor_limits(policy);
2438                 return 0;
2439         }
2440
2441         pr_debug("governor switch\n");
2442
2443         /* save old, working values */
2444         old_gov = policy->governor;
2445         /* end old governor */
2446         if (old_gov) {
2447                 cpufreq_stop_governor(policy);
2448                 cpufreq_exit_governor(policy);
2449         }
2450
2451         /* start new governor */
2452         policy->governor = new_gov;
2453         ret = cpufreq_init_governor(policy);
2454         if (!ret) {
2455                 ret = cpufreq_start_governor(policy);
2456                 if (!ret) {
2457                         pr_debug("governor change\n");
2458                         sched_cpufreq_governor_change(policy, old_gov);
2459                         return 0;
2460                 }
2461                 cpufreq_exit_governor(policy);
2462         }
2463
2464         /* new governor failed, so re-start old one */
2465         pr_debug("starting governor %s failed\n", policy->governor->name);
2466         if (old_gov) {
2467                 policy->governor = old_gov;
2468                 if (cpufreq_init_governor(policy))
2469                         policy->governor = NULL;
2470                 else
2471                         cpufreq_start_governor(policy);
2472         }
2473
2474         return ret;
2475 }
2476
2477 /**
2478  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2479  * @cpu: CPU to re-evaluate the policy for.
2480  *
2481  * Update the current frequency for the cpufreq policy of @cpu and use
2482  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2483  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2484  * for the policy in question, among other things.
2485  */
2486 void cpufreq_update_policy(unsigned int cpu)
2487 {
2488         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2489
2490         if (!policy)
2491                 return;
2492
2493         /*
2494          * BIOS might change freq behind our back
2495          * -> ask driver for current freq and notify governors about a change
2496          */
2497         if (cpufreq_driver->get && has_target() &&
2498             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2499                 goto unlock;
2500
2501         refresh_frequency_limits(policy);
2502
2503 unlock:
2504         cpufreq_cpu_release(policy);
2505 }
2506 EXPORT_SYMBOL(cpufreq_update_policy);
2507
2508 /**
2509  * cpufreq_update_limits - Update policy limits for a given CPU.
2510  * @cpu: CPU to update the policy limits for.
2511  *
2512  * Invoke the driver's ->update_limits callback if present or call
2513  * cpufreq_update_policy() for @cpu.
2514  */
2515 void cpufreq_update_limits(unsigned int cpu)
2516 {
2517         if (cpufreq_driver->update_limits)
2518                 cpufreq_driver->update_limits(cpu);
2519         else
2520                 cpufreq_update_policy(cpu);
2521 }
2522 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2523
2524 /*********************************************************************
2525  *               BOOST                                               *
2526  *********************************************************************/
2527 static int cpufreq_boost_set_sw(int state)
2528 {
2529         struct cpufreq_policy *policy;
2530
2531         for_each_active_policy(policy) {
2532                 int ret;
2533
2534                 if (!policy->freq_table)
2535                         return -ENXIO;
2536
2537                 ret = cpufreq_frequency_table_cpuinfo(policy,
2538                                                       policy->freq_table);
2539                 if (ret) {
2540                         pr_err("%s: Policy frequency update failed\n",
2541                                __func__);
2542                         return ret;
2543                 }
2544
2545                 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2546                 if (ret < 0)
2547                         return ret;
2548         }
2549
2550         return 0;
2551 }
2552
2553 int cpufreq_boost_trigger_state(int state)
2554 {
2555         unsigned long flags;
2556         int ret = 0;
2557
2558         if (cpufreq_driver->boost_enabled == state)
2559                 return 0;
2560
2561         write_lock_irqsave(&cpufreq_driver_lock, flags);
2562         cpufreq_driver->boost_enabled = state;
2563         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2564
2565         ret = cpufreq_driver->set_boost(state);
2566         if (ret) {
2567                 write_lock_irqsave(&cpufreq_driver_lock, flags);
2568                 cpufreq_driver->boost_enabled = !state;
2569                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2570
2571                 pr_err("%s: Cannot %s BOOST\n",
2572                        __func__, state ? "enable" : "disable");
2573         }
2574
2575         return ret;
2576 }
2577
2578 static bool cpufreq_boost_supported(void)
2579 {
2580         return cpufreq_driver->set_boost;
2581 }
2582
2583 static int create_boost_sysfs_file(void)
2584 {
2585         int ret;
2586
2587         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2588         if (ret)
2589                 pr_err("%s: cannot register global BOOST sysfs file\n",
2590                        __func__);
2591
2592         return ret;
2593 }
2594
2595 static void remove_boost_sysfs_file(void)
2596 {
2597         if (cpufreq_boost_supported())
2598                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2599 }
2600
2601 int cpufreq_enable_boost_support(void)
2602 {
2603         if (!cpufreq_driver)
2604                 return -EINVAL;
2605
2606         if (cpufreq_boost_supported())
2607                 return 0;
2608
2609         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2610
2611         /* This will get removed on driver unregister */
2612         return create_boost_sysfs_file();
2613 }
2614 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2615
2616 int cpufreq_boost_enabled(void)
2617 {
2618         return cpufreq_driver->boost_enabled;
2619 }
2620 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2621
2622 /*********************************************************************
2623  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2624  *********************************************************************/
2625 static enum cpuhp_state hp_online;
2626
2627 static int cpuhp_cpufreq_online(unsigned int cpu)
2628 {
2629         cpufreq_online(cpu);
2630
2631         return 0;
2632 }
2633
2634 static int cpuhp_cpufreq_offline(unsigned int cpu)
2635 {
2636         cpufreq_offline(cpu);
2637
2638         return 0;
2639 }
2640
2641 /**
2642  * cpufreq_register_driver - register a CPU Frequency driver
2643  * @driver_data: A struct cpufreq_driver containing the values#
2644  * submitted by the CPU Frequency driver.
2645  *
2646  * Registers a CPU Frequency driver to this core code. This code
2647  * returns zero on success, -EEXIST when another driver got here first
2648  * (and isn't unregistered in the meantime).
2649  *
2650  */
2651 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2652 {
2653         unsigned long flags;
2654         int ret;
2655
2656         if (cpufreq_disabled())
2657                 return -ENODEV;
2658
2659         /*
2660          * The cpufreq core depends heavily on the availability of device
2661          * structure, make sure they are available before proceeding further.
2662          */
2663         if (!get_cpu_device(0))
2664                 return -EPROBE_DEFER;
2665
2666         if (!driver_data || !driver_data->verify || !driver_data->init ||
2667             !(driver_data->setpolicy || driver_data->target_index ||
2668                     driver_data->target) ||
2669              (driver_data->setpolicy && (driver_data->target_index ||
2670                     driver_data->target)) ||
2671              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2672              (!driver_data->online != !driver_data->offline))
2673                 return -EINVAL;
2674
2675         pr_debug("trying to register driver %s\n", driver_data->name);
2676
2677         /* Protect against concurrent CPU online/offline. */
2678         cpus_read_lock();
2679
2680         write_lock_irqsave(&cpufreq_driver_lock, flags);
2681         if (cpufreq_driver) {
2682                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2683                 ret = -EEXIST;
2684                 goto out;
2685         }
2686         cpufreq_driver = driver_data;
2687         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2688
2689         if (driver_data->setpolicy)
2690                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2691
2692         if (cpufreq_boost_supported()) {
2693                 ret = create_boost_sysfs_file();
2694                 if (ret)
2695                         goto err_null_driver;
2696         }
2697
2698         ret = subsys_interface_register(&cpufreq_interface);
2699         if (ret)
2700                 goto err_boost_unreg;
2701
2702         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2703             list_empty(&cpufreq_policy_list)) {
2704                 /* if all ->init() calls failed, unregister */
2705                 ret = -ENODEV;
2706                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2707                          driver_data->name);
2708                 goto err_if_unreg;
2709         }
2710
2711         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2712                                                    "cpufreq:online",
2713                                                    cpuhp_cpufreq_online,
2714                                                    cpuhp_cpufreq_offline);
2715         if (ret < 0)
2716                 goto err_if_unreg;
2717         hp_online = ret;
2718         ret = 0;
2719
2720         pr_debug("driver %s up and running\n", driver_data->name);
2721         goto out;
2722
2723 err_if_unreg:
2724         subsys_interface_unregister(&cpufreq_interface);
2725 err_boost_unreg:
2726         remove_boost_sysfs_file();
2727 err_null_driver:
2728         write_lock_irqsave(&cpufreq_driver_lock, flags);
2729         cpufreq_driver = NULL;
2730         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2731 out:
2732         cpus_read_unlock();
2733         return ret;
2734 }
2735 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2736
2737 /**
2738  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2739  *
2740  * Unregister the current CPUFreq driver. Only call this if you have
2741  * the right to do so, i.e. if you have succeeded in initialising before!
2742  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2743  * currently not initialised.
2744  */
2745 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2746 {
2747         unsigned long flags;
2748
2749         if (!cpufreq_driver || (driver != cpufreq_driver))
2750                 return -EINVAL;
2751
2752         pr_debug("unregistering driver %s\n", driver->name);
2753
2754         /* Protect against concurrent cpu hotplug */
2755         cpus_read_lock();
2756         subsys_interface_unregister(&cpufreq_interface);
2757         remove_boost_sysfs_file();
2758         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2759
2760         write_lock_irqsave(&cpufreq_driver_lock, flags);
2761
2762         cpufreq_driver = NULL;
2763
2764         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2765         cpus_read_unlock();
2766
2767         return 0;
2768 }
2769 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2770
2771 struct kobject *cpufreq_global_kobject;
2772 EXPORT_SYMBOL(cpufreq_global_kobject);
2773
2774 static int __init cpufreq_core_init(void)
2775 {
2776         if (cpufreq_disabled())
2777                 return -ENODEV;
2778
2779         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2780         BUG_ON(!cpufreq_global_kobject);
2781
2782         return 0;
2783 }
2784 module_param(off, int, 0444);
2785 core_initcall(cpufreq_core_init);