GNU Linux-libre 4.14.290-gnu1
[releases.git] / drivers / clocksource / exynos_mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27 #include <linux/sched_clock.h>
28
29 #define EXYNOS4_MCTREG(x)               (x)
30 #define EXYNOS4_MCT_G_CNT_L             EXYNOS4_MCTREG(0x100)
31 #define EXYNOS4_MCT_G_CNT_U             EXYNOS4_MCTREG(0x104)
32 #define EXYNOS4_MCT_G_CNT_WSTAT         EXYNOS4_MCTREG(0x110)
33 #define EXYNOS4_MCT_G_COMP0_L           EXYNOS4_MCTREG(0x200)
34 #define EXYNOS4_MCT_G_COMP0_U           EXYNOS4_MCTREG(0x204)
35 #define EXYNOS4_MCT_G_COMP0_ADD_INCR    EXYNOS4_MCTREG(0x208)
36 #define EXYNOS4_MCT_G_TCON              EXYNOS4_MCTREG(0x240)
37 #define EXYNOS4_MCT_G_INT_CSTAT         EXYNOS4_MCTREG(0x244)
38 #define EXYNOS4_MCT_G_INT_ENB           EXYNOS4_MCTREG(0x248)
39 #define EXYNOS4_MCT_G_WSTAT             EXYNOS4_MCTREG(0x24C)
40 #define _EXYNOS4_MCT_L_BASE             EXYNOS4_MCTREG(0x300)
41 #define EXYNOS4_MCT_L_BASE(x)           (_EXYNOS4_MCT_L_BASE + (0x100 * x))
42 #define EXYNOS4_MCT_L_MASK              (0xffffff00)
43
44 #define MCT_L_TCNTB_OFFSET              (0x00)
45 #define MCT_L_ICNTB_OFFSET              (0x08)
46 #define MCT_L_TCON_OFFSET               (0x20)
47 #define MCT_L_INT_CSTAT_OFFSET          (0x30)
48 #define MCT_L_INT_ENB_OFFSET            (0x34)
49 #define MCT_L_WSTAT_OFFSET              (0x40)
50 #define MCT_G_TCON_START                (1 << 8)
51 #define MCT_G_TCON_COMP0_AUTO_INC       (1 << 1)
52 #define MCT_G_TCON_COMP0_ENABLE         (1 << 0)
53 #define MCT_L_TCON_INTERVAL_MODE        (1 << 2)
54 #define MCT_L_TCON_INT_START            (1 << 1)
55 #define MCT_L_TCON_TIMER_START          (1 << 0)
56
57 #define TICK_BASE_CNT   1
58
59 enum {
60         MCT_INT_SPI,
61         MCT_INT_PPI
62 };
63
64 enum {
65         MCT_G0_IRQ,
66         MCT_G1_IRQ,
67         MCT_G2_IRQ,
68         MCT_G3_IRQ,
69         MCT_L0_IRQ,
70         MCT_L1_IRQ,
71         MCT_L2_IRQ,
72         MCT_L3_IRQ,
73         MCT_L4_IRQ,
74         MCT_L5_IRQ,
75         MCT_L6_IRQ,
76         MCT_L7_IRQ,
77         MCT_NR_IRQS,
78 };
79
80 static void __iomem *reg_base;
81 static unsigned long clk_rate;
82 static unsigned int mct_int_type;
83 static int mct_irqs[MCT_NR_IRQS];
84
85 struct mct_clock_event_device {
86         struct clock_event_device evt;
87         unsigned long base;
88         char name[10];
89 };
90
91 static void exynos4_mct_write(unsigned int value, unsigned long offset)
92 {
93         unsigned long stat_addr;
94         u32 mask;
95         u32 i;
96
97         writel_relaxed(value, reg_base + offset);
98
99         if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
100                 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101                 switch (offset & ~EXYNOS4_MCT_L_MASK) {
102                 case MCT_L_TCON_OFFSET:
103                         mask = 1 << 3;          /* L_TCON write status */
104                         break;
105                 case MCT_L_ICNTB_OFFSET:
106                         mask = 1 << 1;          /* L_ICNTB write status */
107                         break;
108                 case MCT_L_TCNTB_OFFSET:
109                         mask = 1 << 0;          /* L_TCNTB write status */
110                         break;
111                 default:
112                         return;
113                 }
114         } else {
115                 switch (offset) {
116                 case EXYNOS4_MCT_G_TCON:
117                         stat_addr = EXYNOS4_MCT_G_WSTAT;
118                         mask = 1 << 16;         /* G_TCON write status */
119                         break;
120                 case EXYNOS4_MCT_G_COMP0_L:
121                         stat_addr = EXYNOS4_MCT_G_WSTAT;
122                         mask = 1 << 0;          /* G_COMP0_L write status */
123                         break;
124                 case EXYNOS4_MCT_G_COMP0_U:
125                         stat_addr = EXYNOS4_MCT_G_WSTAT;
126                         mask = 1 << 1;          /* G_COMP0_U write status */
127                         break;
128                 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
129                         stat_addr = EXYNOS4_MCT_G_WSTAT;
130                         mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
131                         break;
132                 case EXYNOS4_MCT_G_CNT_L:
133                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134                         mask = 1 << 0;          /* G_CNT_L write status */
135                         break;
136                 case EXYNOS4_MCT_G_CNT_U:
137                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138                         mask = 1 << 1;          /* G_CNT_U write status */
139                         break;
140                 default:
141                         return;
142                 }
143         }
144
145         /* Wait maximum 1 ms until written values are applied */
146         for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
147                 if (readl_relaxed(reg_base + stat_addr) & mask) {
148                         writel_relaxed(mask, reg_base + stat_addr);
149                         return;
150                 }
151
152         panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
153 }
154
155 /* Clocksource handling */
156 static void exynos4_mct_frc_start(void)
157 {
158         u32 reg;
159
160         reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
161         reg |= MCT_G_TCON_START;
162         exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163 }
164
165 /**
166  * exynos4_read_count_64 - Read all 64-bits of the global counter
167  *
168  * This will read all 64-bits of the global counter taking care to make sure
169  * that the upper and lower half match.  Note that reading the MCT can be quite
170  * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
171  * only) version when possible.
172  *
173  * Returns the number of cycles in the global counter.
174  */
175 static u64 exynos4_read_count_64(void)
176 {
177         unsigned int lo, hi;
178         u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
179
180         do {
181                 hi = hi2;
182                 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
183                 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
184         } while (hi != hi2);
185
186         return ((u64)hi << 32) | lo;
187 }
188
189 /**
190  * exynos4_read_count_32 - Read the lower 32-bits of the global counter
191  *
192  * This will read just the lower 32-bits of the global counter.  This is marked
193  * as notrace so it can be used by the scheduler clock.
194  *
195  * Returns the number of cycles in the global counter (lower 32 bits).
196  */
197 static u32 notrace exynos4_read_count_32(void)
198 {
199         return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
200 }
201
202 static u64 exynos4_frc_read(struct clocksource *cs)
203 {
204         return exynos4_read_count_32();
205 }
206
207 static void exynos4_frc_resume(struct clocksource *cs)
208 {
209         exynos4_mct_frc_start();
210 }
211
212 static struct clocksource mct_frc = {
213         .name           = "mct-frc",
214         .rating         = 450,  /* use value higher than ARM arch timer */
215         .read           = exynos4_frc_read,
216         .mask           = CLOCKSOURCE_MASK(32),
217         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
218         .resume         = exynos4_frc_resume,
219 };
220
221 static u64 notrace exynos4_read_sched_clock(void)
222 {
223         return exynos4_read_count_32();
224 }
225
226 #if defined(CONFIG_ARM)
227 static struct delay_timer exynos4_delay_timer;
228
229 static cycles_t exynos4_read_current_timer(void)
230 {
231         BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
232                          "cycles_t needs to move to 32-bit for ARM64 usage");
233         return exynos4_read_count_32();
234 }
235 #endif
236
237 static int __init exynos4_clocksource_init(void)
238 {
239         exynos4_mct_frc_start();
240
241 #if defined(CONFIG_ARM)
242         exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
243         exynos4_delay_timer.freq = clk_rate;
244         register_current_timer_delay(&exynos4_delay_timer);
245 #endif
246
247         if (clocksource_register_hz(&mct_frc, clk_rate))
248                 panic("%s: can't register clocksource\n", mct_frc.name);
249
250         sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
251
252         return 0;
253 }
254
255 static void exynos4_mct_comp0_stop(void)
256 {
257         unsigned int tcon;
258
259         tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
260         tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
261
262         exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
263         exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
264 }
265
266 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
267 {
268         unsigned int tcon;
269         u64 comp_cycle;
270
271         tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
272
273         if (periodic) {
274                 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
275                 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
276         }
277
278         comp_cycle = exynos4_read_count_64() + cycles;
279         exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
280         exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
281
282         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
283
284         tcon |= MCT_G_TCON_COMP0_ENABLE;
285         exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
286 }
287
288 static int exynos4_comp_set_next_event(unsigned long cycles,
289                                        struct clock_event_device *evt)
290 {
291         exynos4_mct_comp0_start(false, cycles);
292
293         return 0;
294 }
295
296 static int mct_set_state_shutdown(struct clock_event_device *evt)
297 {
298         exynos4_mct_comp0_stop();
299         return 0;
300 }
301
302 static int mct_set_state_periodic(struct clock_event_device *evt)
303 {
304         unsigned long cycles_per_jiffy;
305
306         cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
307                             >> evt->shift);
308         exynos4_mct_comp0_stop();
309         exynos4_mct_comp0_start(true, cycles_per_jiffy);
310         return 0;
311 }
312
313 static struct clock_event_device mct_comp_device = {
314         .name                   = "mct-comp",
315         .features               = CLOCK_EVT_FEAT_PERIODIC |
316                                   CLOCK_EVT_FEAT_ONESHOT,
317         .rating                 = 250,
318         .set_next_event         = exynos4_comp_set_next_event,
319         .set_state_periodic     = mct_set_state_periodic,
320         .set_state_shutdown     = mct_set_state_shutdown,
321         .set_state_oneshot      = mct_set_state_shutdown,
322         .set_state_oneshot_stopped = mct_set_state_shutdown,
323         .tick_resume            = mct_set_state_shutdown,
324 };
325
326 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
327 {
328         struct clock_event_device *evt = dev_id;
329
330         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
331
332         evt->event_handler(evt);
333
334         return IRQ_HANDLED;
335 }
336
337 static struct irqaction mct_comp_event_irq = {
338         .name           = "mct_comp_irq",
339         .flags          = IRQF_TIMER | IRQF_IRQPOLL,
340         .handler        = exynos4_mct_comp_isr,
341         .dev_id         = &mct_comp_device,
342 };
343
344 static int exynos4_clockevent_init(void)
345 {
346         mct_comp_device.cpumask = cpumask_of(0);
347         clockevents_config_and_register(&mct_comp_device, clk_rate,
348                                         0xf, 0xffffffff);
349         setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
350
351         return 0;
352 }
353
354 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
355
356 /* Clock event handling */
357 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
358 {
359         unsigned long tmp;
360         unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
361         unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
362
363         tmp = readl_relaxed(reg_base + offset);
364         if (tmp & mask) {
365                 tmp &= ~mask;
366                 exynos4_mct_write(tmp, offset);
367         }
368 }
369
370 static void exynos4_mct_tick_start(unsigned long cycles,
371                                    struct mct_clock_event_device *mevt)
372 {
373         unsigned long tmp;
374
375         exynos4_mct_tick_stop(mevt);
376
377         tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
378
379         /* update interrupt count buffer */
380         exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
381
382         /* enable MCT tick interrupt */
383         exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
384
385         tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
386         tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
387                MCT_L_TCON_INTERVAL_MODE;
388         exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
389 }
390
391 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
392 {
393         /* Clear the MCT tick interrupt */
394         if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
395                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
396 }
397
398 static int exynos4_tick_set_next_event(unsigned long cycles,
399                                        struct clock_event_device *evt)
400 {
401         struct mct_clock_event_device *mevt;
402
403         mevt = container_of(evt, struct mct_clock_event_device, evt);
404         exynos4_mct_tick_start(cycles, mevt);
405         return 0;
406 }
407
408 static int set_state_shutdown(struct clock_event_device *evt)
409 {
410         struct mct_clock_event_device *mevt;
411
412         mevt = container_of(evt, struct mct_clock_event_device, evt);
413         exynos4_mct_tick_stop(mevt);
414         exynos4_mct_tick_clear(mevt);
415         return 0;
416 }
417
418 static int set_state_periodic(struct clock_event_device *evt)
419 {
420         struct mct_clock_event_device *mevt;
421         unsigned long cycles_per_jiffy;
422
423         mevt = container_of(evt, struct mct_clock_event_device, evt);
424         cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
425                             >> evt->shift);
426         exynos4_mct_tick_stop(mevt);
427         exynos4_mct_tick_start(cycles_per_jiffy, mevt);
428         return 0;
429 }
430
431 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
432 {
433         struct mct_clock_event_device *mevt = dev_id;
434         struct clock_event_device *evt = &mevt->evt;
435
436         /*
437          * This is for supporting oneshot mode.
438          * Mct would generate interrupt periodically
439          * without explicit stopping.
440          */
441         if (!clockevent_state_periodic(&mevt->evt))
442                 exynos4_mct_tick_stop(mevt);
443
444         exynos4_mct_tick_clear(mevt);
445
446         evt->event_handler(evt);
447
448         return IRQ_HANDLED;
449 }
450
451 static int exynos4_mct_starting_cpu(unsigned int cpu)
452 {
453         struct mct_clock_event_device *mevt =
454                 per_cpu_ptr(&percpu_mct_tick, cpu);
455         struct clock_event_device *evt = &mevt->evt;
456
457         mevt->base = EXYNOS4_MCT_L_BASE(cpu);
458         snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
459
460         evt->name = mevt->name;
461         evt->cpumask = cpumask_of(cpu);
462         evt->set_next_event = exynos4_tick_set_next_event;
463         evt->set_state_periodic = set_state_periodic;
464         evt->set_state_shutdown = set_state_shutdown;
465         evt->set_state_oneshot = set_state_shutdown;
466         evt->set_state_oneshot_stopped = set_state_shutdown;
467         evt->tick_resume = set_state_shutdown;
468         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
469         evt->rating = 500;      /* use value higher than ARM arch timer */
470
471         exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
472
473         if (mct_int_type == MCT_INT_SPI) {
474
475                 if (evt->irq == -1)
476                         return -EIO;
477
478                 irq_force_affinity(evt->irq, cpumask_of(cpu));
479                 enable_irq(evt->irq);
480         } else {
481                 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
482         }
483         clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
484                                         0xf, 0x7fffffff);
485
486         return 0;
487 }
488
489 static int exynos4_mct_dying_cpu(unsigned int cpu)
490 {
491         struct mct_clock_event_device *mevt =
492                 per_cpu_ptr(&percpu_mct_tick, cpu);
493         struct clock_event_device *evt = &mevt->evt;
494
495         evt->set_state_shutdown(evt);
496         if (mct_int_type == MCT_INT_SPI) {
497                 if (evt->irq != -1)
498                         disable_irq_nosync(evt->irq);
499                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
500         } else {
501                 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
502         }
503         return 0;
504 }
505
506 static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
507 {
508         int err, cpu;
509         struct clk *mct_clk, *tick_clk;
510
511         tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
512                                 clk_get(NULL, "fin_pll");
513         if (IS_ERR(tick_clk))
514                 panic("%s: unable to determine tick clock rate\n", __func__);
515         clk_rate = clk_get_rate(tick_clk);
516
517         mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
518         if (IS_ERR(mct_clk))
519                 panic("%s: unable to retrieve mct clock instance\n", __func__);
520         clk_prepare_enable(mct_clk);
521
522         reg_base = base;
523         if (!reg_base)
524                 panic("%s: unable to ioremap mct address space\n", __func__);
525
526         if (mct_int_type == MCT_INT_PPI) {
527
528                 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
529                                          exynos4_mct_tick_isr, "MCT",
530                                          &percpu_mct_tick);
531                 WARN(err, "MCT: can't request IRQ %d (%d)\n",
532                      mct_irqs[MCT_L0_IRQ], err);
533         } else {
534                 for_each_possible_cpu(cpu) {
535                         int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
536                         struct mct_clock_event_device *pcpu_mevt =
537                                 per_cpu_ptr(&percpu_mct_tick, cpu);
538
539                         pcpu_mevt->evt.irq = -1;
540
541                         irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
542                         if (request_irq(mct_irq,
543                                         exynos4_mct_tick_isr,
544                                         IRQF_TIMER | IRQF_NOBALANCING,
545                                         pcpu_mevt->name, pcpu_mevt)) {
546                                 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
547                                                                         cpu);
548
549                                 continue;
550                         }
551                         pcpu_mevt->evt.irq = mct_irq;
552                 }
553         }
554
555         /* Install hotplug callbacks which configure the timer on this CPU */
556         err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
557                                 "clockevents/exynos4/mct_timer:starting",
558                                 exynos4_mct_starting_cpu,
559                                 exynos4_mct_dying_cpu);
560         if (err)
561                 goto out_irq;
562
563         return 0;
564
565 out_irq:
566         if (mct_int_type == MCT_INT_PPI) {
567                 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
568         } else {
569                 for_each_possible_cpu(cpu) {
570                         struct mct_clock_event_device *pcpu_mevt =
571                                 per_cpu_ptr(&percpu_mct_tick, cpu);
572
573                         if (pcpu_mevt->evt.irq != -1) {
574                                 free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
575                                 pcpu_mevt->evt.irq = -1;
576                         }
577                 }
578         }
579         return err;
580 }
581
582 static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
583 {
584         u32 nr_irqs, i;
585         int ret;
586
587         mct_int_type = int_type;
588
589         /* This driver uses only one global timer interrupt */
590         mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
591
592         /*
593          * Find out the number of local irqs specified. The local
594          * timer irqs are specified after the four global timer
595          * irqs are specified.
596          */
597 #ifdef CONFIG_OF
598         nr_irqs = of_irq_count(np);
599 #else
600         nr_irqs = 0;
601 #endif
602         for (i = MCT_L0_IRQ; i < nr_irqs; i++)
603                 mct_irqs[i] = irq_of_parse_and_map(np, i);
604
605         ret = exynos4_timer_resources(np, of_iomap(np, 0));
606         if (ret)
607                 return ret;
608
609         ret = exynos4_clocksource_init();
610         if (ret)
611                 return ret;
612
613         return exynos4_clockevent_init();
614 }
615
616
617 static int __init mct_init_spi(struct device_node *np)
618 {
619         return mct_init_dt(np, MCT_INT_SPI);
620 }
621
622 static int __init mct_init_ppi(struct device_node *np)
623 {
624         return mct_init_dt(np, MCT_INT_PPI);
625 }
626 TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
627 TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);