GNU Linux-libre 4.19.304-gnu1
[releases.git] / drivers / clocksource / sh_cmt.c
1 /*
2  * SuperH Timer Support - CMT
3  *
4  *  Copyright (C) 2008 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_domain.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sh_timer.h>
33 #include <linux/slab.h>
34 #include <linux/spinlock.h>
35
36 struct sh_cmt_device;
37
38 /*
39  * The CMT comes in 5 different identified flavours, depending not only on the
40  * SoC but also on the particular instance. The following table lists the main
41  * characteristics of those flavours.
42  *
43  *                      16B     32B     32B-F   48B     R-Car Gen2
44  * -----------------------------------------------------------------------------
45  * Channels             2       1/4     1       6       2/8
46  * Control Width        16      16      16      16      32
47  * Counter Width        16      32      32      32/48   32/48
48  * Shared Start/Stop    Y       Y       Y       Y       N
49  *
50  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
51  * located in the channel registers block. All other versions have a shared
52  * start/stop register located in the global space.
53  *
54  * Channels are indexed from 0 to N-1 in the documentation. The channel index
55  * infers the start/stop bit position in the control register and the channel
56  * registers block address. Some CMT instances have a subset of channels
57  * available, in which case the index in the documentation doesn't match the
58  * "real" index as implemented in hardware. This is for instance the case with
59  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
60  * in the documentation but using start/stop bit 5 and having its registers
61  * block at 0x60.
62  *
63  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
64  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
65  */
66
67 enum sh_cmt_model {
68         SH_CMT_16BIT,
69         SH_CMT_32BIT,
70         SH_CMT_48BIT,
71         SH_CMT0_RCAR_GEN2,
72         SH_CMT1_RCAR_GEN2,
73 };
74
75 struct sh_cmt_info {
76         enum sh_cmt_model model;
77
78         unsigned int channels_mask;
79
80         unsigned long width; /* 16 or 32 bit version of hardware block */
81         u32 overflow_bit;
82         u32 clear_bits;
83
84         /* callbacks for CMSTR and CMCSR access */
85         u32 (*read_control)(void __iomem *base, unsigned long offs);
86         void (*write_control)(void __iomem *base, unsigned long offs,
87                               u32 value);
88
89         /* callbacks for CMCNT and CMCOR access */
90         u32 (*read_count)(void __iomem *base, unsigned long offs);
91         void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
92 };
93
94 struct sh_cmt_channel {
95         struct sh_cmt_device *cmt;
96
97         unsigned int index;     /* Index in the documentation */
98         unsigned int hwidx;     /* Real hardware index */
99
100         void __iomem *iostart;
101         void __iomem *ioctrl;
102
103         unsigned int timer_bit;
104         unsigned long flags;
105         u32 match_value;
106         u32 next_match_value;
107         u32 max_match_value;
108         raw_spinlock_t lock;
109         struct clock_event_device ced;
110         struct clocksource cs;
111         u64 total_cycles;
112         bool cs_enabled;
113 };
114
115 struct sh_cmt_device {
116         struct platform_device *pdev;
117
118         const struct sh_cmt_info *info;
119
120         void __iomem *mapbase;
121         struct clk *clk;
122         unsigned long rate;
123
124         raw_spinlock_t lock; /* Protect the shared start/stop register */
125
126         struct sh_cmt_channel *channels;
127         unsigned int num_channels;
128         unsigned int hw_channels;
129
130         bool has_clockevent;
131         bool has_clocksource;
132 };
133
134 #define SH_CMT16_CMCSR_CMF              (1 << 7)
135 #define SH_CMT16_CMCSR_CMIE             (1 << 6)
136 #define SH_CMT16_CMCSR_CKS8             (0 << 0)
137 #define SH_CMT16_CMCSR_CKS32            (1 << 0)
138 #define SH_CMT16_CMCSR_CKS128           (2 << 0)
139 #define SH_CMT16_CMCSR_CKS512           (3 << 0)
140 #define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
141
142 #define SH_CMT32_CMCSR_CMF              (1 << 15)
143 #define SH_CMT32_CMCSR_OVF              (1 << 14)
144 #define SH_CMT32_CMCSR_WRFLG            (1 << 13)
145 #define SH_CMT32_CMCSR_STTF             (1 << 12)
146 #define SH_CMT32_CMCSR_STPF             (1 << 11)
147 #define SH_CMT32_CMCSR_SSIE             (1 << 10)
148 #define SH_CMT32_CMCSR_CMS              (1 << 9)
149 #define SH_CMT32_CMCSR_CMM              (1 << 8)
150 #define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
151 #define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
152 #define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
153 #define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
154 #define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
155 #define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
156 #define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
157 #define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
158 #define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
159 #define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
160 #define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
161
162 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
163 {
164         return ioread16(base + (offs << 1));
165 }
166
167 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
168 {
169         return ioread32(base + (offs << 2));
170 }
171
172 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
173 {
174         iowrite16(value, base + (offs << 1));
175 }
176
177 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
178 {
179         iowrite32(value, base + (offs << 2));
180 }
181
182 static const struct sh_cmt_info sh_cmt_info[] = {
183         [SH_CMT_16BIT] = {
184                 .model = SH_CMT_16BIT,
185                 .width = 16,
186                 .overflow_bit = SH_CMT16_CMCSR_CMF,
187                 .clear_bits = ~SH_CMT16_CMCSR_CMF,
188                 .read_control = sh_cmt_read16,
189                 .write_control = sh_cmt_write16,
190                 .read_count = sh_cmt_read16,
191                 .write_count = sh_cmt_write16,
192         },
193         [SH_CMT_32BIT] = {
194                 .model = SH_CMT_32BIT,
195                 .width = 32,
196                 .overflow_bit = SH_CMT32_CMCSR_CMF,
197                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
198                 .read_control = sh_cmt_read16,
199                 .write_control = sh_cmt_write16,
200                 .read_count = sh_cmt_read32,
201                 .write_count = sh_cmt_write32,
202         },
203         [SH_CMT_48BIT] = {
204                 .model = SH_CMT_48BIT,
205                 .channels_mask = 0x3f,
206                 .width = 32,
207                 .overflow_bit = SH_CMT32_CMCSR_CMF,
208                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
209                 .read_control = sh_cmt_read32,
210                 .write_control = sh_cmt_write32,
211                 .read_count = sh_cmt_read32,
212                 .write_count = sh_cmt_write32,
213         },
214         [SH_CMT0_RCAR_GEN2] = {
215                 .model = SH_CMT0_RCAR_GEN2,
216                 .channels_mask = 0x60,
217                 .width = 32,
218                 .overflow_bit = SH_CMT32_CMCSR_CMF,
219                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
220                 .read_control = sh_cmt_read32,
221                 .write_control = sh_cmt_write32,
222                 .read_count = sh_cmt_read32,
223                 .write_count = sh_cmt_write32,
224         },
225         [SH_CMT1_RCAR_GEN2] = {
226                 .model = SH_CMT1_RCAR_GEN2,
227                 .channels_mask = 0xff,
228                 .width = 32,
229                 .overflow_bit = SH_CMT32_CMCSR_CMF,
230                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
231                 .read_control = sh_cmt_read32,
232                 .write_control = sh_cmt_write32,
233                 .read_count = sh_cmt_read32,
234                 .write_count = sh_cmt_write32,
235         },
236 };
237
238 #define CMCSR 0 /* channel register */
239 #define CMCNT 1 /* channel register */
240 #define CMCOR 2 /* channel register */
241
242 #define CMCLKE  0x1000  /* CLK Enable Register (R-Car Gen2) */
243
244 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
245 {
246         if (ch->iostart)
247                 return ch->cmt->info->read_control(ch->iostart, 0);
248         else
249                 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
250 }
251
252 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
253 {
254         if (ch->iostart)
255                 ch->cmt->info->write_control(ch->iostart, 0, value);
256         else
257                 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
258 }
259
260 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
261 {
262         return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
263 }
264
265 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
266 {
267         ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
268 }
269
270 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
271 {
272         return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
273 }
274
275 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
276 {
277         ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
278 }
279
280 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
281 {
282         ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
283 }
284
285 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
286 {
287         u32 v1, v2, v3;
288         u32 o1, o2;
289
290         o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
291
292         /* Make sure the timer value is stable. Stolen from acpi_pm.c */
293         do {
294                 o2 = o1;
295                 v1 = sh_cmt_read_cmcnt(ch);
296                 v2 = sh_cmt_read_cmcnt(ch);
297                 v3 = sh_cmt_read_cmcnt(ch);
298                 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
299         } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
300                           || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
301
302         *has_wrapped = o1;
303         return v2;
304 }
305
306 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
307 {
308         unsigned long flags;
309         u32 value;
310
311         /* start stop register shared by multiple timer channels */
312         raw_spin_lock_irqsave(&ch->cmt->lock, flags);
313         value = sh_cmt_read_cmstr(ch);
314
315         if (start)
316                 value |= 1 << ch->timer_bit;
317         else
318                 value &= ~(1 << ch->timer_bit);
319
320         sh_cmt_write_cmstr(ch, value);
321         raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
322 }
323
324 static int sh_cmt_enable(struct sh_cmt_channel *ch)
325 {
326         int k, ret;
327
328         pm_runtime_get_sync(&ch->cmt->pdev->dev);
329         dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
330
331         /* enable clock */
332         ret = clk_enable(ch->cmt->clk);
333         if (ret) {
334                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
335                         ch->index);
336                 goto err0;
337         }
338
339         /* make sure channel is disabled */
340         sh_cmt_start_stop_ch(ch, 0);
341
342         /* configure channel, periodic mode and maximum timeout */
343         if (ch->cmt->info->width == 16) {
344                 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
345                                    SH_CMT16_CMCSR_CKS512);
346         } else {
347                 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
348                                    SH_CMT32_CMCSR_CMTOUT_IE |
349                                    SH_CMT32_CMCSR_CMR_IRQ |
350                                    SH_CMT32_CMCSR_CKS_RCLK8);
351         }
352
353         sh_cmt_write_cmcor(ch, 0xffffffff);
354         sh_cmt_write_cmcnt(ch, 0);
355
356         /*
357          * According to the sh73a0 user's manual, as CMCNT can be operated
358          * only by the RCLK (Pseudo 32 KHz), there's one restriction on
359          * modifying CMCNT register; two RCLK cycles are necessary before
360          * this register is either read or any modification of the value
361          * it holds is reflected in the LSI's actual operation.
362          *
363          * While at it, we're supposed to clear out the CMCNT as of this
364          * moment, so make sure it's processed properly here.  This will
365          * take RCLKx2 at maximum.
366          */
367         for (k = 0; k < 100; k++) {
368                 if (!sh_cmt_read_cmcnt(ch))
369                         break;
370                 udelay(1);
371         }
372
373         if (sh_cmt_read_cmcnt(ch)) {
374                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
375                         ch->index);
376                 ret = -ETIMEDOUT;
377                 goto err1;
378         }
379
380         /* enable channel */
381         sh_cmt_start_stop_ch(ch, 1);
382         return 0;
383  err1:
384         /* stop clock */
385         clk_disable(ch->cmt->clk);
386
387  err0:
388         return ret;
389 }
390
391 static void sh_cmt_disable(struct sh_cmt_channel *ch)
392 {
393         /* disable channel */
394         sh_cmt_start_stop_ch(ch, 0);
395
396         /* disable interrupts in CMT block */
397         sh_cmt_write_cmcsr(ch, 0);
398
399         /* stop clock */
400         clk_disable(ch->cmt->clk);
401
402         dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
403         pm_runtime_put(&ch->cmt->pdev->dev);
404 }
405
406 /* private flags */
407 #define FLAG_CLOCKEVENT (1 << 0)
408 #define FLAG_CLOCKSOURCE (1 << 1)
409 #define FLAG_REPROGRAM (1 << 2)
410 #define FLAG_SKIPEVENT (1 << 3)
411 #define FLAG_IRQCONTEXT (1 << 4)
412
413 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
414                                               int absolute)
415 {
416         u32 value = ch->next_match_value;
417         u32 new_match;
418         u32 delay = 0;
419         u32 now = 0;
420         u32 has_wrapped;
421
422         now = sh_cmt_get_counter(ch, &has_wrapped);
423         ch->flags |= FLAG_REPROGRAM; /* force reprogram */
424
425         if (has_wrapped) {
426                 /* we're competing with the interrupt handler.
427                  *  -> let the interrupt handler reprogram the timer.
428                  *  -> interrupt number two handles the event.
429                  */
430                 ch->flags |= FLAG_SKIPEVENT;
431                 return;
432         }
433
434         if (absolute)
435                 now = 0;
436
437         do {
438                 /* reprogram the timer hardware,
439                  * but don't save the new match value yet.
440                  */
441                 new_match = now + value + delay;
442                 if (new_match > ch->max_match_value)
443                         new_match = ch->max_match_value;
444
445                 sh_cmt_write_cmcor(ch, new_match);
446
447                 now = sh_cmt_get_counter(ch, &has_wrapped);
448                 if (has_wrapped && (new_match > ch->match_value)) {
449                         /* we are changing to a greater match value,
450                          * so this wrap must be caused by the counter
451                          * matching the old value.
452                          * -> first interrupt reprograms the timer.
453                          * -> interrupt number two handles the event.
454                          */
455                         ch->flags |= FLAG_SKIPEVENT;
456                         break;
457                 }
458
459                 if (has_wrapped) {
460                         /* we are changing to a smaller match value,
461                          * so the wrap must be caused by the counter
462                          * matching the new value.
463                          * -> save programmed match value.
464                          * -> let isr handle the event.
465                          */
466                         ch->match_value = new_match;
467                         break;
468                 }
469
470                 /* be safe: verify hardware settings */
471                 if (now < new_match) {
472                         /* timer value is below match value, all good.
473                          * this makes sure we won't miss any match events.
474                          * -> save programmed match value.
475                          * -> let isr handle the event.
476                          */
477                         ch->match_value = new_match;
478                         break;
479                 }
480
481                 /* the counter has reached a value greater
482                  * than our new match value. and since the
483                  * has_wrapped flag isn't set we must have
484                  * programmed a too close event.
485                  * -> increase delay and retry.
486                  */
487                 if (delay)
488                         delay <<= 1;
489                 else
490                         delay = 1;
491
492                 if (!delay)
493                         dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
494                                  ch->index);
495
496         } while (delay);
497 }
498
499 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
500 {
501         if (delta > ch->max_match_value)
502                 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
503                          ch->index);
504
505         ch->next_match_value = delta;
506         sh_cmt_clock_event_program_verify(ch, 0);
507 }
508
509 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
510 {
511         unsigned long flags;
512
513         raw_spin_lock_irqsave(&ch->lock, flags);
514         __sh_cmt_set_next(ch, delta);
515         raw_spin_unlock_irqrestore(&ch->lock, flags);
516 }
517
518 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
519 {
520         struct sh_cmt_channel *ch = dev_id;
521
522         /* clear flags */
523         sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
524                            ch->cmt->info->clear_bits);
525
526         /* update clock source counter to begin with if enabled
527          * the wrap flag should be cleared by the timer specific
528          * isr before we end up here.
529          */
530         if (ch->flags & FLAG_CLOCKSOURCE)
531                 ch->total_cycles += ch->match_value + 1;
532
533         if (!(ch->flags & FLAG_REPROGRAM))
534                 ch->next_match_value = ch->max_match_value;
535
536         ch->flags |= FLAG_IRQCONTEXT;
537
538         if (ch->flags & FLAG_CLOCKEVENT) {
539                 if (!(ch->flags & FLAG_SKIPEVENT)) {
540                         if (clockevent_state_oneshot(&ch->ced)) {
541                                 ch->next_match_value = ch->max_match_value;
542                                 ch->flags |= FLAG_REPROGRAM;
543                         }
544
545                         ch->ced.event_handler(&ch->ced);
546                 }
547         }
548
549         ch->flags &= ~FLAG_SKIPEVENT;
550
551         if (ch->flags & FLAG_REPROGRAM) {
552                 ch->flags &= ~FLAG_REPROGRAM;
553                 sh_cmt_clock_event_program_verify(ch, 1);
554
555                 if (ch->flags & FLAG_CLOCKEVENT)
556                         if ((clockevent_state_shutdown(&ch->ced))
557                             || (ch->match_value == ch->next_match_value))
558                                 ch->flags &= ~FLAG_REPROGRAM;
559         }
560
561         ch->flags &= ~FLAG_IRQCONTEXT;
562
563         return IRQ_HANDLED;
564 }
565
566 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
567 {
568         int ret = 0;
569         unsigned long flags;
570
571         raw_spin_lock_irqsave(&ch->lock, flags);
572
573         if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
574                 ret = sh_cmt_enable(ch);
575
576         if (ret)
577                 goto out;
578         ch->flags |= flag;
579
580         /* setup timeout if no clockevent */
581         if (ch->cmt->num_channels == 1 &&
582             flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
583                 __sh_cmt_set_next(ch, ch->max_match_value);
584  out:
585         raw_spin_unlock_irqrestore(&ch->lock, flags);
586
587         return ret;
588 }
589
590 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
591 {
592         unsigned long flags;
593         unsigned long f;
594
595         raw_spin_lock_irqsave(&ch->lock, flags);
596
597         f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
598         ch->flags &= ~flag;
599
600         if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
601                 sh_cmt_disable(ch);
602
603         /* adjust the timeout to maximum if only clocksource left */
604         if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
605                 __sh_cmt_set_next(ch, ch->max_match_value);
606
607         raw_spin_unlock_irqrestore(&ch->lock, flags);
608 }
609
610 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
611 {
612         return container_of(cs, struct sh_cmt_channel, cs);
613 }
614
615 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
616 {
617         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
618         u32 has_wrapped;
619
620         if (ch->cmt->num_channels == 1) {
621                 unsigned long flags;
622                 u64 value;
623                 u32 raw;
624
625                 raw_spin_lock_irqsave(&ch->lock, flags);
626                 value = ch->total_cycles;
627                 raw = sh_cmt_get_counter(ch, &has_wrapped);
628
629                 if (unlikely(has_wrapped))
630                         raw += ch->match_value + 1;
631                 raw_spin_unlock_irqrestore(&ch->lock, flags);
632
633                 return value + raw;
634         }
635
636         return sh_cmt_get_counter(ch, &has_wrapped);
637 }
638
639 static int sh_cmt_clocksource_enable(struct clocksource *cs)
640 {
641         int ret;
642         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
643
644         WARN_ON(ch->cs_enabled);
645
646         ch->total_cycles = 0;
647
648         ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
649         if (!ret)
650                 ch->cs_enabled = true;
651
652         return ret;
653 }
654
655 static void sh_cmt_clocksource_disable(struct clocksource *cs)
656 {
657         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
658
659         WARN_ON(!ch->cs_enabled);
660
661         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
662         ch->cs_enabled = false;
663 }
664
665 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
666 {
667         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
668
669         if (!ch->cs_enabled)
670                 return;
671
672         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
673         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
674 }
675
676 static void sh_cmt_clocksource_resume(struct clocksource *cs)
677 {
678         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
679
680         if (!ch->cs_enabled)
681                 return;
682
683         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
684         sh_cmt_start(ch, FLAG_CLOCKSOURCE);
685 }
686
687 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
688                                        const char *name)
689 {
690         struct clocksource *cs = &ch->cs;
691
692         cs->name = name;
693         cs->rating = 125;
694         cs->read = sh_cmt_clocksource_read;
695         cs->enable = sh_cmt_clocksource_enable;
696         cs->disable = sh_cmt_clocksource_disable;
697         cs->suspend = sh_cmt_clocksource_suspend;
698         cs->resume = sh_cmt_clocksource_resume;
699         cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
700         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
701
702         dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
703                  ch->index);
704
705         clocksource_register_hz(cs, ch->cmt->rate);
706         return 0;
707 }
708
709 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
710 {
711         return container_of(ced, struct sh_cmt_channel, ced);
712 }
713
714 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
715 {
716         sh_cmt_start(ch, FLAG_CLOCKEVENT);
717
718         if (periodic)
719                 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
720         else
721                 sh_cmt_set_next(ch, ch->max_match_value);
722 }
723
724 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
725 {
726         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
727
728         sh_cmt_stop(ch, FLAG_CLOCKEVENT);
729         return 0;
730 }
731
732 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
733                                         int periodic)
734 {
735         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
736
737         /* deal with old setting first */
738         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
739                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
740
741         dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
742                  ch->index, periodic ? "periodic" : "oneshot");
743         sh_cmt_clock_event_start(ch, periodic);
744         return 0;
745 }
746
747 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
748 {
749         return sh_cmt_clock_event_set_state(ced, 0);
750 }
751
752 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
753 {
754         return sh_cmt_clock_event_set_state(ced, 1);
755 }
756
757 static int sh_cmt_clock_event_next(unsigned long delta,
758                                    struct clock_event_device *ced)
759 {
760         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
761
762         BUG_ON(!clockevent_state_oneshot(ced));
763         if (likely(ch->flags & FLAG_IRQCONTEXT))
764                 ch->next_match_value = delta - 1;
765         else
766                 sh_cmt_set_next(ch, delta - 1);
767
768         return 0;
769 }
770
771 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
772 {
773         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
774
775         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
776         clk_unprepare(ch->cmt->clk);
777 }
778
779 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
780 {
781         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
782
783         clk_prepare(ch->cmt->clk);
784         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
785 }
786
787 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
788                                       const char *name)
789 {
790         struct clock_event_device *ced = &ch->ced;
791         int irq;
792         int ret;
793
794         irq = platform_get_irq(ch->cmt->pdev, ch->index);
795         if (irq < 0) {
796                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
797                         ch->index);
798                 return irq;
799         }
800
801         ret = request_irq(irq, sh_cmt_interrupt,
802                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
803                           dev_name(&ch->cmt->pdev->dev), ch);
804         if (ret) {
805                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
806                         ch->index, irq);
807                 return ret;
808         }
809
810         ced->name = name;
811         ced->features = CLOCK_EVT_FEAT_PERIODIC;
812         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
813         ced->rating = 125;
814         ced->cpumask = cpu_possible_mask;
815         ced->set_next_event = sh_cmt_clock_event_next;
816         ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
817         ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
818         ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
819         ced->suspend = sh_cmt_clock_event_suspend;
820         ced->resume = sh_cmt_clock_event_resume;
821
822         /* TODO: calculate good shift from rate and counter bit width */
823         ced->shift = 32;
824         ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
825         ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
826         ced->max_delta_ticks = ch->max_match_value;
827         ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
828         ced->min_delta_ticks = 0x1f;
829
830         dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
831                  ch->index);
832         clockevents_register_device(ced);
833
834         return 0;
835 }
836
837 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
838                            bool clockevent, bool clocksource)
839 {
840         int ret;
841
842         if (clockevent) {
843                 ch->cmt->has_clockevent = true;
844                 ret = sh_cmt_register_clockevent(ch, name);
845                 if (ret < 0)
846                         return ret;
847         }
848
849         if (clocksource) {
850                 ch->cmt->has_clocksource = true;
851                 sh_cmt_register_clocksource(ch, name);
852         }
853
854         return 0;
855 }
856
857 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
858                                 unsigned int hwidx, bool clockevent,
859                                 bool clocksource, struct sh_cmt_device *cmt)
860 {
861         u32 value;
862         int ret;
863
864         /* Skip unused channels. */
865         if (!clockevent && !clocksource)
866                 return 0;
867
868         ch->cmt = cmt;
869         ch->index = index;
870         ch->hwidx = hwidx;
871         ch->timer_bit = hwidx;
872
873         /*
874          * Compute the address of the channel control register block. For the
875          * timers with a per-channel start/stop register, compute its address
876          * as well.
877          */
878         switch (cmt->info->model) {
879         case SH_CMT_16BIT:
880                 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
881                 break;
882         case SH_CMT_32BIT:
883         case SH_CMT_48BIT:
884                 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
885                 break;
886         case SH_CMT0_RCAR_GEN2:
887         case SH_CMT1_RCAR_GEN2:
888                 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
889                 ch->ioctrl = ch->iostart + 0x10;
890                 ch->timer_bit = 0;
891
892                 /* Enable the clock supply to the channel */
893                 value = ioread32(cmt->mapbase + CMCLKE);
894                 value |= BIT(hwidx);
895                 iowrite32(value, cmt->mapbase + CMCLKE);
896                 break;
897         }
898
899         if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
900                 ch->max_match_value = ~0;
901         else
902                 ch->max_match_value = (1 << cmt->info->width) - 1;
903
904         ch->match_value = ch->max_match_value;
905         raw_spin_lock_init(&ch->lock);
906
907         ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
908                               clockevent, clocksource);
909         if (ret) {
910                 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
911                         ch->index);
912                 return ret;
913         }
914         ch->cs_enabled = false;
915
916         return 0;
917 }
918
919 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
920 {
921         struct resource *mem;
922
923         mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
924         if (!mem) {
925                 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
926                 return -ENXIO;
927         }
928
929         cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
930         if (cmt->mapbase == NULL) {
931                 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
932                 return -ENXIO;
933         }
934
935         return 0;
936 }
937
938 static const struct platform_device_id sh_cmt_id_table[] = {
939         { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
940         { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
941         { }
942 };
943 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
944
945 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
946         { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
947         {
948                 /* deprecated, preserved for backward compatibility */
949                 .compatible = "renesas,cmt-48-gen2",
950                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
951         },
952         { .compatible = "renesas,rcar-gen2-cmt0", .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2] },
953         { .compatible = "renesas,rcar-gen2-cmt1", .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2] },
954         { }
955 };
956 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
957
958 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
959 {
960         unsigned int mask;
961         unsigned int i;
962         int ret;
963
964         cmt->pdev = pdev;
965         raw_spin_lock_init(&cmt->lock);
966
967         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
968                 cmt->info = of_device_get_match_data(&pdev->dev);
969                 cmt->hw_channels = cmt->info->channels_mask;
970         } else if (pdev->dev.platform_data) {
971                 struct sh_timer_config *cfg = pdev->dev.platform_data;
972                 const struct platform_device_id *id = pdev->id_entry;
973
974                 cmt->info = (const struct sh_cmt_info *)id->driver_data;
975                 cmt->hw_channels = cfg->channels_mask;
976         } else {
977                 dev_err(&cmt->pdev->dev, "missing platform data\n");
978                 return -ENXIO;
979         }
980
981         /* Get hold of clock. */
982         cmt->clk = clk_get(&cmt->pdev->dev, "fck");
983         if (IS_ERR(cmt->clk)) {
984                 dev_err(&cmt->pdev->dev, "cannot get clock\n");
985                 return PTR_ERR(cmt->clk);
986         }
987
988         ret = clk_prepare(cmt->clk);
989         if (ret < 0)
990                 goto err_clk_put;
991
992         /* Determine clock rate. */
993         ret = clk_enable(cmt->clk);
994         if (ret < 0)
995                 goto err_clk_unprepare;
996
997         if (cmt->info->width == 16)
998                 cmt->rate = clk_get_rate(cmt->clk) / 512;
999         else
1000                 cmt->rate = clk_get_rate(cmt->clk) / 8;
1001
1002         /* Map the memory resource(s). */
1003         ret = sh_cmt_map_memory(cmt);
1004         if (ret < 0)
1005                 goto err_clk_disable;
1006
1007         /* Allocate and setup the channels. */
1008         cmt->num_channels = hweight8(cmt->hw_channels);
1009         cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1010                                 GFP_KERNEL);
1011         if (cmt->channels == NULL) {
1012                 ret = -ENOMEM;
1013                 goto err_unmap;
1014         }
1015
1016         /*
1017          * Use the first channel as a clock event device and the second channel
1018          * as a clock source. If only one channel is available use it for both.
1019          */
1020         for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1021                 unsigned int hwidx = ffs(mask) - 1;
1022                 bool clocksource = i == 1 || cmt->num_channels == 1;
1023                 bool clockevent = i == 0;
1024
1025                 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1026                                            clockevent, clocksource, cmt);
1027                 if (ret < 0)
1028                         goto err_unmap;
1029
1030                 mask &= ~(1 << hwidx);
1031         }
1032
1033         clk_disable(cmt->clk);
1034
1035         platform_set_drvdata(pdev, cmt);
1036
1037         return 0;
1038
1039 err_unmap:
1040         kfree(cmt->channels);
1041         iounmap(cmt->mapbase);
1042 err_clk_disable:
1043         clk_disable(cmt->clk);
1044 err_clk_unprepare:
1045         clk_unprepare(cmt->clk);
1046 err_clk_put:
1047         clk_put(cmt->clk);
1048         return ret;
1049 }
1050
1051 static int sh_cmt_probe(struct platform_device *pdev)
1052 {
1053         struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1054         int ret;
1055
1056         if (!is_early_platform_device(pdev)) {
1057                 pm_runtime_set_active(&pdev->dev);
1058                 pm_runtime_enable(&pdev->dev);
1059         }
1060
1061         if (cmt) {
1062                 dev_info(&pdev->dev, "kept as earlytimer\n");
1063                 goto out;
1064         }
1065
1066         cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1067         if (cmt == NULL)
1068                 return -ENOMEM;
1069
1070         ret = sh_cmt_setup(cmt, pdev);
1071         if (ret) {
1072                 kfree(cmt);
1073                 pm_runtime_idle(&pdev->dev);
1074                 return ret;
1075         }
1076         if (is_early_platform_device(pdev))
1077                 return 0;
1078
1079  out:
1080         if (cmt->has_clockevent || cmt->has_clocksource)
1081                 pm_runtime_irq_safe(&pdev->dev);
1082         else
1083                 pm_runtime_idle(&pdev->dev);
1084
1085         return 0;
1086 }
1087
1088 static int sh_cmt_remove(struct platform_device *pdev)
1089 {
1090         return -EBUSY; /* cannot unregister clockevent and clocksource */
1091 }
1092
1093 static struct platform_driver sh_cmt_device_driver = {
1094         .probe          = sh_cmt_probe,
1095         .remove         = sh_cmt_remove,
1096         .driver         = {
1097                 .name   = "sh_cmt",
1098                 .of_match_table = of_match_ptr(sh_cmt_of_table),
1099         },
1100         .id_table       = sh_cmt_id_table,
1101 };
1102
1103 static int __init sh_cmt_init(void)
1104 {
1105         return platform_driver_register(&sh_cmt_device_driver);
1106 }
1107
1108 static void __exit sh_cmt_exit(void)
1109 {
1110         platform_driver_unregister(&sh_cmt_device_driver);
1111 }
1112
1113 early_platform_init("earlytimer", &sh_cmt_device_driver);
1114 subsys_initcall(sh_cmt_init);
1115 module_exit(sh_cmt_exit);
1116
1117 MODULE_AUTHOR("Magnus Damm");
1118 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1119 MODULE_LICENSE("GPL v2");