GNU Linux-libre 4.14.251-gnu1
[releases.git] / drivers / clk / bcm / clk-bcm2835.c
1 /*
2  * Copyright (C) 2010,2015 Broadcom
3  * Copyright (C) 2012 Stephen Warren
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16
17 /**
18  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19  *
20  * The clock tree on the 2835 has several levels.  There's a root
21  * oscillator running at 19.2Mhz.  After the oscillator there are 5
22  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23  * and "HDMI displays".  Those 5 PLLs each can divide their output to
24  * produce up to 4 channels.  Finally, there is the level of clocks to
25  * be consumed by other hardware components (like "H264" or "HDMI
26  * state machine"), which divide off of some subset of the PLL
27  * channels.
28  *
29  * All of the clocks in the tree are exposed in the DT, because the DT
30  * may want to make assignments of the final layer of clocks to the
31  * PLL channels, and some components of the hardware will actually
32  * skip layers of the tree (for example, the pixel clock comes
33  * directly from the PLLH PIX channel without using a CM_*CTL clock
34  * generator).
35  */
36
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/clk/bcm2835.h>
41 #include <linux/debugfs.h>
42 #include <linux/delay.h>
43 #include <linux/module.h>
44 #include <linux/of.h>
45 #include <linux/platform_device.h>
46 #include <linux/slab.h>
47 #include <dt-bindings/clock/bcm2835.h>
48
49 #define CM_PASSWORD             0x5a000000
50
51 #define CM_GNRICCTL             0x000
52 #define CM_GNRICDIV             0x004
53 # define CM_DIV_FRAC_BITS       12
54 # define CM_DIV_FRAC_MASK       GENMASK(CM_DIV_FRAC_BITS - 1, 0)
55
56 #define CM_VPUCTL               0x008
57 #define CM_VPUDIV               0x00c
58 #define CM_SYSCTL               0x010
59 #define CM_SYSDIV               0x014
60 #define CM_PERIACTL             0x018
61 #define CM_PERIADIV             0x01c
62 #define CM_PERIICTL             0x020
63 #define CM_PERIIDIV             0x024
64 #define CM_H264CTL              0x028
65 #define CM_H264DIV              0x02c
66 #define CM_ISPCTL               0x030
67 #define CM_ISPDIV               0x034
68 #define CM_V3DCTL               0x038
69 #define CM_V3DDIV               0x03c
70 #define CM_CAM0CTL              0x040
71 #define CM_CAM0DIV              0x044
72 #define CM_CAM1CTL              0x048
73 #define CM_CAM1DIV              0x04c
74 #define CM_CCP2CTL              0x050
75 #define CM_CCP2DIV              0x054
76 #define CM_DSI0ECTL             0x058
77 #define CM_DSI0EDIV             0x05c
78 #define CM_DSI0PCTL             0x060
79 #define CM_DSI0PDIV             0x064
80 #define CM_DPICTL               0x068
81 #define CM_DPIDIV               0x06c
82 #define CM_GP0CTL               0x070
83 #define CM_GP0DIV               0x074
84 #define CM_GP1CTL               0x078
85 #define CM_GP1DIV               0x07c
86 #define CM_GP2CTL               0x080
87 #define CM_GP2DIV               0x084
88 #define CM_HSMCTL               0x088
89 #define CM_HSMDIV               0x08c
90 #define CM_OTPCTL               0x090
91 #define CM_OTPDIV               0x094
92 #define CM_PCMCTL               0x098
93 #define CM_PCMDIV               0x09c
94 #define CM_PWMCTL               0x0a0
95 #define CM_PWMDIV               0x0a4
96 #define CM_SLIMCTL              0x0a8
97 #define CM_SLIMDIV              0x0ac
98 #define CM_SMICTL               0x0b0
99 #define CM_SMIDIV               0x0b4
100 /* no definition for 0x0b8  and 0x0bc */
101 #define CM_TCNTCTL              0x0c0
102 # define CM_TCNT_SRC1_SHIFT             12
103 #define CM_TCNTCNT              0x0c4
104 #define CM_TECCTL               0x0c8
105 #define CM_TECDIV               0x0cc
106 #define CM_TD0CTL               0x0d0
107 #define CM_TD0DIV               0x0d4
108 #define CM_TD1CTL               0x0d8
109 #define CM_TD1DIV               0x0dc
110 #define CM_TSENSCTL             0x0e0
111 #define CM_TSENSDIV             0x0e4
112 #define CM_TIMERCTL             0x0e8
113 #define CM_TIMERDIV             0x0ec
114 #define CM_UARTCTL              0x0f0
115 #define CM_UARTDIV              0x0f4
116 #define CM_VECCTL               0x0f8
117 #define CM_VECDIV               0x0fc
118 #define CM_PULSECTL             0x190
119 #define CM_PULSEDIV             0x194
120 #define CM_SDCCTL               0x1a8
121 #define CM_SDCDIV               0x1ac
122 #define CM_ARMCTL               0x1b0
123 #define CM_AVEOCTL              0x1b8
124 #define CM_AVEODIV              0x1bc
125 #define CM_EMMCCTL              0x1c0
126 #define CM_EMMCDIV              0x1c4
127
128 /* General bits for the CM_*CTL regs */
129 # define CM_ENABLE                      BIT(4)
130 # define CM_KILL                        BIT(5)
131 # define CM_GATE_BIT                    6
132 # define CM_GATE                        BIT(CM_GATE_BIT)
133 # define CM_BUSY                        BIT(7)
134 # define CM_BUSYD                       BIT(8)
135 # define CM_FRAC                        BIT(9)
136 # define CM_SRC_SHIFT                   0
137 # define CM_SRC_BITS                    4
138 # define CM_SRC_MASK                    0xf
139 # define CM_SRC_GND                     0
140 # define CM_SRC_OSC                     1
141 # define CM_SRC_TESTDEBUG0              2
142 # define CM_SRC_TESTDEBUG1              3
143 # define CM_SRC_PLLA_CORE               4
144 # define CM_SRC_PLLA_PER                4
145 # define CM_SRC_PLLC_CORE0              5
146 # define CM_SRC_PLLC_PER                5
147 # define CM_SRC_PLLC_CORE1              8
148 # define CM_SRC_PLLD_CORE               6
149 # define CM_SRC_PLLD_PER                6
150 # define CM_SRC_PLLH_AUX                7
151 # define CM_SRC_PLLC_CORE1              8
152 # define CM_SRC_PLLC_CORE2              9
153
154 #define CM_OSCCOUNT             0x100
155
156 #define CM_PLLA                 0x104
157 # define CM_PLL_ANARST                  BIT(8)
158 # define CM_PLLA_HOLDPER                BIT(7)
159 # define CM_PLLA_LOADPER                BIT(6)
160 # define CM_PLLA_HOLDCORE               BIT(5)
161 # define CM_PLLA_LOADCORE               BIT(4)
162 # define CM_PLLA_HOLDCCP2               BIT(3)
163 # define CM_PLLA_LOADCCP2               BIT(2)
164 # define CM_PLLA_HOLDDSI0               BIT(1)
165 # define CM_PLLA_LOADDSI0               BIT(0)
166
167 #define CM_PLLC                 0x108
168 # define CM_PLLC_HOLDPER                BIT(7)
169 # define CM_PLLC_LOADPER                BIT(6)
170 # define CM_PLLC_HOLDCORE2              BIT(5)
171 # define CM_PLLC_LOADCORE2              BIT(4)
172 # define CM_PLLC_HOLDCORE1              BIT(3)
173 # define CM_PLLC_LOADCORE1              BIT(2)
174 # define CM_PLLC_HOLDCORE0              BIT(1)
175 # define CM_PLLC_LOADCORE0              BIT(0)
176
177 #define CM_PLLD                 0x10c
178 # define CM_PLLD_HOLDPER                BIT(7)
179 # define CM_PLLD_LOADPER                BIT(6)
180 # define CM_PLLD_HOLDCORE               BIT(5)
181 # define CM_PLLD_LOADCORE               BIT(4)
182 # define CM_PLLD_HOLDDSI1               BIT(3)
183 # define CM_PLLD_LOADDSI1               BIT(2)
184 # define CM_PLLD_HOLDDSI0               BIT(1)
185 # define CM_PLLD_LOADDSI0               BIT(0)
186
187 #define CM_PLLH                 0x110
188 # define CM_PLLH_LOADRCAL               BIT(2)
189 # define CM_PLLH_LOADAUX                BIT(1)
190 # define CM_PLLH_LOADPIX                BIT(0)
191
192 #define CM_LOCK                 0x114
193 # define CM_LOCK_FLOCKH                 BIT(12)
194 # define CM_LOCK_FLOCKD                 BIT(11)
195 # define CM_LOCK_FLOCKC                 BIT(10)
196 # define CM_LOCK_FLOCKB                 BIT(9)
197 # define CM_LOCK_FLOCKA                 BIT(8)
198
199 #define CM_EVENT                0x118
200 #define CM_DSI1ECTL             0x158
201 #define CM_DSI1EDIV             0x15c
202 #define CM_DSI1PCTL             0x160
203 #define CM_DSI1PDIV             0x164
204 #define CM_DFTCTL               0x168
205 #define CM_DFTDIV               0x16c
206
207 #define CM_PLLB                 0x170
208 # define CM_PLLB_HOLDARM                BIT(1)
209 # define CM_PLLB_LOADARM                BIT(0)
210
211 #define A2W_PLLA_CTRL           0x1100
212 #define A2W_PLLC_CTRL           0x1120
213 #define A2W_PLLD_CTRL           0x1140
214 #define A2W_PLLH_CTRL           0x1160
215 #define A2W_PLLB_CTRL           0x11e0
216 # define A2W_PLL_CTRL_PRST_DISABLE      BIT(17)
217 # define A2W_PLL_CTRL_PWRDN             BIT(16)
218 # define A2W_PLL_CTRL_PDIV_MASK         0x000007000
219 # define A2W_PLL_CTRL_PDIV_SHIFT        12
220 # define A2W_PLL_CTRL_NDIV_MASK         0x0000003ff
221 # define A2W_PLL_CTRL_NDIV_SHIFT        0
222
223 #define A2W_PLLA_ANA0           0x1010
224 #define A2W_PLLC_ANA0           0x1030
225 #define A2W_PLLD_ANA0           0x1050
226 #define A2W_PLLH_ANA0           0x1070
227 #define A2W_PLLB_ANA0           0x10f0
228
229 #define A2W_PLL_KA_SHIFT        7
230 #define A2W_PLL_KA_MASK         GENMASK(9, 7)
231 #define A2W_PLL_KI_SHIFT        19
232 #define A2W_PLL_KI_MASK         GENMASK(21, 19)
233 #define A2W_PLL_KP_SHIFT        15
234 #define A2W_PLL_KP_MASK         GENMASK(18, 15)
235
236 #define A2W_PLLH_KA_SHIFT       19
237 #define A2W_PLLH_KA_MASK        GENMASK(21, 19)
238 #define A2W_PLLH_KI_LOW_SHIFT   22
239 #define A2W_PLLH_KI_LOW_MASK    GENMASK(23, 22)
240 #define A2W_PLLH_KI_HIGH_SHIFT  0
241 #define A2W_PLLH_KI_HIGH_MASK   GENMASK(0, 0)
242 #define A2W_PLLH_KP_SHIFT       1
243 #define A2W_PLLH_KP_MASK        GENMASK(4, 1)
244
245 #define A2W_XOSC_CTRL           0x1190
246 # define A2W_XOSC_CTRL_PLLB_ENABLE      BIT(7)
247 # define A2W_XOSC_CTRL_PLLA_ENABLE      BIT(6)
248 # define A2W_XOSC_CTRL_PLLD_ENABLE      BIT(5)
249 # define A2W_XOSC_CTRL_DDR_ENABLE       BIT(4)
250 # define A2W_XOSC_CTRL_CPR1_ENABLE      BIT(3)
251 # define A2W_XOSC_CTRL_USB_ENABLE       BIT(2)
252 # define A2W_XOSC_CTRL_HDMI_ENABLE      BIT(1)
253 # define A2W_XOSC_CTRL_PLLC_ENABLE      BIT(0)
254
255 #define A2W_PLLA_FRAC           0x1200
256 #define A2W_PLLC_FRAC           0x1220
257 #define A2W_PLLD_FRAC           0x1240
258 #define A2W_PLLH_FRAC           0x1260
259 #define A2W_PLLB_FRAC           0x12e0
260 # define A2W_PLL_FRAC_MASK              ((1 << A2W_PLL_FRAC_BITS) - 1)
261 # define A2W_PLL_FRAC_BITS              20
262
263 #define A2W_PLL_CHANNEL_DISABLE         BIT(8)
264 #define A2W_PLL_DIV_BITS                8
265 #define A2W_PLL_DIV_SHIFT               0
266
267 #define A2W_PLLA_DSI0           0x1300
268 #define A2W_PLLA_CORE           0x1400
269 #define A2W_PLLA_PER            0x1500
270 #define A2W_PLLA_CCP2           0x1600
271
272 #define A2W_PLLC_CORE2          0x1320
273 #define A2W_PLLC_CORE1          0x1420
274 #define A2W_PLLC_PER            0x1520
275 #define A2W_PLLC_CORE0          0x1620
276
277 #define A2W_PLLD_DSI0           0x1340
278 #define A2W_PLLD_CORE           0x1440
279 #define A2W_PLLD_PER            0x1540
280 #define A2W_PLLD_DSI1           0x1640
281
282 #define A2W_PLLH_AUX            0x1360
283 #define A2W_PLLH_RCAL           0x1460
284 #define A2W_PLLH_PIX            0x1560
285 #define A2W_PLLH_STS            0x1660
286
287 #define A2W_PLLH_CTRLR          0x1960
288 #define A2W_PLLH_FRACR          0x1a60
289 #define A2W_PLLH_AUXR           0x1b60
290 #define A2W_PLLH_RCALR          0x1c60
291 #define A2W_PLLH_PIXR           0x1d60
292 #define A2W_PLLH_STSR           0x1e60
293
294 #define A2W_PLLB_ARM            0x13e0
295 #define A2W_PLLB_SP0            0x14e0
296 #define A2W_PLLB_SP1            0x15e0
297 #define A2W_PLLB_SP2            0x16e0
298
299 #define LOCK_TIMEOUT_NS         100000000
300 #define BCM2835_MAX_FB_RATE     1750000000u
301
302 /*
303  * Names of clocks used within the driver that need to be replaced
304  * with an external parent's name.  This array is in the order that
305  * the clocks node in the DT references external clocks.
306  */
307 static const char *const cprman_parent_names[] = {
308         "xosc",
309         "dsi0_byte",
310         "dsi0_ddr2",
311         "dsi0_ddr",
312         "dsi1_byte",
313         "dsi1_ddr2",
314         "dsi1_ddr",
315 };
316
317 struct bcm2835_cprman {
318         struct device *dev;
319         void __iomem *regs;
320         spinlock_t regs_lock; /* spinlock for all clocks */
321
322         /*
323          * Real names of cprman clock parents looked up through
324          * of_clk_get_parent_name(), which will be used in the
325          * parent_names[] arrays for clock registration.
326          */
327         const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
328
329         /* Must be last */
330         struct clk_hw_onecell_data onecell;
331 };
332
333 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
334 {
335         writel(CM_PASSWORD | val, cprman->regs + reg);
336 }
337
338 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
339 {
340         return readl(cprman->regs + reg);
341 }
342
343 /* Does a cycle of measuring a clock through the TCNT clock, which may
344  * source from many other clocks in the system.
345  */
346 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
347                                               u32 tcnt_mux)
348 {
349         u32 osccount = 19200; /* 1ms */
350         u32 count;
351         ktime_t timeout;
352
353         spin_lock(&cprman->regs_lock);
354
355         cprman_write(cprman, CM_TCNTCTL, CM_KILL);
356
357         cprman_write(cprman, CM_TCNTCTL,
358                      (tcnt_mux & CM_SRC_MASK) |
359                      (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
360
361         cprman_write(cprman, CM_OSCCOUNT, osccount);
362
363         /* do a kind delay at the start */
364         mdelay(1);
365
366         /* Finish off whatever is left of OSCCOUNT */
367         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
368         while (cprman_read(cprman, CM_OSCCOUNT)) {
369                 if (ktime_after(ktime_get(), timeout)) {
370                         dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
371                         count = 0;
372                         goto out;
373                 }
374                 cpu_relax();
375         }
376
377         /* Wait for BUSY to clear. */
378         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
379         while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
380                 if (ktime_after(ktime_get(), timeout)) {
381                         dev_err(cprman->dev, "timeout waiting for !BUSY\n");
382                         count = 0;
383                         goto out;
384                 }
385                 cpu_relax();
386         }
387
388         count = cprman_read(cprman, CM_TCNTCNT);
389
390         cprman_write(cprman, CM_TCNTCTL, 0);
391
392 out:
393         spin_unlock(&cprman->regs_lock);
394
395         return count * 1000;
396 }
397
398 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
399                                   struct debugfs_reg32 *regs, size_t nregs,
400                                   struct dentry *dentry)
401 {
402         struct dentry *regdump;
403         struct debugfs_regset32 *regset;
404
405         regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
406         if (!regset)
407                 return -ENOMEM;
408
409         regset->regs = regs;
410         regset->nregs = nregs;
411         regset->base = cprman->regs + base;
412
413         regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
414                                           regset);
415
416         return regdump ? 0 : -ENOMEM;
417 }
418
419 /*
420  * These are fixed clocks. They're probably not all root clocks and it may
421  * be possible to turn them on and off but until this is mapped out better
422  * it's the only way they can be used.
423  */
424 void __init bcm2835_init_clocks(void)
425 {
426         struct clk_hw *hw;
427         int ret;
428
429         hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
430         if (IS_ERR(hw))
431                 pr_err("apb_pclk not registered\n");
432
433         hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
434         if (IS_ERR(hw))
435                 pr_err("uart0_pclk not registered\n");
436         ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
437         if (ret)
438                 pr_err("uart0_pclk alias not registered\n");
439
440         hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
441         if (IS_ERR(hw))
442                 pr_err("uart1_pclk not registered\n");
443         ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
444         if (ret)
445                 pr_err("uart1_pclk alias not registered\n");
446 }
447
448 struct bcm2835_pll_data {
449         const char *name;
450         u32 cm_ctrl_reg;
451         u32 a2w_ctrl_reg;
452         u32 frac_reg;
453         u32 ana_reg_base;
454         u32 reference_enable_mask;
455         /* Bit in CM_LOCK to indicate when the PLL has locked. */
456         u32 lock_mask;
457
458         const struct bcm2835_pll_ana_bits *ana;
459
460         unsigned long min_rate;
461         unsigned long max_rate;
462         /*
463          * Highest rate for the VCO before we have to use the
464          * pre-divide-by-2.
465          */
466         unsigned long max_fb_rate;
467 };
468
469 struct bcm2835_pll_ana_bits {
470         u32 mask0;
471         u32 set0;
472         u32 mask1;
473         u32 set1;
474         u32 mask3;
475         u32 set3;
476         u32 fb_prediv_mask;
477 };
478
479 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
480         .mask0 = 0,
481         .set0 = 0,
482         .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
483         .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
484         .mask3 = A2W_PLL_KA_MASK,
485         .set3 = (2 << A2W_PLL_KA_SHIFT),
486         .fb_prediv_mask = BIT(14),
487 };
488
489 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
490         .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
491         .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
492         .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
493         .set1 = (6 << A2W_PLLH_KP_SHIFT),
494         .mask3 = 0,
495         .set3 = 0,
496         .fb_prediv_mask = BIT(11),
497 };
498
499 struct bcm2835_pll_divider_data {
500         const char *name;
501         const char *source_pll;
502
503         u32 cm_reg;
504         u32 a2w_reg;
505
506         u32 load_mask;
507         u32 hold_mask;
508         u32 fixed_divider;
509         u32 flags;
510 };
511
512 struct bcm2835_clock_data {
513         const char *name;
514
515         const char *const *parents;
516         int num_mux_parents;
517
518         /* Bitmap encoding which parents accept rate change propagation. */
519         unsigned int set_rate_parent;
520
521         u32 ctl_reg;
522         u32 div_reg;
523
524         /* Number of integer bits in the divider */
525         u32 int_bits;
526         /* Number of fractional bits in the divider */
527         u32 frac_bits;
528
529         u32 flags;
530
531         bool is_vpu_clock;
532         bool is_mash_clock;
533         bool low_jitter;
534
535         u32 tcnt_mux;
536 };
537
538 struct bcm2835_gate_data {
539         const char *name;
540         const char *parent;
541
542         u32 ctl_reg;
543 };
544
545 struct bcm2835_pll {
546         struct clk_hw hw;
547         struct bcm2835_cprman *cprman;
548         const struct bcm2835_pll_data *data;
549 };
550
551 static int bcm2835_pll_is_on(struct clk_hw *hw)
552 {
553         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
554         struct bcm2835_cprman *cprman = pll->cprman;
555         const struct bcm2835_pll_data *data = pll->data;
556
557         return cprman_read(cprman, data->a2w_ctrl_reg) &
558                 A2W_PLL_CTRL_PRST_DISABLE;
559 }
560
561 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
562                                              unsigned long parent_rate,
563                                              u32 *ndiv, u32 *fdiv)
564 {
565         u64 div;
566
567         div = (u64)rate << A2W_PLL_FRAC_BITS;
568         do_div(div, parent_rate);
569
570         *ndiv = div >> A2W_PLL_FRAC_BITS;
571         *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
572 }
573
574 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
575                                            u32 ndiv, u32 fdiv, u32 pdiv)
576 {
577         u64 rate;
578
579         if (pdiv == 0)
580                 return 0;
581
582         rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
583         do_div(rate, pdiv);
584         return rate >> A2W_PLL_FRAC_BITS;
585 }
586
587 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
588                                    unsigned long *parent_rate)
589 {
590         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
591         const struct bcm2835_pll_data *data = pll->data;
592         u32 ndiv, fdiv;
593
594         rate = clamp(rate, data->min_rate, data->max_rate);
595
596         bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
597
598         return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
599 }
600
601 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
602                                           unsigned long parent_rate)
603 {
604         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
605         struct bcm2835_cprman *cprman = pll->cprman;
606         const struct bcm2835_pll_data *data = pll->data;
607         u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
608         u32 ndiv, pdiv, fdiv;
609         bool using_prediv;
610
611         if (parent_rate == 0)
612                 return 0;
613
614         fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
615         ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
616         pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
617         using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
618                 data->ana->fb_prediv_mask;
619
620         if (using_prediv) {
621                 ndiv *= 2;
622                 fdiv *= 2;
623         }
624
625         return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
626 }
627
628 static void bcm2835_pll_off(struct clk_hw *hw)
629 {
630         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
631         struct bcm2835_cprman *cprman = pll->cprman;
632         const struct bcm2835_pll_data *data = pll->data;
633
634         spin_lock(&cprman->regs_lock);
635         cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
636         cprman_write(cprman, data->a2w_ctrl_reg,
637                      cprman_read(cprman, data->a2w_ctrl_reg) |
638                      A2W_PLL_CTRL_PWRDN);
639         spin_unlock(&cprman->regs_lock);
640 }
641
642 static int bcm2835_pll_on(struct clk_hw *hw)
643 {
644         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
645         struct bcm2835_cprman *cprman = pll->cprman;
646         const struct bcm2835_pll_data *data = pll->data;
647         ktime_t timeout;
648
649         cprman_write(cprman, data->a2w_ctrl_reg,
650                      cprman_read(cprman, data->a2w_ctrl_reg) &
651                      ~A2W_PLL_CTRL_PWRDN);
652
653         /* Take the PLL out of reset. */
654         spin_lock(&cprman->regs_lock);
655         cprman_write(cprman, data->cm_ctrl_reg,
656                      cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
657         spin_unlock(&cprman->regs_lock);
658
659         /* Wait for the PLL to lock. */
660         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
661         while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
662                 if (ktime_after(ktime_get(), timeout)) {
663                         dev_err(cprman->dev, "%s: couldn't lock PLL\n",
664                                 clk_hw_get_name(hw));
665                         return -ETIMEDOUT;
666                 }
667
668                 cpu_relax();
669         }
670
671         cprman_write(cprman, data->a2w_ctrl_reg,
672                      cprman_read(cprman, data->a2w_ctrl_reg) |
673                      A2W_PLL_CTRL_PRST_DISABLE);
674
675         return 0;
676 }
677
678 static void
679 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
680 {
681         int i;
682
683         /*
684          * ANA register setup is done as a series of writes to
685          * ANA3-ANA0, in that order.  This lets us write all 4
686          * registers as a single cycle of the serdes interface (taking
687          * 100 xosc clocks), whereas if we were to update ana0, 1, and
688          * 3 individually through their partial-write registers, each
689          * would be their own serdes cycle.
690          */
691         for (i = 3; i >= 0; i--)
692                 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
693 }
694
695 static int bcm2835_pll_set_rate(struct clk_hw *hw,
696                                 unsigned long rate, unsigned long parent_rate)
697 {
698         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
699         struct bcm2835_cprman *cprman = pll->cprman;
700         const struct bcm2835_pll_data *data = pll->data;
701         bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
702         u32 ndiv, fdiv, a2w_ctl;
703         u32 ana[4];
704         int i;
705
706         if (rate > data->max_fb_rate) {
707                 use_fb_prediv = true;
708                 rate /= 2;
709         } else {
710                 use_fb_prediv = false;
711         }
712
713         bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
714
715         for (i = 3; i >= 0; i--)
716                 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
717
718         was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
719
720         ana[0] &= ~data->ana->mask0;
721         ana[0] |= data->ana->set0;
722         ana[1] &= ~data->ana->mask1;
723         ana[1] |= data->ana->set1;
724         ana[3] &= ~data->ana->mask3;
725         ana[3] |= data->ana->set3;
726
727         if (was_using_prediv && !use_fb_prediv) {
728                 ana[1] &= ~data->ana->fb_prediv_mask;
729                 do_ana_setup_first = true;
730         } else if (!was_using_prediv && use_fb_prediv) {
731                 ana[1] |= data->ana->fb_prediv_mask;
732                 do_ana_setup_first = false;
733         } else {
734                 do_ana_setup_first = true;
735         }
736
737         /* Unmask the reference clock from the oscillator. */
738         spin_lock(&cprman->regs_lock);
739         cprman_write(cprman, A2W_XOSC_CTRL,
740                      cprman_read(cprman, A2W_XOSC_CTRL) |
741                      data->reference_enable_mask);
742         spin_unlock(&cprman->regs_lock);
743
744         if (do_ana_setup_first)
745                 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
746
747         /* Set the PLL multiplier from the oscillator. */
748         cprman_write(cprman, data->frac_reg, fdiv);
749
750         a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
751         a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
752         a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
753         a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
754         a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
755         cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
756
757         if (!do_ana_setup_first)
758                 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
759
760         return 0;
761 }
762
763 static int bcm2835_pll_debug_init(struct clk_hw *hw,
764                                   struct dentry *dentry)
765 {
766         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
767         struct bcm2835_cprman *cprman = pll->cprman;
768         const struct bcm2835_pll_data *data = pll->data;
769         struct debugfs_reg32 *regs;
770
771         regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
772         if (!regs)
773                 return -ENOMEM;
774
775         regs[0].name = "cm_ctrl";
776         regs[0].offset = data->cm_ctrl_reg;
777         regs[1].name = "a2w_ctrl";
778         regs[1].offset = data->a2w_ctrl_reg;
779         regs[2].name = "frac";
780         regs[2].offset = data->frac_reg;
781         regs[3].name = "ana0";
782         regs[3].offset = data->ana_reg_base + 0 * 4;
783         regs[4].name = "ana1";
784         regs[4].offset = data->ana_reg_base + 1 * 4;
785         regs[5].name = "ana2";
786         regs[5].offset = data->ana_reg_base + 2 * 4;
787         regs[6].name = "ana3";
788         regs[6].offset = data->ana_reg_base + 3 * 4;
789
790         return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
791 }
792
793 static const struct clk_ops bcm2835_pll_clk_ops = {
794         .is_prepared = bcm2835_pll_is_on,
795         .prepare = bcm2835_pll_on,
796         .unprepare = bcm2835_pll_off,
797         .recalc_rate = bcm2835_pll_get_rate,
798         .set_rate = bcm2835_pll_set_rate,
799         .round_rate = bcm2835_pll_round_rate,
800         .debug_init = bcm2835_pll_debug_init,
801 };
802
803 struct bcm2835_pll_divider {
804         struct clk_divider div;
805         struct bcm2835_cprman *cprman;
806         const struct bcm2835_pll_divider_data *data;
807 };
808
809 static struct bcm2835_pll_divider *
810 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
811 {
812         return container_of(hw, struct bcm2835_pll_divider, div.hw);
813 }
814
815 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
816 {
817         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
818         struct bcm2835_cprman *cprman = divider->cprman;
819         const struct bcm2835_pll_divider_data *data = divider->data;
820
821         return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
822 }
823
824 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
825                                            unsigned long rate,
826                                            unsigned long *parent_rate)
827 {
828         return clk_divider_ops.round_rate(hw, rate, parent_rate);
829 }
830
831 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
832                                                   unsigned long parent_rate)
833 {
834         return clk_divider_ops.recalc_rate(hw, parent_rate);
835 }
836
837 static void bcm2835_pll_divider_off(struct clk_hw *hw)
838 {
839         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
840         struct bcm2835_cprman *cprman = divider->cprman;
841         const struct bcm2835_pll_divider_data *data = divider->data;
842
843         spin_lock(&cprman->regs_lock);
844         cprman_write(cprman, data->cm_reg,
845                      (cprman_read(cprman, data->cm_reg) &
846                       ~data->load_mask) | data->hold_mask);
847         cprman_write(cprman, data->a2w_reg,
848                      cprman_read(cprman, data->a2w_reg) |
849                      A2W_PLL_CHANNEL_DISABLE);
850         spin_unlock(&cprman->regs_lock);
851 }
852
853 static int bcm2835_pll_divider_on(struct clk_hw *hw)
854 {
855         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
856         struct bcm2835_cprman *cprman = divider->cprman;
857         const struct bcm2835_pll_divider_data *data = divider->data;
858
859         spin_lock(&cprman->regs_lock);
860         cprman_write(cprman, data->a2w_reg,
861                      cprman_read(cprman, data->a2w_reg) &
862                      ~A2W_PLL_CHANNEL_DISABLE);
863
864         cprman_write(cprman, data->cm_reg,
865                      cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
866         spin_unlock(&cprman->regs_lock);
867
868         return 0;
869 }
870
871 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
872                                         unsigned long rate,
873                                         unsigned long parent_rate)
874 {
875         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
876         struct bcm2835_cprman *cprman = divider->cprman;
877         const struct bcm2835_pll_divider_data *data = divider->data;
878         u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
879
880         div = DIV_ROUND_UP_ULL(parent_rate, rate);
881
882         div = min(div, max_div);
883         if (div == max_div)
884                 div = 0;
885
886         cprman_write(cprman, data->a2w_reg, div);
887         cm = cprman_read(cprman, data->cm_reg);
888         cprman_write(cprman, data->cm_reg, cm | data->load_mask);
889         cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
890
891         return 0;
892 }
893
894 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
895                                           struct dentry *dentry)
896 {
897         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
898         struct bcm2835_cprman *cprman = divider->cprman;
899         const struct bcm2835_pll_divider_data *data = divider->data;
900         struct debugfs_reg32 *regs;
901
902         regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
903         if (!regs)
904                 return -ENOMEM;
905
906         regs[0].name = "cm";
907         regs[0].offset = data->cm_reg;
908         regs[1].name = "a2w";
909         regs[1].offset = data->a2w_reg;
910
911         return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
912 }
913
914 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
915         .is_prepared = bcm2835_pll_divider_is_on,
916         .prepare = bcm2835_pll_divider_on,
917         .unprepare = bcm2835_pll_divider_off,
918         .recalc_rate = bcm2835_pll_divider_get_rate,
919         .set_rate = bcm2835_pll_divider_set_rate,
920         .round_rate = bcm2835_pll_divider_round_rate,
921         .debug_init = bcm2835_pll_divider_debug_init,
922 };
923
924 /*
925  * The CM dividers do fixed-point division, so we can't use the
926  * generic integer divider code like the PLL dividers do (and we can't
927  * fake it by having some fixed shifts preceding it in the clock tree,
928  * because we'd run out of bits in a 32-bit unsigned long).
929  */
930 struct bcm2835_clock {
931         struct clk_hw hw;
932         struct bcm2835_cprman *cprman;
933         const struct bcm2835_clock_data *data;
934 };
935
936 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
937 {
938         return container_of(hw, struct bcm2835_clock, hw);
939 }
940
941 static int bcm2835_clock_is_on(struct clk_hw *hw)
942 {
943         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
944         struct bcm2835_cprman *cprman = clock->cprman;
945         const struct bcm2835_clock_data *data = clock->data;
946
947         return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
948 }
949
950 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
951                                     unsigned long rate,
952                                     unsigned long parent_rate,
953                                     bool round_up)
954 {
955         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
956         const struct bcm2835_clock_data *data = clock->data;
957         u32 unused_frac_mask =
958                 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
959         u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
960         u64 rem;
961         u32 div, mindiv, maxdiv;
962
963         rem = do_div(temp, rate);
964         div = temp;
965
966         /* Round up and mask off the unused bits */
967         if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
968                 div += unused_frac_mask + 1;
969         div &= ~unused_frac_mask;
970
971         /* different clamping limits apply for a mash clock */
972         if (data->is_mash_clock) {
973                 /* clamp to min divider of 2 */
974                 mindiv = 2 << CM_DIV_FRAC_BITS;
975                 /* clamp to the highest possible integer divider */
976                 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
977         } else {
978                 /* clamp to min divider of 1 */
979                 mindiv = 1 << CM_DIV_FRAC_BITS;
980                 /* clamp to the highest possible fractional divider */
981                 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
982                                  CM_DIV_FRAC_BITS - data->frac_bits);
983         }
984
985         /* apply the clamping  limits */
986         div = max_t(u32, div, mindiv);
987         div = min_t(u32, div, maxdiv);
988
989         return div;
990 }
991
992 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
993                                             unsigned long parent_rate,
994                                             u32 div)
995 {
996         const struct bcm2835_clock_data *data = clock->data;
997         u64 temp;
998
999         if (data->int_bits == 0 && data->frac_bits == 0)
1000                 return parent_rate;
1001
1002         /*
1003          * The divisor is a 12.12 fixed point field, but only some of
1004          * the bits are populated in any given clock.
1005          */
1006         div >>= CM_DIV_FRAC_BITS - data->frac_bits;
1007         div &= (1 << (data->int_bits + data->frac_bits)) - 1;
1008
1009         if (div == 0)
1010                 return 0;
1011
1012         temp = (u64)parent_rate << data->frac_bits;
1013
1014         do_div(temp, div);
1015
1016         return temp;
1017 }
1018
1019 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1020                                             unsigned long parent_rate)
1021 {
1022         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1023         struct bcm2835_cprman *cprman = clock->cprman;
1024         const struct bcm2835_clock_data *data = clock->data;
1025         u32 div;
1026
1027         if (data->int_bits == 0 && data->frac_bits == 0)
1028                 return parent_rate;
1029
1030         div = cprman_read(cprman, data->div_reg);
1031
1032         return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1033 }
1034
1035 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1036 {
1037         struct bcm2835_cprman *cprman = clock->cprman;
1038         const struct bcm2835_clock_data *data = clock->data;
1039         ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1040
1041         while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1042                 if (ktime_after(ktime_get(), timeout)) {
1043                         dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1044                                 clk_hw_get_name(&clock->hw));
1045                         return;
1046                 }
1047                 cpu_relax();
1048         }
1049 }
1050
1051 static void bcm2835_clock_off(struct clk_hw *hw)
1052 {
1053         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1054         struct bcm2835_cprman *cprman = clock->cprman;
1055         const struct bcm2835_clock_data *data = clock->data;
1056
1057         spin_lock(&cprman->regs_lock);
1058         cprman_write(cprman, data->ctl_reg,
1059                      cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1060         spin_unlock(&cprman->regs_lock);
1061
1062         /* BUSY will remain high until the divider completes its cycle. */
1063         bcm2835_clock_wait_busy(clock);
1064 }
1065
1066 static int bcm2835_clock_on(struct clk_hw *hw)
1067 {
1068         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1069         struct bcm2835_cprman *cprman = clock->cprman;
1070         const struct bcm2835_clock_data *data = clock->data;
1071
1072         spin_lock(&cprman->regs_lock);
1073         cprman_write(cprman, data->ctl_reg,
1074                      cprman_read(cprman, data->ctl_reg) |
1075                      CM_ENABLE |
1076                      CM_GATE);
1077         spin_unlock(&cprman->regs_lock);
1078
1079         /* Debug code to measure the clock once it's turned on to see
1080          * if it's ticking at the rate we expect.
1081          */
1082         if (data->tcnt_mux && false) {
1083                 dev_info(cprman->dev,
1084                          "clk %s: rate %ld, measure %ld\n",
1085                          data->name,
1086                          clk_hw_get_rate(hw),
1087                          bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1088         }
1089
1090         return 0;
1091 }
1092
1093 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1094                                   unsigned long rate, unsigned long parent_rate)
1095 {
1096         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1097         struct bcm2835_cprman *cprman = clock->cprman;
1098         const struct bcm2835_clock_data *data = clock->data;
1099         u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1100         u32 ctl;
1101
1102         spin_lock(&cprman->regs_lock);
1103
1104         /*
1105          * Setting up frac support
1106          *
1107          * In principle it is recommended to stop/start the clock first,
1108          * but as we set CLK_SET_RATE_GATE during registration of the
1109          * clock this requirement should be take care of by the
1110          * clk-framework.
1111          */
1112         ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1113         ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1114         cprman_write(cprman, data->ctl_reg, ctl);
1115
1116         cprman_write(cprman, data->div_reg, div);
1117
1118         spin_unlock(&cprman->regs_lock);
1119
1120         return 0;
1121 }
1122
1123 static bool
1124 bcm2835_clk_is_pllc(struct clk_hw *hw)
1125 {
1126         if (!hw)
1127                 return false;
1128
1129         return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1130 }
1131
1132 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1133                                                         int parent_idx,
1134                                                         unsigned long rate,
1135                                                         u32 *div,
1136                                                         unsigned long *prate,
1137                                                         unsigned long *avgrate)
1138 {
1139         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1140         struct bcm2835_cprman *cprman = clock->cprman;
1141         const struct bcm2835_clock_data *data = clock->data;
1142         unsigned long best_rate = 0;
1143         u32 curdiv, mindiv, maxdiv;
1144         struct clk_hw *parent;
1145
1146         parent = clk_hw_get_parent_by_index(hw, parent_idx);
1147
1148         if (!(BIT(parent_idx) & data->set_rate_parent)) {
1149                 *prate = clk_hw_get_rate(parent);
1150                 *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1151
1152                 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1153
1154                 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1155                         unsigned long high, low;
1156                         u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1157
1158                         high = bcm2835_clock_rate_from_divisor(clock, *prate,
1159                                                                int_div);
1160                         int_div += CM_DIV_FRAC_MASK + 1;
1161                         low = bcm2835_clock_rate_from_divisor(clock, *prate,
1162                                                               int_div);
1163
1164                         /*
1165                          * Return a value which is the maximum deviation
1166                          * below the ideal rate, for use as a metric.
1167                          */
1168                         return *avgrate - max(*avgrate - low, high - *avgrate);
1169                 }
1170                 return *avgrate;
1171         }
1172
1173         if (data->frac_bits)
1174                 dev_warn(cprman->dev,
1175                         "frac bits are not used when propagating rate change");
1176
1177         /* clamp to min divider of 2 if we're dealing with a mash clock */
1178         mindiv = data->is_mash_clock ? 2 : 1;
1179         maxdiv = BIT(data->int_bits) - 1;
1180
1181         /* TODO: Be smart, and only test a subset of the available divisors. */
1182         for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1183                 unsigned long tmp_rate;
1184
1185                 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1186                 tmp_rate /= curdiv;
1187                 if (curdiv == mindiv ||
1188                     (tmp_rate > best_rate && tmp_rate <= rate))
1189                         best_rate = tmp_rate;
1190
1191                 if (best_rate == rate)
1192                         break;
1193         }
1194
1195         *div = curdiv << CM_DIV_FRAC_BITS;
1196         *prate = curdiv * best_rate;
1197         *avgrate = best_rate;
1198
1199         return best_rate;
1200 }
1201
1202 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1203                                         struct clk_rate_request *req)
1204 {
1205         struct clk_hw *parent, *best_parent = NULL;
1206         bool current_parent_is_pllc;
1207         unsigned long rate, best_rate = 0;
1208         unsigned long prate, best_prate = 0;
1209         unsigned long avgrate, best_avgrate = 0;
1210         size_t i;
1211         u32 div;
1212
1213         current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1214
1215         /*
1216          * Select parent clock that results in the closest but lower rate
1217          */
1218         for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1219                 parent = clk_hw_get_parent_by_index(hw, i);
1220                 if (!parent)
1221                         continue;
1222
1223                 /*
1224                  * Don't choose a PLLC-derived clock as our parent
1225                  * unless it had been manually set that way.  PLLC's
1226                  * frequency gets adjusted by the firmware due to
1227                  * over-temp or under-voltage conditions, without
1228                  * prior notification to our clock consumer.
1229                  */
1230                 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1231                         continue;
1232
1233                 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1234                                                           &div, &prate,
1235                                                           &avgrate);
1236                 if (rate > best_rate && rate <= req->rate) {
1237                         best_parent = parent;
1238                         best_prate = prate;
1239                         best_rate = rate;
1240                         best_avgrate = avgrate;
1241                 }
1242         }
1243
1244         if (!best_parent)
1245                 return -EINVAL;
1246
1247         req->best_parent_hw = best_parent;
1248         req->best_parent_rate = best_prate;
1249
1250         req->rate = best_avgrate;
1251
1252         return 0;
1253 }
1254
1255 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1256 {
1257         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1258         struct bcm2835_cprman *cprman = clock->cprman;
1259         const struct bcm2835_clock_data *data = clock->data;
1260         u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1261
1262         cprman_write(cprman, data->ctl_reg, src);
1263         return 0;
1264 }
1265
1266 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1267 {
1268         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1269         struct bcm2835_cprman *cprman = clock->cprman;
1270         const struct bcm2835_clock_data *data = clock->data;
1271         u32 src = cprman_read(cprman, data->ctl_reg);
1272
1273         return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1274 }
1275
1276 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1277         {
1278                 .name = "ctl",
1279                 .offset = 0,
1280         },
1281         {
1282                 .name = "div",
1283                 .offset = 4,
1284         },
1285 };
1286
1287 static int bcm2835_clock_debug_init(struct clk_hw *hw,
1288                                     struct dentry *dentry)
1289 {
1290         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1291         struct bcm2835_cprman *cprman = clock->cprman;
1292         const struct bcm2835_clock_data *data = clock->data;
1293
1294         return bcm2835_debugfs_regset(
1295                 cprman, data->ctl_reg,
1296                 bcm2835_debugfs_clock_reg32,
1297                 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1298                 dentry);
1299 }
1300
1301 static const struct clk_ops bcm2835_clock_clk_ops = {
1302         .is_prepared = bcm2835_clock_is_on,
1303         .prepare = bcm2835_clock_on,
1304         .unprepare = bcm2835_clock_off,
1305         .recalc_rate = bcm2835_clock_get_rate,
1306         .set_rate = bcm2835_clock_set_rate,
1307         .determine_rate = bcm2835_clock_determine_rate,
1308         .set_parent = bcm2835_clock_set_parent,
1309         .get_parent = bcm2835_clock_get_parent,
1310         .debug_init = bcm2835_clock_debug_init,
1311 };
1312
1313 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1314 {
1315         return true;
1316 }
1317
1318 /*
1319  * The VPU clock can never be disabled (it doesn't have an ENABLE
1320  * bit), so it gets its own set of clock ops.
1321  */
1322 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1323         .is_prepared = bcm2835_vpu_clock_is_on,
1324         .recalc_rate = bcm2835_clock_get_rate,
1325         .set_rate = bcm2835_clock_set_rate,
1326         .determine_rate = bcm2835_clock_determine_rate,
1327         .set_parent = bcm2835_clock_set_parent,
1328         .get_parent = bcm2835_clock_get_parent,
1329         .debug_init = bcm2835_clock_debug_init,
1330 };
1331
1332 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1333                                            const struct bcm2835_pll_data *data)
1334 {
1335         struct bcm2835_pll *pll;
1336         struct clk_init_data init;
1337         int ret;
1338
1339         memset(&init, 0, sizeof(init));
1340
1341         /* All of the PLLs derive from the external oscillator. */
1342         init.parent_names = &cprman->real_parent_names[0];
1343         init.num_parents = 1;
1344         init.name = data->name;
1345         init.ops = &bcm2835_pll_clk_ops;
1346         init.flags = CLK_IGNORE_UNUSED;
1347
1348         pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1349         if (!pll)
1350                 return NULL;
1351
1352         pll->cprman = cprman;
1353         pll->data = data;
1354         pll->hw.init = &init;
1355
1356         ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1357         if (ret) {
1358                 kfree(pll);
1359                 return NULL;
1360         }
1361         return &pll->hw;
1362 }
1363
1364 static struct clk_hw *
1365 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1366                              const struct bcm2835_pll_divider_data *data)
1367 {
1368         struct bcm2835_pll_divider *divider;
1369         struct clk_init_data init;
1370         const char *divider_name;
1371         int ret;
1372
1373         if (data->fixed_divider != 1) {
1374                 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1375                                               "%s_prediv", data->name);
1376                 if (!divider_name)
1377                         return NULL;
1378         } else {
1379                 divider_name = data->name;
1380         }
1381
1382         memset(&init, 0, sizeof(init));
1383
1384         init.parent_names = &data->source_pll;
1385         init.num_parents = 1;
1386         init.name = divider_name;
1387         init.ops = &bcm2835_pll_divider_clk_ops;
1388         init.flags = data->flags | CLK_IGNORE_UNUSED;
1389
1390         divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1391         if (!divider)
1392                 return NULL;
1393
1394         divider->div.reg = cprman->regs + data->a2w_reg;
1395         divider->div.shift = A2W_PLL_DIV_SHIFT;
1396         divider->div.width = A2W_PLL_DIV_BITS;
1397         divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1398         divider->div.lock = &cprman->regs_lock;
1399         divider->div.hw.init = &init;
1400         divider->div.table = NULL;
1401
1402         divider->cprman = cprman;
1403         divider->data = data;
1404
1405         ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1406         if (ret)
1407                 return ERR_PTR(ret);
1408
1409         /*
1410          * PLLH's channels have a fixed divide by 10 afterwards, which
1411          * is what our consumers are actually using.
1412          */
1413         if (data->fixed_divider != 1) {
1414                 return clk_hw_register_fixed_factor(cprman->dev, data->name,
1415                                                     divider_name,
1416                                                     CLK_SET_RATE_PARENT,
1417                                                     1,
1418                                                     data->fixed_divider);
1419         }
1420
1421         return &divider->div.hw;
1422 }
1423
1424 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1425                                           const struct bcm2835_clock_data *data)
1426 {
1427         struct bcm2835_clock *clock;
1428         struct clk_init_data init;
1429         const char *parents[1 << CM_SRC_BITS];
1430         size_t i, j;
1431         int ret;
1432
1433         /*
1434          * Replace our strings referencing parent clocks with the
1435          * actual clock-output-name of the parent.
1436          */
1437         for (i = 0; i < data->num_mux_parents; i++) {
1438                 parents[i] = data->parents[i];
1439
1440                 for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
1441                         if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
1442                                 parents[i] = cprman->real_parent_names[j];
1443                                 break;
1444                         }
1445                 }
1446         }
1447
1448         memset(&init, 0, sizeof(init));
1449         init.parent_names = parents;
1450         init.num_parents = data->num_mux_parents;
1451         init.name = data->name;
1452         init.flags = data->flags | CLK_IGNORE_UNUSED;
1453
1454         /*
1455          * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1456          * rate changes on at least of the parents.
1457          */
1458         if (data->set_rate_parent)
1459                 init.flags |= CLK_SET_RATE_PARENT;
1460
1461         if (data->is_vpu_clock) {
1462                 init.ops = &bcm2835_vpu_clock_clk_ops;
1463         } else {
1464                 init.ops = &bcm2835_clock_clk_ops;
1465                 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1466
1467                 /* If the clock wasn't actually enabled at boot, it's not
1468                  * critical.
1469                  */
1470                 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1471                         init.flags &= ~CLK_IS_CRITICAL;
1472         }
1473
1474         clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1475         if (!clock)
1476                 return NULL;
1477
1478         clock->cprman = cprman;
1479         clock->data = data;
1480         clock->hw.init = &init;
1481
1482         ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1483         if (ret)
1484                 return ERR_PTR(ret);
1485         return &clock->hw;
1486 }
1487
1488 static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1489                                          const struct bcm2835_gate_data *data)
1490 {
1491         return clk_hw_register_gate(cprman->dev, data->name, data->parent,
1492                                     CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1493                                     cprman->regs + data->ctl_reg,
1494                                     CM_GATE_BIT, 0, &cprman->regs_lock);
1495 }
1496
1497 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1498                                                const void *data);
1499 struct bcm2835_clk_desc {
1500         bcm2835_clk_register clk_register;
1501         const void *data;
1502 };
1503
1504 /* assignment helper macros for different clock types */
1505 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1506                             .data = __VA_ARGS__ }
1507 #define REGISTER_PLL(...)       _REGISTER(&bcm2835_register_pll,        \
1508                                           &(struct bcm2835_pll_data)    \
1509                                           {__VA_ARGS__})
1510 #define REGISTER_PLL_DIV(...)   _REGISTER(&bcm2835_register_pll_divider, \
1511                                           &(struct bcm2835_pll_divider_data) \
1512                                           {__VA_ARGS__})
1513 #define REGISTER_CLK(...)       _REGISTER(&bcm2835_register_clock,      \
1514                                           &(struct bcm2835_clock_data)  \
1515                                           {__VA_ARGS__})
1516 #define REGISTER_GATE(...)      _REGISTER(&bcm2835_register_gate,       \
1517                                           &(struct bcm2835_gate_data)   \
1518                                           {__VA_ARGS__})
1519
1520 /* parent mux arrays plus helper macros */
1521
1522 /* main oscillator parent mux */
1523 static const char *const bcm2835_clock_osc_parents[] = {
1524         "gnd",
1525         "xosc",
1526         "testdebug0",
1527         "testdebug1"
1528 };
1529
1530 #define REGISTER_OSC_CLK(...)   REGISTER_CLK(                           \
1531         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),       \
1532         .parents = bcm2835_clock_osc_parents,                           \
1533         __VA_ARGS__)
1534
1535 /* main peripherial parent mux */
1536 static const char *const bcm2835_clock_per_parents[] = {
1537         "gnd",
1538         "xosc",
1539         "testdebug0",
1540         "testdebug1",
1541         "plla_per",
1542         "pllc_per",
1543         "plld_per",
1544         "pllh_aux",
1545 };
1546
1547 #define REGISTER_PER_CLK(...)   REGISTER_CLK(                           \
1548         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),       \
1549         .parents = bcm2835_clock_per_parents,                           \
1550         __VA_ARGS__)
1551
1552 /*
1553  * Restrict clock sources for the PCM peripheral to the oscillator and
1554  * PLLD_PER because other source may have varying rates or be switched
1555  * off.
1556  *
1557  * Prevent other sources from being selected by replacing their names in
1558  * the list of potential parents with dummy entries (entry index is
1559  * significant).
1560  */
1561 static const char *const bcm2835_pcm_per_parents[] = {
1562         "-",
1563         "xosc",
1564         "-",
1565         "-",
1566         "-",
1567         "-",
1568         "plld_per",
1569         "-",
1570 };
1571
1572 #define REGISTER_PCM_CLK(...)   REGISTER_CLK(                           \
1573         .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),         \
1574         .parents = bcm2835_pcm_per_parents,                             \
1575         __VA_ARGS__)
1576
1577 /* main vpu parent mux */
1578 static const char *const bcm2835_clock_vpu_parents[] = {
1579         "gnd",
1580         "xosc",
1581         "testdebug0",
1582         "testdebug1",
1583         "plla_core",
1584         "pllc_core0",
1585         "plld_core",
1586         "pllh_aux",
1587         "pllc_core1",
1588         "pllc_core2",
1589 };
1590
1591 #define REGISTER_VPU_CLK(...)   REGISTER_CLK(                           \
1592         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),       \
1593         .parents = bcm2835_clock_vpu_parents,                           \
1594         __VA_ARGS__)
1595
1596 /*
1597  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1598  * analog PHY.  The _inv variants are generated internally to cprman,
1599  * but we don't use them so they aren't hooked up.
1600  */
1601 static const char *const bcm2835_clock_dsi0_parents[] = {
1602         "gnd",
1603         "xosc",
1604         "testdebug0",
1605         "testdebug1",
1606         "dsi0_ddr",
1607         "dsi0_ddr_inv",
1608         "dsi0_ddr2",
1609         "dsi0_ddr2_inv",
1610         "dsi0_byte",
1611         "dsi0_byte_inv",
1612 };
1613
1614 static const char *const bcm2835_clock_dsi1_parents[] = {
1615         "gnd",
1616         "xosc",
1617         "testdebug0",
1618         "testdebug1",
1619         "dsi1_ddr",
1620         "dsi1_ddr_inv",
1621         "dsi1_ddr2",
1622         "dsi1_ddr2_inv",
1623         "dsi1_byte",
1624         "dsi1_byte_inv",
1625 };
1626
1627 #define REGISTER_DSI0_CLK(...)  REGISTER_CLK(                           \
1628         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),      \
1629         .parents = bcm2835_clock_dsi0_parents,                          \
1630         __VA_ARGS__)
1631
1632 #define REGISTER_DSI1_CLK(...)  REGISTER_CLK(                           \
1633         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),      \
1634         .parents = bcm2835_clock_dsi1_parents,                          \
1635         __VA_ARGS__)
1636
1637 /*
1638  * the real definition of all the pll, pll_dividers and clocks
1639  * these make use of the above REGISTER_* macros
1640  */
1641 static const struct bcm2835_clk_desc clk_desc_array[] = {
1642         /* the PLL + PLL dividers */
1643
1644         /*
1645          * PLLA is the auxiliary PLL, used to drive the CCP2
1646          * (Compact Camera Port 2) transmitter clock.
1647          *
1648          * It is in the PX LDO power domain, which is on when the
1649          * AUDIO domain is on.
1650          */
1651         [BCM2835_PLLA]          = REGISTER_PLL(
1652                 .name = "plla",
1653                 .cm_ctrl_reg = CM_PLLA,
1654                 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1655                 .frac_reg = A2W_PLLA_FRAC,
1656                 .ana_reg_base = A2W_PLLA_ANA0,
1657                 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1658                 .lock_mask = CM_LOCK_FLOCKA,
1659
1660                 .ana = &bcm2835_ana_default,
1661
1662                 .min_rate = 600000000u,
1663                 .max_rate = 2400000000u,
1664                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1665         [BCM2835_PLLA_CORE]     = REGISTER_PLL_DIV(
1666                 .name = "plla_core",
1667                 .source_pll = "plla",
1668                 .cm_reg = CM_PLLA,
1669                 .a2w_reg = A2W_PLLA_CORE,
1670                 .load_mask = CM_PLLA_LOADCORE,
1671                 .hold_mask = CM_PLLA_HOLDCORE,
1672                 .fixed_divider = 1,
1673                 .flags = CLK_SET_RATE_PARENT),
1674         [BCM2835_PLLA_PER]      = REGISTER_PLL_DIV(
1675                 .name = "plla_per",
1676                 .source_pll = "plla",
1677                 .cm_reg = CM_PLLA,
1678                 .a2w_reg = A2W_PLLA_PER,
1679                 .load_mask = CM_PLLA_LOADPER,
1680                 .hold_mask = CM_PLLA_HOLDPER,
1681                 .fixed_divider = 1,
1682                 .flags = CLK_SET_RATE_PARENT),
1683         [BCM2835_PLLA_DSI0]     = REGISTER_PLL_DIV(
1684                 .name = "plla_dsi0",
1685                 .source_pll = "plla",
1686                 .cm_reg = CM_PLLA,
1687                 .a2w_reg = A2W_PLLA_DSI0,
1688                 .load_mask = CM_PLLA_LOADDSI0,
1689                 .hold_mask = CM_PLLA_HOLDDSI0,
1690                 .fixed_divider = 1),
1691         [BCM2835_PLLA_CCP2]     = REGISTER_PLL_DIV(
1692                 .name = "plla_ccp2",
1693                 .source_pll = "plla",
1694                 .cm_reg = CM_PLLA,
1695                 .a2w_reg = A2W_PLLA_CCP2,
1696                 .load_mask = CM_PLLA_LOADCCP2,
1697                 .hold_mask = CM_PLLA_HOLDCCP2,
1698                 .fixed_divider = 1,
1699                 .flags = CLK_SET_RATE_PARENT),
1700
1701         /* PLLB is used for the ARM's clock. */
1702         [BCM2835_PLLB]          = REGISTER_PLL(
1703                 .name = "pllb",
1704                 .cm_ctrl_reg = CM_PLLB,
1705                 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1706                 .frac_reg = A2W_PLLB_FRAC,
1707                 .ana_reg_base = A2W_PLLB_ANA0,
1708                 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1709                 .lock_mask = CM_LOCK_FLOCKB,
1710
1711                 .ana = &bcm2835_ana_default,
1712
1713                 .min_rate = 600000000u,
1714                 .max_rate = 3000000000u,
1715                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1716         [BCM2835_PLLB_ARM]      = REGISTER_PLL_DIV(
1717                 .name = "pllb_arm",
1718                 .source_pll = "pllb",
1719                 .cm_reg = CM_PLLB,
1720                 .a2w_reg = A2W_PLLB_ARM,
1721                 .load_mask = CM_PLLB_LOADARM,
1722                 .hold_mask = CM_PLLB_HOLDARM,
1723                 .fixed_divider = 1,
1724                 .flags = CLK_SET_RATE_PARENT),
1725
1726         /*
1727          * PLLC is the core PLL, used to drive the core VPU clock.
1728          *
1729          * It is in the PX LDO power domain, which is on when the
1730          * AUDIO domain is on.
1731          */
1732         [BCM2835_PLLC]          = REGISTER_PLL(
1733                 .name = "pllc",
1734                 .cm_ctrl_reg = CM_PLLC,
1735                 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1736                 .frac_reg = A2W_PLLC_FRAC,
1737                 .ana_reg_base = A2W_PLLC_ANA0,
1738                 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1739                 .lock_mask = CM_LOCK_FLOCKC,
1740
1741                 .ana = &bcm2835_ana_default,
1742
1743                 .min_rate = 600000000u,
1744                 .max_rate = 3000000000u,
1745                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1746         [BCM2835_PLLC_CORE0]    = REGISTER_PLL_DIV(
1747                 .name = "pllc_core0",
1748                 .source_pll = "pllc",
1749                 .cm_reg = CM_PLLC,
1750                 .a2w_reg = A2W_PLLC_CORE0,
1751                 .load_mask = CM_PLLC_LOADCORE0,
1752                 .hold_mask = CM_PLLC_HOLDCORE0,
1753                 .fixed_divider = 1,
1754                 .flags = CLK_SET_RATE_PARENT),
1755         [BCM2835_PLLC_CORE1]    = REGISTER_PLL_DIV(
1756                 .name = "pllc_core1",
1757                 .source_pll = "pllc",
1758                 .cm_reg = CM_PLLC,
1759                 .a2w_reg = A2W_PLLC_CORE1,
1760                 .load_mask = CM_PLLC_LOADCORE1,
1761                 .hold_mask = CM_PLLC_HOLDCORE1,
1762                 .fixed_divider = 1,
1763                 .flags = CLK_SET_RATE_PARENT),
1764         [BCM2835_PLLC_CORE2]    = REGISTER_PLL_DIV(
1765                 .name = "pllc_core2",
1766                 .source_pll = "pllc",
1767                 .cm_reg = CM_PLLC,
1768                 .a2w_reg = A2W_PLLC_CORE2,
1769                 .load_mask = CM_PLLC_LOADCORE2,
1770                 .hold_mask = CM_PLLC_HOLDCORE2,
1771                 .fixed_divider = 1,
1772                 .flags = CLK_SET_RATE_PARENT),
1773         [BCM2835_PLLC_PER]      = REGISTER_PLL_DIV(
1774                 .name = "pllc_per",
1775                 .source_pll = "pllc",
1776                 .cm_reg = CM_PLLC,
1777                 .a2w_reg = A2W_PLLC_PER,
1778                 .load_mask = CM_PLLC_LOADPER,
1779                 .hold_mask = CM_PLLC_HOLDPER,
1780                 .fixed_divider = 1,
1781                 .flags = CLK_SET_RATE_PARENT),
1782
1783         /*
1784          * PLLD is the display PLL, used to drive DSI display panels.
1785          *
1786          * It is in the PX LDO power domain, which is on when the
1787          * AUDIO domain is on.
1788          */
1789         [BCM2835_PLLD]          = REGISTER_PLL(
1790                 .name = "plld",
1791                 .cm_ctrl_reg = CM_PLLD,
1792                 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1793                 .frac_reg = A2W_PLLD_FRAC,
1794                 .ana_reg_base = A2W_PLLD_ANA0,
1795                 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1796                 .lock_mask = CM_LOCK_FLOCKD,
1797
1798                 .ana = &bcm2835_ana_default,
1799
1800                 .min_rate = 600000000u,
1801                 .max_rate = 2400000000u,
1802                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1803         [BCM2835_PLLD_CORE]     = REGISTER_PLL_DIV(
1804                 .name = "plld_core",
1805                 .source_pll = "plld",
1806                 .cm_reg = CM_PLLD,
1807                 .a2w_reg = A2W_PLLD_CORE,
1808                 .load_mask = CM_PLLD_LOADCORE,
1809                 .hold_mask = CM_PLLD_HOLDCORE,
1810                 .fixed_divider = 1,
1811                 .flags = CLK_SET_RATE_PARENT),
1812         [BCM2835_PLLD_PER]      = REGISTER_PLL_DIV(
1813                 .name = "plld_per",
1814                 .source_pll = "plld",
1815                 .cm_reg = CM_PLLD,
1816                 .a2w_reg = A2W_PLLD_PER,
1817                 .load_mask = CM_PLLD_LOADPER,
1818                 .hold_mask = CM_PLLD_HOLDPER,
1819                 .fixed_divider = 1,
1820                 .flags = CLK_SET_RATE_PARENT),
1821         [BCM2835_PLLD_DSI0]     = REGISTER_PLL_DIV(
1822                 .name = "plld_dsi0",
1823                 .source_pll = "plld",
1824                 .cm_reg = CM_PLLD,
1825                 .a2w_reg = A2W_PLLD_DSI0,
1826                 .load_mask = CM_PLLD_LOADDSI0,
1827                 .hold_mask = CM_PLLD_HOLDDSI0,
1828                 .fixed_divider = 1),
1829         [BCM2835_PLLD_DSI1]     = REGISTER_PLL_DIV(
1830                 .name = "plld_dsi1",
1831                 .source_pll = "plld",
1832                 .cm_reg = CM_PLLD,
1833                 .a2w_reg = A2W_PLLD_DSI1,
1834                 .load_mask = CM_PLLD_LOADDSI1,
1835                 .hold_mask = CM_PLLD_HOLDDSI1,
1836                 .fixed_divider = 1),
1837
1838         /*
1839          * PLLH is used to supply the pixel clock or the AUX clock for the
1840          * TV encoder.
1841          *
1842          * It is in the HDMI power domain.
1843          */
1844         [BCM2835_PLLH]          = REGISTER_PLL(
1845                 "pllh",
1846                 .cm_ctrl_reg = CM_PLLH,
1847                 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1848                 .frac_reg = A2W_PLLH_FRAC,
1849                 .ana_reg_base = A2W_PLLH_ANA0,
1850                 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1851                 .lock_mask = CM_LOCK_FLOCKH,
1852
1853                 .ana = &bcm2835_ana_pllh,
1854
1855                 .min_rate = 600000000u,
1856                 .max_rate = 3000000000u,
1857                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1858         [BCM2835_PLLH_RCAL]     = REGISTER_PLL_DIV(
1859                 .name = "pllh_rcal",
1860                 .source_pll = "pllh",
1861                 .cm_reg = CM_PLLH,
1862                 .a2w_reg = A2W_PLLH_RCAL,
1863                 .load_mask = CM_PLLH_LOADRCAL,
1864                 .hold_mask = 0,
1865                 .fixed_divider = 10,
1866                 .flags = CLK_SET_RATE_PARENT),
1867         [BCM2835_PLLH_AUX]      = REGISTER_PLL_DIV(
1868                 .name = "pllh_aux",
1869                 .source_pll = "pllh",
1870                 .cm_reg = CM_PLLH,
1871                 .a2w_reg = A2W_PLLH_AUX,
1872                 .load_mask = CM_PLLH_LOADAUX,
1873                 .hold_mask = 0,
1874                 .fixed_divider = 1,
1875                 .flags = CLK_SET_RATE_PARENT),
1876         [BCM2835_PLLH_PIX]      = REGISTER_PLL_DIV(
1877                 .name = "pllh_pix",
1878                 .source_pll = "pllh",
1879                 .cm_reg = CM_PLLH,
1880                 .a2w_reg = A2W_PLLH_PIX,
1881                 .load_mask = CM_PLLH_LOADPIX,
1882                 .hold_mask = 0,
1883                 .fixed_divider = 10,
1884                 .flags = CLK_SET_RATE_PARENT),
1885
1886         /* the clocks */
1887
1888         /* clocks with oscillator parent mux */
1889
1890         /* One Time Programmable Memory clock.  Maximum 10Mhz. */
1891         [BCM2835_CLOCK_OTP]     = REGISTER_OSC_CLK(
1892                 .name = "otp",
1893                 .ctl_reg = CM_OTPCTL,
1894                 .div_reg = CM_OTPDIV,
1895                 .int_bits = 4,
1896                 .frac_bits = 0,
1897                 .tcnt_mux = 6),
1898         /*
1899          * Used for a 1Mhz clock for the system clocksource, and also used
1900          * bythe watchdog timer and the camera pulse generator.
1901          */
1902         [BCM2835_CLOCK_TIMER]   = REGISTER_OSC_CLK(
1903                 .name = "timer",
1904                 .ctl_reg = CM_TIMERCTL,
1905                 .div_reg = CM_TIMERDIV,
1906                 .int_bits = 6,
1907                 .frac_bits = 12),
1908         /*
1909          * Clock for the temperature sensor.
1910          * Generally run at 2Mhz, max 5Mhz.
1911          */
1912         [BCM2835_CLOCK_TSENS]   = REGISTER_OSC_CLK(
1913                 .name = "tsens",
1914                 .ctl_reg = CM_TSENSCTL,
1915                 .div_reg = CM_TSENSDIV,
1916                 .int_bits = 5,
1917                 .frac_bits = 0),
1918         [BCM2835_CLOCK_TEC]     = REGISTER_OSC_CLK(
1919                 .name = "tec",
1920                 .ctl_reg = CM_TECCTL,
1921                 .div_reg = CM_TECDIV,
1922                 .int_bits = 6,
1923                 .frac_bits = 0),
1924
1925         /* clocks with vpu parent mux */
1926         [BCM2835_CLOCK_H264]    = REGISTER_VPU_CLK(
1927                 .name = "h264",
1928                 .ctl_reg = CM_H264CTL,
1929                 .div_reg = CM_H264DIV,
1930                 .int_bits = 4,
1931                 .frac_bits = 8,
1932                 .tcnt_mux = 1),
1933         [BCM2835_CLOCK_ISP]     = REGISTER_VPU_CLK(
1934                 .name = "isp",
1935                 .ctl_reg = CM_ISPCTL,
1936                 .div_reg = CM_ISPDIV,
1937                 .int_bits = 4,
1938                 .frac_bits = 8,
1939                 .tcnt_mux = 2),
1940
1941         /*
1942          * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1943          * in the SDRAM controller can't be used.
1944          */
1945         [BCM2835_CLOCK_SDRAM]   = REGISTER_VPU_CLK(
1946                 .name = "sdram",
1947                 .ctl_reg = CM_SDCCTL,
1948                 .div_reg = CM_SDCDIV,
1949                 .int_bits = 6,
1950                 .frac_bits = 0,
1951                 .tcnt_mux = 3),
1952         [BCM2835_CLOCK_V3D]     = REGISTER_VPU_CLK(
1953                 .name = "v3d",
1954                 .ctl_reg = CM_V3DCTL,
1955                 .div_reg = CM_V3DDIV,
1956                 .int_bits = 4,
1957                 .frac_bits = 8,
1958                 .tcnt_mux = 4),
1959         /*
1960          * VPU clock.  This doesn't have an enable bit, since it drives
1961          * the bus for everything else, and is special so it doesn't need
1962          * to be gated for rate changes.  It is also known as "clk_audio"
1963          * in various hardware documentation.
1964          */
1965         [BCM2835_CLOCK_VPU]     = REGISTER_VPU_CLK(
1966                 .name = "vpu",
1967                 .ctl_reg = CM_VPUCTL,
1968                 .div_reg = CM_VPUDIV,
1969                 .int_bits = 12,
1970                 .frac_bits = 8,
1971                 .flags = CLK_IS_CRITICAL,
1972                 .is_vpu_clock = true,
1973                 .tcnt_mux = 5),
1974
1975         /* clocks with per parent mux */
1976         [BCM2835_CLOCK_AVEO]    = REGISTER_PER_CLK(
1977                 .name = "aveo",
1978                 .ctl_reg = CM_AVEOCTL,
1979                 .div_reg = CM_AVEODIV,
1980                 .int_bits = 4,
1981                 .frac_bits = 0,
1982                 .tcnt_mux = 38),
1983         [BCM2835_CLOCK_CAM0]    = REGISTER_PER_CLK(
1984                 .name = "cam0",
1985                 .ctl_reg = CM_CAM0CTL,
1986                 .div_reg = CM_CAM0DIV,
1987                 .int_bits = 4,
1988                 .frac_bits = 8,
1989                 .tcnt_mux = 14),
1990         [BCM2835_CLOCK_CAM1]    = REGISTER_PER_CLK(
1991                 .name = "cam1",
1992                 .ctl_reg = CM_CAM1CTL,
1993                 .div_reg = CM_CAM1DIV,
1994                 .int_bits = 4,
1995                 .frac_bits = 8,
1996                 .tcnt_mux = 15),
1997         [BCM2835_CLOCK_DFT]     = REGISTER_PER_CLK(
1998                 .name = "dft",
1999                 .ctl_reg = CM_DFTCTL,
2000                 .div_reg = CM_DFTDIV,
2001                 .int_bits = 5,
2002                 .frac_bits = 0),
2003         [BCM2835_CLOCK_DPI]     = REGISTER_PER_CLK(
2004                 .name = "dpi",
2005                 .ctl_reg = CM_DPICTL,
2006                 .div_reg = CM_DPIDIV,
2007                 .int_bits = 4,
2008                 .frac_bits = 8,
2009                 .tcnt_mux = 17),
2010
2011         /* Arasan EMMC clock */
2012         [BCM2835_CLOCK_EMMC]    = REGISTER_PER_CLK(
2013                 .name = "emmc",
2014                 .ctl_reg = CM_EMMCCTL,
2015                 .div_reg = CM_EMMCDIV,
2016                 .int_bits = 4,
2017                 .frac_bits = 8,
2018                 .tcnt_mux = 39),
2019
2020         /* General purpose (GPIO) clocks */
2021         [BCM2835_CLOCK_GP0]     = REGISTER_PER_CLK(
2022                 .name = "gp0",
2023                 .ctl_reg = CM_GP0CTL,
2024                 .div_reg = CM_GP0DIV,
2025                 .int_bits = 12,
2026                 .frac_bits = 12,
2027                 .is_mash_clock = true,
2028                 .tcnt_mux = 20),
2029         [BCM2835_CLOCK_GP1]     = REGISTER_PER_CLK(
2030                 .name = "gp1",
2031                 .ctl_reg = CM_GP1CTL,
2032                 .div_reg = CM_GP1DIV,
2033                 .int_bits = 12,
2034                 .frac_bits = 12,
2035                 .flags = CLK_IS_CRITICAL,
2036                 .is_mash_clock = true,
2037                 .tcnt_mux = 21),
2038         [BCM2835_CLOCK_GP2]     = REGISTER_PER_CLK(
2039                 .name = "gp2",
2040                 .ctl_reg = CM_GP2CTL,
2041                 .div_reg = CM_GP2DIV,
2042                 .int_bits = 12,
2043                 .frac_bits = 12,
2044                 .flags = CLK_IS_CRITICAL),
2045
2046         /* HDMI state machine */
2047         [BCM2835_CLOCK_HSM]     = REGISTER_PER_CLK(
2048                 .name = "hsm",
2049                 .ctl_reg = CM_HSMCTL,
2050                 .div_reg = CM_HSMDIV,
2051                 .int_bits = 4,
2052                 .frac_bits = 8,
2053                 .tcnt_mux = 22),
2054         [BCM2835_CLOCK_PCM]     = REGISTER_PCM_CLK(
2055                 .name = "pcm",
2056                 .ctl_reg = CM_PCMCTL,
2057                 .div_reg = CM_PCMDIV,
2058                 .int_bits = 12,
2059                 .frac_bits = 12,
2060                 .is_mash_clock = true,
2061                 .low_jitter = true,
2062                 .tcnt_mux = 23),
2063         [BCM2835_CLOCK_PWM]     = REGISTER_PER_CLK(
2064                 .name = "pwm",
2065                 .ctl_reg = CM_PWMCTL,
2066                 .div_reg = CM_PWMDIV,
2067                 .int_bits = 12,
2068                 .frac_bits = 12,
2069                 .is_mash_clock = true,
2070                 .tcnt_mux = 24),
2071         [BCM2835_CLOCK_SLIM]    = REGISTER_PER_CLK(
2072                 .name = "slim",
2073                 .ctl_reg = CM_SLIMCTL,
2074                 .div_reg = CM_SLIMDIV,
2075                 .int_bits = 12,
2076                 .frac_bits = 12,
2077                 .is_mash_clock = true,
2078                 .tcnt_mux = 25),
2079         [BCM2835_CLOCK_SMI]     = REGISTER_PER_CLK(
2080                 .name = "smi",
2081                 .ctl_reg = CM_SMICTL,
2082                 .div_reg = CM_SMIDIV,
2083                 .int_bits = 4,
2084                 .frac_bits = 8,
2085                 .tcnt_mux = 27),
2086         [BCM2835_CLOCK_UART]    = REGISTER_PER_CLK(
2087                 .name = "uart",
2088                 .ctl_reg = CM_UARTCTL,
2089                 .div_reg = CM_UARTDIV,
2090                 .int_bits = 10,
2091                 .frac_bits = 12,
2092                 .tcnt_mux = 28),
2093
2094         /* TV encoder clock.  Only operating frequency is 108Mhz.  */
2095         [BCM2835_CLOCK_VEC]     = REGISTER_PER_CLK(
2096                 .name = "vec",
2097                 .ctl_reg = CM_VECCTL,
2098                 .div_reg = CM_VECDIV,
2099                 .int_bits = 4,
2100                 .frac_bits = 0,
2101                 /*
2102                  * Allow rate change propagation only on PLLH_AUX which is
2103                  * assigned index 7 in the parent array.
2104                  */
2105                 .set_rate_parent = BIT(7),
2106                 .tcnt_mux = 29),
2107
2108         /* dsi clocks */
2109         [BCM2835_CLOCK_DSI0E]   = REGISTER_PER_CLK(
2110                 .name = "dsi0e",
2111                 .ctl_reg = CM_DSI0ECTL,
2112                 .div_reg = CM_DSI0EDIV,
2113                 .int_bits = 4,
2114                 .frac_bits = 8,
2115                 .tcnt_mux = 18),
2116         [BCM2835_CLOCK_DSI1E]   = REGISTER_PER_CLK(
2117                 .name = "dsi1e",
2118                 .ctl_reg = CM_DSI1ECTL,
2119                 .div_reg = CM_DSI1EDIV,
2120                 .int_bits = 4,
2121                 .frac_bits = 8,
2122                 .tcnt_mux = 19),
2123         [BCM2835_CLOCK_DSI0P]   = REGISTER_DSI0_CLK(
2124                 .name = "dsi0p",
2125                 .ctl_reg = CM_DSI0PCTL,
2126                 .div_reg = CM_DSI0PDIV,
2127                 .int_bits = 0,
2128                 .frac_bits = 0,
2129                 .tcnt_mux = 12),
2130         [BCM2835_CLOCK_DSI1P]   = REGISTER_DSI1_CLK(
2131                 .name = "dsi1p",
2132                 .ctl_reg = CM_DSI1PCTL,
2133                 .div_reg = CM_DSI1PDIV,
2134                 .int_bits = 0,
2135                 .frac_bits = 0,
2136                 .tcnt_mux = 13),
2137
2138         /* the gates */
2139
2140         /*
2141          * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2142          * you have the debug bit set in the power manager, which we
2143          * don't bother exposing) are individual gates off of the
2144          * non-stop vpu clock.
2145          */
2146         [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2147                 .name = "peri_image",
2148                 .parent = "vpu",
2149                 .ctl_reg = CM_PERIICTL),
2150 };
2151
2152 /*
2153  * Permanently take a reference on the parent of the SDRAM clock.
2154  *
2155  * While the SDRAM is being driven by its dedicated PLL most of the
2156  * time, there is a little loop running in the firmware that
2157  * periodically switches the SDRAM to using our CM clock to do PVT
2158  * recalibration, with the assumption that the previously configured
2159  * SDRAM parent is still enabled and running.
2160  */
2161 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2162 {
2163         struct clk *parent = clk_get_parent(sdc);
2164
2165         if (IS_ERR(parent))
2166                 return PTR_ERR(parent);
2167
2168         return clk_prepare_enable(parent);
2169 }
2170
2171 static int bcm2835_clk_probe(struct platform_device *pdev)
2172 {
2173         struct device *dev = &pdev->dev;
2174         struct clk_hw **hws;
2175         struct bcm2835_cprman *cprman;
2176         struct resource *res;
2177         const struct bcm2835_clk_desc *desc;
2178         const size_t asize = ARRAY_SIZE(clk_desc_array);
2179         size_t i;
2180         int ret;
2181
2182         cprman = devm_kzalloc(dev, sizeof(*cprman) +
2183                               sizeof(*cprman->onecell.hws) * asize,
2184                               GFP_KERNEL);
2185         if (!cprman)
2186                 return -ENOMEM;
2187
2188         spin_lock_init(&cprman->regs_lock);
2189         cprman->dev = dev;
2190         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2191         cprman->regs = devm_ioremap_resource(dev, res);
2192         if (IS_ERR(cprman->regs))
2193                 return PTR_ERR(cprman->regs);
2194
2195         memcpy(cprman->real_parent_names, cprman_parent_names,
2196                sizeof(cprman_parent_names));
2197         of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2198                            ARRAY_SIZE(cprman_parent_names));
2199
2200         /*
2201          * Make sure the external oscillator has been registered.
2202          *
2203          * The other (DSI) clocks are not present on older device
2204          * trees, which we still need to support for backwards
2205          * compatibility.
2206          */
2207         if (!cprman->real_parent_names[0])
2208                 return -ENODEV;
2209
2210         platform_set_drvdata(pdev, cprman);
2211
2212         cprman->onecell.num = asize;
2213         hws = cprman->onecell.hws;
2214
2215         for (i = 0; i < asize; i++) {
2216                 desc = &clk_desc_array[i];
2217                 if (desc->clk_register && desc->data)
2218                         hws[i] = desc->clk_register(cprman, desc->data);
2219         }
2220
2221         ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2222         if (ret)
2223                 return ret;
2224
2225         return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2226                                       &cprman->onecell);
2227 }
2228
2229 static const struct of_device_id bcm2835_clk_of_match[] = {
2230         { .compatible = "brcm,bcm2835-cprman", },
2231         {}
2232 };
2233 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2234
2235 static struct platform_driver bcm2835_clk_driver = {
2236         .driver = {
2237                 .name = "bcm2835-clk",
2238                 .of_match_table = bcm2835_clk_of_match,
2239         },
2240         .probe          = bcm2835_clk_probe,
2241 };
2242
2243 builtin_platform_driver(bcm2835_clk_driver);
2244
2245 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2246 MODULE_DESCRIPTION("BCM2835 clock driver");
2247 MODULE_LICENSE("GPL v2");