GNU Linux-libre 4.14.251-gnu1
[releases.git] / drivers / clocksource / sh_cmt.c
1 /*
2  * SuperH Timer Support - CMT
3  *
4  *  Copyright (C) 2008 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_domain.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sh_timer.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34
35 struct sh_cmt_device;
36
37 /*
38  * The CMT comes in 5 different identified flavours, depending not only on the
39  * SoC but also on the particular instance. The following table lists the main
40  * characteristics of those flavours.
41  *
42  *                      16B     32B     32B-F   48B     48B-2
43  * -----------------------------------------------------------------------------
44  * Channels             2       1/4     1       6       2/8
45  * Control Width        16      16      16      16      32
46  * Counter Width        16      32      32      32/48   32/48
47  * Shared Start/Stop    Y       Y       Y       Y       N
48  *
49  * The 48-bit gen2 version has a per-channel start/stop register located in the
50  * channel registers block. All other versions have a shared start/stop register
51  * located in the global space.
52  *
53  * Channels are indexed from 0 to N-1 in the documentation. The channel index
54  * infers the start/stop bit position in the control register and the channel
55  * registers block address. Some CMT instances have a subset of channels
56  * available, in which case the index in the documentation doesn't match the
57  * "real" index as implemented in hardware. This is for instance the case with
58  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
59  * in the documentation but using start/stop bit 5 and having its registers
60  * block at 0x60.
61  *
62  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
63  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
64  */
65
66 enum sh_cmt_model {
67         SH_CMT_16BIT,
68         SH_CMT_32BIT,
69         SH_CMT_32BIT_FAST,
70         SH_CMT_48BIT,
71         SH_CMT_48BIT_GEN2,
72 };
73
74 struct sh_cmt_info {
75         enum sh_cmt_model model;
76
77         unsigned long width; /* 16 or 32 bit version of hardware block */
78         u32 overflow_bit;
79         u32 clear_bits;
80
81         /* callbacks for CMSTR and CMCSR access */
82         u32 (*read_control)(void __iomem *base, unsigned long offs);
83         void (*write_control)(void __iomem *base, unsigned long offs,
84                               u32 value);
85
86         /* callbacks for CMCNT and CMCOR access */
87         u32 (*read_count)(void __iomem *base, unsigned long offs);
88         void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
89 };
90
91 struct sh_cmt_channel {
92         struct sh_cmt_device *cmt;
93
94         unsigned int index;     /* Index in the documentation */
95         unsigned int hwidx;     /* Real hardware index */
96
97         void __iomem *iostart;
98         void __iomem *ioctrl;
99
100         unsigned int timer_bit;
101         unsigned long flags;
102         u32 match_value;
103         u32 next_match_value;
104         u32 max_match_value;
105         raw_spinlock_t lock;
106         struct clock_event_device ced;
107         struct clocksource cs;
108         u64 total_cycles;
109         bool cs_enabled;
110 };
111
112 struct sh_cmt_device {
113         struct platform_device *pdev;
114
115         const struct sh_cmt_info *info;
116
117         void __iomem *mapbase;
118         struct clk *clk;
119         unsigned long rate;
120
121         raw_spinlock_t lock; /* Protect the shared start/stop register */
122
123         struct sh_cmt_channel *channels;
124         unsigned int num_channels;
125         unsigned int hw_channels;
126
127         bool has_clockevent;
128         bool has_clocksource;
129 };
130
131 #define SH_CMT16_CMCSR_CMF              (1 << 7)
132 #define SH_CMT16_CMCSR_CMIE             (1 << 6)
133 #define SH_CMT16_CMCSR_CKS8             (0 << 0)
134 #define SH_CMT16_CMCSR_CKS32            (1 << 0)
135 #define SH_CMT16_CMCSR_CKS128           (2 << 0)
136 #define SH_CMT16_CMCSR_CKS512           (3 << 0)
137 #define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
138
139 #define SH_CMT32_CMCSR_CMF              (1 << 15)
140 #define SH_CMT32_CMCSR_OVF              (1 << 14)
141 #define SH_CMT32_CMCSR_WRFLG            (1 << 13)
142 #define SH_CMT32_CMCSR_STTF             (1 << 12)
143 #define SH_CMT32_CMCSR_STPF             (1 << 11)
144 #define SH_CMT32_CMCSR_SSIE             (1 << 10)
145 #define SH_CMT32_CMCSR_CMS              (1 << 9)
146 #define SH_CMT32_CMCSR_CMM              (1 << 8)
147 #define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
148 #define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
149 #define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
150 #define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
151 #define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
152 #define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
153 #define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
157 #define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
158
159 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
160 {
161         return ioread16(base + (offs << 1));
162 }
163
164 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
165 {
166         return ioread32(base + (offs << 2));
167 }
168
169 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
170 {
171         iowrite16(value, base + (offs << 1));
172 }
173
174 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
175 {
176         iowrite32(value, base + (offs << 2));
177 }
178
179 static const struct sh_cmt_info sh_cmt_info[] = {
180         [SH_CMT_16BIT] = {
181                 .model = SH_CMT_16BIT,
182                 .width = 16,
183                 .overflow_bit = SH_CMT16_CMCSR_CMF,
184                 .clear_bits = ~SH_CMT16_CMCSR_CMF,
185                 .read_control = sh_cmt_read16,
186                 .write_control = sh_cmt_write16,
187                 .read_count = sh_cmt_read16,
188                 .write_count = sh_cmt_write16,
189         },
190         [SH_CMT_32BIT] = {
191                 .model = SH_CMT_32BIT,
192                 .width = 32,
193                 .overflow_bit = SH_CMT32_CMCSR_CMF,
194                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
195                 .read_control = sh_cmt_read16,
196                 .write_control = sh_cmt_write16,
197                 .read_count = sh_cmt_read32,
198                 .write_count = sh_cmt_write32,
199         },
200         [SH_CMT_32BIT_FAST] = {
201                 .model = SH_CMT_32BIT_FAST,
202                 .width = 32,
203                 .overflow_bit = SH_CMT32_CMCSR_CMF,
204                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205                 .read_control = sh_cmt_read16,
206                 .write_control = sh_cmt_write16,
207                 .read_count = sh_cmt_read32,
208                 .write_count = sh_cmt_write32,
209         },
210         [SH_CMT_48BIT] = {
211                 .model = SH_CMT_48BIT,
212                 .width = 32,
213                 .overflow_bit = SH_CMT32_CMCSR_CMF,
214                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
215                 .read_control = sh_cmt_read32,
216                 .write_control = sh_cmt_write32,
217                 .read_count = sh_cmt_read32,
218                 .write_count = sh_cmt_write32,
219         },
220         [SH_CMT_48BIT_GEN2] = {
221                 .model = SH_CMT_48BIT_GEN2,
222                 .width = 32,
223                 .overflow_bit = SH_CMT32_CMCSR_CMF,
224                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
225                 .read_control = sh_cmt_read32,
226                 .write_control = sh_cmt_write32,
227                 .read_count = sh_cmt_read32,
228                 .write_count = sh_cmt_write32,
229         },
230 };
231
232 #define CMCSR 0 /* channel register */
233 #define CMCNT 1 /* channel register */
234 #define CMCOR 2 /* channel register */
235
236 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
237 {
238         if (ch->iostart)
239                 return ch->cmt->info->read_control(ch->iostart, 0);
240         else
241                 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
242 }
243
244 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
245 {
246         if (ch->iostart)
247                 ch->cmt->info->write_control(ch->iostart, 0, value);
248         else
249                 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
250 }
251
252 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
253 {
254         return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
255 }
256
257 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
258 {
259         ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
260 }
261
262 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
263 {
264         return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
265 }
266
267 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
268 {
269         ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
270 }
271
272 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
273 {
274         ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
275 }
276
277 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
278 {
279         u32 v1, v2, v3;
280         u32 o1, o2;
281
282         o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
283
284         /* Make sure the timer value is stable. Stolen from acpi_pm.c */
285         do {
286                 o2 = o1;
287                 v1 = sh_cmt_read_cmcnt(ch);
288                 v2 = sh_cmt_read_cmcnt(ch);
289                 v3 = sh_cmt_read_cmcnt(ch);
290                 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
291         } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
292                           || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
293
294         *has_wrapped = o1;
295         return v2;
296 }
297
298 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
299 {
300         unsigned long flags;
301         u32 value;
302
303         /* start stop register shared by multiple timer channels */
304         raw_spin_lock_irqsave(&ch->cmt->lock, flags);
305         value = sh_cmt_read_cmstr(ch);
306
307         if (start)
308                 value |= 1 << ch->timer_bit;
309         else
310                 value &= ~(1 << ch->timer_bit);
311
312         sh_cmt_write_cmstr(ch, value);
313         raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
314 }
315
316 static int sh_cmt_enable(struct sh_cmt_channel *ch)
317 {
318         int k, ret;
319
320         pm_runtime_get_sync(&ch->cmt->pdev->dev);
321         dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
322
323         /* enable clock */
324         ret = clk_enable(ch->cmt->clk);
325         if (ret) {
326                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
327                         ch->index);
328                 goto err0;
329         }
330
331         /* make sure channel is disabled */
332         sh_cmt_start_stop_ch(ch, 0);
333
334         /* configure channel, periodic mode and maximum timeout */
335         if (ch->cmt->info->width == 16) {
336                 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
337                                    SH_CMT16_CMCSR_CKS512);
338         } else {
339                 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
340                                    SH_CMT32_CMCSR_CMTOUT_IE |
341                                    SH_CMT32_CMCSR_CMR_IRQ |
342                                    SH_CMT32_CMCSR_CKS_RCLK8);
343         }
344
345         sh_cmt_write_cmcor(ch, 0xffffffff);
346         sh_cmt_write_cmcnt(ch, 0);
347
348         /*
349          * According to the sh73a0 user's manual, as CMCNT can be operated
350          * only by the RCLK (Pseudo 32 KHz), there's one restriction on
351          * modifying CMCNT register; two RCLK cycles are necessary before
352          * this register is either read or any modification of the value
353          * it holds is reflected in the LSI's actual operation.
354          *
355          * While at it, we're supposed to clear out the CMCNT as of this
356          * moment, so make sure it's processed properly here.  This will
357          * take RCLKx2 at maximum.
358          */
359         for (k = 0; k < 100; k++) {
360                 if (!sh_cmt_read_cmcnt(ch))
361                         break;
362                 udelay(1);
363         }
364
365         if (sh_cmt_read_cmcnt(ch)) {
366                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
367                         ch->index);
368                 ret = -ETIMEDOUT;
369                 goto err1;
370         }
371
372         /* enable channel */
373         sh_cmt_start_stop_ch(ch, 1);
374         return 0;
375  err1:
376         /* stop clock */
377         clk_disable(ch->cmt->clk);
378
379  err0:
380         return ret;
381 }
382
383 static void sh_cmt_disable(struct sh_cmt_channel *ch)
384 {
385         /* disable channel */
386         sh_cmt_start_stop_ch(ch, 0);
387
388         /* disable interrupts in CMT block */
389         sh_cmt_write_cmcsr(ch, 0);
390
391         /* stop clock */
392         clk_disable(ch->cmt->clk);
393
394         dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
395         pm_runtime_put(&ch->cmt->pdev->dev);
396 }
397
398 /* private flags */
399 #define FLAG_CLOCKEVENT (1 << 0)
400 #define FLAG_CLOCKSOURCE (1 << 1)
401 #define FLAG_REPROGRAM (1 << 2)
402 #define FLAG_SKIPEVENT (1 << 3)
403 #define FLAG_IRQCONTEXT (1 << 4)
404
405 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
406                                               int absolute)
407 {
408         u32 value = ch->next_match_value;
409         u32 new_match;
410         u32 delay = 0;
411         u32 now = 0;
412         u32 has_wrapped;
413
414         now = sh_cmt_get_counter(ch, &has_wrapped);
415         ch->flags |= FLAG_REPROGRAM; /* force reprogram */
416
417         if (has_wrapped) {
418                 /* we're competing with the interrupt handler.
419                  *  -> let the interrupt handler reprogram the timer.
420                  *  -> interrupt number two handles the event.
421                  */
422                 ch->flags |= FLAG_SKIPEVENT;
423                 return;
424         }
425
426         if (absolute)
427                 now = 0;
428
429         do {
430                 /* reprogram the timer hardware,
431                  * but don't save the new match value yet.
432                  */
433                 new_match = now + value + delay;
434                 if (new_match > ch->max_match_value)
435                         new_match = ch->max_match_value;
436
437                 sh_cmt_write_cmcor(ch, new_match);
438
439                 now = sh_cmt_get_counter(ch, &has_wrapped);
440                 if (has_wrapped && (new_match > ch->match_value)) {
441                         /* we are changing to a greater match value,
442                          * so this wrap must be caused by the counter
443                          * matching the old value.
444                          * -> first interrupt reprograms the timer.
445                          * -> interrupt number two handles the event.
446                          */
447                         ch->flags |= FLAG_SKIPEVENT;
448                         break;
449                 }
450
451                 if (has_wrapped) {
452                         /* we are changing to a smaller match value,
453                          * so the wrap must be caused by the counter
454                          * matching the new value.
455                          * -> save programmed match value.
456                          * -> let isr handle the event.
457                          */
458                         ch->match_value = new_match;
459                         break;
460                 }
461
462                 /* be safe: verify hardware settings */
463                 if (now < new_match) {
464                         /* timer value is below match value, all good.
465                          * this makes sure we won't miss any match events.
466                          * -> save programmed match value.
467                          * -> let isr handle the event.
468                          */
469                         ch->match_value = new_match;
470                         break;
471                 }
472
473                 /* the counter has reached a value greater
474                  * than our new match value. and since the
475                  * has_wrapped flag isn't set we must have
476                  * programmed a too close event.
477                  * -> increase delay and retry.
478                  */
479                 if (delay)
480                         delay <<= 1;
481                 else
482                         delay = 1;
483
484                 if (!delay)
485                         dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
486                                  ch->index);
487
488         } while (delay);
489 }
490
491 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
492 {
493         if (delta > ch->max_match_value)
494                 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
495                          ch->index);
496
497         ch->next_match_value = delta;
498         sh_cmt_clock_event_program_verify(ch, 0);
499 }
500
501 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
502 {
503         unsigned long flags;
504
505         raw_spin_lock_irqsave(&ch->lock, flags);
506         __sh_cmt_set_next(ch, delta);
507         raw_spin_unlock_irqrestore(&ch->lock, flags);
508 }
509
510 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
511 {
512         struct sh_cmt_channel *ch = dev_id;
513
514         /* clear flags */
515         sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
516                            ch->cmt->info->clear_bits);
517
518         /* update clock source counter to begin with if enabled
519          * the wrap flag should be cleared by the timer specific
520          * isr before we end up here.
521          */
522         if (ch->flags & FLAG_CLOCKSOURCE)
523                 ch->total_cycles += ch->match_value + 1;
524
525         if (!(ch->flags & FLAG_REPROGRAM))
526                 ch->next_match_value = ch->max_match_value;
527
528         ch->flags |= FLAG_IRQCONTEXT;
529
530         if (ch->flags & FLAG_CLOCKEVENT) {
531                 if (!(ch->flags & FLAG_SKIPEVENT)) {
532                         if (clockevent_state_oneshot(&ch->ced)) {
533                                 ch->next_match_value = ch->max_match_value;
534                                 ch->flags |= FLAG_REPROGRAM;
535                         }
536
537                         ch->ced.event_handler(&ch->ced);
538                 }
539         }
540
541         ch->flags &= ~FLAG_SKIPEVENT;
542
543         if (ch->flags & FLAG_REPROGRAM) {
544                 ch->flags &= ~FLAG_REPROGRAM;
545                 sh_cmt_clock_event_program_verify(ch, 1);
546
547                 if (ch->flags & FLAG_CLOCKEVENT)
548                         if ((clockevent_state_shutdown(&ch->ced))
549                             || (ch->match_value == ch->next_match_value))
550                                 ch->flags &= ~FLAG_REPROGRAM;
551         }
552
553         ch->flags &= ~FLAG_IRQCONTEXT;
554
555         return IRQ_HANDLED;
556 }
557
558 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
559 {
560         int ret = 0;
561         unsigned long flags;
562
563         raw_spin_lock_irqsave(&ch->lock, flags);
564
565         if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
566                 ret = sh_cmt_enable(ch);
567
568         if (ret)
569                 goto out;
570         ch->flags |= flag;
571
572         /* setup timeout if no clockevent */
573         if (ch->cmt->num_channels == 1 &&
574             flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
575                 __sh_cmt_set_next(ch, ch->max_match_value);
576  out:
577         raw_spin_unlock_irqrestore(&ch->lock, flags);
578
579         return ret;
580 }
581
582 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
583 {
584         unsigned long flags;
585         unsigned long f;
586
587         raw_spin_lock_irqsave(&ch->lock, flags);
588
589         f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
590         ch->flags &= ~flag;
591
592         if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
593                 sh_cmt_disable(ch);
594
595         /* adjust the timeout to maximum if only clocksource left */
596         if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
597                 __sh_cmt_set_next(ch, ch->max_match_value);
598
599         raw_spin_unlock_irqrestore(&ch->lock, flags);
600 }
601
602 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
603 {
604         return container_of(cs, struct sh_cmt_channel, cs);
605 }
606
607 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
608 {
609         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
610         u32 has_wrapped;
611
612         if (ch->cmt->num_channels == 1) {
613                 unsigned long flags;
614                 u64 value;
615                 u32 raw;
616
617                 raw_spin_lock_irqsave(&ch->lock, flags);
618                 value = ch->total_cycles;
619                 raw = sh_cmt_get_counter(ch, &has_wrapped);
620
621                 if (unlikely(has_wrapped))
622                         raw += ch->match_value + 1;
623                 raw_spin_unlock_irqrestore(&ch->lock, flags);
624
625                 return value + raw;
626         }
627
628         return sh_cmt_get_counter(ch, &has_wrapped);
629 }
630
631 static int sh_cmt_clocksource_enable(struct clocksource *cs)
632 {
633         int ret;
634         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
635
636         WARN_ON(ch->cs_enabled);
637
638         ch->total_cycles = 0;
639
640         ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
641         if (!ret)
642                 ch->cs_enabled = true;
643
644         return ret;
645 }
646
647 static void sh_cmt_clocksource_disable(struct clocksource *cs)
648 {
649         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
650
651         WARN_ON(!ch->cs_enabled);
652
653         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
654         ch->cs_enabled = false;
655 }
656
657 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
658 {
659         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
660
661         if (!ch->cs_enabled)
662                 return;
663
664         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
665         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
666 }
667
668 static void sh_cmt_clocksource_resume(struct clocksource *cs)
669 {
670         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
671
672         if (!ch->cs_enabled)
673                 return;
674
675         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
676         sh_cmt_start(ch, FLAG_CLOCKSOURCE);
677 }
678
679 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
680                                        const char *name)
681 {
682         struct clocksource *cs = &ch->cs;
683
684         cs->name = name;
685         cs->rating = 125;
686         cs->read = sh_cmt_clocksource_read;
687         cs->enable = sh_cmt_clocksource_enable;
688         cs->disable = sh_cmt_clocksource_disable;
689         cs->suspend = sh_cmt_clocksource_suspend;
690         cs->resume = sh_cmt_clocksource_resume;
691         cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
692         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
693
694         dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
695                  ch->index);
696
697         clocksource_register_hz(cs, ch->cmt->rate);
698         return 0;
699 }
700
701 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
702 {
703         return container_of(ced, struct sh_cmt_channel, ced);
704 }
705
706 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
707 {
708         sh_cmt_start(ch, FLAG_CLOCKEVENT);
709
710         if (periodic)
711                 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
712         else
713                 sh_cmt_set_next(ch, ch->max_match_value);
714 }
715
716 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
717 {
718         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
719
720         sh_cmt_stop(ch, FLAG_CLOCKEVENT);
721         return 0;
722 }
723
724 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
725                                         int periodic)
726 {
727         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
728
729         /* deal with old setting first */
730         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
731                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
732
733         dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
734                  ch->index, periodic ? "periodic" : "oneshot");
735         sh_cmt_clock_event_start(ch, periodic);
736         return 0;
737 }
738
739 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
740 {
741         return sh_cmt_clock_event_set_state(ced, 0);
742 }
743
744 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
745 {
746         return sh_cmt_clock_event_set_state(ced, 1);
747 }
748
749 static int sh_cmt_clock_event_next(unsigned long delta,
750                                    struct clock_event_device *ced)
751 {
752         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
753
754         BUG_ON(!clockevent_state_oneshot(ced));
755         if (likely(ch->flags & FLAG_IRQCONTEXT))
756                 ch->next_match_value = delta - 1;
757         else
758                 sh_cmt_set_next(ch, delta - 1);
759
760         return 0;
761 }
762
763 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
764 {
765         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
766
767         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
768         clk_unprepare(ch->cmt->clk);
769 }
770
771 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
772 {
773         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
774
775         clk_prepare(ch->cmt->clk);
776         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
777 }
778
779 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
780                                       const char *name)
781 {
782         struct clock_event_device *ced = &ch->ced;
783         int irq;
784         int ret;
785
786         irq = platform_get_irq(ch->cmt->pdev, ch->index);
787         if (irq < 0) {
788                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
789                         ch->index);
790                 return irq;
791         }
792
793         ret = request_irq(irq, sh_cmt_interrupt,
794                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
795                           dev_name(&ch->cmt->pdev->dev), ch);
796         if (ret) {
797                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
798                         ch->index, irq);
799                 return ret;
800         }
801
802         ced->name = name;
803         ced->features = CLOCK_EVT_FEAT_PERIODIC;
804         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
805         ced->rating = 125;
806         ced->cpumask = cpu_possible_mask;
807         ced->set_next_event = sh_cmt_clock_event_next;
808         ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
809         ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
810         ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
811         ced->suspend = sh_cmt_clock_event_suspend;
812         ced->resume = sh_cmt_clock_event_resume;
813
814         /* TODO: calculate good shift from rate and counter bit width */
815         ced->shift = 32;
816         ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
817         ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
818         ced->max_delta_ticks = ch->max_match_value;
819         ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
820         ced->min_delta_ticks = 0x1f;
821
822         dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
823                  ch->index);
824         clockevents_register_device(ced);
825
826         return 0;
827 }
828
829 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
830                            bool clockevent, bool clocksource)
831 {
832         int ret;
833
834         if (clockevent) {
835                 ch->cmt->has_clockevent = true;
836                 ret = sh_cmt_register_clockevent(ch, name);
837                 if (ret < 0)
838                         return ret;
839         }
840
841         if (clocksource) {
842                 ch->cmt->has_clocksource = true;
843                 sh_cmt_register_clocksource(ch, name);
844         }
845
846         return 0;
847 }
848
849 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
850                                 unsigned int hwidx, bool clockevent,
851                                 bool clocksource, struct sh_cmt_device *cmt)
852 {
853         int ret;
854
855         /* Skip unused channels. */
856         if (!clockevent && !clocksource)
857                 return 0;
858
859         ch->cmt = cmt;
860         ch->index = index;
861         ch->hwidx = hwidx;
862
863         /*
864          * Compute the address of the channel control register block. For the
865          * timers with a per-channel start/stop register, compute its address
866          * as well.
867          */
868         switch (cmt->info->model) {
869         case SH_CMT_16BIT:
870                 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
871                 break;
872         case SH_CMT_32BIT:
873         case SH_CMT_48BIT:
874                 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
875                 break;
876         case SH_CMT_32BIT_FAST:
877                 /*
878                  * The 32-bit "fast" timer has a single channel at hwidx 5 but
879                  * is located at offset 0x40 instead of 0x60 for some reason.
880                  */
881                 ch->ioctrl = cmt->mapbase + 0x40;
882                 break;
883         case SH_CMT_48BIT_GEN2:
884                 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
885                 ch->ioctrl = ch->iostart + 0x10;
886                 break;
887         }
888
889         if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
890                 ch->max_match_value = ~0;
891         else
892                 ch->max_match_value = (1 << cmt->info->width) - 1;
893
894         ch->match_value = ch->max_match_value;
895         raw_spin_lock_init(&ch->lock);
896
897         ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
898
899         ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
900                               clockevent, clocksource);
901         if (ret) {
902                 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
903                         ch->index);
904                 return ret;
905         }
906         ch->cs_enabled = false;
907
908         return 0;
909 }
910
911 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
912 {
913         struct resource *mem;
914
915         mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
916         if (!mem) {
917                 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
918                 return -ENXIO;
919         }
920
921         cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
922         if (cmt->mapbase == NULL) {
923                 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
924                 return -ENXIO;
925         }
926
927         return 0;
928 }
929
930 static const struct platform_device_id sh_cmt_id_table[] = {
931         { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
932         { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
933         { }
934 };
935 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
936
937 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
938         { .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
939         { .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
940         { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
941         { .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
942         { }
943 };
944 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
945
946 static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
947 {
948         struct device_node *np = cmt->pdev->dev.of_node;
949
950         return of_property_read_u32(np, "renesas,channels-mask",
951                                     &cmt->hw_channels);
952 }
953
954 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
955 {
956         unsigned int mask;
957         unsigned int i;
958         int ret;
959
960         cmt->pdev = pdev;
961         raw_spin_lock_init(&cmt->lock);
962
963         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
964                 const struct of_device_id *id;
965
966                 id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
967                 cmt->info = id->data;
968
969                 ret = sh_cmt_parse_dt(cmt);
970                 if (ret < 0)
971                         return ret;
972         } else if (pdev->dev.platform_data) {
973                 struct sh_timer_config *cfg = pdev->dev.platform_data;
974                 const struct platform_device_id *id = pdev->id_entry;
975
976                 cmt->info = (const struct sh_cmt_info *)id->driver_data;
977                 cmt->hw_channels = cfg->channels_mask;
978         } else {
979                 dev_err(&cmt->pdev->dev, "missing platform data\n");
980                 return -ENXIO;
981         }
982
983         /* Get hold of clock. */
984         cmt->clk = clk_get(&cmt->pdev->dev, "fck");
985         if (IS_ERR(cmt->clk)) {
986                 dev_err(&cmt->pdev->dev, "cannot get clock\n");
987                 return PTR_ERR(cmt->clk);
988         }
989
990         ret = clk_prepare(cmt->clk);
991         if (ret < 0)
992                 goto err_clk_put;
993
994         /* Determine clock rate. */
995         ret = clk_enable(cmt->clk);
996         if (ret < 0)
997                 goto err_clk_unprepare;
998
999         if (cmt->info->width == 16)
1000                 cmt->rate = clk_get_rate(cmt->clk) / 512;
1001         else
1002                 cmt->rate = clk_get_rate(cmt->clk) / 8;
1003
1004         clk_disable(cmt->clk);
1005
1006         /* Map the memory resource(s). */
1007         ret = sh_cmt_map_memory(cmt);
1008         if (ret < 0)
1009                 goto err_clk_unprepare;
1010
1011         /* Allocate and setup the channels. */
1012         cmt->num_channels = hweight8(cmt->hw_channels);
1013         cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1014                                 GFP_KERNEL);
1015         if (cmt->channels == NULL) {
1016                 ret = -ENOMEM;
1017                 goto err_unmap;
1018         }
1019
1020         /*
1021          * Use the first channel as a clock event device and the second channel
1022          * as a clock source. If only one channel is available use it for both.
1023          */
1024         for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1025                 unsigned int hwidx = ffs(mask) - 1;
1026                 bool clocksource = i == 1 || cmt->num_channels == 1;
1027                 bool clockevent = i == 0;
1028
1029                 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1030                                            clockevent, clocksource, cmt);
1031                 if (ret < 0)
1032                         goto err_unmap;
1033
1034                 mask &= ~(1 << hwidx);
1035         }
1036
1037         platform_set_drvdata(pdev, cmt);
1038
1039         return 0;
1040
1041 err_unmap:
1042         kfree(cmt->channels);
1043         iounmap(cmt->mapbase);
1044 err_clk_unprepare:
1045         clk_unprepare(cmt->clk);
1046 err_clk_put:
1047         clk_put(cmt->clk);
1048         return ret;
1049 }
1050
1051 static int sh_cmt_probe(struct platform_device *pdev)
1052 {
1053         struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1054         int ret;
1055
1056         if (!is_early_platform_device(pdev)) {
1057                 pm_runtime_set_active(&pdev->dev);
1058                 pm_runtime_enable(&pdev->dev);
1059         }
1060
1061         if (cmt) {
1062                 dev_info(&pdev->dev, "kept as earlytimer\n");
1063                 goto out;
1064         }
1065
1066         cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1067         if (cmt == NULL)
1068                 return -ENOMEM;
1069
1070         ret = sh_cmt_setup(cmt, pdev);
1071         if (ret) {
1072                 kfree(cmt);
1073                 pm_runtime_idle(&pdev->dev);
1074                 return ret;
1075         }
1076         if (is_early_platform_device(pdev))
1077                 return 0;
1078
1079  out:
1080         if (cmt->has_clockevent || cmt->has_clocksource)
1081                 pm_runtime_irq_safe(&pdev->dev);
1082         else
1083                 pm_runtime_idle(&pdev->dev);
1084
1085         return 0;
1086 }
1087
1088 static int sh_cmt_remove(struct platform_device *pdev)
1089 {
1090         return -EBUSY; /* cannot unregister clockevent and clocksource */
1091 }
1092
1093 static struct platform_driver sh_cmt_device_driver = {
1094         .probe          = sh_cmt_probe,
1095         .remove         = sh_cmt_remove,
1096         .driver         = {
1097                 .name   = "sh_cmt",
1098                 .of_match_table = of_match_ptr(sh_cmt_of_table),
1099         },
1100         .id_table       = sh_cmt_id_table,
1101 };
1102
1103 static int __init sh_cmt_init(void)
1104 {
1105         return platform_driver_register(&sh_cmt_device_driver);
1106 }
1107
1108 static void __exit sh_cmt_exit(void)
1109 {
1110         platform_driver_unregister(&sh_cmt_device_driver);
1111 }
1112
1113 early_platform_init("earlytimer", &sh_cmt_device_driver);
1114 subsys_initcall(sh_cmt_init);
1115 module_exit(sh_cmt_exit);
1116
1117 MODULE_AUTHOR("Magnus Damm");
1118 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1119 MODULE_LICENSE("GPL v2");