GNU Linux-libre 4.9.306-gnu1
[releases.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #define pr_fmt(fmt)     "arm_arch_timer: " fmt
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched_clock.h>
28 #include <linux/acpi.h>
29
30 #include <asm/arch_timer.h>
31 #include <asm/virt.h>
32
33 #include <clocksource/arm_arch_timer.h>
34
35 #define CNTTIDR         0x08
36 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
37
38 #define CNTACR(n)       (0x40 + ((n) * 4))
39 #define CNTACR_RPCT     BIT(0)
40 #define CNTACR_RVCT     BIT(1)
41 #define CNTACR_RFRQ     BIT(2)
42 #define CNTACR_RVOFF    BIT(3)
43 #define CNTACR_RWVT     BIT(4)
44 #define CNTACR_RWPT     BIT(5)
45
46 #define CNTVCT_LO       0x08
47 #define CNTVCT_HI       0x0c
48 #define CNTFRQ          0x10
49 #define CNTP_TVAL       0x28
50 #define CNTP_CTL        0x2c
51 #define CNTV_TVAL       0x38
52 #define CNTV_CTL        0x3c
53
54 #define ARCH_CP15_TIMER BIT(0)
55 #define ARCH_MEM_TIMER  BIT(1)
56 static unsigned arch_timers_present __initdata;
57
58 static void __iomem *arch_counter_base;
59
60 struct arch_timer {
61         void __iomem *base;
62         struct clock_event_device evt;
63 };
64
65 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
66
67 static u32 arch_timer_rate;
68
69 enum ppi_nr {
70         PHYS_SECURE_PPI,
71         PHYS_NONSECURE_PPI,
72         VIRT_PPI,
73         HYP_PPI,
74         MAX_TIMER_PPI
75 };
76
77 static int arch_timer_ppi[MAX_TIMER_PPI];
78
79 static struct clock_event_device __percpu *arch_timer_evt;
80
81 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
82 static bool arch_timer_c3stop;
83 static bool arch_timer_mem_use_virtual;
84 static bool arch_counter_suspend_stop;
85
86 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
87
88 static int __init early_evtstrm_cfg(char *buf)
89 {
90         return strtobool(buf, &evtstrm_enable);
91 }
92 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
93
94 /*
95  * Architected system timer support.
96  */
97
98 #ifdef CONFIG_FSL_ERRATUM_A008585
99 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
100 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
101
102 static int fsl_a008585_enable = -1;
103
104 static int __init early_fsl_a008585_cfg(char *buf)
105 {
106         int ret;
107         bool val;
108
109         ret = strtobool(buf, &val);
110         if (ret)
111                 return ret;
112
113         fsl_a008585_enable = val;
114         return 0;
115 }
116 early_param("clocksource.arm_arch_timer.fsl-a008585", early_fsl_a008585_cfg);
117
118 u32 __fsl_a008585_read_cntp_tval_el0(void)
119 {
120         return __fsl_a008585_read_reg(cntp_tval_el0);
121 }
122
123 u32 __fsl_a008585_read_cntv_tval_el0(void)
124 {
125         return __fsl_a008585_read_reg(cntv_tval_el0);
126 }
127
128 u64 __fsl_a008585_read_cntvct_el0(void)
129 {
130         return __fsl_a008585_read_reg(cntvct_el0);
131 }
132 EXPORT_SYMBOL(__fsl_a008585_read_cntvct_el0);
133 #endif /* CONFIG_FSL_ERRATUM_A008585 */
134
135 static __always_inline
136 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
137                           struct clock_event_device *clk)
138 {
139         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
140                 struct arch_timer *timer = to_arch_timer(clk);
141                 switch (reg) {
142                 case ARCH_TIMER_REG_CTRL:
143                         writel_relaxed(val, timer->base + CNTP_CTL);
144                         break;
145                 case ARCH_TIMER_REG_TVAL:
146                         writel_relaxed(val, timer->base + CNTP_TVAL);
147                         break;
148                 }
149         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
150                 struct arch_timer *timer = to_arch_timer(clk);
151                 switch (reg) {
152                 case ARCH_TIMER_REG_CTRL:
153                         writel_relaxed(val, timer->base + CNTV_CTL);
154                         break;
155                 case ARCH_TIMER_REG_TVAL:
156                         writel_relaxed(val, timer->base + CNTV_TVAL);
157                         break;
158                 }
159         } else {
160                 arch_timer_reg_write_cp15(access, reg, val);
161         }
162 }
163
164 static __always_inline
165 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
166                         struct clock_event_device *clk)
167 {
168         u32 val;
169
170         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
171                 struct arch_timer *timer = to_arch_timer(clk);
172                 switch (reg) {
173                 case ARCH_TIMER_REG_CTRL:
174                         val = readl_relaxed(timer->base + CNTP_CTL);
175                         break;
176                 case ARCH_TIMER_REG_TVAL:
177                         val = readl_relaxed(timer->base + CNTP_TVAL);
178                         break;
179                 }
180         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
181                 struct arch_timer *timer = to_arch_timer(clk);
182                 switch (reg) {
183                 case ARCH_TIMER_REG_CTRL:
184                         val = readl_relaxed(timer->base + CNTV_CTL);
185                         break;
186                 case ARCH_TIMER_REG_TVAL:
187                         val = readl_relaxed(timer->base + CNTV_TVAL);
188                         break;
189                 }
190         } else {
191                 val = arch_timer_reg_read_cp15(access, reg);
192         }
193
194         return val;
195 }
196
197 static __always_inline irqreturn_t timer_handler(const int access,
198                                         struct clock_event_device *evt)
199 {
200         unsigned long ctrl;
201
202         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
203         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
204                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
205                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
206                 evt->event_handler(evt);
207                 return IRQ_HANDLED;
208         }
209
210         return IRQ_NONE;
211 }
212
213 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
214 {
215         struct clock_event_device *evt = dev_id;
216
217         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
218 }
219
220 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
221 {
222         struct clock_event_device *evt = dev_id;
223
224         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
225 }
226
227 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
228 {
229         struct clock_event_device *evt = dev_id;
230
231         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
232 }
233
234 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
235 {
236         struct clock_event_device *evt = dev_id;
237
238         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
239 }
240
241 static __always_inline int timer_shutdown(const int access,
242                                           struct clock_event_device *clk)
243 {
244         unsigned long ctrl;
245
246         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
247         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
248         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
249
250         return 0;
251 }
252
253 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
254 {
255         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
256 }
257
258 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
259 {
260         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
261 }
262
263 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
264 {
265         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
266 }
267
268 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
269 {
270         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
271 }
272
273 static __always_inline void set_next_event(const int access, unsigned long evt,
274                                            struct clock_event_device *clk)
275 {
276         unsigned long ctrl;
277         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
278         ctrl |= ARCH_TIMER_CTRL_ENABLE;
279         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
280         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
281         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
282 }
283
284 #ifdef CONFIG_FSL_ERRATUM_A008585
285 static __always_inline void fsl_a008585_set_next_event(const int access,
286                 unsigned long evt, struct clock_event_device *clk)
287 {
288         unsigned long ctrl;
289         u64 cval = evt + arch_counter_get_cntvct();
290
291         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
292         ctrl |= ARCH_TIMER_CTRL_ENABLE;
293         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
294
295         if (access == ARCH_TIMER_PHYS_ACCESS)
296                 write_sysreg(cval, cntp_cval_el0);
297         else if (access == ARCH_TIMER_VIRT_ACCESS)
298                 write_sysreg(cval, cntv_cval_el0);
299
300         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
301 }
302
303 static int fsl_a008585_set_next_event_virt(unsigned long evt,
304                                            struct clock_event_device *clk)
305 {
306         fsl_a008585_set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
307         return 0;
308 }
309
310 static int fsl_a008585_set_next_event_phys(unsigned long evt,
311                                            struct clock_event_device *clk)
312 {
313         fsl_a008585_set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
314         return 0;
315 }
316 #endif /* CONFIG_FSL_ERRATUM_A008585 */
317
318 static int arch_timer_set_next_event_virt(unsigned long evt,
319                                           struct clock_event_device *clk)
320 {
321         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
322         return 0;
323 }
324
325 static int arch_timer_set_next_event_phys(unsigned long evt,
326                                           struct clock_event_device *clk)
327 {
328         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
329         return 0;
330 }
331
332 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
333                                               struct clock_event_device *clk)
334 {
335         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
336         return 0;
337 }
338
339 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
340                                               struct clock_event_device *clk)
341 {
342         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
343         return 0;
344 }
345
346 static void fsl_a008585_set_sne(struct clock_event_device *clk)
347 {
348 #ifdef CONFIG_FSL_ERRATUM_A008585
349         if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
350                 return;
351
352         if (arch_timer_uses_ppi == VIRT_PPI)
353                 clk->set_next_event = fsl_a008585_set_next_event_virt;
354         else
355                 clk->set_next_event = fsl_a008585_set_next_event_phys;
356 #endif
357 }
358
359 static void __arch_timer_setup(unsigned type,
360                                struct clock_event_device *clk)
361 {
362         clk->features = CLOCK_EVT_FEAT_ONESHOT;
363
364         if (type == ARCH_CP15_TIMER) {
365                 if (arch_timer_c3stop)
366                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
367                 clk->name = "arch_sys_timer";
368                 clk->rating = 450;
369                 clk->cpumask = cpumask_of(smp_processor_id());
370                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
371                 switch (arch_timer_uses_ppi) {
372                 case VIRT_PPI:
373                         clk->set_state_shutdown = arch_timer_shutdown_virt;
374                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
375                         clk->set_next_event = arch_timer_set_next_event_virt;
376                         break;
377                 case PHYS_SECURE_PPI:
378                 case PHYS_NONSECURE_PPI:
379                 case HYP_PPI:
380                         clk->set_state_shutdown = arch_timer_shutdown_phys;
381                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
382                         clk->set_next_event = arch_timer_set_next_event_phys;
383                         break;
384                 default:
385                         BUG();
386                 }
387
388                 fsl_a008585_set_sne(clk);
389         } else {
390                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
391                 clk->name = "arch_mem_timer";
392                 clk->rating = 400;
393                 clk->cpumask = cpu_all_mask;
394                 if (arch_timer_mem_use_virtual) {
395                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
396                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
397                         clk->set_next_event =
398                                 arch_timer_set_next_event_virt_mem;
399                 } else {
400                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
401                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
402                         clk->set_next_event =
403                                 arch_timer_set_next_event_phys_mem;
404                 }
405         }
406
407         clk->set_state_shutdown(clk);
408
409         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
410 }
411
412 static void arch_timer_evtstrm_enable(int divider)
413 {
414         u32 cntkctl = arch_timer_get_cntkctl();
415
416         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
417         /* Set the divider and enable virtual event stream */
418         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
419                         | ARCH_TIMER_VIRT_EVT_EN;
420         arch_timer_set_cntkctl(cntkctl);
421         elf_hwcap |= HWCAP_EVTSTRM;
422 #ifdef CONFIG_COMPAT
423         compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
424 #endif
425 }
426
427 static void arch_timer_configure_evtstream(void)
428 {
429         int evt_stream_div, lsb;
430
431         /*
432          * As the event stream can at most be generated at half the frequency
433          * of the counter, use half the frequency when computing the divider.
434          */
435         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
436
437         /*
438          * Find the closest power of two to the divisor. If the adjacent bit
439          * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
440          */
441         lsb = fls(evt_stream_div) - 1;
442         if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
443                 lsb++;
444
445         /* enable event stream */
446         arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
447 }
448
449 static void arch_counter_set_user_access(void)
450 {
451         u32 cntkctl = arch_timer_get_cntkctl();
452
453         /* Disable user access to the timers and the physical counter */
454         /* Also disable virtual event stream */
455         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
456                         | ARCH_TIMER_USR_VT_ACCESS_EN
457                         | ARCH_TIMER_VIRT_EVT_EN
458                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
459
460         /* Enable user access to the virtual counter */
461         cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
462
463         arch_timer_set_cntkctl(cntkctl);
464 }
465
466 static bool arch_timer_has_nonsecure_ppi(void)
467 {
468         return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
469                 arch_timer_ppi[PHYS_NONSECURE_PPI]);
470 }
471
472 static u32 check_ppi_trigger(int irq)
473 {
474         u32 flags = irq_get_trigger_type(irq);
475
476         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
477                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
478                 pr_warn("WARNING: Please fix your firmware\n");
479                 flags = IRQF_TRIGGER_LOW;
480         }
481
482         return flags;
483 }
484
485 static int arch_timer_starting_cpu(unsigned int cpu)
486 {
487         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
488         u32 flags;
489
490         __arch_timer_setup(ARCH_CP15_TIMER, clk);
491
492         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
493         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
494
495         if (arch_timer_has_nonsecure_ppi()) {
496                 flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
497                 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
498         }
499
500         arch_counter_set_user_access();
501         if (evtstrm_enable)
502                 arch_timer_configure_evtstream();
503
504         return 0;
505 }
506
507 static void
508 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
509 {
510         /* Who has more than one independent system counter? */
511         if (arch_timer_rate)
512                 return;
513
514         /*
515          * Try to determine the frequency from the device tree or CNTFRQ,
516          * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
517          */
518         if (!acpi_disabled ||
519             of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
520                 if (cntbase)
521                         arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
522                 else
523                         arch_timer_rate = arch_timer_get_cntfrq();
524         }
525
526         /* Check the timer frequency. */
527         if (arch_timer_rate == 0)
528                 pr_warn("Architected timer frequency not available\n");
529 }
530
531 static void arch_timer_banner(unsigned type)
532 {
533         pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
534                      type & ARCH_CP15_TIMER ? "cp15" : "",
535                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
536                      type & ARCH_MEM_TIMER ? "mmio" : "",
537                      (unsigned long)arch_timer_rate / 1000000,
538                      (unsigned long)(arch_timer_rate / 10000) % 100,
539                      type & ARCH_CP15_TIMER ?
540                      (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
541                         "",
542                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
543                      type & ARCH_MEM_TIMER ?
544                         arch_timer_mem_use_virtual ? "virt" : "phys" :
545                         "");
546 }
547
548 u32 arch_timer_get_rate(void)
549 {
550         return arch_timer_rate;
551 }
552
553 static u64 arch_counter_get_cntvct_mem(void)
554 {
555         u32 vct_lo, vct_hi, tmp_hi;
556
557         do {
558                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
559                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
560                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
561         } while (vct_hi != tmp_hi);
562
563         return ((u64) vct_hi << 32) | vct_lo;
564 }
565
566 /*
567  * Default to cp15 based access because arm64 uses this function for
568  * sched_clock() before DT is probed and the cp15 method is guaranteed
569  * to exist on arm64. arm doesn't use this before DT is probed so even
570  * if we don't have the cp15 accessors we won't have a problem.
571  */
572 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
573
574 static cycle_t arch_counter_read(struct clocksource *cs)
575 {
576         return arch_timer_read_counter();
577 }
578
579 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
580 {
581         return arch_timer_read_counter();
582 }
583
584 static struct clocksource clocksource_counter = {
585         .name   = "arch_sys_counter",
586         .rating = 400,
587         .read   = arch_counter_read,
588         .mask   = CLOCKSOURCE_MASK(56),
589         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
590 };
591
592 static struct cyclecounter cyclecounter = {
593         .read   = arch_counter_read_cc,
594         .mask   = CLOCKSOURCE_MASK(56),
595 };
596
597 static struct arch_timer_kvm_info arch_timer_kvm_info;
598
599 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
600 {
601         return &arch_timer_kvm_info;
602 }
603
604 static void __init arch_counter_register(unsigned type)
605 {
606         u64 start_count;
607
608         /* Register the CP15 based counter if we have one */
609         if (type & ARCH_CP15_TIMER) {
610                 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
611                         arch_timer_read_counter = arch_counter_get_cntvct;
612                 else
613                         arch_timer_read_counter = arch_counter_get_cntpct;
614
615                 clocksource_counter.archdata.vdso_direct = true;
616
617 #ifdef CONFIG_FSL_ERRATUM_A008585
618                 /*
619                  * Don't use the vdso fastpath if errata require using
620                  * the out-of-line counter accessor.
621                  */
622                 if (static_branch_unlikely(&arch_timer_read_ool_enabled))
623                         clocksource_counter.archdata.vdso_direct = false;
624 #endif
625         } else {
626                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
627         }
628
629         if (!arch_counter_suspend_stop)
630                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
631         start_count = arch_timer_read_counter();
632         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
633         cyclecounter.mult = clocksource_counter.mult;
634         cyclecounter.shift = clocksource_counter.shift;
635         timecounter_init(&arch_timer_kvm_info.timecounter,
636                          &cyclecounter, start_count);
637
638         /* 56 bits minimum, so we assume worst case rollover */
639         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
640 }
641
642 static void arch_timer_stop(struct clock_event_device *clk)
643 {
644         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
645                  clk->irq, smp_processor_id());
646
647         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
648         if (arch_timer_has_nonsecure_ppi())
649                 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
650
651         clk->set_state_shutdown(clk);
652 }
653
654 static int arch_timer_dying_cpu(unsigned int cpu)
655 {
656         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
657
658         arch_timer_stop(clk);
659         return 0;
660 }
661
662 #ifdef CONFIG_CPU_PM
663 static unsigned int saved_cntkctl;
664 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
665                                     unsigned long action, void *hcpu)
666 {
667         if (action == CPU_PM_ENTER)
668                 saved_cntkctl = arch_timer_get_cntkctl();
669         else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
670                 arch_timer_set_cntkctl(saved_cntkctl);
671         return NOTIFY_OK;
672 }
673
674 static struct notifier_block arch_timer_cpu_pm_notifier = {
675         .notifier_call = arch_timer_cpu_pm_notify,
676 };
677
678 static int __init arch_timer_cpu_pm_init(void)
679 {
680         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
681 }
682
683 static void __init arch_timer_cpu_pm_deinit(void)
684 {
685         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
686 }
687
688 #else
689 static int __init arch_timer_cpu_pm_init(void)
690 {
691         return 0;
692 }
693
694 static void __init arch_timer_cpu_pm_deinit(void)
695 {
696 }
697 #endif
698
699 static int __init arch_timer_register(void)
700 {
701         int err;
702         int ppi;
703
704         arch_timer_evt = alloc_percpu(struct clock_event_device);
705         if (!arch_timer_evt) {
706                 err = -ENOMEM;
707                 goto out;
708         }
709
710         ppi = arch_timer_ppi[arch_timer_uses_ppi];
711         switch (arch_timer_uses_ppi) {
712         case VIRT_PPI:
713                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
714                                          "arch_timer", arch_timer_evt);
715                 break;
716         case PHYS_SECURE_PPI:
717         case PHYS_NONSECURE_PPI:
718                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
719                                          "arch_timer", arch_timer_evt);
720                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
721                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
722                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
723                                                  "arch_timer", arch_timer_evt);
724                         if (err)
725                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
726                                                 arch_timer_evt);
727                 }
728                 break;
729         case HYP_PPI:
730                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
731                                          "arch_timer", arch_timer_evt);
732                 break;
733         default:
734                 BUG();
735         }
736
737         if (err) {
738                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
739                        ppi, err);
740                 goto out_free;
741         }
742
743         err = arch_timer_cpu_pm_init();
744         if (err)
745                 goto out_unreg_notify;
746
747
748         /* Register and immediately configure the timer on the boot CPU */
749         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
750                                 "AP_ARM_ARCH_TIMER_STARTING",
751                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
752         if (err)
753                 goto out_unreg_cpupm;
754         return 0;
755
756 out_unreg_cpupm:
757         arch_timer_cpu_pm_deinit();
758
759 out_unreg_notify:
760         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
761         if (arch_timer_has_nonsecure_ppi())
762                 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
763                                 arch_timer_evt);
764
765 out_free:
766         free_percpu(arch_timer_evt);
767 out:
768         return err;
769 }
770
771 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
772 {
773         int ret;
774         irq_handler_t func;
775         struct arch_timer *t;
776
777         t = kzalloc(sizeof(*t), GFP_KERNEL);
778         if (!t)
779                 return -ENOMEM;
780
781         t->base = base;
782         t->evt.irq = irq;
783         __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
784
785         if (arch_timer_mem_use_virtual)
786                 func = arch_timer_handler_virt_mem;
787         else
788                 func = arch_timer_handler_phys_mem;
789
790         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
791         if (ret) {
792                 pr_err("arch_timer: Failed to request mem timer irq\n");
793                 kfree(t);
794         }
795
796         return ret;
797 }
798
799 static const struct of_device_id arch_timer_of_match[] __initconst = {
800         { .compatible   = "arm,armv7-timer",    },
801         { .compatible   = "arm,armv8-timer",    },
802         {},
803 };
804
805 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
806         { .compatible   = "arm,armv7-timer-mem", },
807         {},
808 };
809
810 static bool __init
811 arch_timer_needs_probing(int type, const struct of_device_id *matches)
812 {
813         struct device_node *dn;
814         bool needs_probing = false;
815
816         dn = of_find_matching_node(NULL, matches);
817         if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
818                 needs_probing = true;
819         of_node_put(dn);
820
821         return needs_probing;
822 }
823
824 static int __init arch_timer_common_init(void)
825 {
826         unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
827
828         /* Wait until both nodes are probed if we have two timers */
829         if ((arch_timers_present & mask) != mask) {
830                 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
831                         return 0;
832                 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
833                         return 0;
834         }
835
836         arch_timer_banner(arch_timers_present);
837         arch_counter_register(arch_timers_present);
838         return arch_timer_arch_init();
839 }
840
841 static int __init arch_timer_init(void)
842 {
843         int ret;
844         /*
845          * If HYP mode is available, we know that the physical timer
846          * has been configured to be accessible from PL1. Use it, so
847          * that a guest can use the virtual timer instead.
848          *
849          * If no interrupt provided for virtual timer, we'll have to
850          * stick to the physical timer. It'd better be accessible...
851          *
852          * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
853          * accesses to CNTP_*_EL1 registers are silently redirected to
854          * their CNTHP_*_EL2 counterparts, and use a different PPI
855          * number.
856          */
857         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
858                 bool has_ppi;
859
860                 if (is_kernel_in_hyp_mode()) {
861                         arch_timer_uses_ppi = HYP_PPI;
862                         has_ppi = !!arch_timer_ppi[HYP_PPI];
863                 } else {
864                         arch_timer_uses_ppi = PHYS_SECURE_PPI;
865                         has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
866                                    !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
867                 }
868
869                 if (!has_ppi) {
870                         pr_warn("arch_timer: No interrupt available, giving up\n");
871                         return -EINVAL;
872                 }
873         }
874
875         ret = arch_timer_register();
876         if (ret)
877                 return ret;
878
879         ret = arch_timer_common_init();
880         if (ret)
881                 return ret;
882
883         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
884         
885         return 0;
886 }
887
888 static int __init arch_timer_of_init(struct device_node *np)
889 {
890         int i;
891
892         if (arch_timers_present & ARCH_CP15_TIMER) {
893                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
894                 return 0;
895         }
896
897         arch_timers_present |= ARCH_CP15_TIMER;
898         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
899                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
900
901         arch_timer_detect_rate(NULL, np);
902
903         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
904
905 #ifdef CONFIG_FSL_ERRATUM_A008585
906         if (fsl_a008585_enable < 0)
907                 fsl_a008585_enable = of_property_read_bool(np, "fsl,erratum-a008585");
908         if (fsl_a008585_enable) {
909                 static_branch_enable(&arch_timer_read_ool_enabled);
910                 pr_info("Enabling workaround for FSL erratum A-008585\n");
911         }
912 #endif
913
914         /*
915          * If we cannot rely on firmware initializing the timer registers then
916          * we should use the physical timers instead.
917          */
918         if (IS_ENABLED(CONFIG_ARM) &&
919             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
920                 arch_timer_uses_ppi = PHYS_SECURE_PPI;
921
922         /* On some systems, the counter stops ticking when in suspend. */
923         arch_counter_suspend_stop = of_property_read_bool(np,
924                                                          "arm,no-tick-in-suspend");
925
926         return arch_timer_init();
927 }
928 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
929 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
930
931 static int __init arch_timer_mem_init(struct device_node *np)
932 {
933         struct device_node *frame, *best_frame = NULL;
934         void __iomem *cntctlbase, *base;
935         unsigned int irq, ret = -EINVAL;
936         u32 cnttidr;
937
938         arch_timers_present |= ARCH_MEM_TIMER;
939         cntctlbase = of_iomap(np, 0);
940         if (!cntctlbase) {
941                 pr_err("arch_timer: Can't find CNTCTLBase\n");
942                 return -ENXIO;
943         }
944
945         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
946
947         /*
948          * Try to find a virtual capable frame. Otherwise fall back to a
949          * physical capable frame.
950          */
951         for_each_available_child_of_node(np, frame) {
952                 int n;
953                 u32 cntacr;
954
955                 if (of_property_read_u32(frame, "frame-number", &n)) {
956                         pr_err("arch_timer: Missing frame-number\n");
957                         of_node_put(frame);
958                         goto out;
959                 }
960
961                 /* Try enabling everything, and see what sticks */
962                 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
963                          CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
964                 writel_relaxed(cntacr, cntctlbase + CNTACR(n));
965                 cntacr = readl_relaxed(cntctlbase + CNTACR(n));
966
967                 if ((cnttidr & CNTTIDR_VIRT(n)) &&
968                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
969                         of_node_put(best_frame);
970                         best_frame = frame;
971                         arch_timer_mem_use_virtual = true;
972                         break;
973                 }
974
975                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
976                         continue;
977
978                 of_node_put(best_frame);
979                 best_frame = of_node_get(frame);
980         }
981
982         ret= -ENXIO;
983         base = arch_counter_base = of_iomap(best_frame, 0);
984         if (!base) {
985                 pr_err("arch_timer: Can't map frame's registers\n");
986                 goto out;
987         }
988
989         if (arch_timer_mem_use_virtual)
990                 irq = irq_of_parse_and_map(best_frame, 1);
991         else
992                 irq = irq_of_parse_and_map(best_frame, 0);
993
994         ret = -EINVAL;
995         if (!irq) {
996                 pr_err("arch_timer: Frame missing %s irq",
997                        arch_timer_mem_use_virtual ? "virt" : "phys");
998                 goto out;
999         }
1000
1001         arch_timer_detect_rate(base, np);
1002         ret = arch_timer_mem_register(base, irq);
1003         if (ret)
1004                 goto out;
1005
1006         return arch_timer_common_init();
1007 out:
1008         iounmap(cntctlbase);
1009         of_node_put(best_frame);
1010         return ret;
1011 }
1012 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1013                        arch_timer_mem_init);
1014
1015 #ifdef CONFIG_ACPI
1016 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
1017 {
1018         int trigger, polarity;
1019
1020         if (!interrupt)
1021                 return 0;
1022
1023         trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
1024                         : ACPI_LEVEL_SENSITIVE;
1025
1026         polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
1027                         : ACPI_ACTIVE_HIGH;
1028
1029         return acpi_register_gsi(NULL, interrupt, trigger, polarity);
1030 }
1031
1032 /* Initialize per-processor generic timer */
1033 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1034 {
1035         struct acpi_table_gtdt *gtdt;
1036
1037         if (arch_timers_present & ARCH_CP15_TIMER) {
1038                 pr_warn("arch_timer: already initialized, skipping\n");
1039                 return -EINVAL;
1040         }
1041
1042         gtdt = container_of(table, struct acpi_table_gtdt, header);
1043
1044         arch_timers_present |= ARCH_CP15_TIMER;
1045
1046         arch_timer_ppi[PHYS_SECURE_PPI] =
1047                 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
1048                 gtdt->secure_el1_flags);
1049
1050         arch_timer_ppi[PHYS_NONSECURE_PPI] =
1051                 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
1052                 gtdt->non_secure_el1_flags);
1053
1054         arch_timer_ppi[VIRT_PPI] =
1055                 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
1056                 gtdt->virtual_timer_flags);
1057
1058         arch_timer_ppi[HYP_PPI] =
1059                 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
1060                 gtdt->non_secure_el2_flags);
1061
1062         /* Get the frequency from CNTFRQ */
1063         arch_timer_detect_rate(NULL, NULL);
1064
1065         /* Always-on capability */
1066         arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
1067
1068         arch_timer_init();
1069         return 0;
1070 }
1071 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1072 #endif