GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / clocksource / sh_cmt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
31
32 struct sh_cmt_device;
33
34 /*
35  * The CMT comes in 5 different identified flavours, depending not only on the
36  * SoC but also on the particular instance. The following table lists the main
37  * characteristics of those flavours.
38  *
39  *                      16B     32B     32B-F   48B     R-Car Gen2
40  * -----------------------------------------------------------------------------
41  * Channels             2       1/4     1       6       2/8
42  * Control Width        16      16      16      16      32
43  * Counter Width        16      32      32      32/48   32/48
44  * Shared Start/Stop    Y       Y       Y       Y       N
45  *
46  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47  * located in the channel registers block. All other versions have a shared
48  * start/stop register located in the global space.
49  *
50  * Channels are indexed from 0 to N-1 in the documentation. The channel index
51  * infers the start/stop bit position in the control register and the channel
52  * registers block address. Some CMT instances have a subset of channels
53  * available, in which case the index in the documentation doesn't match the
54  * "real" index as implemented in hardware. This is for instance the case with
55  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56  * in the documentation but using start/stop bit 5 and having its registers
57  * block at 0x60.
58  *
59  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61  */
62
63 enum sh_cmt_model {
64         SH_CMT_16BIT,
65         SH_CMT_32BIT,
66         SH_CMT_48BIT,
67         SH_CMT0_RCAR_GEN2,
68         SH_CMT1_RCAR_GEN2,
69 };
70
71 struct sh_cmt_info {
72         enum sh_cmt_model model;
73
74         unsigned int channels_mask;
75
76         unsigned long width; /* 16 or 32 bit version of hardware block */
77         u32 overflow_bit;
78         u32 clear_bits;
79
80         /* callbacks for CMSTR and CMCSR access */
81         u32 (*read_control)(void __iomem *base, unsigned long offs);
82         void (*write_control)(void __iomem *base, unsigned long offs,
83                               u32 value);
84
85         /* callbacks for CMCNT and CMCOR access */
86         u32 (*read_count)(void __iomem *base, unsigned long offs);
87         void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88 };
89
90 struct sh_cmt_channel {
91         struct sh_cmt_device *cmt;
92
93         unsigned int index;     /* Index in the documentation */
94         unsigned int hwidx;     /* Real hardware index */
95
96         void __iomem *iostart;
97         void __iomem *ioctrl;
98
99         unsigned int timer_bit;
100         unsigned long flags;
101         u32 match_value;
102         u32 next_match_value;
103         u32 max_match_value;
104         raw_spinlock_t lock;
105         struct clock_event_device ced;
106         struct clocksource cs;
107         u64 total_cycles;
108         bool cs_enabled;
109 };
110
111 struct sh_cmt_device {
112         struct platform_device *pdev;
113
114         const struct sh_cmt_info *info;
115
116         void __iomem *mapbase;
117         struct clk *clk;
118         unsigned long rate;
119
120         raw_spinlock_t lock; /* Protect the shared start/stop register */
121
122         struct sh_cmt_channel *channels;
123         unsigned int num_channels;
124         unsigned int hw_channels;
125
126         bool has_clockevent;
127         bool has_clocksource;
128 };
129
130 #define SH_CMT16_CMCSR_CMF              (1 << 7)
131 #define SH_CMT16_CMCSR_CMIE             (1 << 6)
132 #define SH_CMT16_CMCSR_CKS8             (0 << 0)
133 #define SH_CMT16_CMCSR_CKS32            (1 << 0)
134 #define SH_CMT16_CMCSR_CKS128           (2 << 0)
135 #define SH_CMT16_CMCSR_CKS512           (3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
137
138 #define SH_CMT32_CMCSR_CMF              (1 << 15)
139 #define SH_CMT32_CMCSR_OVF              (1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG            (1 << 13)
141 #define SH_CMT32_CMCSR_STTF             (1 << 12)
142 #define SH_CMT32_CMCSR_STPF             (1 << 11)
143 #define SH_CMT32_CMCSR_SSIE             (1 << 10)
144 #define SH_CMT32_CMCSR_CMS              (1 << 9)
145 #define SH_CMT32_CMCSR_CMM              (1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
157
158 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
159 {
160         return ioread16(base + (offs << 1));
161 }
162
163 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
164 {
165         return ioread32(base + (offs << 2));
166 }
167
168 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
169 {
170         iowrite16(value, base + (offs << 1));
171 }
172
173 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
174 {
175         iowrite32(value, base + (offs << 2));
176 }
177
178 static const struct sh_cmt_info sh_cmt_info[] = {
179         [SH_CMT_16BIT] = {
180                 .model = SH_CMT_16BIT,
181                 .width = 16,
182                 .overflow_bit = SH_CMT16_CMCSR_CMF,
183                 .clear_bits = ~SH_CMT16_CMCSR_CMF,
184                 .read_control = sh_cmt_read16,
185                 .write_control = sh_cmt_write16,
186                 .read_count = sh_cmt_read16,
187                 .write_count = sh_cmt_write16,
188         },
189         [SH_CMT_32BIT] = {
190                 .model = SH_CMT_32BIT,
191                 .width = 32,
192                 .overflow_bit = SH_CMT32_CMCSR_CMF,
193                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
194                 .read_control = sh_cmt_read16,
195                 .write_control = sh_cmt_write16,
196                 .read_count = sh_cmt_read32,
197                 .write_count = sh_cmt_write32,
198         },
199         [SH_CMT_48BIT] = {
200                 .model = SH_CMT_48BIT,
201                 .channels_mask = 0x3f,
202                 .width = 32,
203                 .overflow_bit = SH_CMT32_CMCSR_CMF,
204                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205                 .read_control = sh_cmt_read32,
206                 .write_control = sh_cmt_write32,
207                 .read_count = sh_cmt_read32,
208                 .write_count = sh_cmt_write32,
209         },
210         [SH_CMT0_RCAR_GEN2] = {
211                 .model = SH_CMT0_RCAR_GEN2,
212                 .channels_mask = 0x60,
213                 .width = 32,
214                 .overflow_bit = SH_CMT32_CMCSR_CMF,
215                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216                 .read_control = sh_cmt_read32,
217                 .write_control = sh_cmt_write32,
218                 .read_count = sh_cmt_read32,
219                 .write_count = sh_cmt_write32,
220         },
221         [SH_CMT1_RCAR_GEN2] = {
222                 .model = SH_CMT1_RCAR_GEN2,
223                 .channels_mask = 0xff,
224                 .width = 32,
225                 .overflow_bit = SH_CMT32_CMCSR_CMF,
226                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
227                 .read_control = sh_cmt_read32,
228                 .write_control = sh_cmt_write32,
229                 .read_count = sh_cmt_read32,
230                 .write_count = sh_cmt_write32,
231         },
232 };
233
234 #define CMCSR 0 /* channel register */
235 #define CMCNT 1 /* channel register */
236 #define CMCOR 2 /* channel register */
237
238 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
239 {
240         if (ch->iostart)
241                 return ch->cmt->info->read_control(ch->iostart, 0);
242         else
243                 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
244 }
245
246 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
247 {
248         if (ch->iostart)
249                 ch->cmt->info->write_control(ch->iostart, 0, value);
250         else
251                 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
252 }
253
254 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
255 {
256         return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
257 }
258
259 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
260 {
261         ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
262 }
263
264 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
265 {
266         return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
267 }
268
269 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
270 {
271         ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
272 }
273
274 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
275 {
276         ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
277 }
278
279 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
280 {
281         u32 v1, v2, v3;
282         u32 o1, o2;
283
284         o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
285
286         /* Make sure the timer value is stable. Stolen from acpi_pm.c */
287         do {
288                 o2 = o1;
289                 v1 = sh_cmt_read_cmcnt(ch);
290                 v2 = sh_cmt_read_cmcnt(ch);
291                 v3 = sh_cmt_read_cmcnt(ch);
292                 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
293         } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
294                           || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
295
296         *has_wrapped = o1;
297         return v2;
298 }
299
300 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
301 {
302         unsigned long flags;
303         u32 value;
304
305         /* start stop register shared by multiple timer channels */
306         raw_spin_lock_irqsave(&ch->cmt->lock, flags);
307         value = sh_cmt_read_cmstr(ch);
308
309         if (start)
310                 value |= 1 << ch->timer_bit;
311         else
312                 value &= ~(1 << ch->timer_bit);
313
314         sh_cmt_write_cmstr(ch, value);
315         raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
316 }
317
318 static int sh_cmt_enable(struct sh_cmt_channel *ch)
319 {
320         int k, ret;
321
322         pm_runtime_get_sync(&ch->cmt->pdev->dev);
323         dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
324
325         /* enable clock */
326         ret = clk_enable(ch->cmt->clk);
327         if (ret) {
328                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
329                         ch->index);
330                 goto err0;
331         }
332
333         /* make sure channel is disabled */
334         sh_cmt_start_stop_ch(ch, 0);
335
336         /* configure channel, periodic mode and maximum timeout */
337         if (ch->cmt->info->width == 16) {
338                 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
339                                    SH_CMT16_CMCSR_CKS512);
340         } else {
341                 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
342                                    SH_CMT32_CMCSR_CMTOUT_IE |
343                                    SH_CMT32_CMCSR_CMR_IRQ |
344                                    SH_CMT32_CMCSR_CKS_RCLK8);
345         }
346
347         sh_cmt_write_cmcor(ch, 0xffffffff);
348         sh_cmt_write_cmcnt(ch, 0);
349
350         /*
351          * According to the sh73a0 user's manual, as CMCNT can be operated
352          * only by the RCLK (Pseudo 32 kHz), there's one restriction on
353          * modifying CMCNT register; two RCLK cycles are necessary before
354          * this register is either read or any modification of the value
355          * it holds is reflected in the LSI's actual operation.
356          *
357          * While at it, we're supposed to clear out the CMCNT as of this
358          * moment, so make sure it's processed properly here.  This will
359          * take RCLKx2 at maximum.
360          */
361         for (k = 0; k < 100; k++) {
362                 if (!sh_cmt_read_cmcnt(ch))
363                         break;
364                 udelay(1);
365         }
366
367         if (sh_cmt_read_cmcnt(ch)) {
368                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
369                         ch->index);
370                 ret = -ETIMEDOUT;
371                 goto err1;
372         }
373
374         /* enable channel */
375         sh_cmt_start_stop_ch(ch, 1);
376         return 0;
377  err1:
378         /* stop clock */
379         clk_disable(ch->cmt->clk);
380
381  err0:
382         return ret;
383 }
384
385 static void sh_cmt_disable(struct sh_cmt_channel *ch)
386 {
387         /* disable channel */
388         sh_cmt_start_stop_ch(ch, 0);
389
390         /* disable interrupts in CMT block */
391         sh_cmt_write_cmcsr(ch, 0);
392
393         /* stop clock */
394         clk_disable(ch->cmt->clk);
395
396         dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
397         pm_runtime_put(&ch->cmt->pdev->dev);
398 }
399
400 /* private flags */
401 #define FLAG_CLOCKEVENT (1 << 0)
402 #define FLAG_CLOCKSOURCE (1 << 1)
403 #define FLAG_REPROGRAM (1 << 2)
404 #define FLAG_SKIPEVENT (1 << 3)
405 #define FLAG_IRQCONTEXT (1 << 4)
406
407 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
408                                               int absolute)
409 {
410         u32 value = ch->next_match_value;
411         u32 new_match;
412         u32 delay = 0;
413         u32 now = 0;
414         u32 has_wrapped;
415
416         now = sh_cmt_get_counter(ch, &has_wrapped);
417         ch->flags |= FLAG_REPROGRAM; /* force reprogram */
418
419         if (has_wrapped) {
420                 /* we're competing with the interrupt handler.
421                  *  -> let the interrupt handler reprogram the timer.
422                  *  -> interrupt number two handles the event.
423                  */
424                 ch->flags |= FLAG_SKIPEVENT;
425                 return;
426         }
427
428         if (absolute)
429                 now = 0;
430
431         do {
432                 /* reprogram the timer hardware,
433                  * but don't save the new match value yet.
434                  */
435                 new_match = now + value + delay;
436                 if (new_match > ch->max_match_value)
437                         new_match = ch->max_match_value;
438
439                 sh_cmt_write_cmcor(ch, new_match);
440
441                 now = sh_cmt_get_counter(ch, &has_wrapped);
442                 if (has_wrapped && (new_match > ch->match_value)) {
443                         /* we are changing to a greater match value,
444                          * so this wrap must be caused by the counter
445                          * matching the old value.
446                          * -> first interrupt reprograms the timer.
447                          * -> interrupt number two handles the event.
448                          */
449                         ch->flags |= FLAG_SKIPEVENT;
450                         break;
451                 }
452
453                 if (has_wrapped) {
454                         /* we are changing to a smaller match value,
455                          * so the wrap must be caused by the counter
456                          * matching the new value.
457                          * -> save programmed match value.
458                          * -> let isr handle the event.
459                          */
460                         ch->match_value = new_match;
461                         break;
462                 }
463
464                 /* be safe: verify hardware settings */
465                 if (now < new_match) {
466                         /* timer value is below match value, all good.
467                          * this makes sure we won't miss any match events.
468                          * -> save programmed match value.
469                          * -> let isr handle the event.
470                          */
471                         ch->match_value = new_match;
472                         break;
473                 }
474
475                 /* the counter has reached a value greater
476                  * than our new match value. and since the
477                  * has_wrapped flag isn't set we must have
478                  * programmed a too close event.
479                  * -> increase delay and retry.
480                  */
481                 if (delay)
482                         delay <<= 1;
483                 else
484                         delay = 1;
485
486                 if (!delay)
487                         dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
488                                  ch->index);
489
490         } while (delay);
491 }
492
493 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
494 {
495         if (delta > ch->max_match_value)
496                 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
497                          ch->index);
498
499         ch->next_match_value = delta;
500         sh_cmt_clock_event_program_verify(ch, 0);
501 }
502
503 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
504 {
505         unsigned long flags;
506
507         raw_spin_lock_irqsave(&ch->lock, flags);
508         __sh_cmt_set_next(ch, delta);
509         raw_spin_unlock_irqrestore(&ch->lock, flags);
510 }
511
512 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
513 {
514         struct sh_cmt_channel *ch = dev_id;
515
516         /* clear flags */
517         sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
518                            ch->cmt->info->clear_bits);
519
520         /* update clock source counter to begin with if enabled
521          * the wrap flag should be cleared by the timer specific
522          * isr before we end up here.
523          */
524         if (ch->flags & FLAG_CLOCKSOURCE)
525                 ch->total_cycles += ch->match_value + 1;
526
527         if (!(ch->flags & FLAG_REPROGRAM))
528                 ch->next_match_value = ch->max_match_value;
529
530         ch->flags |= FLAG_IRQCONTEXT;
531
532         if (ch->flags & FLAG_CLOCKEVENT) {
533                 if (!(ch->flags & FLAG_SKIPEVENT)) {
534                         if (clockevent_state_oneshot(&ch->ced)) {
535                                 ch->next_match_value = ch->max_match_value;
536                                 ch->flags |= FLAG_REPROGRAM;
537                         }
538
539                         ch->ced.event_handler(&ch->ced);
540                 }
541         }
542
543         ch->flags &= ~FLAG_SKIPEVENT;
544
545         if (ch->flags & FLAG_REPROGRAM) {
546                 ch->flags &= ~FLAG_REPROGRAM;
547                 sh_cmt_clock_event_program_verify(ch, 1);
548
549                 if (ch->flags & FLAG_CLOCKEVENT)
550                         if ((clockevent_state_shutdown(&ch->ced))
551                             || (ch->match_value == ch->next_match_value))
552                                 ch->flags &= ~FLAG_REPROGRAM;
553         }
554
555         ch->flags &= ~FLAG_IRQCONTEXT;
556
557         return IRQ_HANDLED;
558 }
559
560 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
561 {
562         int ret = 0;
563         unsigned long flags;
564
565         raw_spin_lock_irqsave(&ch->lock, flags);
566
567         if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
568                 ret = sh_cmt_enable(ch);
569
570         if (ret)
571                 goto out;
572         ch->flags |= flag;
573
574         /* setup timeout if no clockevent */
575         if (ch->cmt->num_channels == 1 &&
576             flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
577                 __sh_cmt_set_next(ch, ch->max_match_value);
578  out:
579         raw_spin_unlock_irqrestore(&ch->lock, flags);
580
581         return ret;
582 }
583
584 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
585 {
586         unsigned long flags;
587         unsigned long f;
588
589         raw_spin_lock_irqsave(&ch->lock, flags);
590
591         f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
592         ch->flags &= ~flag;
593
594         if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
595                 sh_cmt_disable(ch);
596
597         /* adjust the timeout to maximum if only clocksource left */
598         if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
599                 __sh_cmt_set_next(ch, ch->max_match_value);
600
601         raw_spin_unlock_irqrestore(&ch->lock, flags);
602 }
603
604 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
605 {
606         return container_of(cs, struct sh_cmt_channel, cs);
607 }
608
609 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
610 {
611         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
612         u32 has_wrapped;
613
614         if (ch->cmt->num_channels == 1) {
615                 unsigned long flags;
616                 u64 value;
617                 u32 raw;
618
619                 raw_spin_lock_irqsave(&ch->lock, flags);
620                 value = ch->total_cycles;
621                 raw = sh_cmt_get_counter(ch, &has_wrapped);
622
623                 if (unlikely(has_wrapped))
624                         raw += ch->match_value + 1;
625                 raw_spin_unlock_irqrestore(&ch->lock, flags);
626
627                 return value + raw;
628         }
629
630         return sh_cmt_get_counter(ch, &has_wrapped);
631 }
632
633 static int sh_cmt_clocksource_enable(struct clocksource *cs)
634 {
635         int ret;
636         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
637
638         WARN_ON(ch->cs_enabled);
639
640         ch->total_cycles = 0;
641
642         ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
643         if (!ret)
644                 ch->cs_enabled = true;
645
646         return ret;
647 }
648
649 static void sh_cmt_clocksource_disable(struct clocksource *cs)
650 {
651         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
652
653         WARN_ON(!ch->cs_enabled);
654
655         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
656         ch->cs_enabled = false;
657 }
658
659 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
660 {
661         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
662
663         if (!ch->cs_enabled)
664                 return;
665
666         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
667         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
668 }
669
670 static void sh_cmt_clocksource_resume(struct clocksource *cs)
671 {
672         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
673
674         if (!ch->cs_enabled)
675                 return;
676
677         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
678         sh_cmt_start(ch, FLAG_CLOCKSOURCE);
679 }
680
681 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
682                                        const char *name)
683 {
684         struct clocksource *cs = &ch->cs;
685
686         cs->name = name;
687         cs->rating = 125;
688         cs->read = sh_cmt_clocksource_read;
689         cs->enable = sh_cmt_clocksource_enable;
690         cs->disable = sh_cmt_clocksource_disable;
691         cs->suspend = sh_cmt_clocksource_suspend;
692         cs->resume = sh_cmt_clocksource_resume;
693         cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
694         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
695
696         dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
697                  ch->index);
698
699         clocksource_register_hz(cs, ch->cmt->rate);
700         return 0;
701 }
702
703 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
704 {
705         return container_of(ced, struct sh_cmt_channel, ced);
706 }
707
708 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
709 {
710         sh_cmt_start(ch, FLAG_CLOCKEVENT);
711
712         if (periodic)
713                 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
714         else
715                 sh_cmt_set_next(ch, ch->max_match_value);
716 }
717
718 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
719 {
720         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
721
722         sh_cmt_stop(ch, FLAG_CLOCKEVENT);
723         return 0;
724 }
725
726 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
727                                         int periodic)
728 {
729         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
730
731         /* deal with old setting first */
732         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
733                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
734
735         dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
736                  ch->index, periodic ? "periodic" : "oneshot");
737         sh_cmt_clock_event_start(ch, periodic);
738         return 0;
739 }
740
741 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
742 {
743         return sh_cmt_clock_event_set_state(ced, 0);
744 }
745
746 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
747 {
748         return sh_cmt_clock_event_set_state(ced, 1);
749 }
750
751 static int sh_cmt_clock_event_next(unsigned long delta,
752                                    struct clock_event_device *ced)
753 {
754         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
755
756         BUG_ON(!clockevent_state_oneshot(ced));
757         if (likely(ch->flags & FLAG_IRQCONTEXT))
758                 ch->next_match_value = delta - 1;
759         else
760                 sh_cmt_set_next(ch, delta - 1);
761
762         return 0;
763 }
764
765 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
766 {
767         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
768
769         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
770         clk_unprepare(ch->cmt->clk);
771 }
772
773 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
774 {
775         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
776
777         clk_prepare(ch->cmt->clk);
778         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
779 }
780
781 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
782                                       const char *name)
783 {
784         struct clock_event_device *ced = &ch->ced;
785         int irq;
786         int ret;
787
788         irq = platform_get_irq(ch->cmt->pdev, ch->index);
789         if (irq < 0)
790                 return irq;
791
792         ret = request_irq(irq, sh_cmt_interrupt,
793                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
794                           dev_name(&ch->cmt->pdev->dev), ch);
795         if (ret) {
796                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
797                         ch->index, irq);
798                 return ret;
799         }
800
801         ced->name = name;
802         ced->features = CLOCK_EVT_FEAT_PERIODIC;
803         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
804         ced->rating = 125;
805         ced->cpumask = cpu_possible_mask;
806         ced->set_next_event = sh_cmt_clock_event_next;
807         ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
808         ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
809         ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
810         ced->suspend = sh_cmt_clock_event_suspend;
811         ced->resume = sh_cmt_clock_event_resume;
812
813         /* TODO: calculate good shift from rate and counter bit width */
814         ced->shift = 32;
815         ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
816         ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
817         ced->max_delta_ticks = ch->max_match_value;
818         ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
819         ced->min_delta_ticks = 0x1f;
820
821         dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
822                  ch->index);
823         clockevents_register_device(ced);
824
825         return 0;
826 }
827
828 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
829                            bool clockevent, bool clocksource)
830 {
831         int ret;
832
833         if (clockevent) {
834                 ch->cmt->has_clockevent = true;
835                 ret = sh_cmt_register_clockevent(ch, name);
836                 if (ret < 0)
837                         return ret;
838         }
839
840         if (clocksource) {
841                 ch->cmt->has_clocksource = true;
842                 sh_cmt_register_clocksource(ch, name);
843         }
844
845         return 0;
846 }
847
848 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
849                                 unsigned int hwidx, bool clockevent,
850                                 bool clocksource, struct sh_cmt_device *cmt)
851 {
852         int ret;
853
854         /* Skip unused channels. */
855         if (!clockevent && !clocksource)
856                 return 0;
857
858         ch->cmt = cmt;
859         ch->index = index;
860         ch->hwidx = hwidx;
861         ch->timer_bit = hwidx;
862
863         /*
864          * Compute the address of the channel control register block. For the
865          * timers with a per-channel start/stop register, compute its address
866          * as well.
867          */
868         switch (cmt->info->model) {
869         case SH_CMT_16BIT:
870                 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
871                 break;
872         case SH_CMT_32BIT:
873         case SH_CMT_48BIT:
874                 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
875                 break;
876         case SH_CMT0_RCAR_GEN2:
877         case SH_CMT1_RCAR_GEN2:
878                 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
879                 ch->ioctrl = ch->iostart + 0x10;
880                 ch->timer_bit = 0;
881                 break;
882         }
883
884         if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
885                 ch->max_match_value = ~0;
886         else
887                 ch->max_match_value = (1 << cmt->info->width) - 1;
888
889         ch->match_value = ch->max_match_value;
890         raw_spin_lock_init(&ch->lock);
891
892         ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
893                               clockevent, clocksource);
894         if (ret) {
895                 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
896                         ch->index);
897                 return ret;
898         }
899         ch->cs_enabled = false;
900
901         return 0;
902 }
903
904 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
905 {
906         struct resource *mem;
907
908         mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
909         if (!mem) {
910                 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
911                 return -ENXIO;
912         }
913
914         cmt->mapbase = ioremap(mem->start, resource_size(mem));
915         if (cmt->mapbase == NULL) {
916                 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
917                 return -ENXIO;
918         }
919
920         return 0;
921 }
922
923 static const struct platform_device_id sh_cmt_id_table[] = {
924         { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
925         { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
926         { }
927 };
928 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
929
930 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
931         {
932                 /* deprecated, preserved for backward compatibility */
933                 .compatible = "renesas,cmt-48",
934                 .data = &sh_cmt_info[SH_CMT_48BIT]
935         },
936         {
937                 /* deprecated, preserved for backward compatibility */
938                 .compatible = "renesas,cmt-48-gen2",
939                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
940         },
941         {
942                 .compatible = "renesas,r8a7740-cmt1",
943                 .data = &sh_cmt_info[SH_CMT_48BIT]
944         },
945         {
946                 .compatible = "renesas,sh73a0-cmt1",
947                 .data = &sh_cmt_info[SH_CMT_48BIT]
948         },
949         {
950                 .compatible = "renesas,rcar-gen2-cmt0",
951                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
952         },
953         {
954                 .compatible = "renesas,rcar-gen2-cmt1",
955                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
956         },
957         {
958                 .compatible = "renesas,rcar-gen3-cmt0",
959                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
960         },
961         {
962                 .compatible = "renesas,rcar-gen3-cmt1",
963                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
964         },
965         { }
966 };
967 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
968
969 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
970 {
971         unsigned int mask;
972         unsigned int i;
973         int ret;
974
975         cmt->pdev = pdev;
976         raw_spin_lock_init(&cmt->lock);
977
978         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
979                 cmt->info = of_device_get_match_data(&pdev->dev);
980                 cmt->hw_channels = cmt->info->channels_mask;
981         } else if (pdev->dev.platform_data) {
982                 struct sh_timer_config *cfg = pdev->dev.platform_data;
983                 const struct platform_device_id *id = pdev->id_entry;
984
985                 cmt->info = (const struct sh_cmt_info *)id->driver_data;
986                 cmt->hw_channels = cfg->channels_mask;
987         } else {
988                 dev_err(&cmt->pdev->dev, "missing platform data\n");
989                 return -ENXIO;
990         }
991
992         /* Get hold of clock. */
993         cmt->clk = clk_get(&cmt->pdev->dev, "fck");
994         if (IS_ERR(cmt->clk)) {
995                 dev_err(&cmt->pdev->dev, "cannot get clock\n");
996                 return PTR_ERR(cmt->clk);
997         }
998
999         ret = clk_prepare(cmt->clk);
1000         if (ret < 0)
1001                 goto err_clk_put;
1002
1003         /* Determine clock rate. */
1004         ret = clk_enable(cmt->clk);
1005         if (ret < 0)
1006                 goto err_clk_unprepare;
1007
1008         if (cmt->info->width == 16)
1009                 cmt->rate = clk_get_rate(cmt->clk) / 512;
1010         else
1011                 cmt->rate = clk_get_rate(cmt->clk) / 8;
1012
1013         clk_disable(cmt->clk);
1014
1015         /* Map the memory resource(s). */
1016         ret = sh_cmt_map_memory(cmt);
1017         if (ret < 0)
1018                 goto err_clk_unprepare;
1019
1020         /* Allocate and setup the channels. */
1021         cmt->num_channels = hweight8(cmt->hw_channels);
1022         cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1023                                 GFP_KERNEL);
1024         if (cmt->channels == NULL) {
1025                 ret = -ENOMEM;
1026                 goto err_unmap;
1027         }
1028
1029         /*
1030          * Use the first channel as a clock event device and the second channel
1031          * as a clock source. If only one channel is available use it for both.
1032          */
1033         for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1034                 unsigned int hwidx = ffs(mask) - 1;
1035                 bool clocksource = i == 1 || cmt->num_channels == 1;
1036                 bool clockevent = i == 0;
1037
1038                 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1039                                            clockevent, clocksource, cmt);
1040                 if (ret < 0)
1041                         goto err_unmap;
1042
1043                 mask &= ~(1 << hwidx);
1044         }
1045
1046         platform_set_drvdata(pdev, cmt);
1047
1048         return 0;
1049
1050 err_unmap:
1051         kfree(cmt->channels);
1052         iounmap(cmt->mapbase);
1053 err_clk_unprepare:
1054         clk_unprepare(cmt->clk);
1055 err_clk_put:
1056         clk_put(cmt->clk);
1057         return ret;
1058 }
1059
1060 static int sh_cmt_probe(struct platform_device *pdev)
1061 {
1062         struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1063         int ret;
1064
1065         if (!is_sh_early_platform_device(pdev)) {
1066                 pm_runtime_set_active(&pdev->dev);
1067                 pm_runtime_enable(&pdev->dev);
1068         }
1069
1070         if (cmt) {
1071                 dev_info(&pdev->dev, "kept as earlytimer\n");
1072                 goto out;
1073         }
1074
1075         cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1076         if (cmt == NULL)
1077                 return -ENOMEM;
1078
1079         ret = sh_cmt_setup(cmt, pdev);
1080         if (ret) {
1081                 kfree(cmt);
1082                 pm_runtime_idle(&pdev->dev);
1083                 return ret;
1084         }
1085         if (is_sh_early_platform_device(pdev))
1086                 return 0;
1087
1088  out:
1089         if (cmt->has_clockevent || cmt->has_clocksource)
1090                 pm_runtime_irq_safe(&pdev->dev);
1091         else
1092                 pm_runtime_idle(&pdev->dev);
1093
1094         return 0;
1095 }
1096
1097 static int sh_cmt_remove(struct platform_device *pdev)
1098 {
1099         return -EBUSY; /* cannot unregister clockevent and clocksource */
1100 }
1101
1102 static struct platform_driver sh_cmt_device_driver = {
1103         .probe          = sh_cmt_probe,
1104         .remove         = sh_cmt_remove,
1105         .driver         = {
1106                 .name   = "sh_cmt",
1107                 .of_match_table = of_match_ptr(sh_cmt_of_table),
1108         },
1109         .id_table       = sh_cmt_id_table,
1110 };
1111
1112 static int __init sh_cmt_init(void)
1113 {
1114         return platform_driver_register(&sh_cmt_device_driver);
1115 }
1116
1117 static void __exit sh_cmt_exit(void)
1118 {
1119         platform_driver_unregister(&sh_cmt_device_driver);
1120 }
1121
1122 #ifdef CONFIG_SUPERH
1123 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1124 #endif
1125
1126 subsys_initcall(sh_cmt_init);
1127 module_exit(sh_cmt_exit);
1128
1129 MODULE_AUTHOR("Magnus Damm");
1130 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1131 MODULE_LICENSE("GPL v2");