GNU Linux-libre 4.19.207-gnu1
[releases.git] / drivers / clocksource / sh_cmt.c
1 /*
2  * SuperH Timer Support - CMT
3  *
4  *  Copyright (C) 2008 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_domain.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sh_timer.h>
33 #include <linux/slab.h>
34 #include <linux/spinlock.h>
35
36 struct sh_cmt_device;
37
38 /*
39  * The CMT comes in 5 different identified flavours, depending not only on the
40  * SoC but also on the particular instance. The following table lists the main
41  * characteristics of those flavours.
42  *
43  *                      16B     32B     32B-F   48B     R-Car Gen2
44  * -----------------------------------------------------------------------------
45  * Channels             2       1/4     1       6       2/8
46  * Control Width        16      16      16      16      32
47  * Counter Width        16      32      32      32/48   32/48
48  * Shared Start/Stop    Y       Y       Y       Y       N
49  *
50  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
51  * located in the channel registers block. All other versions have a shared
52  * start/stop register located in the global space.
53  *
54  * Channels are indexed from 0 to N-1 in the documentation. The channel index
55  * infers the start/stop bit position in the control register and the channel
56  * registers block address. Some CMT instances have a subset of channels
57  * available, in which case the index in the documentation doesn't match the
58  * "real" index as implemented in hardware. This is for instance the case with
59  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
60  * in the documentation but using start/stop bit 5 and having its registers
61  * block at 0x60.
62  *
63  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
64  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
65  */
66
67 enum sh_cmt_model {
68         SH_CMT_16BIT,
69         SH_CMT_32BIT,
70         SH_CMT_48BIT,
71         SH_CMT0_RCAR_GEN2,
72         SH_CMT1_RCAR_GEN2,
73 };
74
75 struct sh_cmt_info {
76         enum sh_cmt_model model;
77
78         unsigned int channels_mask;
79
80         unsigned long width; /* 16 or 32 bit version of hardware block */
81         u32 overflow_bit;
82         u32 clear_bits;
83
84         /* callbacks for CMSTR and CMCSR access */
85         u32 (*read_control)(void __iomem *base, unsigned long offs);
86         void (*write_control)(void __iomem *base, unsigned long offs,
87                               u32 value);
88
89         /* callbacks for CMCNT and CMCOR access */
90         u32 (*read_count)(void __iomem *base, unsigned long offs);
91         void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
92 };
93
94 struct sh_cmt_channel {
95         struct sh_cmt_device *cmt;
96
97         unsigned int index;     /* Index in the documentation */
98         unsigned int hwidx;     /* Real hardware index */
99
100         void __iomem *iostart;
101         void __iomem *ioctrl;
102
103         unsigned int timer_bit;
104         unsigned long flags;
105         u32 match_value;
106         u32 next_match_value;
107         u32 max_match_value;
108         raw_spinlock_t lock;
109         struct clock_event_device ced;
110         struct clocksource cs;
111         u64 total_cycles;
112         bool cs_enabled;
113 };
114
115 struct sh_cmt_device {
116         struct platform_device *pdev;
117
118         const struct sh_cmt_info *info;
119
120         void __iomem *mapbase;
121         struct clk *clk;
122         unsigned long rate;
123
124         raw_spinlock_t lock; /* Protect the shared start/stop register */
125
126         struct sh_cmt_channel *channels;
127         unsigned int num_channels;
128         unsigned int hw_channels;
129
130         bool has_clockevent;
131         bool has_clocksource;
132 };
133
134 #define SH_CMT16_CMCSR_CMF              (1 << 7)
135 #define SH_CMT16_CMCSR_CMIE             (1 << 6)
136 #define SH_CMT16_CMCSR_CKS8             (0 << 0)
137 #define SH_CMT16_CMCSR_CKS32            (1 << 0)
138 #define SH_CMT16_CMCSR_CKS128           (2 << 0)
139 #define SH_CMT16_CMCSR_CKS512           (3 << 0)
140 #define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
141
142 #define SH_CMT32_CMCSR_CMF              (1 << 15)
143 #define SH_CMT32_CMCSR_OVF              (1 << 14)
144 #define SH_CMT32_CMCSR_WRFLG            (1 << 13)
145 #define SH_CMT32_CMCSR_STTF             (1 << 12)
146 #define SH_CMT32_CMCSR_STPF             (1 << 11)
147 #define SH_CMT32_CMCSR_SSIE             (1 << 10)
148 #define SH_CMT32_CMCSR_CMS              (1 << 9)
149 #define SH_CMT32_CMCSR_CMM              (1 << 8)
150 #define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
151 #define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
152 #define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
153 #define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
154 #define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
155 #define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
156 #define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
157 #define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
158 #define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
159 #define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
160 #define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
161
162 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
163 {
164         return ioread16(base + (offs << 1));
165 }
166
167 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
168 {
169         return ioread32(base + (offs << 2));
170 }
171
172 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
173 {
174         iowrite16(value, base + (offs << 1));
175 }
176
177 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
178 {
179         iowrite32(value, base + (offs << 2));
180 }
181
182 static const struct sh_cmt_info sh_cmt_info[] = {
183         [SH_CMT_16BIT] = {
184                 .model = SH_CMT_16BIT,
185                 .width = 16,
186                 .overflow_bit = SH_CMT16_CMCSR_CMF,
187                 .clear_bits = ~SH_CMT16_CMCSR_CMF,
188                 .read_control = sh_cmt_read16,
189                 .write_control = sh_cmt_write16,
190                 .read_count = sh_cmt_read16,
191                 .write_count = sh_cmt_write16,
192         },
193         [SH_CMT_32BIT] = {
194                 .model = SH_CMT_32BIT,
195                 .width = 32,
196                 .overflow_bit = SH_CMT32_CMCSR_CMF,
197                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
198                 .read_control = sh_cmt_read16,
199                 .write_control = sh_cmt_write16,
200                 .read_count = sh_cmt_read32,
201                 .write_count = sh_cmt_write32,
202         },
203         [SH_CMT_48BIT] = {
204                 .model = SH_CMT_48BIT,
205                 .channels_mask = 0x3f,
206                 .width = 32,
207                 .overflow_bit = SH_CMT32_CMCSR_CMF,
208                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
209                 .read_control = sh_cmt_read32,
210                 .write_control = sh_cmt_write32,
211                 .read_count = sh_cmt_read32,
212                 .write_count = sh_cmt_write32,
213         },
214         [SH_CMT0_RCAR_GEN2] = {
215                 .model = SH_CMT0_RCAR_GEN2,
216                 .channels_mask = 0x60,
217                 .width = 32,
218                 .overflow_bit = SH_CMT32_CMCSR_CMF,
219                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
220                 .read_control = sh_cmt_read32,
221                 .write_control = sh_cmt_write32,
222                 .read_count = sh_cmt_read32,
223                 .write_count = sh_cmt_write32,
224         },
225         [SH_CMT1_RCAR_GEN2] = {
226                 .model = SH_CMT1_RCAR_GEN2,
227                 .channels_mask = 0xff,
228                 .width = 32,
229                 .overflow_bit = SH_CMT32_CMCSR_CMF,
230                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
231                 .read_control = sh_cmt_read32,
232                 .write_control = sh_cmt_write32,
233                 .read_count = sh_cmt_read32,
234                 .write_count = sh_cmt_write32,
235         },
236 };
237
238 #define CMCSR 0 /* channel register */
239 #define CMCNT 1 /* channel register */
240 #define CMCOR 2 /* channel register */
241
242 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
243 {
244         if (ch->iostart)
245                 return ch->cmt->info->read_control(ch->iostart, 0);
246         else
247                 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
248 }
249
250 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
251 {
252         if (ch->iostart)
253                 ch->cmt->info->write_control(ch->iostart, 0, value);
254         else
255                 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
256 }
257
258 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
259 {
260         return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
261 }
262
263 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
264 {
265         ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
266 }
267
268 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
269 {
270         return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
271 }
272
273 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
274 {
275         ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
276 }
277
278 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
279 {
280         ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
281 }
282
283 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
284 {
285         u32 v1, v2, v3;
286         u32 o1, o2;
287
288         o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
289
290         /* Make sure the timer value is stable. Stolen from acpi_pm.c */
291         do {
292                 o2 = o1;
293                 v1 = sh_cmt_read_cmcnt(ch);
294                 v2 = sh_cmt_read_cmcnt(ch);
295                 v3 = sh_cmt_read_cmcnt(ch);
296                 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
297         } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
298                           || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
299
300         *has_wrapped = o1;
301         return v2;
302 }
303
304 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
305 {
306         unsigned long flags;
307         u32 value;
308
309         /* start stop register shared by multiple timer channels */
310         raw_spin_lock_irqsave(&ch->cmt->lock, flags);
311         value = sh_cmt_read_cmstr(ch);
312
313         if (start)
314                 value |= 1 << ch->timer_bit;
315         else
316                 value &= ~(1 << ch->timer_bit);
317
318         sh_cmt_write_cmstr(ch, value);
319         raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
320 }
321
322 static int sh_cmt_enable(struct sh_cmt_channel *ch)
323 {
324         int k, ret;
325
326         pm_runtime_get_sync(&ch->cmt->pdev->dev);
327         dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
328
329         /* enable clock */
330         ret = clk_enable(ch->cmt->clk);
331         if (ret) {
332                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
333                         ch->index);
334                 goto err0;
335         }
336
337         /* make sure channel is disabled */
338         sh_cmt_start_stop_ch(ch, 0);
339
340         /* configure channel, periodic mode and maximum timeout */
341         if (ch->cmt->info->width == 16) {
342                 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
343                                    SH_CMT16_CMCSR_CKS512);
344         } else {
345                 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
346                                    SH_CMT32_CMCSR_CMTOUT_IE |
347                                    SH_CMT32_CMCSR_CMR_IRQ |
348                                    SH_CMT32_CMCSR_CKS_RCLK8);
349         }
350
351         sh_cmt_write_cmcor(ch, 0xffffffff);
352         sh_cmt_write_cmcnt(ch, 0);
353
354         /*
355          * According to the sh73a0 user's manual, as CMCNT can be operated
356          * only by the RCLK (Pseudo 32 KHz), there's one restriction on
357          * modifying CMCNT register; two RCLK cycles are necessary before
358          * this register is either read or any modification of the value
359          * it holds is reflected in the LSI's actual operation.
360          *
361          * While at it, we're supposed to clear out the CMCNT as of this
362          * moment, so make sure it's processed properly here.  This will
363          * take RCLKx2 at maximum.
364          */
365         for (k = 0; k < 100; k++) {
366                 if (!sh_cmt_read_cmcnt(ch))
367                         break;
368                 udelay(1);
369         }
370
371         if (sh_cmt_read_cmcnt(ch)) {
372                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
373                         ch->index);
374                 ret = -ETIMEDOUT;
375                 goto err1;
376         }
377
378         /* enable channel */
379         sh_cmt_start_stop_ch(ch, 1);
380         return 0;
381  err1:
382         /* stop clock */
383         clk_disable(ch->cmt->clk);
384
385  err0:
386         return ret;
387 }
388
389 static void sh_cmt_disable(struct sh_cmt_channel *ch)
390 {
391         /* disable channel */
392         sh_cmt_start_stop_ch(ch, 0);
393
394         /* disable interrupts in CMT block */
395         sh_cmt_write_cmcsr(ch, 0);
396
397         /* stop clock */
398         clk_disable(ch->cmt->clk);
399
400         dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
401         pm_runtime_put(&ch->cmt->pdev->dev);
402 }
403
404 /* private flags */
405 #define FLAG_CLOCKEVENT (1 << 0)
406 #define FLAG_CLOCKSOURCE (1 << 1)
407 #define FLAG_REPROGRAM (1 << 2)
408 #define FLAG_SKIPEVENT (1 << 3)
409 #define FLAG_IRQCONTEXT (1 << 4)
410
411 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
412                                               int absolute)
413 {
414         u32 value = ch->next_match_value;
415         u32 new_match;
416         u32 delay = 0;
417         u32 now = 0;
418         u32 has_wrapped;
419
420         now = sh_cmt_get_counter(ch, &has_wrapped);
421         ch->flags |= FLAG_REPROGRAM; /* force reprogram */
422
423         if (has_wrapped) {
424                 /* we're competing with the interrupt handler.
425                  *  -> let the interrupt handler reprogram the timer.
426                  *  -> interrupt number two handles the event.
427                  */
428                 ch->flags |= FLAG_SKIPEVENT;
429                 return;
430         }
431
432         if (absolute)
433                 now = 0;
434
435         do {
436                 /* reprogram the timer hardware,
437                  * but don't save the new match value yet.
438                  */
439                 new_match = now + value + delay;
440                 if (new_match > ch->max_match_value)
441                         new_match = ch->max_match_value;
442
443                 sh_cmt_write_cmcor(ch, new_match);
444
445                 now = sh_cmt_get_counter(ch, &has_wrapped);
446                 if (has_wrapped && (new_match > ch->match_value)) {
447                         /* we are changing to a greater match value,
448                          * so this wrap must be caused by the counter
449                          * matching the old value.
450                          * -> first interrupt reprograms the timer.
451                          * -> interrupt number two handles the event.
452                          */
453                         ch->flags |= FLAG_SKIPEVENT;
454                         break;
455                 }
456
457                 if (has_wrapped) {
458                         /* we are changing to a smaller match value,
459                          * so the wrap must be caused by the counter
460                          * matching the new value.
461                          * -> save programmed match value.
462                          * -> let isr handle the event.
463                          */
464                         ch->match_value = new_match;
465                         break;
466                 }
467
468                 /* be safe: verify hardware settings */
469                 if (now < new_match) {
470                         /* timer value is below match value, all good.
471                          * this makes sure we won't miss any match events.
472                          * -> save programmed match value.
473                          * -> let isr handle the event.
474                          */
475                         ch->match_value = new_match;
476                         break;
477                 }
478
479                 /* the counter has reached a value greater
480                  * than our new match value. and since the
481                  * has_wrapped flag isn't set we must have
482                  * programmed a too close event.
483                  * -> increase delay and retry.
484                  */
485                 if (delay)
486                         delay <<= 1;
487                 else
488                         delay = 1;
489
490                 if (!delay)
491                         dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
492                                  ch->index);
493
494         } while (delay);
495 }
496
497 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
498 {
499         if (delta > ch->max_match_value)
500                 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
501                          ch->index);
502
503         ch->next_match_value = delta;
504         sh_cmt_clock_event_program_verify(ch, 0);
505 }
506
507 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
508 {
509         unsigned long flags;
510
511         raw_spin_lock_irqsave(&ch->lock, flags);
512         __sh_cmt_set_next(ch, delta);
513         raw_spin_unlock_irqrestore(&ch->lock, flags);
514 }
515
516 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
517 {
518         struct sh_cmt_channel *ch = dev_id;
519
520         /* clear flags */
521         sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
522                            ch->cmt->info->clear_bits);
523
524         /* update clock source counter to begin with if enabled
525          * the wrap flag should be cleared by the timer specific
526          * isr before we end up here.
527          */
528         if (ch->flags & FLAG_CLOCKSOURCE)
529                 ch->total_cycles += ch->match_value + 1;
530
531         if (!(ch->flags & FLAG_REPROGRAM))
532                 ch->next_match_value = ch->max_match_value;
533
534         ch->flags |= FLAG_IRQCONTEXT;
535
536         if (ch->flags & FLAG_CLOCKEVENT) {
537                 if (!(ch->flags & FLAG_SKIPEVENT)) {
538                         if (clockevent_state_oneshot(&ch->ced)) {
539                                 ch->next_match_value = ch->max_match_value;
540                                 ch->flags |= FLAG_REPROGRAM;
541                         }
542
543                         ch->ced.event_handler(&ch->ced);
544                 }
545         }
546
547         ch->flags &= ~FLAG_SKIPEVENT;
548
549         if (ch->flags & FLAG_REPROGRAM) {
550                 ch->flags &= ~FLAG_REPROGRAM;
551                 sh_cmt_clock_event_program_verify(ch, 1);
552
553                 if (ch->flags & FLAG_CLOCKEVENT)
554                         if ((clockevent_state_shutdown(&ch->ced))
555                             || (ch->match_value == ch->next_match_value))
556                                 ch->flags &= ~FLAG_REPROGRAM;
557         }
558
559         ch->flags &= ~FLAG_IRQCONTEXT;
560
561         return IRQ_HANDLED;
562 }
563
564 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
565 {
566         int ret = 0;
567         unsigned long flags;
568
569         raw_spin_lock_irqsave(&ch->lock, flags);
570
571         if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
572                 ret = sh_cmt_enable(ch);
573
574         if (ret)
575                 goto out;
576         ch->flags |= flag;
577
578         /* setup timeout if no clockevent */
579         if (ch->cmt->num_channels == 1 &&
580             flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
581                 __sh_cmt_set_next(ch, ch->max_match_value);
582  out:
583         raw_spin_unlock_irqrestore(&ch->lock, flags);
584
585         return ret;
586 }
587
588 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
589 {
590         unsigned long flags;
591         unsigned long f;
592
593         raw_spin_lock_irqsave(&ch->lock, flags);
594
595         f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
596         ch->flags &= ~flag;
597
598         if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
599                 sh_cmt_disable(ch);
600
601         /* adjust the timeout to maximum if only clocksource left */
602         if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
603                 __sh_cmt_set_next(ch, ch->max_match_value);
604
605         raw_spin_unlock_irqrestore(&ch->lock, flags);
606 }
607
608 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
609 {
610         return container_of(cs, struct sh_cmt_channel, cs);
611 }
612
613 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
614 {
615         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
616         u32 has_wrapped;
617
618         if (ch->cmt->num_channels == 1) {
619                 unsigned long flags;
620                 u64 value;
621                 u32 raw;
622
623                 raw_spin_lock_irqsave(&ch->lock, flags);
624                 value = ch->total_cycles;
625                 raw = sh_cmt_get_counter(ch, &has_wrapped);
626
627                 if (unlikely(has_wrapped))
628                         raw += ch->match_value + 1;
629                 raw_spin_unlock_irqrestore(&ch->lock, flags);
630
631                 return value + raw;
632         }
633
634         return sh_cmt_get_counter(ch, &has_wrapped);
635 }
636
637 static int sh_cmt_clocksource_enable(struct clocksource *cs)
638 {
639         int ret;
640         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
641
642         WARN_ON(ch->cs_enabled);
643
644         ch->total_cycles = 0;
645
646         ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
647         if (!ret)
648                 ch->cs_enabled = true;
649
650         return ret;
651 }
652
653 static void sh_cmt_clocksource_disable(struct clocksource *cs)
654 {
655         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
656
657         WARN_ON(!ch->cs_enabled);
658
659         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
660         ch->cs_enabled = false;
661 }
662
663 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
664 {
665         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
666
667         if (!ch->cs_enabled)
668                 return;
669
670         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
671         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
672 }
673
674 static void sh_cmt_clocksource_resume(struct clocksource *cs)
675 {
676         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
677
678         if (!ch->cs_enabled)
679                 return;
680
681         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
682         sh_cmt_start(ch, FLAG_CLOCKSOURCE);
683 }
684
685 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
686                                        const char *name)
687 {
688         struct clocksource *cs = &ch->cs;
689
690         cs->name = name;
691         cs->rating = 125;
692         cs->read = sh_cmt_clocksource_read;
693         cs->enable = sh_cmt_clocksource_enable;
694         cs->disable = sh_cmt_clocksource_disable;
695         cs->suspend = sh_cmt_clocksource_suspend;
696         cs->resume = sh_cmt_clocksource_resume;
697         cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
698         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
699
700         dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
701                  ch->index);
702
703         clocksource_register_hz(cs, ch->cmt->rate);
704         return 0;
705 }
706
707 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
708 {
709         return container_of(ced, struct sh_cmt_channel, ced);
710 }
711
712 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
713 {
714         sh_cmt_start(ch, FLAG_CLOCKEVENT);
715
716         if (periodic)
717                 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
718         else
719                 sh_cmt_set_next(ch, ch->max_match_value);
720 }
721
722 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
723 {
724         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
725
726         sh_cmt_stop(ch, FLAG_CLOCKEVENT);
727         return 0;
728 }
729
730 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
731                                         int periodic)
732 {
733         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
734
735         /* deal with old setting first */
736         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
737                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
738
739         dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
740                  ch->index, periodic ? "periodic" : "oneshot");
741         sh_cmt_clock_event_start(ch, periodic);
742         return 0;
743 }
744
745 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
746 {
747         return sh_cmt_clock_event_set_state(ced, 0);
748 }
749
750 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
751 {
752         return sh_cmt_clock_event_set_state(ced, 1);
753 }
754
755 static int sh_cmt_clock_event_next(unsigned long delta,
756                                    struct clock_event_device *ced)
757 {
758         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
759
760         BUG_ON(!clockevent_state_oneshot(ced));
761         if (likely(ch->flags & FLAG_IRQCONTEXT))
762                 ch->next_match_value = delta - 1;
763         else
764                 sh_cmt_set_next(ch, delta - 1);
765
766         return 0;
767 }
768
769 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
770 {
771         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
772
773         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
774         clk_unprepare(ch->cmt->clk);
775 }
776
777 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
778 {
779         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
780
781         clk_prepare(ch->cmt->clk);
782         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
783 }
784
785 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
786                                       const char *name)
787 {
788         struct clock_event_device *ced = &ch->ced;
789         int irq;
790         int ret;
791
792         irq = platform_get_irq(ch->cmt->pdev, ch->index);
793         if (irq < 0) {
794                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
795                         ch->index);
796                 return irq;
797         }
798
799         ret = request_irq(irq, sh_cmt_interrupt,
800                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
801                           dev_name(&ch->cmt->pdev->dev), ch);
802         if (ret) {
803                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
804                         ch->index, irq);
805                 return ret;
806         }
807
808         ced->name = name;
809         ced->features = CLOCK_EVT_FEAT_PERIODIC;
810         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
811         ced->rating = 125;
812         ced->cpumask = cpu_possible_mask;
813         ced->set_next_event = sh_cmt_clock_event_next;
814         ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
815         ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
816         ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
817         ced->suspend = sh_cmt_clock_event_suspend;
818         ced->resume = sh_cmt_clock_event_resume;
819
820         /* TODO: calculate good shift from rate and counter bit width */
821         ced->shift = 32;
822         ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
823         ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
824         ced->max_delta_ticks = ch->max_match_value;
825         ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
826         ced->min_delta_ticks = 0x1f;
827
828         dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
829                  ch->index);
830         clockevents_register_device(ced);
831
832         return 0;
833 }
834
835 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
836                            bool clockevent, bool clocksource)
837 {
838         int ret;
839
840         if (clockevent) {
841                 ch->cmt->has_clockevent = true;
842                 ret = sh_cmt_register_clockevent(ch, name);
843                 if (ret < 0)
844                         return ret;
845         }
846
847         if (clocksource) {
848                 ch->cmt->has_clocksource = true;
849                 sh_cmt_register_clocksource(ch, name);
850         }
851
852         return 0;
853 }
854
855 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
856                                 unsigned int hwidx, bool clockevent,
857                                 bool clocksource, struct sh_cmt_device *cmt)
858 {
859         int ret;
860
861         /* Skip unused channels. */
862         if (!clockevent && !clocksource)
863                 return 0;
864
865         ch->cmt = cmt;
866         ch->index = index;
867         ch->hwidx = hwidx;
868         ch->timer_bit = hwidx;
869
870         /*
871          * Compute the address of the channel control register block. For the
872          * timers with a per-channel start/stop register, compute its address
873          * as well.
874          */
875         switch (cmt->info->model) {
876         case SH_CMT_16BIT:
877                 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
878                 break;
879         case SH_CMT_32BIT:
880         case SH_CMT_48BIT:
881                 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
882                 break;
883         case SH_CMT0_RCAR_GEN2:
884         case SH_CMT1_RCAR_GEN2:
885                 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
886                 ch->ioctrl = ch->iostart + 0x10;
887                 ch->timer_bit = 0;
888                 break;
889         }
890
891         if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
892                 ch->max_match_value = ~0;
893         else
894                 ch->max_match_value = (1 << cmt->info->width) - 1;
895
896         ch->match_value = ch->max_match_value;
897         raw_spin_lock_init(&ch->lock);
898
899         ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
900                               clockevent, clocksource);
901         if (ret) {
902                 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
903                         ch->index);
904                 return ret;
905         }
906         ch->cs_enabled = false;
907
908         return 0;
909 }
910
911 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
912 {
913         struct resource *mem;
914
915         mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
916         if (!mem) {
917                 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
918                 return -ENXIO;
919         }
920
921         cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
922         if (cmt->mapbase == NULL) {
923                 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
924                 return -ENXIO;
925         }
926
927         return 0;
928 }
929
930 static const struct platform_device_id sh_cmt_id_table[] = {
931         { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
932         { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
933         { }
934 };
935 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
936
937 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
938         { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
939         {
940                 /* deprecated, preserved for backward compatibility */
941                 .compatible = "renesas,cmt-48-gen2",
942                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
943         },
944         { .compatible = "renesas,rcar-gen2-cmt0", .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2] },
945         { .compatible = "renesas,rcar-gen2-cmt1", .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2] },
946         { }
947 };
948 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
949
950 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
951 {
952         unsigned int mask;
953         unsigned int i;
954         int ret;
955
956         cmt->pdev = pdev;
957         raw_spin_lock_init(&cmt->lock);
958
959         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
960                 cmt->info = of_device_get_match_data(&pdev->dev);
961                 cmt->hw_channels = cmt->info->channels_mask;
962         } else if (pdev->dev.platform_data) {
963                 struct sh_timer_config *cfg = pdev->dev.platform_data;
964                 const struct platform_device_id *id = pdev->id_entry;
965
966                 cmt->info = (const struct sh_cmt_info *)id->driver_data;
967                 cmt->hw_channels = cfg->channels_mask;
968         } else {
969                 dev_err(&cmt->pdev->dev, "missing platform data\n");
970                 return -ENXIO;
971         }
972
973         /* Get hold of clock. */
974         cmt->clk = clk_get(&cmt->pdev->dev, "fck");
975         if (IS_ERR(cmt->clk)) {
976                 dev_err(&cmt->pdev->dev, "cannot get clock\n");
977                 return PTR_ERR(cmt->clk);
978         }
979
980         ret = clk_prepare(cmt->clk);
981         if (ret < 0)
982                 goto err_clk_put;
983
984         /* Determine clock rate. */
985         ret = clk_enable(cmt->clk);
986         if (ret < 0)
987                 goto err_clk_unprepare;
988
989         if (cmt->info->width == 16)
990                 cmt->rate = clk_get_rate(cmt->clk) / 512;
991         else
992                 cmt->rate = clk_get_rate(cmt->clk) / 8;
993
994         clk_disable(cmt->clk);
995
996         /* Map the memory resource(s). */
997         ret = sh_cmt_map_memory(cmt);
998         if (ret < 0)
999                 goto err_clk_unprepare;
1000
1001         /* Allocate and setup the channels. */
1002         cmt->num_channels = hweight8(cmt->hw_channels);
1003         cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1004                                 GFP_KERNEL);
1005         if (cmt->channels == NULL) {
1006                 ret = -ENOMEM;
1007                 goto err_unmap;
1008         }
1009
1010         /*
1011          * Use the first channel as a clock event device and the second channel
1012          * as a clock source. If only one channel is available use it for both.
1013          */
1014         for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1015                 unsigned int hwidx = ffs(mask) - 1;
1016                 bool clocksource = i == 1 || cmt->num_channels == 1;
1017                 bool clockevent = i == 0;
1018
1019                 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1020                                            clockevent, clocksource, cmt);
1021                 if (ret < 0)
1022                         goto err_unmap;
1023
1024                 mask &= ~(1 << hwidx);
1025         }
1026
1027         platform_set_drvdata(pdev, cmt);
1028
1029         return 0;
1030
1031 err_unmap:
1032         kfree(cmt->channels);
1033         iounmap(cmt->mapbase);
1034 err_clk_unprepare:
1035         clk_unprepare(cmt->clk);
1036 err_clk_put:
1037         clk_put(cmt->clk);
1038         return ret;
1039 }
1040
1041 static int sh_cmt_probe(struct platform_device *pdev)
1042 {
1043         struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1044         int ret;
1045
1046         if (!is_early_platform_device(pdev)) {
1047                 pm_runtime_set_active(&pdev->dev);
1048                 pm_runtime_enable(&pdev->dev);
1049         }
1050
1051         if (cmt) {
1052                 dev_info(&pdev->dev, "kept as earlytimer\n");
1053                 goto out;
1054         }
1055
1056         cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1057         if (cmt == NULL)
1058                 return -ENOMEM;
1059
1060         ret = sh_cmt_setup(cmt, pdev);
1061         if (ret) {
1062                 kfree(cmt);
1063                 pm_runtime_idle(&pdev->dev);
1064                 return ret;
1065         }
1066         if (is_early_platform_device(pdev))
1067                 return 0;
1068
1069  out:
1070         if (cmt->has_clockevent || cmt->has_clocksource)
1071                 pm_runtime_irq_safe(&pdev->dev);
1072         else
1073                 pm_runtime_idle(&pdev->dev);
1074
1075         return 0;
1076 }
1077
1078 static int sh_cmt_remove(struct platform_device *pdev)
1079 {
1080         return -EBUSY; /* cannot unregister clockevent and clocksource */
1081 }
1082
1083 static struct platform_driver sh_cmt_device_driver = {
1084         .probe          = sh_cmt_probe,
1085         .remove         = sh_cmt_remove,
1086         .driver         = {
1087                 .name   = "sh_cmt",
1088                 .of_match_table = of_match_ptr(sh_cmt_of_table),
1089         },
1090         .id_table       = sh_cmt_id_table,
1091 };
1092
1093 static int __init sh_cmt_init(void)
1094 {
1095         return platform_driver_register(&sh_cmt_device_driver);
1096 }
1097
1098 static void __exit sh_cmt_exit(void)
1099 {
1100         platform_driver_unregister(&sh_cmt_device_driver);
1101 }
1102
1103 early_platform_init("earlytimer", &sh_cmt_device_driver);
1104 subsys_initcall(sh_cmt_init);
1105 module_exit(sh_cmt_exit);
1106
1107 MODULE_AUTHOR("Magnus Damm");
1108 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1109 MODULE_LICENSE("GPL v2");