GNU Linux-libre 5.4.200-gnu1
[releases.git] / drivers / clocksource / arm_arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8
9 #define pr_fmt(fmt)     "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
27
28 #include <asm/arch_timer.h>
29 #include <asm/virt.h>
30
31 #include <clocksource/arm_arch_timer.h>
32
33 #define CNTTIDR         0x08
34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
35
36 #define CNTACR(n)       (0x40 + ((n) * 4))
37 #define CNTACR_RPCT     BIT(0)
38 #define CNTACR_RVCT     BIT(1)
39 #define CNTACR_RFRQ     BIT(2)
40 #define CNTACR_RVOFF    BIT(3)
41 #define CNTACR_RWVT     BIT(4)
42 #define CNTACR_RWPT     BIT(5)
43
44 #define CNTVCT_LO       0x08
45 #define CNTVCT_HI       0x0c
46 #define CNTFRQ          0x10
47 #define CNTP_TVAL       0x28
48 #define CNTP_CTL        0x2c
49 #define CNTV_TVAL       0x38
50 #define CNTV_CTL        0x3c
51
52 static unsigned arch_timers_present __initdata;
53
54 static void __iomem *arch_counter_base;
55
56 struct arch_timer {
57         void __iomem *base;
58         struct clock_event_device evt;
59 };
60
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
62
63 static u32 arch_timer_rate;
64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
65
66 static struct clock_event_device __percpu *arch_timer_evt;
67
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
71 static bool arch_counter_suspend_stop;
72 static enum vdso_arch_clockmode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
73
74 static cpumask_t evtstrm_available = CPU_MASK_NONE;
75 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
76
77 static int __init early_evtstrm_cfg(char *buf)
78 {
79         return strtobool(buf, &evtstrm_enable);
80 }
81 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
82
83 /*
84  * Architected system timer support.
85  */
86
87 static __always_inline
88 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
89                           struct clock_event_device *clk)
90 {
91         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
92                 struct arch_timer *timer = to_arch_timer(clk);
93                 switch (reg) {
94                 case ARCH_TIMER_REG_CTRL:
95                         writel_relaxed(val, timer->base + CNTP_CTL);
96                         break;
97                 case ARCH_TIMER_REG_TVAL:
98                         writel_relaxed(val, timer->base + CNTP_TVAL);
99                         break;
100                 }
101         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
102                 struct arch_timer *timer = to_arch_timer(clk);
103                 switch (reg) {
104                 case ARCH_TIMER_REG_CTRL:
105                         writel_relaxed(val, timer->base + CNTV_CTL);
106                         break;
107                 case ARCH_TIMER_REG_TVAL:
108                         writel_relaxed(val, timer->base + CNTV_TVAL);
109                         break;
110                 }
111         } else {
112                 arch_timer_reg_write_cp15(access, reg, val);
113         }
114 }
115
116 static __always_inline
117 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
118                         struct clock_event_device *clk)
119 {
120         u32 val;
121
122         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
123                 struct arch_timer *timer = to_arch_timer(clk);
124                 switch (reg) {
125                 case ARCH_TIMER_REG_CTRL:
126                         val = readl_relaxed(timer->base + CNTP_CTL);
127                         break;
128                 case ARCH_TIMER_REG_TVAL:
129                         val = readl_relaxed(timer->base + CNTP_TVAL);
130                         break;
131                 }
132         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
133                 struct arch_timer *timer = to_arch_timer(clk);
134                 switch (reg) {
135                 case ARCH_TIMER_REG_CTRL:
136                         val = readl_relaxed(timer->base + CNTV_CTL);
137                         break;
138                 case ARCH_TIMER_REG_TVAL:
139                         val = readl_relaxed(timer->base + CNTV_TVAL);
140                         break;
141                 }
142         } else {
143                 val = arch_timer_reg_read_cp15(access, reg);
144         }
145
146         return val;
147 }
148
149 static notrace u64 arch_counter_get_cntpct_stable(void)
150 {
151         return __arch_counter_get_cntpct_stable();
152 }
153
154 static notrace u64 arch_counter_get_cntpct(void)
155 {
156         return __arch_counter_get_cntpct();
157 }
158
159 static notrace u64 arch_counter_get_cntvct_stable(void)
160 {
161         return __arch_counter_get_cntvct_stable();
162 }
163
164 static notrace u64 arch_counter_get_cntvct(void)
165 {
166         return __arch_counter_get_cntvct();
167 }
168
169 /*
170  * Default to cp15 based access because arm64 uses this function for
171  * sched_clock() before DT is probed and the cp15 method is guaranteed
172  * to exist on arm64. arm doesn't use this before DT is probed so even
173  * if we don't have the cp15 accessors we won't have a problem.
174  */
175 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
176 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
177
178 static u64 arch_counter_read(struct clocksource *cs)
179 {
180         return arch_timer_read_counter();
181 }
182
183 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
184 {
185         return arch_timer_read_counter();
186 }
187
188 static struct clocksource clocksource_counter = {
189         .name   = "arch_sys_counter",
190         .rating = 400,
191         .read   = arch_counter_read,
192         .mask   = CLOCKSOURCE_MASK(56),
193         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
194 };
195
196 static struct cyclecounter cyclecounter __ro_after_init = {
197         .read   = arch_counter_read_cc,
198         .mask   = CLOCKSOURCE_MASK(56),
199 };
200
201 struct ate_acpi_oem_info {
202         char oem_id[ACPI_OEM_ID_SIZE + 1];
203         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
204         u32 oem_revision;
205 };
206
207 #ifdef CONFIG_FSL_ERRATUM_A008585
208 /*
209  * The number of retries is an arbitrary value well beyond the highest number
210  * of iterations the loop has been observed to take.
211  */
212 #define __fsl_a008585_read_reg(reg) ({                  \
213         u64 _old, _new;                                 \
214         int _retries = 200;                             \
215                                                         \
216         do {                                            \
217                 _old = read_sysreg(reg);                \
218                 _new = read_sysreg(reg);                \
219                 _retries--;                             \
220         } while (unlikely(_old != _new) && _retries);   \
221                                                         \
222         WARN_ON_ONCE(!_retries);                        \
223         _new;                                           \
224 })
225
226 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
227 {
228         return __fsl_a008585_read_reg(cntp_tval_el0);
229 }
230
231 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
232 {
233         return __fsl_a008585_read_reg(cntv_tval_el0);
234 }
235
236 static u64 notrace fsl_a008585_read_cntpct_el0(void)
237 {
238         return __fsl_a008585_read_reg(cntpct_el0);
239 }
240
241 static u64 notrace fsl_a008585_read_cntvct_el0(void)
242 {
243         return __fsl_a008585_read_reg(cntvct_el0);
244 }
245 #endif
246
247 #ifdef CONFIG_HISILICON_ERRATUM_161010101
248 /*
249  * Verify whether the value of the second read is larger than the first by
250  * less than 32 is the only way to confirm the value is correct, so clear the
251  * lower 5 bits to check whether the difference is greater than 32 or not.
252  * Theoretically the erratum should not occur more than twice in succession
253  * when reading the system counter, but it is possible that some interrupts
254  * may lead to more than twice read errors, triggering the warning, so setting
255  * the number of retries far beyond the number of iterations the loop has been
256  * observed to take.
257  */
258 #define __hisi_161010101_read_reg(reg) ({                               \
259         u64 _old, _new;                                         \
260         int _retries = 50;                                      \
261                                                                 \
262         do {                                                    \
263                 _old = read_sysreg(reg);                        \
264                 _new = read_sysreg(reg);                        \
265                 _retries--;                                     \
266         } while (unlikely((_new - _old) >> 5) && _retries);     \
267                                                                 \
268         WARN_ON_ONCE(!_retries);                                \
269         _new;                                                   \
270 })
271
272 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
273 {
274         return __hisi_161010101_read_reg(cntp_tval_el0);
275 }
276
277 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
278 {
279         return __hisi_161010101_read_reg(cntv_tval_el0);
280 }
281
282 static u64 notrace hisi_161010101_read_cntpct_el0(void)
283 {
284         return __hisi_161010101_read_reg(cntpct_el0);
285 }
286
287 static u64 notrace hisi_161010101_read_cntvct_el0(void)
288 {
289         return __hisi_161010101_read_reg(cntvct_el0);
290 }
291
292 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
293         /*
294          * Note that trailing spaces are required to properly match
295          * the OEM table information.
296          */
297         {
298                 .oem_id         = "HISI  ",
299                 .oem_table_id   = "HIP05   ",
300                 .oem_revision   = 0,
301         },
302         {
303                 .oem_id         = "HISI  ",
304                 .oem_table_id   = "HIP06   ",
305                 .oem_revision   = 0,
306         },
307         {
308                 .oem_id         = "HISI  ",
309                 .oem_table_id   = "HIP07   ",
310                 .oem_revision   = 0,
311         },
312         { /* Sentinel indicating the end of the OEM array */ },
313 };
314 #endif
315
316 #ifdef CONFIG_ARM64_ERRATUM_858921
317 static u64 notrace arm64_858921_read_cntpct_el0(void)
318 {
319         u64 old, new;
320
321         old = read_sysreg(cntpct_el0);
322         new = read_sysreg(cntpct_el0);
323         return (((old ^ new) >> 32) & 1) ? old : new;
324 }
325
326 static u64 notrace arm64_858921_read_cntvct_el0(void)
327 {
328         u64 old, new;
329
330         old = read_sysreg(cntvct_el0);
331         new = read_sysreg(cntvct_el0);
332         return (((old ^ new) >> 32) & 1) ? old : new;
333 }
334 #endif
335
336 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
337 /*
338  * The low bits of the counter registers are indeterminate while bit 10 or
339  * greater is rolling over. Since the counter value can jump both backward
340  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
341  * with all ones or all zeros in the low bits. Bound the loop by the maximum
342  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
343  */
344 #define __sun50i_a64_read_reg(reg) ({                                   \
345         u64 _val;                                                       \
346         int _retries = 150;                                             \
347                                                                         \
348         do {                                                            \
349                 _val = read_sysreg(reg);                                \
350                 _retries--;                                             \
351         } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);        \
352                                                                         \
353         WARN_ON_ONCE(!_retries);                                        \
354         _val;                                                           \
355 })
356
357 static u64 notrace sun50i_a64_read_cntpct_el0(void)
358 {
359         return __sun50i_a64_read_reg(cntpct_el0);
360 }
361
362 static u64 notrace sun50i_a64_read_cntvct_el0(void)
363 {
364         return __sun50i_a64_read_reg(cntvct_el0);
365 }
366
367 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
368 {
369         return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
370 }
371
372 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
373 {
374         return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
375 }
376 #endif
377
378 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
379 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
380 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
381
382 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
383
384 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
385                                                 struct clock_event_device *clk)
386 {
387         unsigned long ctrl;
388         u64 cval;
389
390         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
391         ctrl |= ARCH_TIMER_CTRL_ENABLE;
392         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
393
394         if (access == ARCH_TIMER_PHYS_ACCESS) {
395                 cval = evt + arch_counter_get_cntpct_stable();
396                 write_sysreg(cval, cntp_cval_el0);
397         } else {
398                 cval = evt + arch_counter_get_cntvct_stable();
399                 write_sysreg(cval, cntv_cval_el0);
400         }
401
402         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
403 }
404
405 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
406                                             struct clock_event_device *clk)
407 {
408         erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
409         return 0;
410 }
411
412 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
413                                             struct clock_event_device *clk)
414 {
415         erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
416         return 0;
417 }
418
419 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
420 #ifdef CONFIG_FSL_ERRATUM_A008585
421         {
422                 .match_type = ate_match_dt,
423                 .id = "fsl,erratum-a008585",
424                 .desc = "Freescale erratum a005858",
425                 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
426                 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
427                 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
428                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
429                 .set_next_event_phys = erratum_set_next_event_tval_phys,
430                 .set_next_event_virt = erratum_set_next_event_tval_virt,
431         },
432 #endif
433 #ifdef CONFIG_HISILICON_ERRATUM_161010101
434         {
435                 .match_type = ate_match_dt,
436                 .id = "hisilicon,erratum-161010101",
437                 .desc = "HiSilicon erratum 161010101",
438                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
439                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
440                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
441                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
442                 .set_next_event_phys = erratum_set_next_event_tval_phys,
443                 .set_next_event_virt = erratum_set_next_event_tval_virt,
444         },
445         {
446                 .match_type = ate_match_acpi_oem_info,
447                 .id = hisi_161010101_oem_info,
448                 .desc = "HiSilicon erratum 161010101",
449                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
450                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
451                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
452                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
453                 .set_next_event_phys = erratum_set_next_event_tval_phys,
454                 .set_next_event_virt = erratum_set_next_event_tval_virt,
455         },
456 #endif
457 #ifdef CONFIG_ARM64_ERRATUM_858921
458         {
459                 .match_type = ate_match_local_cap_id,
460                 .id = (void *)ARM64_WORKAROUND_858921,
461                 .desc = "ARM erratum 858921",
462                 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
463                 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
464         },
465 #endif
466 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
467         {
468                 .match_type = ate_match_dt,
469                 .id = "allwinner,erratum-unknown1",
470                 .desc = "Allwinner erratum UNKNOWN1",
471                 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
472                 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
473                 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
474                 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
475                 .set_next_event_phys = erratum_set_next_event_tval_phys,
476                 .set_next_event_virt = erratum_set_next_event_tval_virt,
477         },
478 #endif
479 #ifdef CONFIG_ARM64_ERRATUM_1418040
480         {
481                 .match_type = ate_match_local_cap_id,
482                 .id = (void *)ARM64_WORKAROUND_1418040,
483                 .desc = "ARM erratum 1418040",
484                 .disable_compat_vdso = true,
485         },
486 #endif
487 };
488
489 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
490                                const void *);
491
492 static
493 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
494                                  const void *arg)
495 {
496         const struct device_node *np = arg;
497
498         return of_property_read_bool(np, wa->id);
499 }
500
501 static
502 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
503                                         const void *arg)
504 {
505         return this_cpu_has_cap((uintptr_t)wa->id);
506 }
507
508
509 static
510 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
511                                        const void *arg)
512 {
513         static const struct ate_acpi_oem_info empty_oem_info = {};
514         const struct ate_acpi_oem_info *info = wa->id;
515         const struct acpi_table_header *table = arg;
516
517         /* Iterate over the ACPI OEM info array, looking for a match */
518         while (memcmp(info, &empty_oem_info, sizeof(*info))) {
519                 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
520                     !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
521                     info->oem_revision == table->oem_revision)
522                         return true;
523
524                 info++;
525         }
526
527         return false;
528 }
529
530 static const struct arch_timer_erratum_workaround *
531 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
532                           ate_match_fn_t match_fn,
533                           void *arg)
534 {
535         int i;
536
537         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
538                 if (ool_workarounds[i].match_type != type)
539                         continue;
540
541                 if (match_fn(&ool_workarounds[i], arg))
542                         return &ool_workarounds[i];
543         }
544
545         return NULL;
546 }
547
548 static
549 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
550                                   bool local)
551 {
552         int i;
553
554         if (local) {
555                 __this_cpu_write(timer_unstable_counter_workaround, wa);
556         } else {
557                 for_each_possible_cpu(i)
558                         per_cpu(timer_unstable_counter_workaround, i) = wa;
559         }
560
561         if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
562                 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
563
564         /*
565          * Don't use the vdso fastpath if errata require using the
566          * out-of-line counter accessor. We may change our mind pretty
567          * late in the game (with a per-CPU erratum, for example), so
568          * change both the default value and the vdso itself.
569          */
570         if (wa->read_cntvct_el0) {
571                 clocksource_counter.archdata.clock_mode = VDSO_CLOCKMODE_NONE;
572                 vdso_default = VDSO_CLOCKMODE_NONE;
573         } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
574                 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
575                 clocksource_counter.archdata.clock_mode = vdso_default;
576         }
577 }
578
579 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
580                                             void *arg)
581 {
582         const struct arch_timer_erratum_workaround *wa, *__wa;
583         ate_match_fn_t match_fn = NULL;
584         bool local = false;
585
586         switch (type) {
587         case ate_match_dt:
588                 match_fn = arch_timer_check_dt_erratum;
589                 break;
590         case ate_match_local_cap_id:
591                 match_fn = arch_timer_check_local_cap_erratum;
592                 local = true;
593                 break;
594         case ate_match_acpi_oem_info:
595                 match_fn = arch_timer_check_acpi_oem_erratum;
596                 break;
597         default:
598                 WARN_ON(1);
599                 return;
600         }
601
602         wa = arch_timer_iterate_errata(type, match_fn, arg);
603         if (!wa)
604                 return;
605
606         __wa = __this_cpu_read(timer_unstable_counter_workaround);
607         if (__wa && wa != __wa)
608                 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
609                         wa->desc, __wa->desc);
610
611         if (__wa)
612                 return;
613
614         arch_timer_enable_workaround(wa, local);
615         pr_info("Enabling %s workaround for %s\n",
616                 local ? "local" : "global", wa->desc);
617 }
618
619 static bool arch_timer_this_cpu_has_cntvct_wa(void)
620 {
621         return has_erratum_handler(read_cntvct_el0);
622 }
623
624 static bool arch_timer_counter_has_wa(void)
625 {
626         return atomic_read(&timer_unstable_counter_workaround_in_use);
627 }
628 #else
629 #define arch_timer_check_ool_workaround(t,a)            do { } while(0)
630 #define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
631 #define arch_timer_counter_has_wa()                     ({false;})
632 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
633
634 static __always_inline irqreturn_t timer_handler(const int access,
635                                         struct clock_event_device *evt)
636 {
637         unsigned long ctrl;
638
639         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
640         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
641                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
642                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
643                 evt->event_handler(evt);
644                 return IRQ_HANDLED;
645         }
646
647         return IRQ_NONE;
648 }
649
650 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
651 {
652         struct clock_event_device *evt = dev_id;
653
654         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
655 }
656
657 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
658 {
659         struct clock_event_device *evt = dev_id;
660
661         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
662 }
663
664 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
665 {
666         struct clock_event_device *evt = dev_id;
667
668         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
669 }
670
671 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
672 {
673         struct clock_event_device *evt = dev_id;
674
675         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
676 }
677
678 static __always_inline int timer_shutdown(const int access,
679                                           struct clock_event_device *clk)
680 {
681         unsigned long ctrl;
682
683         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
684         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
685         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
686
687         return 0;
688 }
689
690 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
691 {
692         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
693 }
694
695 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
696 {
697         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
698 }
699
700 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
701 {
702         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
703 }
704
705 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
706 {
707         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
708 }
709
710 static __always_inline void set_next_event(const int access, unsigned long evt,
711                                            struct clock_event_device *clk)
712 {
713         unsigned long ctrl;
714         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
715         ctrl |= ARCH_TIMER_CTRL_ENABLE;
716         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
717         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
718         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
719 }
720
721 static int arch_timer_set_next_event_virt(unsigned long evt,
722                                           struct clock_event_device *clk)
723 {
724         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
725         return 0;
726 }
727
728 static int arch_timer_set_next_event_phys(unsigned long evt,
729                                           struct clock_event_device *clk)
730 {
731         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
732         return 0;
733 }
734
735 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
736                                               struct clock_event_device *clk)
737 {
738         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
739         return 0;
740 }
741
742 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
743                                               struct clock_event_device *clk)
744 {
745         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
746         return 0;
747 }
748
749 static void __arch_timer_setup(unsigned type,
750                                struct clock_event_device *clk)
751 {
752         clk->features = CLOCK_EVT_FEAT_ONESHOT;
753
754         if (type == ARCH_TIMER_TYPE_CP15) {
755                 typeof(clk->set_next_event) sne;
756
757                 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
758
759                 if (arch_timer_c3stop)
760                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
761                 clk->name = "arch_sys_timer";
762                 clk->rating = 450;
763                 clk->cpumask = cpumask_of(smp_processor_id());
764                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
765                 switch (arch_timer_uses_ppi) {
766                 case ARCH_TIMER_VIRT_PPI:
767                         clk->set_state_shutdown = arch_timer_shutdown_virt;
768                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
769                         sne = erratum_handler(set_next_event_virt);
770                         break;
771                 case ARCH_TIMER_PHYS_SECURE_PPI:
772                 case ARCH_TIMER_PHYS_NONSECURE_PPI:
773                 case ARCH_TIMER_HYP_PPI:
774                         clk->set_state_shutdown = arch_timer_shutdown_phys;
775                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
776                         sne = erratum_handler(set_next_event_phys);
777                         break;
778                 default:
779                         BUG();
780                 }
781
782                 clk->set_next_event = sne;
783         } else {
784                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
785                 clk->name = "arch_mem_timer";
786                 clk->rating = 400;
787                 clk->cpumask = cpu_possible_mask;
788                 if (arch_timer_mem_use_virtual) {
789                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
790                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
791                         clk->set_next_event =
792                                 arch_timer_set_next_event_virt_mem;
793                 } else {
794                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
795                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
796                         clk->set_next_event =
797                                 arch_timer_set_next_event_phys_mem;
798                 }
799         }
800
801         clk->set_state_shutdown(clk);
802
803         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
804 }
805
806 static void arch_timer_evtstrm_enable(int divider)
807 {
808         u32 cntkctl = arch_timer_get_cntkctl();
809
810         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
811         /* Set the divider and enable virtual event stream */
812         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
813                         | ARCH_TIMER_VIRT_EVT_EN;
814         arch_timer_set_cntkctl(cntkctl);
815         arch_timer_set_evtstrm_feature();
816         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
817 }
818
819 static void arch_timer_configure_evtstream(void)
820 {
821         int evt_stream_div, lsb;
822
823         /*
824          * As the event stream can at most be generated at half the frequency
825          * of the counter, use half the frequency when computing the divider.
826          */
827         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
828
829         /*
830          * Find the closest power of two to the divisor. If the adjacent bit
831          * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
832          */
833         lsb = fls(evt_stream_div) - 1;
834         if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
835                 lsb++;
836
837         /* enable event stream */
838         arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
839 }
840
841 static void arch_counter_set_user_access(void)
842 {
843         u32 cntkctl = arch_timer_get_cntkctl();
844
845         /* Disable user access to the timers and both counters */
846         /* Also disable virtual event stream */
847         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
848                         | ARCH_TIMER_USR_VT_ACCESS_EN
849                         | ARCH_TIMER_USR_VCT_ACCESS_EN
850                         | ARCH_TIMER_VIRT_EVT_EN
851                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
852
853         /*
854          * Enable user access to the virtual counter if it doesn't
855          * need to be workaround. The vdso may have been already
856          * disabled though.
857          */
858         if (arch_timer_this_cpu_has_cntvct_wa())
859                 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
860         else
861                 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
862
863         arch_timer_set_cntkctl(cntkctl);
864 }
865
866 static bool arch_timer_has_nonsecure_ppi(void)
867 {
868         return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
869                 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
870 }
871
872 static u32 check_ppi_trigger(int irq)
873 {
874         u32 flags = irq_get_trigger_type(irq);
875
876         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
877                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
878                 pr_warn("WARNING: Please fix your firmware\n");
879                 flags = IRQF_TRIGGER_LOW;
880         }
881
882         return flags;
883 }
884
885 static int arch_timer_starting_cpu(unsigned int cpu)
886 {
887         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
888         u32 flags;
889
890         __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
891
892         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
893         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
894
895         if (arch_timer_has_nonsecure_ppi()) {
896                 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
897                 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
898                                   flags);
899         }
900
901         arch_counter_set_user_access();
902         if (evtstrm_enable)
903                 arch_timer_configure_evtstream();
904
905         return 0;
906 }
907
908 /*
909  * For historical reasons, when probing with DT we use whichever (non-zero)
910  * rate was probed first, and don't verify that others match. If the first node
911  * probed has a clock-frequency property, this overrides the HW register.
912  */
913 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
914 {
915         /* Who has more than one independent system counter? */
916         if (arch_timer_rate)
917                 return;
918
919         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
920                 arch_timer_rate = rate;
921
922         /* Check the timer frequency. */
923         if (arch_timer_rate == 0)
924                 pr_warn("frequency not available\n");
925 }
926
927 static void arch_timer_banner(unsigned type)
928 {
929         pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
930                 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
931                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
932                         " and " : "",
933                 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
934                 (unsigned long)arch_timer_rate / 1000000,
935                 (unsigned long)(arch_timer_rate / 10000) % 100,
936                 type & ARCH_TIMER_TYPE_CP15 ?
937                         (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
938                         "",
939                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
940                 type & ARCH_TIMER_TYPE_MEM ?
941                         arch_timer_mem_use_virtual ? "virt" : "phys" :
942                         "");
943 }
944
945 u32 arch_timer_get_rate(void)
946 {
947         return arch_timer_rate;
948 }
949
950 bool arch_timer_evtstrm_available(void)
951 {
952         /*
953          * We might get called from a preemptible context. This is fine
954          * because availability of the event stream should be always the same
955          * for a preemptible context and context where we might resume a task.
956          */
957         return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
958 }
959
960 static u64 arch_counter_get_cntvct_mem(void)
961 {
962         u32 vct_lo, vct_hi, tmp_hi;
963
964         do {
965                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
966                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
967                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
968         } while (vct_hi != tmp_hi);
969
970         return ((u64) vct_hi << 32) | vct_lo;
971 }
972
973 static struct arch_timer_kvm_info arch_timer_kvm_info;
974
975 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
976 {
977         return &arch_timer_kvm_info;
978 }
979
980 static void __init arch_counter_register(unsigned type)
981 {
982         u64 start_count;
983
984         /* Register the CP15 based counter if we have one */
985         if (type & ARCH_TIMER_TYPE_CP15) {
986                 u64 (*rd)(void);
987
988                 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
989                     arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
990                         if (arch_timer_counter_has_wa())
991                                 rd = arch_counter_get_cntvct_stable;
992                         else
993                                 rd = arch_counter_get_cntvct;
994                 } else {
995                         if (arch_timer_counter_has_wa())
996                                 rd = arch_counter_get_cntpct_stable;
997                         else
998                                 rd = arch_counter_get_cntpct;
999                 }
1000
1001                 arch_timer_read_counter = rd;
1002                 clocksource_counter.archdata.clock_mode = vdso_default;
1003         } else {
1004                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1005         }
1006
1007         if (!arch_counter_suspend_stop)
1008                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1009         start_count = arch_timer_read_counter();
1010         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1011         cyclecounter.mult = clocksource_counter.mult;
1012         cyclecounter.shift = clocksource_counter.shift;
1013         timecounter_init(&arch_timer_kvm_info.timecounter,
1014                          &cyclecounter, start_count);
1015
1016         /* 56 bits minimum, so we assume worst case rollover */
1017         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1018 }
1019
1020 static void arch_timer_stop(struct clock_event_device *clk)
1021 {
1022         pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1023
1024         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1025         if (arch_timer_has_nonsecure_ppi())
1026                 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1027
1028         clk->set_state_shutdown(clk);
1029 }
1030
1031 static int arch_timer_dying_cpu(unsigned int cpu)
1032 {
1033         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1034
1035         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1036
1037         arch_timer_stop(clk);
1038         return 0;
1039 }
1040
1041 #ifdef CONFIG_CPU_PM
1042 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1043 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1044                                     unsigned long action, void *hcpu)
1045 {
1046         if (action == CPU_PM_ENTER) {
1047                 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1048
1049                 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1050         } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1051                 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1052
1053                 if (arch_timer_have_evtstrm_feature())
1054                         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1055         }
1056         return NOTIFY_OK;
1057 }
1058
1059 static struct notifier_block arch_timer_cpu_pm_notifier = {
1060         .notifier_call = arch_timer_cpu_pm_notify,
1061 };
1062
1063 static int __init arch_timer_cpu_pm_init(void)
1064 {
1065         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1066 }
1067
1068 static void __init arch_timer_cpu_pm_deinit(void)
1069 {
1070         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1071 }
1072
1073 #else
1074 static int __init arch_timer_cpu_pm_init(void)
1075 {
1076         return 0;
1077 }
1078
1079 static void __init arch_timer_cpu_pm_deinit(void)
1080 {
1081 }
1082 #endif
1083
1084 static int __init arch_timer_register(void)
1085 {
1086         int err;
1087         int ppi;
1088
1089         arch_timer_evt = alloc_percpu(struct clock_event_device);
1090         if (!arch_timer_evt) {
1091                 err = -ENOMEM;
1092                 goto out;
1093         }
1094
1095         ppi = arch_timer_ppi[arch_timer_uses_ppi];
1096         switch (arch_timer_uses_ppi) {
1097         case ARCH_TIMER_VIRT_PPI:
1098                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1099                                          "arch_timer", arch_timer_evt);
1100                 break;
1101         case ARCH_TIMER_PHYS_SECURE_PPI:
1102         case ARCH_TIMER_PHYS_NONSECURE_PPI:
1103                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1104                                          "arch_timer", arch_timer_evt);
1105                 if (!err && arch_timer_has_nonsecure_ppi()) {
1106                         ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1107                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1108                                                  "arch_timer", arch_timer_evt);
1109                         if (err)
1110                                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1111                                                 arch_timer_evt);
1112                 }
1113                 break;
1114         case ARCH_TIMER_HYP_PPI:
1115                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1116                                          "arch_timer", arch_timer_evt);
1117                 break;
1118         default:
1119                 BUG();
1120         }
1121
1122         if (err) {
1123                 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1124                 goto out_free;
1125         }
1126
1127         err = arch_timer_cpu_pm_init();
1128         if (err)
1129                 goto out_unreg_notify;
1130
1131         /* Register and immediately configure the timer on the boot CPU */
1132         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1133                                 "clockevents/arm/arch_timer:starting",
1134                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1135         if (err)
1136                 goto out_unreg_cpupm;
1137         return 0;
1138
1139 out_unreg_cpupm:
1140         arch_timer_cpu_pm_deinit();
1141
1142 out_unreg_notify:
1143         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1144         if (arch_timer_has_nonsecure_ppi())
1145                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1146                                 arch_timer_evt);
1147
1148 out_free:
1149         free_percpu(arch_timer_evt);
1150 out:
1151         return err;
1152 }
1153
1154 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1155 {
1156         int ret;
1157         irq_handler_t func;
1158         struct arch_timer *t;
1159
1160         t = kzalloc(sizeof(*t), GFP_KERNEL);
1161         if (!t)
1162                 return -ENOMEM;
1163
1164         t->base = base;
1165         t->evt.irq = irq;
1166         __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1167
1168         if (arch_timer_mem_use_virtual)
1169                 func = arch_timer_handler_virt_mem;
1170         else
1171                 func = arch_timer_handler_phys_mem;
1172
1173         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1174         if (ret) {
1175                 pr_err("Failed to request mem timer irq\n");
1176                 kfree(t);
1177         }
1178
1179         return ret;
1180 }
1181
1182 static const struct of_device_id arch_timer_of_match[] __initconst = {
1183         { .compatible   = "arm,armv7-timer",    },
1184         { .compatible   = "arm,armv8-timer",    },
1185         {},
1186 };
1187
1188 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1189         { .compatible   = "arm,armv7-timer-mem", },
1190         {},
1191 };
1192
1193 static bool __init arch_timer_needs_of_probing(void)
1194 {
1195         struct device_node *dn;
1196         bool needs_probing = false;
1197         unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1198
1199         /* We have two timers, and both device-tree nodes are probed. */
1200         if ((arch_timers_present & mask) == mask)
1201                 return false;
1202
1203         /*
1204          * Only one type of timer is probed,
1205          * check if we have another type of timer node in device-tree.
1206          */
1207         if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1208                 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1209         else
1210                 dn = of_find_matching_node(NULL, arch_timer_of_match);
1211
1212         if (dn && of_device_is_available(dn))
1213                 needs_probing = true;
1214
1215         of_node_put(dn);
1216
1217         return needs_probing;
1218 }
1219
1220 static int __init arch_timer_common_init(void)
1221 {
1222         arch_timer_banner(arch_timers_present);
1223         arch_counter_register(arch_timers_present);
1224         return arch_timer_arch_init();
1225 }
1226
1227 /**
1228  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1229  *
1230  * If HYP mode is available, we know that the physical timer
1231  * has been configured to be accessible from PL1. Use it, so
1232  * that a guest can use the virtual timer instead.
1233  *
1234  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1235  * accesses to CNTP_*_EL1 registers are silently redirected to
1236  * their CNTHP_*_EL2 counterparts, and use a different PPI
1237  * number.
1238  *
1239  * If no interrupt provided for virtual timer, we'll have to
1240  * stick to the physical timer. It'd better be accessible...
1241  * For arm64 we never use the secure interrupt.
1242  *
1243  * Return: a suitable PPI type for the current system.
1244  */
1245 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1246 {
1247         if (is_kernel_in_hyp_mode())
1248                 return ARCH_TIMER_HYP_PPI;
1249
1250         if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1251                 return ARCH_TIMER_VIRT_PPI;
1252
1253         if (IS_ENABLED(CONFIG_ARM64))
1254                 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1255
1256         return ARCH_TIMER_PHYS_SECURE_PPI;
1257 }
1258
1259 static void __init arch_timer_populate_kvm_info(void)
1260 {
1261         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1262         if (is_kernel_in_hyp_mode())
1263                 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1264 }
1265
1266 static int __init arch_timer_of_init(struct device_node *np)
1267 {
1268         int i, ret;
1269         u32 rate;
1270
1271         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1272                 pr_warn("multiple nodes in dt, skipping\n");
1273                 return 0;
1274         }
1275
1276         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1277         for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1278                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1279
1280         arch_timer_populate_kvm_info();
1281
1282         rate = arch_timer_get_cntfrq();
1283         arch_timer_of_configure_rate(rate, np);
1284
1285         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1286
1287         /* Check for globally applicable workarounds */
1288         arch_timer_check_ool_workaround(ate_match_dt, np);
1289
1290         /*
1291          * If we cannot rely on firmware initializing the timer registers then
1292          * we should use the physical timers instead.
1293          */
1294         if (IS_ENABLED(CONFIG_ARM) &&
1295             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1296                 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1297         else
1298                 arch_timer_uses_ppi = arch_timer_select_ppi();
1299
1300         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1301                 pr_err("No interrupt available, giving up\n");
1302                 return -EINVAL;
1303         }
1304
1305         /* On some systems, the counter stops ticking when in suspend. */
1306         arch_counter_suspend_stop = of_property_read_bool(np,
1307                                                          "arm,no-tick-in-suspend");
1308
1309         ret = arch_timer_register();
1310         if (ret)
1311                 return ret;
1312
1313         if (arch_timer_needs_of_probing())
1314                 return 0;
1315
1316         return arch_timer_common_init();
1317 }
1318 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1319 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1320
1321 static u32 __init
1322 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1323 {
1324         void __iomem *base;
1325         u32 rate;
1326
1327         base = ioremap(frame->cntbase, frame->size);
1328         if (!base) {
1329                 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1330                 return 0;
1331         }
1332
1333         rate = readl_relaxed(base + CNTFRQ);
1334
1335         iounmap(base);
1336
1337         return rate;
1338 }
1339
1340 static struct arch_timer_mem_frame * __init
1341 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1342 {
1343         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1344         void __iomem *cntctlbase;
1345         u32 cnttidr;
1346         int i;
1347
1348         cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1349         if (!cntctlbase) {
1350                 pr_err("Can't map CNTCTLBase @ %pa\n",
1351                         &timer_mem->cntctlbase);
1352                 return NULL;
1353         }
1354
1355         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1356
1357         /*
1358          * Try to find a virtual capable frame. Otherwise fall back to a
1359          * physical capable frame.
1360          */
1361         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1362                 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1363                              CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1364
1365                 frame = &timer_mem->frame[i];
1366                 if (!frame->valid)
1367                         continue;
1368
1369                 /* Try enabling everything, and see what sticks */
1370                 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1371                 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1372
1373                 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1374                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1375                         best_frame = frame;
1376                         arch_timer_mem_use_virtual = true;
1377                         break;
1378                 }
1379
1380                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1381                         continue;
1382
1383                 best_frame = frame;
1384         }
1385
1386         iounmap(cntctlbase);
1387
1388         return best_frame;
1389 }
1390
1391 static int __init
1392 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1393 {
1394         void __iomem *base;
1395         int ret, irq = 0;
1396
1397         if (arch_timer_mem_use_virtual)
1398                 irq = frame->virt_irq;
1399         else
1400                 irq = frame->phys_irq;
1401
1402         if (!irq) {
1403                 pr_err("Frame missing %s irq.\n",
1404                        arch_timer_mem_use_virtual ? "virt" : "phys");
1405                 return -EINVAL;
1406         }
1407
1408         if (!request_mem_region(frame->cntbase, frame->size,
1409                                 "arch_mem_timer"))
1410                 return -EBUSY;
1411
1412         base = ioremap(frame->cntbase, frame->size);
1413         if (!base) {
1414                 pr_err("Can't map frame's registers\n");
1415                 return -ENXIO;
1416         }
1417
1418         ret = arch_timer_mem_register(base, irq);
1419         if (ret) {
1420                 iounmap(base);
1421                 return ret;
1422         }
1423
1424         arch_counter_base = base;
1425         arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1426
1427         return 0;
1428 }
1429
1430 static int __init arch_timer_mem_of_init(struct device_node *np)
1431 {
1432         struct arch_timer_mem *timer_mem;
1433         struct arch_timer_mem_frame *frame;
1434         struct device_node *frame_node;
1435         struct resource res;
1436         int ret = -EINVAL;
1437         u32 rate;
1438
1439         timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1440         if (!timer_mem)
1441                 return -ENOMEM;
1442
1443         if (of_address_to_resource(np, 0, &res))
1444                 goto out;
1445         timer_mem->cntctlbase = res.start;
1446         timer_mem->size = resource_size(&res);
1447
1448         for_each_available_child_of_node(np, frame_node) {
1449                 u32 n;
1450                 struct arch_timer_mem_frame *frame;
1451
1452                 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1453                         pr_err(FW_BUG "Missing frame-number.\n");
1454                         of_node_put(frame_node);
1455                         goto out;
1456                 }
1457                 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1458                         pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1459                                ARCH_TIMER_MEM_MAX_FRAMES - 1);
1460                         of_node_put(frame_node);
1461                         goto out;
1462                 }
1463                 frame = &timer_mem->frame[n];
1464
1465                 if (frame->valid) {
1466                         pr_err(FW_BUG "Duplicated frame-number.\n");
1467                         of_node_put(frame_node);
1468                         goto out;
1469                 }
1470
1471                 if (of_address_to_resource(frame_node, 0, &res)) {
1472                         of_node_put(frame_node);
1473                         goto out;
1474                 }
1475                 frame->cntbase = res.start;
1476                 frame->size = resource_size(&res);
1477
1478                 frame->virt_irq = irq_of_parse_and_map(frame_node,
1479                                                        ARCH_TIMER_VIRT_SPI);
1480                 frame->phys_irq = irq_of_parse_and_map(frame_node,
1481                                                        ARCH_TIMER_PHYS_SPI);
1482
1483                 frame->valid = true;
1484         }
1485
1486         frame = arch_timer_mem_find_best_frame(timer_mem);
1487         if (!frame) {
1488                 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1489                         &timer_mem->cntctlbase);
1490                 ret = -EINVAL;
1491                 goto out;
1492         }
1493
1494         rate = arch_timer_mem_frame_get_cntfrq(frame);
1495         arch_timer_of_configure_rate(rate, np);
1496
1497         ret = arch_timer_mem_frame_register(frame);
1498         if (!ret && !arch_timer_needs_of_probing())
1499                 ret = arch_timer_common_init();
1500 out:
1501         kfree(timer_mem);
1502         return ret;
1503 }
1504 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1505                        arch_timer_mem_of_init);
1506
1507 #ifdef CONFIG_ACPI_GTDT
1508 static int __init
1509 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1510 {
1511         struct arch_timer_mem_frame *frame;
1512         u32 rate;
1513         int i;
1514
1515         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1516                 frame = &timer_mem->frame[i];
1517
1518                 if (!frame->valid)
1519                         continue;
1520
1521                 rate = arch_timer_mem_frame_get_cntfrq(frame);
1522                 if (rate == arch_timer_rate)
1523                         continue;
1524
1525                 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1526                         &frame->cntbase,
1527                         (unsigned long)rate, (unsigned long)arch_timer_rate);
1528
1529                 return -EINVAL;
1530         }
1531
1532         return 0;
1533 }
1534
1535 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1536 {
1537         struct arch_timer_mem *timers, *timer;
1538         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1539         int timer_count, i, ret = 0;
1540
1541         timers = kcalloc(platform_timer_count, sizeof(*timers),
1542                             GFP_KERNEL);
1543         if (!timers)
1544                 return -ENOMEM;
1545
1546         ret = acpi_arch_timer_mem_init(timers, &timer_count);
1547         if (ret || !timer_count)
1548                 goto out;
1549
1550         /*
1551          * While unlikely, it's theoretically possible that none of the frames
1552          * in a timer expose the combination of feature we want.
1553          */
1554         for (i = 0; i < timer_count; i++) {
1555                 timer = &timers[i];
1556
1557                 frame = arch_timer_mem_find_best_frame(timer);
1558                 if (!best_frame)
1559                         best_frame = frame;
1560
1561                 ret = arch_timer_mem_verify_cntfrq(timer);
1562                 if (ret) {
1563                         pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1564                         goto out;
1565                 }
1566
1567                 if (!best_frame) /* implies !frame */
1568                         /*
1569                          * Only complain about missing suitable frames if we
1570                          * haven't already found one in a previous iteration.
1571                          */
1572                         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1573                                 &timer->cntctlbase);
1574         }
1575
1576         if (best_frame)
1577                 ret = arch_timer_mem_frame_register(best_frame);
1578 out:
1579         kfree(timers);
1580         return ret;
1581 }
1582
1583 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1584 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1585 {
1586         int ret, platform_timer_count;
1587
1588         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1589                 pr_warn("already initialized, skipping\n");
1590                 return -EINVAL;
1591         }
1592
1593         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1594
1595         ret = acpi_gtdt_init(table, &platform_timer_count);
1596         if (ret) {
1597                 pr_err("Failed to init GTDT table.\n");
1598                 return ret;
1599         }
1600
1601         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1602                 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1603
1604         arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1605                 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1606
1607         arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1608                 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1609
1610         arch_timer_populate_kvm_info();
1611
1612         /*
1613          * When probing via ACPI, we have no mechanism to override the sysreg
1614          * CNTFRQ value. This *must* be correct.
1615          */
1616         arch_timer_rate = arch_timer_get_cntfrq();
1617         if (!arch_timer_rate) {
1618                 pr_err(FW_BUG "frequency not available.\n");
1619                 return -EINVAL;
1620         }
1621
1622         arch_timer_uses_ppi = arch_timer_select_ppi();
1623         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1624                 pr_err("No interrupt available, giving up\n");
1625                 return -EINVAL;
1626         }
1627
1628         /* Always-on capability */
1629         arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1630
1631         /* Check for globally applicable workarounds */
1632         arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1633
1634         ret = arch_timer_register();
1635         if (ret)
1636                 return ret;
1637
1638         if (platform_timer_count &&
1639             arch_timer_mem_acpi_init(platform_timer_count))
1640                 pr_err("Failed to initialize memory-mapped timer.\n");
1641
1642         return arch_timer_common_init();
1643 }
1644 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1645 #endif