GNU Linux-libre 4.9.294-gnu1
[releases.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 #include <linux/acpi.h>
72
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77
78 #define PFX "ipmi_si: "
79
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC    10000
85 #define SI_USEC_PER_JIFFY       (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88                                       short timeout */
89
90 enum si_intf_state {
91         SI_NORMAL,
92         SI_GETTING_FLAGS,
93         SI_GETTING_EVENTS,
94         SI_CLEARING_FLAGS,
95         SI_GETTING_MESSAGES,
96         SI_CHECKING_ENABLES,
97         SI_SETTING_ENABLES
98         /* FIXME - add watchdog stuff. */
99 };
100
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG             2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
105
106 enum si_type {
107         SI_KCS, SI_SMIC, SI_BT
108 };
109
110 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
111
112 #define DEVICE_NAME "ipmi_si"
113
114 static struct platform_driver ipmi_driver;
115
116 /*
117  * Indexes into stats[] in smi_info below.
118  */
119 enum si_stat_indexes {
120         /*
121          * Number of times the driver requested a timer while an operation
122          * was in progress.
123          */
124         SI_STAT_short_timeouts = 0,
125
126         /*
127          * Number of times the driver requested a timer while nothing was in
128          * progress.
129          */
130         SI_STAT_long_timeouts,
131
132         /* Number of times the interface was idle while being polled. */
133         SI_STAT_idles,
134
135         /* Number of interrupts the driver handled. */
136         SI_STAT_interrupts,
137
138         /* Number of time the driver got an ATTN from the hardware. */
139         SI_STAT_attentions,
140
141         /* Number of times the driver requested flags from the hardware. */
142         SI_STAT_flag_fetches,
143
144         /* Number of times the hardware didn't follow the state machine. */
145         SI_STAT_hosed_count,
146
147         /* Number of completed messages. */
148         SI_STAT_complete_transactions,
149
150         /* Number of IPMI events received from the hardware. */
151         SI_STAT_events,
152
153         /* Number of watchdog pretimeouts. */
154         SI_STAT_watchdog_pretimeouts,
155
156         /* Number of asynchronous messages received. */
157         SI_STAT_incoming_messages,
158
159
160         /* This *must* remain last, add new values above this. */
161         SI_NUM_STATS
162 };
163
164 struct smi_info {
165         int                    intf_num;
166         ipmi_smi_t             intf;
167         struct si_sm_data      *si_sm;
168         const struct si_sm_handlers *handlers;
169         enum si_type           si_type;
170         spinlock_t             si_lock;
171         struct ipmi_smi_msg    *waiting_msg;
172         struct ipmi_smi_msg    *curr_msg;
173         enum si_intf_state     si_state;
174
175         /*
176          * Used to handle the various types of I/O that can occur with
177          * IPMI
178          */
179         struct si_sm_io io;
180         int (*io_setup)(struct smi_info *info);
181         void (*io_cleanup)(struct smi_info *info);
182         int (*irq_setup)(struct smi_info *info);
183         void (*irq_cleanup)(struct smi_info *info);
184         unsigned int io_size;
185         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
186         void (*addr_source_cleanup)(struct smi_info *info);
187         void *addr_source_data;
188
189         /*
190          * Per-OEM handler, called from handle_flags().  Returns 1
191          * when handle_flags() needs to be re-run or 0 indicating it
192          * set si_state itself.
193          */
194         int (*oem_data_avail_handler)(struct smi_info *smi_info);
195
196         /*
197          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
198          * is set to hold the flags until we are done handling everything
199          * from the flags.
200          */
201 #define RECEIVE_MSG_AVAIL       0x01
202 #define EVENT_MSG_BUFFER_FULL   0x02
203 #define WDT_PRE_TIMEOUT_INT     0x08
204 #define OEM0_DATA_AVAIL     0x20
205 #define OEM1_DATA_AVAIL     0x40
206 #define OEM2_DATA_AVAIL     0x80
207 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
208                              OEM1_DATA_AVAIL | \
209                              OEM2_DATA_AVAIL)
210         unsigned char       msg_flags;
211
212         /* Does the BMC have an event buffer? */
213         bool                has_event_buffer;
214
215         /*
216          * If set to true, this will request events the next time the
217          * state machine is idle.
218          */
219         atomic_t            req_events;
220
221         /*
222          * If true, run the state machine to completion on every send
223          * call.  Generally used after a panic to make sure stuff goes
224          * out.
225          */
226         bool                run_to_completion;
227
228         /* The I/O port of an SI interface. */
229         int                 port;
230
231         /*
232          * The space between start addresses of the two ports.  For
233          * instance, if the first port is 0xca2 and the spacing is 4, then
234          * the second port is 0xca6.
235          */
236         unsigned int        spacing;
237
238         /* zero if no irq; */
239         int                 irq;
240
241         /* The timer for this si. */
242         struct timer_list   si_timer;
243
244         /* This flag is set, if the timer can be set */
245         bool                timer_can_start;
246
247         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
248         bool                timer_running;
249
250         /* The time (in jiffies) the last timeout occurred at. */
251         unsigned long       last_timeout_jiffies;
252
253         /* Are we waiting for the events, pretimeouts, received msgs? */
254         atomic_t            need_watch;
255
256         /*
257          * The driver will disable interrupts when it gets into a
258          * situation where it cannot handle messages due to lack of
259          * memory.  Once that situation clears up, it will re-enable
260          * interrupts.
261          */
262         bool interrupt_disabled;
263
264         /*
265          * Does the BMC support events?
266          */
267         bool supports_event_msg_buff;
268
269         /*
270          * Can we disable interrupts the global enables receive irq
271          * bit?  There are currently two forms of brokenness, some
272          * systems cannot disable the bit (which is technically within
273          * the spec but a bad idea) and some systems have the bit
274          * forced to zero even though interrupts work (which is
275          * clearly outside the spec).  The next bool tells which form
276          * of brokenness is present.
277          */
278         bool cannot_disable_irq;
279
280         /*
281          * Some systems are broken and cannot set the irq enable
282          * bit, even if they support interrupts.
283          */
284         bool irq_enable_broken;
285
286         /* Is the driver in maintenance mode? */
287         bool in_maintenance_mode;
288
289         /*
290          * Did we get an attention that we did not handle?
291          */
292         bool got_attn;
293
294         /* From the get device id response... */
295         struct ipmi_device_id device_id;
296
297         /* Driver model stuff. */
298         struct device *dev;
299         struct platform_device *pdev;
300
301         /*
302          * True if we allocated the device, false if it came from
303          * someplace else (like PCI).
304          */
305         bool dev_registered;
306
307         /* Slave address, could be reported from DMI. */
308         unsigned char slave_addr;
309
310         /* Counters and things for the proc filesystem. */
311         atomic_t stats[SI_NUM_STATS];
312
313         struct task_struct *thread;
314
315         struct list_head link;
316         union ipmi_smi_info_union addr_info;
317 };
318
319 #define smi_inc_stat(smi, stat) \
320         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
321 #define smi_get_stat(smi, stat) \
322         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
323
324 #define SI_MAX_PARMS 4
325
326 static int force_kipmid[SI_MAX_PARMS];
327 static int num_force_kipmid;
328 #ifdef CONFIG_PCI
329 static bool pci_registered;
330 #endif
331 #ifdef CONFIG_PARISC
332 static bool parisc_registered;
333 #endif
334
335 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
336 static int num_max_busy_us;
337
338 static bool unload_when_empty = true;
339
340 static int add_smi(struct smi_info *smi);
341 static int try_smi_init(struct smi_info *smi);
342 static void cleanup_one_si(struct smi_info *to_clean);
343 static void cleanup_ipmi_si(void);
344
345 #ifdef DEBUG_TIMING
346 void debug_timestamp(char *msg)
347 {
348         struct timespec64 t;
349
350         getnstimeofday64(&t);
351         pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
352 }
353 #else
354 #define debug_timestamp(x)
355 #endif
356
357 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
358 static int register_xaction_notifier(struct notifier_block *nb)
359 {
360         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
361 }
362
363 static void deliver_recv_msg(struct smi_info *smi_info,
364                              struct ipmi_smi_msg *msg)
365 {
366         /* Deliver the message to the upper layer. */
367         if (smi_info->intf)
368                 ipmi_smi_msg_received(smi_info->intf, msg);
369         else
370                 ipmi_free_smi_msg(msg);
371 }
372
373 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
374 {
375         struct ipmi_smi_msg *msg = smi_info->curr_msg;
376
377         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
378                 cCode = IPMI_ERR_UNSPECIFIED;
379         /* else use it as is */
380
381         /* Make it a response */
382         msg->rsp[0] = msg->data[0] | 4;
383         msg->rsp[1] = msg->data[1];
384         msg->rsp[2] = cCode;
385         msg->rsp_size = 3;
386
387         smi_info->curr_msg = NULL;
388         deliver_recv_msg(smi_info, msg);
389 }
390
391 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
392 {
393         int              rv;
394
395         if (!smi_info->waiting_msg) {
396                 smi_info->curr_msg = NULL;
397                 rv = SI_SM_IDLE;
398         } else {
399                 int err;
400
401                 smi_info->curr_msg = smi_info->waiting_msg;
402                 smi_info->waiting_msg = NULL;
403                 debug_timestamp("Start2");
404                 err = atomic_notifier_call_chain(&xaction_notifier_list,
405                                 0, smi_info);
406                 if (err & NOTIFY_STOP_MASK) {
407                         rv = SI_SM_CALL_WITHOUT_DELAY;
408                         goto out;
409                 }
410                 err = smi_info->handlers->start_transaction(
411                         smi_info->si_sm,
412                         smi_info->curr_msg->data,
413                         smi_info->curr_msg->data_size);
414                 if (err)
415                         return_hosed_msg(smi_info, err);
416
417                 rv = SI_SM_CALL_WITHOUT_DELAY;
418         }
419 out:
420         return rv;
421 }
422
423 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
424 {
425         if (!smi_info->timer_can_start)
426                 return;
427         smi_info->last_timeout_jiffies = jiffies;
428         mod_timer(&smi_info->si_timer, new_val);
429         smi_info->timer_running = true;
430 }
431
432 /*
433  * Start a new message and (re)start the timer and thread.
434  */
435 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
436                           unsigned int size)
437 {
438         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
439
440         if (smi_info->thread)
441                 wake_up_process(smi_info->thread);
442
443         smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
444 }
445
446 static void start_check_enables(struct smi_info *smi_info)
447 {
448         unsigned char msg[2];
449
450         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
451         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
452
453         start_new_msg(smi_info, msg, 2);
454         smi_info->si_state = SI_CHECKING_ENABLES;
455 }
456
457 static void start_clear_flags(struct smi_info *smi_info)
458 {
459         unsigned char msg[3];
460
461         /* Make sure the watchdog pre-timeout flag is not set at startup. */
462         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
463         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
464         msg[2] = WDT_PRE_TIMEOUT_INT;
465
466         start_new_msg(smi_info, msg, 3);
467         smi_info->si_state = SI_CLEARING_FLAGS;
468 }
469
470 static void start_getting_msg_queue(struct smi_info *smi_info)
471 {
472         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
473         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
474         smi_info->curr_msg->data_size = 2;
475
476         start_new_msg(smi_info, smi_info->curr_msg->data,
477                       smi_info->curr_msg->data_size);
478         smi_info->si_state = SI_GETTING_MESSAGES;
479 }
480
481 static void start_getting_events(struct smi_info *smi_info)
482 {
483         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
484         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
485         smi_info->curr_msg->data_size = 2;
486
487         start_new_msg(smi_info, smi_info->curr_msg->data,
488                       smi_info->curr_msg->data_size);
489         smi_info->si_state = SI_GETTING_EVENTS;
490 }
491
492 /*
493  * When we have a situtaion where we run out of memory and cannot
494  * allocate messages, we just leave them in the BMC and run the system
495  * polled until we can allocate some memory.  Once we have some
496  * memory, we will re-enable the interrupt.
497  *
498  * Note that we cannot just use disable_irq(), since the interrupt may
499  * be shared.
500  */
501 static inline bool disable_si_irq(struct smi_info *smi_info)
502 {
503         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
504                 smi_info->interrupt_disabled = true;
505                 start_check_enables(smi_info);
506                 return true;
507         }
508         return false;
509 }
510
511 static inline bool enable_si_irq(struct smi_info *smi_info)
512 {
513         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
514                 smi_info->interrupt_disabled = false;
515                 start_check_enables(smi_info);
516                 return true;
517         }
518         return false;
519 }
520
521 /*
522  * Allocate a message.  If unable to allocate, start the interrupt
523  * disable process and return NULL.  If able to allocate but
524  * interrupts are disabled, free the message and return NULL after
525  * starting the interrupt enable process.
526  */
527 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
528 {
529         struct ipmi_smi_msg *msg;
530
531         msg = ipmi_alloc_smi_msg();
532         if (!msg) {
533                 if (!disable_si_irq(smi_info))
534                         smi_info->si_state = SI_NORMAL;
535         } else if (enable_si_irq(smi_info)) {
536                 ipmi_free_smi_msg(msg);
537                 msg = NULL;
538         }
539         return msg;
540 }
541
542 static void handle_flags(struct smi_info *smi_info)
543 {
544 retry:
545         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
546                 /* Watchdog pre-timeout */
547                 smi_inc_stat(smi_info, watchdog_pretimeouts);
548
549                 start_clear_flags(smi_info);
550                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
551                 if (smi_info->intf)
552                         ipmi_smi_watchdog_pretimeout(smi_info->intf);
553         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
554                 /* Messages available. */
555                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
556                 if (!smi_info->curr_msg)
557                         return;
558
559                 start_getting_msg_queue(smi_info);
560         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
561                 /* Events available. */
562                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
563                 if (!smi_info->curr_msg)
564                         return;
565
566                 start_getting_events(smi_info);
567         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
568                    smi_info->oem_data_avail_handler) {
569                 if (smi_info->oem_data_avail_handler(smi_info))
570                         goto retry;
571         } else
572                 smi_info->si_state = SI_NORMAL;
573 }
574
575 /*
576  * Global enables we care about.
577  */
578 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
579                              IPMI_BMC_EVT_MSG_INTR)
580
581 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
582                                  bool *irq_on)
583 {
584         u8 enables = 0;
585
586         if (smi_info->supports_event_msg_buff)
587                 enables |= IPMI_BMC_EVT_MSG_BUFF;
588
589         if (((smi_info->irq && !smi_info->interrupt_disabled) ||
590              smi_info->cannot_disable_irq) &&
591             !smi_info->irq_enable_broken)
592                 enables |= IPMI_BMC_RCV_MSG_INTR;
593
594         if (smi_info->supports_event_msg_buff &&
595             smi_info->irq && !smi_info->interrupt_disabled &&
596             !smi_info->irq_enable_broken)
597                 enables |= IPMI_BMC_EVT_MSG_INTR;
598
599         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
600
601         return enables;
602 }
603
604 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
605 {
606         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
607
608         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
609
610         if ((bool)irqstate == irq_on)
611                 return;
612
613         if (irq_on)
614                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
615                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
616         else
617                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
618 }
619
620 static void handle_transaction_done(struct smi_info *smi_info)
621 {
622         struct ipmi_smi_msg *msg;
623
624         debug_timestamp("Done");
625         switch (smi_info->si_state) {
626         case SI_NORMAL:
627                 if (!smi_info->curr_msg)
628                         break;
629
630                 smi_info->curr_msg->rsp_size
631                         = smi_info->handlers->get_result(
632                                 smi_info->si_sm,
633                                 smi_info->curr_msg->rsp,
634                                 IPMI_MAX_MSG_LENGTH);
635
636                 /*
637                  * Do this here becase deliver_recv_msg() releases the
638                  * lock, and a new message can be put in during the
639                  * time the lock is released.
640                  */
641                 msg = smi_info->curr_msg;
642                 smi_info->curr_msg = NULL;
643                 deliver_recv_msg(smi_info, msg);
644                 break;
645
646         case SI_GETTING_FLAGS:
647         {
648                 unsigned char msg[4];
649                 unsigned int  len;
650
651                 /* We got the flags from the SMI, now handle them. */
652                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
653                 if (msg[2] != 0) {
654                         /* Error fetching flags, just give up for now. */
655                         smi_info->si_state = SI_NORMAL;
656                 } else if (len < 4) {
657                         /*
658                          * Hmm, no flags.  That's technically illegal, but
659                          * don't use uninitialized data.
660                          */
661                         smi_info->si_state = SI_NORMAL;
662                 } else {
663                         smi_info->msg_flags = msg[3];
664                         handle_flags(smi_info);
665                 }
666                 break;
667         }
668
669         case SI_CLEARING_FLAGS:
670         {
671                 unsigned char msg[3];
672
673                 /* We cleared the flags. */
674                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
675                 if (msg[2] != 0) {
676                         /* Error clearing flags */
677                         dev_warn(smi_info->dev,
678                                  "Error clearing flags: %2.2x\n", msg[2]);
679                 }
680                 smi_info->si_state = SI_NORMAL;
681                 break;
682         }
683
684         case SI_GETTING_EVENTS:
685         {
686                 smi_info->curr_msg->rsp_size
687                         = smi_info->handlers->get_result(
688                                 smi_info->si_sm,
689                                 smi_info->curr_msg->rsp,
690                                 IPMI_MAX_MSG_LENGTH);
691
692                 /*
693                  * Do this here becase deliver_recv_msg() releases the
694                  * lock, and a new message can be put in during the
695                  * time the lock is released.
696                  */
697                 msg = smi_info->curr_msg;
698                 smi_info->curr_msg = NULL;
699                 if (msg->rsp[2] != 0) {
700                         /* Error getting event, probably done. */
701                         msg->done(msg);
702
703                         /* Take off the event flag. */
704                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
705                         handle_flags(smi_info);
706                 } else {
707                         smi_inc_stat(smi_info, events);
708
709                         /*
710                          * Do this before we deliver the message
711                          * because delivering the message releases the
712                          * lock and something else can mess with the
713                          * state.
714                          */
715                         handle_flags(smi_info);
716
717                         deliver_recv_msg(smi_info, msg);
718                 }
719                 break;
720         }
721
722         case SI_GETTING_MESSAGES:
723         {
724                 smi_info->curr_msg->rsp_size
725                         = smi_info->handlers->get_result(
726                                 smi_info->si_sm,
727                                 smi_info->curr_msg->rsp,
728                                 IPMI_MAX_MSG_LENGTH);
729
730                 /*
731                  * Do this here becase deliver_recv_msg() releases the
732                  * lock, and a new message can be put in during the
733                  * time the lock is released.
734                  */
735                 msg = smi_info->curr_msg;
736                 smi_info->curr_msg = NULL;
737                 if (msg->rsp[2] != 0) {
738                         /* Error getting event, probably done. */
739                         msg->done(msg);
740
741                         /* Take off the msg flag. */
742                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
743                         handle_flags(smi_info);
744                 } else {
745                         smi_inc_stat(smi_info, incoming_messages);
746
747                         /*
748                          * Do this before we deliver the message
749                          * because delivering the message releases the
750                          * lock and something else can mess with the
751                          * state.
752                          */
753                         handle_flags(smi_info);
754
755                         deliver_recv_msg(smi_info, msg);
756                 }
757                 break;
758         }
759
760         case SI_CHECKING_ENABLES:
761         {
762                 unsigned char msg[4];
763                 u8 enables;
764                 bool irq_on;
765
766                 /* We got the flags from the SMI, now handle them. */
767                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
768                 if (msg[2] != 0) {
769                         dev_warn(smi_info->dev,
770                                  "Couldn't get irq info: %x.\n", msg[2]);
771                         dev_warn(smi_info->dev,
772                                  "Maybe ok, but ipmi might run very slowly.\n");
773                         smi_info->si_state = SI_NORMAL;
774                         break;
775                 }
776                 enables = current_global_enables(smi_info, 0, &irq_on);
777                 if (smi_info->si_type == SI_BT)
778                         /* BT has its own interrupt enable bit. */
779                         check_bt_irq(smi_info, irq_on);
780                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
781                         /* Enables are not correct, fix them. */
782                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
783                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
784                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
785                         smi_info->handlers->start_transaction(
786                                 smi_info->si_sm, msg, 3);
787                         smi_info->si_state = SI_SETTING_ENABLES;
788                 } else if (smi_info->supports_event_msg_buff) {
789                         smi_info->curr_msg = ipmi_alloc_smi_msg();
790                         if (!smi_info->curr_msg) {
791                                 smi_info->si_state = SI_NORMAL;
792                                 break;
793                         }
794                         start_getting_msg_queue(smi_info);
795                 } else {
796                         smi_info->si_state = SI_NORMAL;
797                 }
798                 break;
799         }
800
801         case SI_SETTING_ENABLES:
802         {
803                 unsigned char msg[4];
804
805                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
806                 if (msg[2] != 0)
807                         dev_warn(smi_info->dev,
808                                  "Could not set the global enables: 0x%x.\n",
809                                  msg[2]);
810
811                 if (smi_info->supports_event_msg_buff) {
812                         smi_info->curr_msg = ipmi_alloc_smi_msg();
813                         if (!smi_info->curr_msg) {
814                                 smi_info->si_state = SI_NORMAL;
815                                 break;
816                         }
817                         start_getting_msg_queue(smi_info);
818                 } else {
819                         smi_info->si_state = SI_NORMAL;
820                 }
821                 break;
822         }
823         }
824 }
825
826 /*
827  * Called on timeouts and events.  Timeouts should pass the elapsed
828  * time, interrupts should pass in zero.  Must be called with
829  * si_lock held and interrupts disabled.
830  */
831 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
832                                            int time)
833 {
834         enum si_sm_result si_sm_result;
835
836 restart:
837         /*
838          * There used to be a loop here that waited a little while
839          * (around 25us) before giving up.  That turned out to be
840          * pointless, the minimum delays I was seeing were in the 300us
841          * range, which is far too long to wait in an interrupt.  So
842          * we just run until the state machine tells us something
843          * happened or it needs a delay.
844          */
845         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
846         time = 0;
847         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
848                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
849
850         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
851                 smi_inc_stat(smi_info, complete_transactions);
852
853                 handle_transaction_done(smi_info);
854                 goto restart;
855         } else if (si_sm_result == SI_SM_HOSED) {
856                 smi_inc_stat(smi_info, hosed_count);
857
858                 /*
859                  * Do the before return_hosed_msg, because that
860                  * releases the lock.
861                  */
862                 smi_info->si_state = SI_NORMAL;
863                 if (smi_info->curr_msg != NULL) {
864                         /*
865                          * If we were handling a user message, format
866                          * a response to send to the upper layer to
867                          * tell it about the error.
868                          */
869                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
870                 }
871                 goto restart;
872         }
873
874         /*
875          * We prefer handling attn over new messages.  But don't do
876          * this if there is not yet an upper layer to handle anything.
877          */
878         if (likely(smi_info->intf) &&
879             (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
880                 unsigned char msg[2];
881
882                 if (smi_info->si_state != SI_NORMAL) {
883                         /*
884                          * We got an ATTN, but we are doing something else.
885                          * Handle the ATTN later.
886                          */
887                         smi_info->got_attn = true;
888                 } else {
889                         smi_info->got_attn = false;
890                         smi_inc_stat(smi_info, attentions);
891
892                         /*
893                          * Got a attn, send down a get message flags to see
894                          * what's causing it.  It would be better to handle
895                          * this in the upper layer, but due to the way
896                          * interrupts work with the SMI, that's not really
897                          * possible.
898                          */
899                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
900                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
901
902                         start_new_msg(smi_info, msg, 2);
903                         smi_info->si_state = SI_GETTING_FLAGS;
904                         goto restart;
905                 }
906         }
907
908         /* If we are currently idle, try to start the next message. */
909         if (si_sm_result == SI_SM_IDLE) {
910                 smi_inc_stat(smi_info, idles);
911
912                 si_sm_result = start_next_msg(smi_info);
913                 if (si_sm_result != SI_SM_IDLE)
914                         goto restart;
915         }
916
917         if ((si_sm_result == SI_SM_IDLE)
918             && (atomic_read(&smi_info->req_events))) {
919                 /*
920                  * We are idle and the upper layer requested that I fetch
921                  * events, so do so.
922                  */
923                 atomic_set(&smi_info->req_events, 0);
924
925                 /*
926                  * Take this opportunity to check the interrupt and
927                  * message enable state for the BMC.  The BMC can be
928                  * asynchronously reset, and may thus get interrupts
929                  * disable and messages disabled.
930                  */
931                 if (smi_info->supports_event_msg_buff || smi_info->irq) {
932                         start_check_enables(smi_info);
933                 } else {
934                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
935                         if (!smi_info->curr_msg)
936                                 goto out;
937
938                         start_getting_events(smi_info);
939                 }
940                 goto restart;
941         }
942
943         if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
944                 /* Ok it if fails, the timer will just go off. */
945                 if (del_timer(&smi_info->si_timer))
946                         smi_info->timer_running = false;
947         }
948
949 out:
950         return si_sm_result;
951 }
952
953 static void check_start_timer_thread(struct smi_info *smi_info)
954 {
955         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
956                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
957
958                 if (smi_info->thread)
959                         wake_up_process(smi_info->thread);
960
961                 start_next_msg(smi_info);
962                 smi_event_handler(smi_info, 0);
963         }
964 }
965
966 static void flush_messages(void *send_info)
967 {
968         struct smi_info *smi_info = send_info;
969         enum si_sm_result result;
970
971         /*
972          * Currently, this function is called only in run-to-completion
973          * mode.  This means we are single-threaded, no need for locks.
974          */
975         result = smi_event_handler(smi_info, 0);
976         while (result != SI_SM_IDLE) {
977                 udelay(SI_SHORT_TIMEOUT_USEC);
978                 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
979         }
980 }
981
982 static void sender(void                *send_info,
983                    struct ipmi_smi_msg *msg)
984 {
985         struct smi_info   *smi_info = send_info;
986         unsigned long     flags;
987
988         debug_timestamp("Enqueue");
989
990         if (smi_info->run_to_completion) {
991                 /*
992                  * If we are running to completion, start it.  Upper
993                  * layer will call flush_messages to clear it out.
994                  */
995                 smi_info->waiting_msg = msg;
996                 return;
997         }
998
999         spin_lock_irqsave(&smi_info->si_lock, flags);
1000         /*
1001          * The following two lines don't need to be under the lock for
1002          * the lock's sake, but they do need SMP memory barriers to
1003          * avoid getting things out of order.  We are already claiming
1004          * the lock, anyway, so just do it under the lock to avoid the
1005          * ordering problem.
1006          */
1007         BUG_ON(smi_info->waiting_msg);
1008         smi_info->waiting_msg = msg;
1009         check_start_timer_thread(smi_info);
1010         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1011 }
1012
1013 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1014 {
1015         struct smi_info   *smi_info = send_info;
1016
1017         smi_info->run_to_completion = i_run_to_completion;
1018         if (i_run_to_completion)
1019                 flush_messages(smi_info);
1020 }
1021
1022 /*
1023  * Use -1 in the nsec value of the busy waiting timespec to tell that
1024  * we are spinning in kipmid looking for something and not delaying
1025  * between checks
1026  */
1027 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1028 {
1029         ts->tv_nsec = -1;
1030 }
1031 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1032 {
1033         return ts->tv_nsec != -1;
1034 }
1035
1036 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1037                                         const struct smi_info *smi_info,
1038                                         struct timespec64 *busy_until)
1039 {
1040         unsigned int max_busy_us = 0;
1041
1042         if (smi_info->intf_num < num_max_busy_us)
1043                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1044         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1045                 ipmi_si_set_not_busy(busy_until);
1046         else if (!ipmi_si_is_busy(busy_until)) {
1047                 getnstimeofday64(busy_until);
1048                 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1049         } else {
1050                 struct timespec64 now;
1051
1052                 getnstimeofday64(&now);
1053                 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1054                         ipmi_si_set_not_busy(busy_until);
1055                         return 0;
1056                 }
1057         }
1058         return 1;
1059 }
1060
1061
1062 /*
1063  * A busy-waiting loop for speeding up IPMI operation.
1064  *
1065  * Lousy hardware makes this hard.  This is only enabled for systems
1066  * that are not BT and do not have interrupts.  It starts spinning
1067  * when an operation is complete or until max_busy tells it to stop
1068  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1069  * Documentation/IPMI.txt for details.
1070  */
1071 static int ipmi_thread(void *data)
1072 {
1073         struct smi_info *smi_info = data;
1074         unsigned long flags;
1075         enum si_sm_result smi_result;
1076         struct timespec64 busy_until;
1077
1078         ipmi_si_set_not_busy(&busy_until);
1079         set_user_nice(current, MAX_NICE);
1080         while (!kthread_should_stop()) {
1081                 int busy_wait;
1082
1083                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1084                 smi_result = smi_event_handler(smi_info, 0);
1085
1086                 /*
1087                  * If the driver is doing something, there is a possible
1088                  * race with the timer.  If the timer handler see idle,
1089                  * and the thread here sees something else, the timer
1090                  * handler won't restart the timer even though it is
1091                  * required.  So start it here if necessary.
1092                  */
1093                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1094                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1095
1096                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1097                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1098                                                   &busy_until);
1099                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1100                         ; /* do nothing */
1101                 } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1102                         /*
1103                          * In maintenance mode we run as fast as
1104                          * possible to allow firmware updates to
1105                          * complete as fast as possible, but normally
1106                          * don't bang on the scheduler.
1107                          */
1108                         if (smi_info->in_maintenance_mode)
1109                                 schedule();
1110                         else
1111                                 usleep_range(100, 200);
1112                 } else if (smi_result == SI_SM_IDLE) {
1113                         if (atomic_read(&smi_info->need_watch)) {
1114                                 schedule_timeout_interruptible(100);
1115                         } else {
1116                                 /* Wait to be woken up when we are needed. */
1117                                 __set_current_state(TASK_INTERRUPTIBLE);
1118                                 schedule();
1119                         }
1120                 } else {
1121                         schedule_timeout_interruptible(1);
1122                 }
1123         }
1124         return 0;
1125 }
1126
1127
1128 static void poll(void *send_info)
1129 {
1130         struct smi_info *smi_info = send_info;
1131         unsigned long flags = 0;
1132         bool run_to_completion = smi_info->run_to_completion;
1133
1134         /*
1135          * Make sure there is some delay in the poll loop so we can
1136          * drive time forward and timeout things.
1137          */
1138         udelay(10);
1139         if (!run_to_completion)
1140                 spin_lock_irqsave(&smi_info->si_lock, flags);
1141         smi_event_handler(smi_info, 10);
1142         if (!run_to_completion)
1143                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1144 }
1145
1146 static void request_events(void *send_info)
1147 {
1148         struct smi_info *smi_info = send_info;
1149
1150         if (!smi_info->has_event_buffer)
1151                 return;
1152
1153         atomic_set(&smi_info->req_events, 1);
1154 }
1155
1156 static void set_need_watch(void *send_info, bool enable)
1157 {
1158         struct smi_info *smi_info = send_info;
1159         unsigned long flags;
1160
1161         atomic_set(&smi_info->need_watch, enable);
1162         spin_lock_irqsave(&smi_info->si_lock, flags);
1163         check_start_timer_thread(smi_info);
1164         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1165 }
1166
1167 static int initialized;
1168
1169 static void smi_timeout(unsigned long data)
1170 {
1171         struct smi_info   *smi_info = (struct smi_info *) data;
1172         enum si_sm_result smi_result;
1173         unsigned long     flags;
1174         unsigned long     jiffies_now;
1175         long              time_diff;
1176         long              timeout;
1177
1178         spin_lock_irqsave(&(smi_info->si_lock), flags);
1179         debug_timestamp("Timer");
1180
1181         jiffies_now = jiffies;
1182         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1183                      * SI_USEC_PER_JIFFY);
1184         smi_result = smi_event_handler(smi_info, time_diff);
1185
1186         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1187                 /* Running with interrupts, only do long timeouts. */
1188                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1189                 smi_inc_stat(smi_info, long_timeouts);
1190                 goto do_mod_timer;
1191         }
1192
1193         /*
1194          * If the state machine asks for a short delay, then shorten
1195          * the timer timeout.
1196          */
1197         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1198                 smi_inc_stat(smi_info, short_timeouts);
1199                 timeout = jiffies + 1;
1200         } else {
1201                 smi_inc_stat(smi_info, long_timeouts);
1202                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1203         }
1204
1205 do_mod_timer:
1206         if (smi_result != SI_SM_IDLE)
1207                 smi_mod_timer(smi_info, timeout);
1208         else
1209                 smi_info->timer_running = false;
1210         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1211 }
1212
1213 static irqreturn_t si_irq_handler(int irq, void *data)
1214 {
1215         struct smi_info *smi_info = data;
1216         unsigned long   flags;
1217
1218         spin_lock_irqsave(&(smi_info->si_lock), flags);
1219
1220         smi_inc_stat(smi_info, interrupts);
1221
1222         debug_timestamp("Interrupt");
1223
1224         smi_event_handler(smi_info, 0);
1225         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1226         return IRQ_HANDLED;
1227 }
1228
1229 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1230 {
1231         struct smi_info *smi_info = data;
1232         /* We need to clear the IRQ flag for the BT interface. */
1233         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1234                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1235                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1236         return si_irq_handler(irq, data);
1237 }
1238
1239 static int smi_start_processing(void       *send_info,
1240                                 ipmi_smi_t intf)
1241 {
1242         struct smi_info *new_smi = send_info;
1243         int             enable = 0;
1244
1245         new_smi->intf = intf;
1246
1247         /* Set up the timer that drives the interface. */
1248         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1249         new_smi->timer_can_start = true;
1250         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1251
1252         /* Try to claim any interrupts. */
1253         if (new_smi->irq_setup)
1254                 new_smi->irq_setup(new_smi);
1255
1256         /*
1257          * Check if the user forcefully enabled the daemon.
1258          */
1259         if (new_smi->intf_num < num_force_kipmid)
1260                 enable = force_kipmid[new_smi->intf_num];
1261         /*
1262          * The BT interface is efficient enough to not need a thread,
1263          * and there is no need for a thread if we have interrupts.
1264          */
1265         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1266                 enable = 1;
1267
1268         if (enable) {
1269                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1270                                               "kipmi%d", new_smi->intf_num);
1271                 if (IS_ERR(new_smi->thread)) {
1272                         dev_notice(new_smi->dev, "Could not start"
1273                                    " kernel thread due to error %ld, only using"
1274                                    " timers to drive the interface\n",
1275                                    PTR_ERR(new_smi->thread));
1276                         new_smi->thread = NULL;
1277                 }
1278         }
1279
1280         return 0;
1281 }
1282
1283 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1284 {
1285         struct smi_info *smi = send_info;
1286
1287         data->addr_src = smi->addr_source;
1288         data->dev = smi->dev;
1289         data->addr_info = smi->addr_info;
1290         get_device(smi->dev);
1291
1292         return 0;
1293 }
1294
1295 static void set_maintenance_mode(void *send_info, bool enable)
1296 {
1297         struct smi_info   *smi_info = send_info;
1298
1299         if (!enable)
1300                 atomic_set(&smi_info->req_events, 0);
1301         smi_info->in_maintenance_mode = enable;
1302 }
1303
1304 static const struct ipmi_smi_handlers handlers = {
1305         .owner                  = THIS_MODULE,
1306         .start_processing       = smi_start_processing,
1307         .get_smi_info           = get_smi_info,
1308         .sender                 = sender,
1309         .request_events         = request_events,
1310         .set_need_watch         = set_need_watch,
1311         .set_maintenance_mode   = set_maintenance_mode,
1312         .set_run_to_completion  = set_run_to_completion,
1313         .flush_messages         = flush_messages,
1314         .poll                   = poll,
1315 };
1316
1317 /*
1318  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1319  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1320  */
1321
1322 static LIST_HEAD(smi_infos);
1323 static DEFINE_MUTEX(smi_infos_lock);
1324 static int smi_num; /* Used to sequence the SMIs */
1325
1326 #define DEFAULT_REGSPACING      1
1327 #define DEFAULT_REGSIZE         1
1328
1329 #ifdef CONFIG_ACPI
1330 static bool          si_tryacpi = true;
1331 #endif
1332 #ifdef CONFIG_DMI
1333 static bool          si_trydmi = true;
1334 #endif
1335 static bool          si_tryplatform = true;
1336 #ifdef CONFIG_PCI
1337 static bool          si_trypci = true;
1338 #endif
1339 static char          *si_type[SI_MAX_PARMS];
1340 #define MAX_SI_TYPE_STR 30
1341 static char          si_type_str[MAX_SI_TYPE_STR];
1342 static unsigned long addrs[SI_MAX_PARMS];
1343 static unsigned int num_addrs;
1344 static unsigned int  ports[SI_MAX_PARMS];
1345 static unsigned int num_ports;
1346 static int           irqs[SI_MAX_PARMS];
1347 static unsigned int num_irqs;
1348 static int           regspacings[SI_MAX_PARMS];
1349 static unsigned int num_regspacings;
1350 static int           regsizes[SI_MAX_PARMS];
1351 static unsigned int num_regsizes;
1352 static int           regshifts[SI_MAX_PARMS];
1353 static unsigned int num_regshifts;
1354 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1355 static unsigned int num_slave_addrs;
1356
1357 #define IPMI_IO_ADDR_SPACE  0
1358 #define IPMI_MEM_ADDR_SPACE 1
1359 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1360
1361 static int hotmod_handler(const char *val, struct kernel_param *kp);
1362
1363 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1364 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1365                  " Documentation/IPMI.txt in the kernel sources for the"
1366                  " gory details.");
1367
1368 #ifdef CONFIG_ACPI
1369 module_param_named(tryacpi, si_tryacpi, bool, 0);
1370 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1371                  " default scan of the interfaces identified via ACPI");
1372 #endif
1373 #ifdef CONFIG_DMI
1374 module_param_named(trydmi, si_trydmi, bool, 0);
1375 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1376                  " default scan of the interfaces identified via DMI");
1377 #endif
1378 module_param_named(tryplatform, si_tryplatform, bool, 0);
1379 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1380                  " default scan of the interfaces identified via platform"
1381                  " interfaces like openfirmware");
1382 #ifdef CONFIG_PCI
1383 module_param_named(trypci, si_trypci, bool, 0);
1384 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1385                  " default scan of the interfaces identified via pci");
1386 #endif
1387 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1388 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1389                  " interface separated by commas.  The types are 'kcs',"
1390                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1391                  " the first interface to kcs and the second to bt");
1392 module_param_array(addrs, ulong, &num_addrs, 0);
1393 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1394                  " addresses separated by commas.  Only use if an interface"
1395                  " is in memory.  Otherwise, set it to zero or leave"
1396                  " it blank.");
1397 module_param_array(ports, uint, &num_ports, 0);
1398 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1399                  " addresses separated by commas.  Only use if an interface"
1400                  " is a port.  Otherwise, set it to zero or leave"
1401                  " it blank.");
1402 module_param_array(irqs, int, &num_irqs, 0);
1403 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1404                  " addresses separated by commas.  Only use if an interface"
1405                  " has an interrupt.  Otherwise, set it to zero or leave"
1406                  " it blank.");
1407 module_param_array(regspacings, int, &num_regspacings, 0);
1408 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1409                  " and each successive register used by the interface.  For"
1410                  " instance, if the start address is 0xca2 and the spacing"
1411                  " is 2, then the second address is at 0xca4.  Defaults"
1412                  " to 1.");
1413 module_param_array(regsizes, int, &num_regsizes, 0);
1414 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1415                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1416                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1417                  " the 8-bit IPMI register has to be read from a larger"
1418                  " register.");
1419 module_param_array(regshifts, int, &num_regshifts, 0);
1420 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1421                  " IPMI register, in bits.  For instance, if the data"
1422                  " is read from a 32-bit word and the IPMI data is in"
1423                  " bit 8-15, then the shift would be 8");
1424 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1425 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1426                  " the controller.  Normally this is 0x20, but can be"
1427                  " overridden by this parm.  This is an array indexed"
1428                  " by interface number.");
1429 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1430 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1431                  " disabled(0).  Normally the IPMI driver auto-detects"
1432                  " this, but the value may be overridden by this parm.");
1433 module_param(unload_when_empty, bool, 0);
1434 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1435                  " specified or found, default is 1.  Setting to 0"
1436                  " is useful for hot add of devices using hotmod.");
1437 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1438 MODULE_PARM_DESC(kipmid_max_busy_us,
1439                  "Max time (in microseconds) to busy-wait for IPMI data before"
1440                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1441                  " if kipmid is using up a lot of CPU time.");
1442
1443
1444 static void std_irq_cleanup(struct smi_info *info)
1445 {
1446         if (info->si_type == SI_BT)
1447                 /* Disable the interrupt in the BT interface. */
1448                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1449         free_irq(info->irq, info);
1450 }
1451
1452 static int std_irq_setup(struct smi_info *info)
1453 {
1454         int rv;
1455
1456         if (!info->irq)
1457                 return 0;
1458
1459         if (info->si_type == SI_BT) {
1460                 rv = request_irq(info->irq,
1461                                  si_bt_irq_handler,
1462                                  IRQF_SHARED,
1463                                  DEVICE_NAME,
1464                                  info);
1465                 if (!rv)
1466                         /* Enable the interrupt in the BT interface. */
1467                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1468                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1469         } else
1470                 rv = request_irq(info->irq,
1471                                  si_irq_handler,
1472                                  IRQF_SHARED,
1473                                  DEVICE_NAME,
1474                                  info);
1475         if (rv) {
1476                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1477                          " running polled\n",
1478                          DEVICE_NAME, info->irq);
1479                 info->irq = 0;
1480         } else {
1481                 info->irq_cleanup = std_irq_cleanup;
1482                 dev_info(info->dev, "Using irq %d\n", info->irq);
1483         }
1484
1485         return rv;
1486 }
1487
1488 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1489 {
1490         unsigned int addr = io->addr_data;
1491
1492         return inb(addr + (offset * io->regspacing));
1493 }
1494
1495 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1496                       unsigned char b)
1497 {
1498         unsigned int addr = io->addr_data;
1499
1500         outb(b, addr + (offset * io->regspacing));
1501 }
1502
1503 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1504 {
1505         unsigned int addr = io->addr_data;
1506
1507         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1508 }
1509
1510 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1511                       unsigned char b)
1512 {
1513         unsigned int addr = io->addr_data;
1514
1515         outw(b << io->regshift, addr + (offset * io->regspacing));
1516 }
1517
1518 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1519 {
1520         unsigned int addr = io->addr_data;
1521
1522         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1523 }
1524
1525 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1526                       unsigned char b)
1527 {
1528         unsigned int addr = io->addr_data;
1529
1530         outl(b << io->regshift, addr+(offset * io->regspacing));
1531 }
1532
1533 static void port_cleanup(struct smi_info *info)
1534 {
1535         unsigned int addr = info->io.addr_data;
1536         int          idx;
1537
1538         if (addr) {
1539                 for (idx = 0; idx < info->io_size; idx++)
1540                         release_region(addr + idx * info->io.regspacing,
1541                                        info->io.regsize);
1542         }
1543 }
1544
1545 static int port_setup(struct smi_info *info)
1546 {
1547         unsigned int addr = info->io.addr_data;
1548         int          idx;
1549
1550         if (!addr)
1551                 return -ENODEV;
1552
1553         info->io_cleanup = port_cleanup;
1554
1555         /*
1556          * Figure out the actual inb/inw/inl/etc routine to use based
1557          * upon the register size.
1558          */
1559         switch (info->io.regsize) {
1560         case 1:
1561                 info->io.inputb = port_inb;
1562                 info->io.outputb = port_outb;
1563                 break;
1564         case 2:
1565                 info->io.inputb = port_inw;
1566                 info->io.outputb = port_outw;
1567                 break;
1568         case 4:
1569                 info->io.inputb = port_inl;
1570                 info->io.outputb = port_outl;
1571                 break;
1572         default:
1573                 dev_warn(info->dev, "Invalid register size: %d\n",
1574                          info->io.regsize);
1575                 return -EINVAL;
1576         }
1577
1578         /*
1579          * Some BIOSes reserve disjoint I/O regions in their ACPI
1580          * tables.  This causes problems when trying to register the
1581          * entire I/O region.  Therefore we must register each I/O
1582          * port separately.
1583          */
1584         for (idx = 0; idx < info->io_size; idx++) {
1585                 if (request_region(addr + idx * info->io.regspacing,
1586                                    info->io.regsize, DEVICE_NAME) == NULL) {
1587                         /* Undo allocations */
1588                         while (idx--)
1589                                 release_region(addr + idx * info->io.regspacing,
1590                                                info->io.regsize);
1591                         return -EIO;
1592                 }
1593         }
1594         return 0;
1595 }
1596
1597 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1598                                   unsigned int offset)
1599 {
1600         return readb((io->addr)+(offset * io->regspacing));
1601 }
1602
1603 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1604                           unsigned char b)
1605 {
1606         writeb(b, (io->addr)+(offset * io->regspacing));
1607 }
1608
1609 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1610                                   unsigned int offset)
1611 {
1612         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1613                 & 0xff;
1614 }
1615
1616 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1617                           unsigned char b)
1618 {
1619         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1620 }
1621
1622 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1623                                   unsigned int offset)
1624 {
1625         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1626                 & 0xff;
1627 }
1628
1629 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1630                           unsigned char b)
1631 {
1632         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1633 }
1634
1635 #ifdef readq
1636 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1637 {
1638         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1639                 & 0xff;
1640 }
1641
1642 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1643                      unsigned char b)
1644 {
1645         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1646 }
1647 #endif
1648
1649 static void mem_region_cleanup(struct smi_info *info, int num)
1650 {
1651         unsigned long addr = info->io.addr_data;
1652         int idx;
1653
1654         for (idx = 0; idx < num; idx++)
1655                 release_mem_region(addr + idx * info->io.regspacing,
1656                                    info->io.regsize);
1657 }
1658
1659 static void mem_cleanup(struct smi_info *info)
1660 {
1661         if (info->io.addr) {
1662                 iounmap(info->io.addr);
1663                 mem_region_cleanup(info, info->io_size);
1664         }
1665 }
1666
1667 static int mem_setup(struct smi_info *info)
1668 {
1669         unsigned long addr = info->io.addr_data;
1670         int           mapsize, idx;
1671
1672         if (!addr)
1673                 return -ENODEV;
1674
1675         info->io_cleanup = mem_cleanup;
1676
1677         /*
1678          * Figure out the actual readb/readw/readl/etc routine to use based
1679          * upon the register size.
1680          */
1681         switch (info->io.regsize) {
1682         case 1:
1683                 info->io.inputb = intf_mem_inb;
1684                 info->io.outputb = intf_mem_outb;
1685                 break;
1686         case 2:
1687                 info->io.inputb = intf_mem_inw;
1688                 info->io.outputb = intf_mem_outw;
1689                 break;
1690         case 4:
1691                 info->io.inputb = intf_mem_inl;
1692                 info->io.outputb = intf_mem_outl;
1693                 break;
1694 #ifdef readq
1695         case 8:
1696                 info->io.inputb = mem_inq;
1697                 info->io.outputb = mem_outq;
1698                 break;
1699 #endif
1700         default:
1701                 dev_warn(info->dev, "Invalid register size: %d\n",
1702                          info->io.regsize);
1703                 return -EINVAL;
1704         }
1705
1706         /*
1707          * Some BIOSes reserve disjoint memory regions in their ACPI
1708          * tables.  This causes problems when trying to request the
1709          * entire region.  Therefore we must request each register
1710          * separately.
1711          */
1712         for (idx = 0; idx < info->io_size; idx++) {
1713                 if (request_mem_region(addr + idx * info->io.regspacing,
1714                                        info->io.regsize, DEVICE_NAME) == NULL) {
1715                         /* Undo allocations */
1716                         mem_region_cleanup(info, idx);
1717                         return -EIO;
1718                 }
1719         }
1720
1721         /*
1722          * Calculate the total amount of memory to claim.  This is an
1723          * unusual looking calculation, but it avoids claiming any
1724          * more memory than it has to.  It will claim everything
1725          * between the first address to the end of the last full
1726          * register.
1727          */
1728         mapsize = ((info->io_size * info->io.regspacing)
1729                    - (info->io.regspacing - info->io.regsize));
1730         info->io.addr = ioremap(addr, mapsize);
1731         if (info->io.addr == NULL) {
1732                 mem_region_cleanup(info, info->io_size);
1733                 return -EIO;
1734         }
1735         return 0;
1736 }
1737
1738 /*
1739  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1740  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1741  * Options are:
1742  *   rsp=<regspacing>
1743  *   rsi=<regsize>
1744  *   rsh=<regshift>
1745  *   irq=<irq>
1746  *   ipmb=<ipmb addr>
1747  */
1748 enum hotmod_op { HM_ADD, HM_REMOVE };
1749 struct hotmod_vals {
1750         const char *name;
1751         const int  val;
1752 };
1753
1754 static const struct hotmod_vals hotmod_ops[] = {
1755         { "add",        HM_ADD },
1756         { "remove",     HM_REMOVE },
1757         { NULL }
1758 };
1759
1760 static const struct hotmod_vals hotmod_si[] = {
1761         { "kcs",        SI_KCS },
1762         { "smic",       SI_SMIC },
1763         { "bt",         SI_BT },
1764         { NULL }
1765 };
1766
1767 static const struct hotmod_vals hotmod_as[] = {
1768         { "mem",        IPMI_MEM_ADDR_SPACE },
1769         { "i/o",        IPMI_IO_ADDR_SPACE },
1770         { NULL }
1771 };
1772
1773 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1774                      char **curr)
1775 {
1776         char *s;
1777         int  i;
1778
1779         s = strchr(*curr, ',');
1780         if (!s) {
1781                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1782                 return -EINVAL;
1783         }
1784         *s = '\0';
1785         s++;
1786         for (i = 0; v[i].name; i++) {
1787                 if (strcmp(*curr, v[i].name) == 0) {
1788                         *val = v[i].val;
1789                         *curr = s;
1790                         return 0;
1791                 }
1792         }
1793
1794         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1795         return -EINVAL;
1796 }
1797
1798 static int check_hotmod_int_op(const char *curr, const char *option,
1799                                const char *name, int *val)
1800 {
1801         char *n;
1802
1803         if (strcmp(curr, name) == 0) {
1804                 if (!option) {
1805                         printk(KERN_WARNING PFX
1806                                "No option given for '%s'\n",
1807                                curr);
1808                         return -EINVAL;
1809                 }
1810                 *val = simple_strtoul(option, &n, 0);
1811                 if ((*n != '\0') || (*option == '\0')) {
1812                         printk(KERN_WARNING PFX
1813                                "Bad option given for '%s'\n",
1814                                curr);
1815                         return -EINVAL;
1816                 }
1817                 return 1;
1818         }
1819         return 0;
1820 }
1821
1822 static struct smi_info *smi_info_alloc(void)
1823 {
1824         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1825
1826         if (info)
1827                 spin_lock_init(&info->si_lock);
1828         return info;
1829 }
1830
1831 static int hotmod_handler(const char *val, struct kernel_param *kp)
1832 {
1833         char *str = kstrdup(val, GFP_KERNEL);
1834         int  rv;
1835         char *next, *curr, *s, *n, *o;
1836         enum hotmod_op op;
1837         enum si_type si_type;
1838         int  addr_space;
1839         unsigned long addr;
1840         int regspacing;
1841         int regsize;
1842         int regshift;
1843         int irq;
1844         int ipmb;
1845         int ival;
1846         int len;
1847         struct smi_info *info;
1848
1849         if (!str)
1850                 return -ENOMEM;
1851
1852         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1853         len = strlen(str);
1854         ival = len - 1;
1855         while ((ival >= 0) && isspace(str[ival])) {
1856                 str[ival] = '\0';
1857                 ival--;
1858         }
1859
1860         for (curr = str; curr; curr = next) {
1861                 regspacing = 1;
1862                 regsize = 1;
1863                 regshift = 0;
1864                 irq = 0;
1865                 ipmb = 0; /* Choose the default if not specified */
1866
1867                 next = strchr(curr, ':');
1868                 if (next) {
1869                         *next = '\0';
1870                         next++;
1871                 }
1872
1873                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1874                 if (rv)
1875                         break;
1876                 op = ival;
1877
1878                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1879                 if (rv)
1880                         break;
1881                 si_type = ival;
1882
1883                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1884                 if (rv)
1885                         break;
1886
1887                 s = strchr(curr, ',');
1888                 if (s) {
1889                         *s = '\0';
1890                         s++;
1891                 }
1892                 addr = simple_strtoul(curr, &n, 0);
1893                 if ((*n != '\0') || (*curr == '\0')) {
1894                         printk(KERN_WARNING PFX "Invalid hotmod address"
1895                                " '%s'\n", curr);
1896                         break;
1897                 }
1898
1899                 while (s) {
1900                         curr = s;
1901                         s = strchr(curr, ',');
1902                         if (s) {
1903                                 *s = '\0';
1904                                 s++;
1905                         }
1906                         o = strchr(curr, '=');
1907                         if (o) {
1908                                 *o = '\0';
1909                                 o++;
1910                         }
1911                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1912                         if (rv < 0)
1913                                 goto out;
1914                         else if (rv)
1915                                 continue;
1916                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1917                         if (rv < 0)
1918                                 goto out;
1919                         else if (rv)
1920                                 continue;
1921                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1922                         if (rv < 0)
1923                                 goto out;
1924                         else if (rv)
1925                                 continue;
1926                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1927                         if (rv < 0)
1928                                 goto out;
1929                         else if (rv)
1930                                 continue;
1931                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1932                         if (rv < 0)
1933                                 goto out;
1934                         else if (rv)
1935                                 continue;
1936
1937                         rv = -EINVAL;
1938                         printk(KERN_WARNING PFX
1939                                "Invalid hotmod option '%s'\n",
1940                                curr);
1941                         goto out;
1942                 }
1943
1944                 if (op == HM_ADD) {
1945                         info = smi_info_alloc();
1946                         if (!info) {
1947                                 rv = -ENOMEM;
1948                                 goto out;
1949                         }
1950
1951                         info->addr_source = SI_HOTMOD;
1952                         info->si_type = si_type;
1953                         info->io.addr_data = addr;
1954                         info->io.addr_type = addr_space;
1955                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1956                                 info->io_setup = mem_setup;
1957                         else
1958                                 info->io_setup = port_setup;
1959
1960                         info->io.addr = NULL;
1961                         info->io.regspacing = regspacing;
1962                         if (!info->io.regspacing)
1963                                 info->io.regspacing = DEFAULT_REGSPACING;
1964                         info->io.regsize = regsize;
1965                         if (!info->io.regsize)
1966                                 info->io.regsize = DEFAULT_REGSPACING;
1967                         info->io.regshift = regshift;
1968                         info->irq = irq;
1969                         if (info->irq)
1970                                 info->irq_setup = std_irq_setup;
1971                         info->slave_addr = ipmb;
1972
1973                         rv = add_smi(info);
1974                         if (rv) {
1975                                 kfree(info);
1976                                 goto out;
1977                         }
1978                         rv = try_smi_init(info);
1979                         if (rv) {
1980                                 cleanup_one_si(info);
1981                                 goto out;
1982                         }
1983                 } else {
1984                         /* remove */
1985                         struct smi_info *e, *tmp_e;
1986
1987                         mutex_lock(&smi_infos_lock);
1988                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1989                                 if (e->io.addr_type != addr_space)
1990                                         continue;
1991                                 if (e->si_type != si_type)
1992                                         continue;
1993                                 if (e->io.addr_data == addr)
1994                                         cleanup_one_si(e);
1995                         }
1996                         mutex_unlock(&smi_infos_lock);
1997                 }
1998         }
1999         rv = len;
2000 out:
2001         kfree(str);
2002         return rv;
2003 }
2004
2005 static int hardcode_find_bmc(void)
2006 {
2007         int ret = -ENODEV;
2008         int             i;
2009         struct smi_info *info;
2010
2011         for (i = 0; i < SI_MAX_PARMS; i++) {
2012                 if (!ports[i] && !addrs[i])
2013                         continue;
2014
2015                 info = smi_info_alloc();
2016                 if (!info)
2017                         return -ENOMEM;
2018
2019                 info->addr_source = SI_HARDCODED;
2020                 printk(KERN_INFO PFX "probing via hardcoded address\n");
2021
2022                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2023                         info->si_type = SI_KCS;
2024                 } else if (strcmp(si_type[i], "smic") == 0) {
2025                         info->si_type = SI_SMIC;
2026                 } else if (strcmp(si_type[i], "bt") == 0) {
2027                         info->si_type = SI_BT;
2028                 } else {
2029                         printk(KERN_WARNING PFX "Interface type specified "
2030                                "for interface %d, was invalid: %s\n",
2031                                i, si_type[i]);
2032                         kfree(info);
2033                         continue;
2034                 }
2035
2036                 if (ports[i]) {
2037                         /* An I/O port */
2038                         info->io_setup = port_setup;
2039                         info->io.addr_data = ports[i];
2040                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
2041                 } else if (addrs[i]) {
2042                         /* A memory port */
2043                         info->io_setup = mem_setup;
2044                         info->io.addr_data = addrs[i];
2045                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2046                 } else {
2047                         printk(KERN_WARNING PFX "Interface type specified "
2048                                "for interface %d, but port and address were "
2049                                "not set or set to zero.\n", i);
2050                         kfree(info);
2051                         continue;
2052                 }
2053
2054                 info->io.addr = NULL;
2055                 info->io.regspacing = regspacings[i];
2056                 if (!info->io.regspacing)
2057                         info->io.regspacing = DEFAULT_REGSPACING;
2058                 info->io.regsize = regsizes[i];
2059                 if (!info->io.regsize)
2060                         info->io.regsize = DEFAULT_REGSPACING;
2061                 info->io.regshift = regshifts[i];
2062                 info->irq = irqs[i];
2063                 if (info->irq)
2064                         info->irq_setup = std_irq_setup;
2065                 info->slave_addr = slave_addrs[i];
2066
2067                 if (!add_smi(info)) {
2068                         if (try_smi_init(info))
2069                                 cleanup_one_si(info);
2070                         ret = 0;
2071                 } else {
2072                         kfree(info);
2073                 }
2074         }
2075         return ret;
2076 }
2077
2078 #ifdef CONFIG_ACPI
2079
2080 /*
2081  * Once we get an ACPI failure, we don't try any more, because we go
2082  * through the tables sequentially.  Once we don't find a table, there
2083  * are no more.
2084  */
2085 static int acpi_failure;
2086
2087 /* For GPE-type interrupts. */
2088 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2089         u32 gpe_number, void *context)
2090 {
2091         struct smi_info *smi_info = context;
2092         unsigned long   flags;
2093
2094         spin_lock_irqsave(&(smi_info->si_lock), flags);
2095
2096         smi_inc_stat(smi_info, interrupts);
2097
2098         debug_timestamp("ACPI_GPE");
2099
2100         smi_event_handler(smi_info, 0);
2101         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2102
2103         return ACPI_INTERRUPT_HANDLED;
2104 }
2105
2106 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2107 {
2108         if (!info->irq)
2109                 return;
2110
2111         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2112 }
2113
2114 static int acpi_gpe_irq_setup(struct smi_info *info)
2115 {
2116         acpi_status status;
2117
2118         if (!info->irq)
2119                 return 0;
2120
2121         status = acpi_install_gpe_handler(NULL,
2122                                           info->irq,
2123                                           ACPI_GPE_LEVEL_TRIGGERED,
2124                                           &ipmi_acpi_gpe,
2125                                           info);
2126         if (status != AE_OK) {
2127                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2128                          " running polled\n", DEVICE_NAME, info->irq);
2129                 info->irq = 0;
2130                 return -EINVAL;
2131         } else {
2132                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2133                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2134                 return 0;
2135         }
2136 }
2137
2138 /*
2139  * Defined at
2140  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2141  */
2142 struct SPMITable {
2143         s8      Signature[4];
2144         u32     Length;
2145         u8      Revision;
2146         u8      Checksum;
2147         s8      OEMID[6];
2148         s8      OEMTableID[8];
2149         s8      OEMRevision[4];
2150         s8      CreatorID[4];
2151         s8      CreatorRevision[4];
2152         u8      InterfaceType;
2153         u8      IPMIlegacy;
2154         s16     SpecificationRevision;
2155
2156         /*
2157          * Bit 0 - SCI interrupt supported
2158          * Bit 1 - I/O APIC/SAPIC
2159          */
2160         u8      InterruptType;
2161
2162         /*
2163          * If bit 0 of InterruptType is set, then this is the SCI
2164          * interrupt in the GPEx_STS register.
2165          */
2166         u8      GPE;
2167
2168         s16     Reserved;
2169
2170         /*
2171          * If bit 1 of InterruptType is set, then this is the I/O
2172          * APIC/SAPIC interrupt.
2173          */
2174         u32     GlobalSystemInterrupt;
2175
2176         /* The actual register address. */
2177         struct acpi_generic_address addr;
2178
2179         u8      UID[4];
2180
2181         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2182 };
2183
2184 static int try_init_spmi(struct SPMITable *spmi)
2185 {
2186         struct smi_info  *info;
2187         int rv;
2188
2189         if (spmi->IPMIlegacy != 1) {
2190                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2191                 return -ENODEV;
2192         }
2193
2194         info = smi_info_alloc();
2195         if (!info) {
2196                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2197                 return -ENOMEM;
2198         }
2199
2200         info->addr_source = SI_SPMI;
2201         printk(KERN_INFO PFX "probing via SPMI\n");
2202
2203         /* Figure out the interface type. */
2204         switch (spmi->InterfaceType) {
2205         case 1: /* KCS */
2206                 info->si_type = SI_KCS;
2207                 break;
2208         case 2: /* SMIC */
2209                 info->si_type = SI_SMIC;
2210                 break;
2211         case 3: /* BT */
2212                 info->si_type = SI_BT;
2213                 break;
2214         case 4: /* SSIF, just ignore */
2215                 kfree(info);
2216                 return -EIO;
2217         default:
2218                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2219                        spmi->InterfaceType);
2220                 kfree(info);
2221                 return -EIO;
2222         }
2223
2224         if (spmi->InterruptType & 1) {
2225                 /* We've got a GPE interrupt. */
2226                 info->irq = spmi->GPE;
2227                 info->irq_setup = acpi_gpe_irq_setup;
2228         } else if (spmi->InterruptType & 2) {
2229                 /* We've got an APIC/SAPIC interrupt. */
2230                 info->irq = spmi->GlobalSystemInterrupt;
2231                 info->irq_setup = std_irq_setup;
2232         } else {
2233                 /* Use the default interrupt setting. */
2234                 info->irq = 0;
2235                 info->irq_setup = NULL;
2236         }
2237
2238         if (spmi->addr.bit_width) {
2239                 /* A (hopefully) properly formed register bit width. */
2240                 info->io.regspacing = spmi->addr.bit_width / 8;
2241         } else {
2242                 info->io.regspacing = DEFAULT_REGSPACING;
2243         }
2244         info->io.regsize = info->io.regspacing;
2245         info->io.regshift = spmi->addr.bit_offset;
2246
2247         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2248                 info->io_setup = mem_setup;
2249                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2250         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2251                 info->io_setup = port_setup;
2252                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2253         } else {
2254                 kfree(info);
2255                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2256                 return -EIO;
2257         }
2258         info->io.addr_data = spmi->addr.address;
2259
2260         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2261                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2262                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2263                  info->irq);
2264
2265         rv = add_smi(info);
2266         if (rv)
2267                 kfree(info);
2268
2269         return rv;
2270 }
2271
2272 static void spmi_find_bmc(void)
2273 {
2274         acpi_status      status;
2275         struct SPMITable *spmi;
2276         int              i;
2277
2278         if (acpi_disabled)
2279                 return;
2280
2281         if (acpi_failure)
2282                 return;
2283
2284         for (i = 0; ; i++) {
2285                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2286                                         (struct acpi_table_header **)&spmi);
2287                 if (status != AE_OK)
2288                         return;
2289
2290                 try_init_spmi(spmi);
2291         }
2292 }
2293 #endif
2294
2295 #ifdef CONFIG_DMI
2296 struct dmi_ipmi_data {
2297         u8              type;
2298         u8              addr_space;
2299         unsigned long   base_addr;
2300         u8              irq;
2301         u8              offset;
2302         u8              slave_addr;
2303 };
2304
2305 static int decode_dmi(const struct dmi_header *dm,
2306                                 struct dmi_ipmi_data *dmi)
2307 {
2308         const u8        *data = (const u8 *)dm;
2309         unsigned long   base_addr;
2310         u8              reg_spacing;
2311         u8              len = dm->length;
2312
2313         dmi->type = data[4];
2314
2315         memcpy(&base_addr, data+8, sizeof(unsigned long));
2316         if (len >= 0x11) {
2317                 if (base_addr & 1) {
2318                         /* I/O */
2319                         base_addr &= 0xFFFE;
2320                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2321                 } else
2322                         /* Memory */
2323                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2324
2325                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2326                    is odd. */
2327                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2328
2329                 dmi->irq = data[0x11];
2330
2331                 /* The top two bits of byte 0x10 hold the register spacing. */
2332                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2333                 switch (reg_spacing) {
2334                 case 0x00: /* Byte boundaries */
2335                     dmi->offset = 1;
2336                     break;
2337                 case 0x01: /* 32-bit boundaries */
2338                     dmi->offset = 4;
2339                     break;
2340                 case 0x02: /* 16-byte boundaries */
2341                     dmi->offset = 16;
2342                     break;
2343                 default:
2344                     /* Some other interface, just ignore it. */
2345                     return -EIO;
2346                 }
2347         } else {
2348                 /* Old DMI spec. */
2349                 /*
2350                  * Note that technically, the lower bit of the base
2351                  * address should be 1 if the address is I/O and 0 if
2352                  * the address is in memory.  So many systems get that
2353                  * wrong (and all that I have seen are I/O) so we just
2354                  * ignore that bit and assume I/O.  Systems that use
2355                  * memory should use the newer spec, anyway.
2356                  */
2357                 dmi->base_addr = base_addr & 0xfffe;
2358                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2359                 dmi->offset = 1;
2360         }
2361
2362         dmi->slave_addr = data[6];
2363
2364         return 0;
2365 }
2366
2367 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2368 {
2369         struct smi_info *info;
2370
2371         info = smi_info_alloc();
2372         if (!info) {
2373                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2374                 return;
2375         }
2376
2377         info->addr_source = SI_SMBIOS;
2378         printk(KERN_INFO PFX "probing via SMBIOS\n");
2379
2380         switch (ipmi_data->type) {
2381         case 0x01: /* KCS */
2382                 info->si_type = SI_KCS;
2383                 break;
2384         case 0x02: /* SMIC */
2385                 info->si_type = SI_SMIC;
2386                 break;
2387         case 0x03: /* BT */
2388                 info->si_type = SI_BT;
2389                 break;
2390         default:
2391                 kfree(info);
2392                 return;
2393         }
2394
2395         switch (ipmi_data->addr_space) {
2396         case IPMI_MEM_ADDR_SPACE:
2397                 info->io_setup = mem_setup;
2398                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2399                 break;
2400
2401         case IPMI_IO_ADDR_SPACE:
2402                 info->io_setup = port_setup;
2403                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2404                 break;
2405
2406         default:
2407                 kfree(info);
2408                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2409                        ipmi_data->addr_space);
2410                 return;
2411         }
2412         info->io.addr_data = ipmi_data->base_addr;
2413
2414         info->io.regspacing = ipmi_data->offset;
2415         if (!info->io.regspacing)
2416                 info->io.regspacing = DEFAULT_REGSPACING;
2417         info->io.regsize = DEFAULT_REGSPACING;
2418         info->io.regshift = 0;
2419
2420         info->slave_addr = ipmi_data->slave_addr;
2421
2422         info->irq = ipmi_data->irq;
2423         if (info->irq)
2424                 info->irq_setup = std_irq_setup;
2425
2426         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2427                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2428                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2429                  info->irq);
2430
2431         if (add_smi(info))
2432                 kfree(info);
2433 }
2434
2435 static void dmi_find_bmc(void)
2436 {
2437         const struct dmi_device *dev = NULL;
2438         struct dmi_ipmi_data data;
2439         int                  rv;
2440
2441         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2442                 memset(&data, 0, sizeof(data));
2443                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2444                                 &data);
2445                 if (!rv)
2446                         try_init_dmi(&data);
2447         }
2448 }
2449 #endif /* CONFIG_DMI */
2450
2451 #ifdef CONFIG_PCI
2452
2453 #define PCI_ERMC_CLASSCODE              0x0C0700
2454 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2455 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2456 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2457 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2458 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2459
2460 #define PCI_HP_VENDOR_ID    0x103C
2461 #define PCI_MMC_DEVICE_ID   0x121A
2462 #define PCI_MMC_ADDR_CW     0x10
2463
2464 static void ipmi_pci_cleanup(struct smi_info *info)
2465 {
2466         struct pci_dev *pdev = info->addr_source_data;
2467
2468         pci_disable_device(pdev);
2469 }
2470
2471 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2472 {
2473         if (info->si_type == SI_KCS) {
2474                 unsigned char   status;
2475                 int             regspacing;
2476
2477                 info->io.regsize = DEFAULT_REGSIZE;
2478                 info->io.regshift = 0;
2479                 info->io_size = 2;
2480                 info->handlers = &kcs_smi_handlers;
2481
2482                 /* detect 1, 4, 16byte spacing */
2483                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2484                         info->io.regspacing = regspacing;
2485                         if (info->io_setup(info)) {
2486                                 dev_err(info->dev,
2487                                         "Could not setup I/O space\n");
2488                                 return DEFAULT_REGSPACING;
2489                         }
2490                         /* write invalid cmd */
2491                         info->io.outputb(&info->io, 1, 0x10);
2492                         /* read status back */
2493                         status = info->io.inputb(&info->io, 1);
2494                         info->io_cleanup(info);
2495                         if (status)
2496                                 return regspacing;
2497                         regspacing *= 4;
2498                 }
2499         }
2500         return DEFAULT_REGSPACING;
2501 }
2502
2503 static int ipmi_pci_probe(struct pci_dev *pdev,
2504                                     const struct pci_device_id *ent)
2505 {
2506         int rv;
2507         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2508         struct smi_info *info;
2509
2510         info = smi_info_alloc();
2511         if (!info)
2512                 return -ENOMEM;
2513
2514         info->addr_source = SI_PCI;
2515         dev_info(&pdev->dev, "probing via PCI");
2516
2517         switch (class_type) {
2518         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2519                 info->si_type = SI_SMIC;
2520                 break;
2521
2522         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2523                 info->si_type = SI_KCS;
2524                 break;
2525
2526         case PCI_ERMC_CLASSCODE_TYPE_BT:
2527                 info->si_type = SI_BT;
2528                 break;
2529
2530         default:
2531                 kfree(info);
2532                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2533                 return -ENOMEM;
2534         }
2535
2536         rv = pci_enable_device(pdev);
2537         if (rv) {
2538                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2539                 kfree(info);
2540                 return rv;
2541         }
2542
2543         info->addr_source_cleanup = ipmi_pci_cleanup;
2544         info->addr_source_data = pdev;
2545
2546         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2547                 info->io_setup = port_setup;
2548                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2549         } else {
2550                 info->io_setup = mem_setup;
2551                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2552         }
2553         info->io.addr_data = pci_resource_start(pdev, 0);
2554
2555         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2556         info->io.regsize = DEFAULT_REGSIZE;
2557         info->io.regshift = 0;
2558
2559         info->irq = pdev->irq;
2560         if (info->irq)
2561                 info->irq_setup = std_irq_setup;
2562
2563         info->dev = &pdev->dev;
2564         pci_set_drvdata(pdev, info);
2565
2566         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2567                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2568                 info->irq);
2569
2570         rv = add_smi(info);
2571         if (rv) {
2572                 kfree(info);
2573                 pci_disable_device(pdev);
2574         }
2575
2576         return rv;
2577 }
2578
2579 static void ipmi_pci_remove(struct pci_dev *pdev)
2580 {
2581         struct smi_info *info = pci_get_drvdata(pdev);
2582         cleanup_one_si(info);
2583 }
2584
2585 static const struct pci_device_id ipmi_pci_devices[] = {
2586         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2587         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2588         { 0, }
2589 };
2590 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2591
2592 static struct pci_driver ipmi_pci_driver = {
2593         .name =         DEVICE_NAME,
2594         .id_table =     ipmi_pci_devices,
2595         .probe =        ipmi_pci_probe,
2596         .remove =       ipmi_pci_remove,
2597 };
2598 #endif /* CONFIG_PCI */
2599
2600 #ifdef CONFIG_OF
2601 static const struct of_device_id of_ipmi_match[] = {
2602         { .type = "ipmi", .compatible = "ipmi-kcs",
2603           .data = (void *)(unsigned long) SI_KCS },
2604         { .type = "ipmi", .compatible = "ipmi-smic",
2605           .data = (void *)(unsigned long) SI_SMIC },
2606         { .type = "ipmi", .compatible = "ipmi-bt",
2607           .data = (void *)(unsigned long) SI_BT },
2608         {},
2609 };
2610 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2611
2612 static int of_ipmi_probe(struct platform_device *dev)
2613 {
2614         const struct of_device_id *match;
2615         struct smi_info *info;
2616         struct resource resource;
2617         const __be32 *regsize, *regspacing, *regshift;
2618         struct device_node *np = dev->dev.of_node;
2619         int ret;
2620         int proplen;
2621
2622         dev_info(&dev->dev, "probing via device tree\n");
2623
2624         match = of_match_device(of_ipmi_match, &dev->dev);
2625         if (!match)
2626                 return -ENODEV;
2627
2628         if (!of_device_is_available(np))
2629                 return -EINVAL;
2630
2631         ret = of_address_to_resource(np, 0, &resource);
2632         if (ret) {
2633                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2634                 return ret;
2635         }
2636
2637         regsize = of_get_property(np, "reg-size", &proplen);
2638         if (regsize && proplen != 4) {
2639                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2640                 return -EINVAL;
2641         }
2642
2643         regspacing = of_get_property(np, "reg-spacing", &proplen);
2644         if (regspacing && proplen != 4) {
2645                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2646                 return -EINVAL;
2647         }
2648
2649         regshift = of_get_property(np, "reg-shift", &proplen);
2650         if (regshift && proplen != 4) {
2651                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2652                 return -EINVAL;
2653         }
2654
2655         info = smi_info_alloc();
2656
2657         if (!info) {
2658                 dev_err(&dev->dev,
2659                         "could not allocate memory for OF probe\n");
2660                 return -ENOMEM;
2661         }
2662
2663         info->si_type           = (enum si_type) match->data;
2664         info->addr_source       = SI_DEVICETREE;
2665         info->irq_setup         = std_irq_setup;
2666
2667         if (resource.flags & IORESOURCE_IO) {
2668                 info->io_setup          = port_setup;
2669                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2670         } else {
2671                 info->io_setup          = mem_setup;
2672                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2673         }
2674
2675         info->io.addr_data      = resource.start;
2676
2677         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2678         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2679         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2680
2681         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2682         info->dev               = &dev->dev;
2683
2684         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2685                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2686                 info->irq);
2687
2688         dev_set_drvdata(&dev->dev, info);
2689
2690         ret = add_smi(info);
2691         if (ret) {
2692                 kfree(info);
2693                 return ret;
2694         }
2695         return 0;
2696 }
2697 #else
2698 #define of_ipmi_match NULL
2699 static int of_ipmi_probe(struct platform_device *dev)
2700 {
2701         return -ENODEV;
2702 }
2703 #endif
2704
2705 #ifdef CONFIG_ACPI
2706 static int acpi_ipmi_probe(struct platform_device *dev)
2707 {
2708         struct smi_info *info;
2709         struct resource *res, *res_second;
2710         acpi_handle handle;
2711         acpi_status status;
2712         unsigned long long tmp;
2713         int rv = -EINVAL;
2714
2715         if (!si_tryacpi)
2716                return 0;
2717
2718         handle = ACPI_HANDLE(&dev->dev);
2719         if (!handle)
2720                 return -ENODEV;
2721
2722         info = smi_info_alloc();
2723         if (!info)
2724                 return -ENOMEM;
2725
2726         info->addr_source = SI_ACPI;
2727         dev_info(&dev->dev, PFX "probing via ACPI\n");
2728
2729         info->addr_info.acpi_info.acpi_handle = handle;
2730
2731         /* _IFT tells us the interface type: KCS, BT, etc */
2732         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2733         if (ACPI_FAILURE(status)) {
2734                 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2735                 goto err_free;
2736         }
2737
2738         switch (tmp) {
2739         case 1:
2740                 info->si_type = SI_KCS;
2741                 break;
2742         case 2:
2743                 info->si_type = SI_SMIC;
2744                 break;
2745         case 3:
2746                 info->si_type = SI_BT;
2747                 break;
2748         case 4: /* SSIF, just ignore */
2749                 rv = -ENODEV;
2750                 goto err_free;
2751         default:
2752                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2753                 goto err_free;
2754         }
2755
2756         res = platform_get_resource(dev, IORESOURCE_IO, 0);
2757         if (res) {
2758                 info->io_setup = port_setup;
2759                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2760         } else {
2761                 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2762                 if (res) {
2763                         info->io_setup = mem_setup;
2764                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2765                 }
2766         }
2767         if (!res) {
2768                 dev_err(&dev->dev, "no I/O or memory address\n");
2769                 goto err_free;
2770         }
2771         info->io.addr_data = res->start;
2772
2773         info->io.regspacing = DEFAULT_REGSPACING;
2774         res_second = platform_get_resource(dev,
2775                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2776                                         IORESOURCE_IO : IORESOURCE_MEM,
2777                                1);
2778         if (res_second) {
2779                 if (res_second->start > info->io.addr_data)
2780                         info->io.regspacing =
2781                                 res_second->start - info->io.addr_data;
2782         }
2783         info->io.regsize = DEFAULT_REGSPACING;
2784         info->io.regshift = 0;
2785
2786         /* If _GPE exists, use it; otherwise use standard interrupts */
2787         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2788         if (ACPI_SUCCESS(status)) {
2789                 info->irq = tmp;
2790                 info->irq_setup = acpi_gpe_irq_setup;
2791         } else {
2792                 int irq = platform_get_irq(dev, 0);
2793
2794                 if (irq > 0) {
2795                         info->irq = irq;
2796                         info->irq_setup = std_irq_setup;
2797                 }
2798         }
2799
2800         info->dev = &dev->dev;
2801         platform_set_drvdata(dev, info);
2802
2803         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2804                  res, info->io.regsize, info->io.regspacing,
2805                  info->irq);
2806
2807         rv = add_smi(info);
2808         if (rv)
2809                 kfree(info);
2810
2811         return rv;
2812
2813 err_free:
2814         kfree(info);
2815         return rv;
2816 }
2817
2818 static const struct acpi_device_id acpi_ipmi_match[] = {
2819         { "IPI0001", 0 },
2820         { },
2821 };
2822 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2823 #else
2824 static int acpi_ipmi_probe(struct platform_device *dev)
2825 {
2826         return -ENODEV;
2827 }
2828 #endif
2829
2830 static int ipmi_probe(struct platform_device *dev)
2831 {
2832         if (of_ipmi_probe(dev) == 0)
2833                 return 0;
2834
2835         return acpi_ipmi_probe(dev);
2836 }
2837
2838 static int ipmi_remove(struct platform_device *dev)
2839 {
2840         struct smi_info *info = dev_get_drvdata(&dev->dev);
2841
2842         cleanup_one_si(info);
2843         return 0;
2844 }
2845
2846 static struct platform_driver ipmi_driver = {
2847         .driver = {
2848                 .name = DEVICE_NAME,
2849                 .of_match_table = of_ipmi_match,
2850                 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2851         },
2852         .probe          = ipmi_probe,
2853         .remove         = ipmi_remove,
2854 };
2855
2856 #ifdef CONFIG_PARISC
2857 static int ipmi_parisc_probe(struct parisc_device *dev)
2858 {
2859         struct smi_info *info;
2860         int rv;
2861
2862         info = smi_info_alloc();
2863
2864         if (!info) {
2865                 dev_err(&dev->dev,
2866                         "could not allocate memory for PARISC probe\n");
2867                 return -ENOMEM;
2868         }
2869
2870         info->si_type           = SI_KCS;
2871         info->addr_source       = SI_DEVICETREE;
2872         info->io_setup          = mem_setup;
2873         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2874         info->io.addr_data      = dev->hpa.start;
2875         info->io.regsize        = 1;
2876         info->io.regspacing     = 1;
2877         info->io.regshift       = 0;
2878         info->irq               = 0; /* no interrupt */
2879         info->irq_setup         = NULL;
2880         info->dev               = &dev->dev;
2881
2882         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2883
2884         dev_set_drvdata(&dev->dev, info);
2885
2886         rv = add_smi(info);
2887         if (rv) {
2888                 kfree(info);
2889                 return rv;
2890         }
2891
2892         return 0;
2893 }
2894
2895 static int ipmi_parisc_remove(struct parisc_device *dev)
2896 {
2897         cleanup_one_si(dev_get_drvdata(&dev->dev));
2898         return 0;
2899 }
2900
2901 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2902         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2903         { 0, }
2904 };
2905
2906 static struct parisc_driver ipmi_parisc_driver = {
2907         .name =         "ipmi",
2908         .id_table =     ipmi_parisc_tbl,
2909         .probe =        ipmi_parisc_probe,
2910         .remove =       ipmi_parisc_remove,
2911 };
2912 #endif /* CONFIG_PARISC */
2913
2914 static int wait_for_msg_done(struct smi_info *smi_info)
2915 {
2916         enum si_sm_result     smi_result;
2917
2918         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2919         for (;;) {
2920                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2921                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2922                         schedule_timeout_uninterruptible(1);
2923                         smi_result = smi_info->handlers->event(
2924                                 smi_info->si_sm, jiffies_to_usecs(1));
2925                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2926                         smi_result = smi_info->handlers->event(
2927                                 smi_info->si_sm, 0);
2928                 } else
2929                         break;
2930         }
2931         if (smi_result == SI_SM_HOSED)
2932                 /*
2933                  * We couldn't get the state machine to run, so whatever's at
2934                  * the port is probably not an IPMI SMI interface.
2935                  */
2936                 return -ENODEV;
2937
2938         return 0;
2939 }
2940
2941 static int try_get_dev_id(struct smi_info *smi_info)
2942 {
2943         unsigned char         msg[2];
2944         unsigned char         *resp;
2945         unsigned long         resp_len;
2946         int                   rv = 0;
2947
2948         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2949         if (!resp)
2950                 return -ENOMEM;
2951
2952         /*
2953          * Do a Get Device ID command, since it comes back with some
2954          * useful info.
2955          */
2956         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2957         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2958         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2959
2960         rv = wait_for_msg_done(smi_info);
2961         if (rv)
2962                 goto out;
2963
2964         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2965                                                   resp, IPMI_MAX_MSG_LENGTH);
2966
2967         /* Check and record info from the get device id, in case we need it. */
2968         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2969
2970 out:
2971         kfree(resp);
2972         return rv;
2973 }
2974
2975 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2976 {
2977         unsigned char         msg[3];
2978         unsigned char         *resp;
2979         unsigned long         resp_len;
2980         int                   rv;
2981
2982         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2983         if (!resp)
2984                 return -ENOMEM;
2985
2986         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2987         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2988         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2989
2990         rv = wait_for_msg_done(smi_info);
2991         if (rv) {
2992                 dev_warn(smi_info->dev,
2993                          "Error getting response from get global enables command: %d\n",
2994                          rv);
2995                 goto out;
2996         }
2997
2998         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2999                                                   resp, IPMI_MAX_MSG_LENGTH);
3000
3001         if (resp_len < 4 ||
3002                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3003                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3004                         resp[2] != 0) {
3005                 dev_warn(smi_info->dev,
3006                          "Invalid return from get global enables command: %ld %x %x %x\n",
3007                          resp_len, resp[0], resp[1], resp[2]);
3008                 rv = -EINVAL;
3009                 goto out;
3010         } else {
3011                 *enables = resp[3];
3012         }
3013
3014 out:
3015         kfree(resp);
3016         return rv;
3017 }
3018
3019 /*
3020  * Returns 1 if it gets an error from the command.
3021  */
3022 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3023 {
3024         unsigned char         msg[3];
3025         unsigned char         *resp;
3026         unsigned long         resp_len;
3027         int                   rv;
3028
3029         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3030         if (!resp)
3031                 return -ENOMEM;
3032
3033         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3034         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3035         msg[2] = enables;
3036         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3037
3038         rv = wait_for_msg_done(smi_info);
3039         if (rv) {
3040                 dev_warn(smi_info->dev,
3041                          "Error getting response from set global enables command: %d\n",
3042                          rv);
3043                 goto out;
3044         }
3045
3046         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3047                                                   resp, IPMI_MAX_MSG_LENGTH);
3048
3049         if (resp_len < 3 ||
3050                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3051                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3052                 dev_warn(smi_info->dev,
3053                          "Invalid return from set global enables command: %ld %x %x\n",
3054                          resp_len, resp[0], resp[1]);
3055                 rv = -EINVAL;
3056                 goto out;
3057         }
3058
3059         if (resp[2] != 0)
3060                 rv = 1;
3061
3062 out:
3063         kfree(resp);
3064         return rv;
3065 }
3066
3067 /*
3068  * Some BMCs do not support clearing the receive irq bit in the global
3069  * enables (even if they don't support interrupts on the BMC).  Check
3070  * for this and handle it properly.
3071  */
3072 static void check_clr_rcv_irq(struct smi_info *smi_info)
3073 {
3074         u8 enables = 0;
3075         int rv;
3076
3077         rv = get_global_enables(smi_info, &enables);
3078         if (!rv) {
3079                 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3080                         /* Already clear, should work ok. */
3081                         return;
3082
3083                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3084                 rv = set_global_enables(smi_info, enables);
3085         }
3086
3087         if (rv < 0) {
3088                 dev_err(smi_info->dev,
3089                         "Cannot check clearing the rcv irq: %d\n", rv);
3090                 return;
3091         }
3092
3093         if (rv) {
3094                 /*
3095                  * An error when setting the event buffer bit means
3096                  * clearing the bit is not supported.
3097                  */
3098                 dev_warn(smi_info->dev,
3099                          "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3100                 smi_info->cannot_disable_irq = true;
3101         }
3102 }
3103
3104 /*
3105  * Some BMCs do not support setting the interrupt bits in the global
3106  * enables even if they support interrupts.  Clearly bad, but we can
3107  * compensate.
3108  */
3109 static void check_set_rcv_irq(struct smi_info *smi_info)
3110 {
3111         u8 enables = 0;
3112         int rv;
3113
3114         if (!smi_info->irq)
3115                 return;
3116
3117         rv = get_global_enables(smi_info, &enables);
3118         if (!rv) {
3119                 enables |= IPMI_BMC_RCV_MSG_INTR;
3120                 rv = set_global_enables(smi_info, enables);
3121         }
3122
3123         if (rv < 0) {
3124                 dev_err(smi_info->dev,
3125                         "Cannot check setting the rcv irq: %d\n", rv);
3126                 return;
3127         }
3128
3129         if (rv) {
3130                 /*
3131                  * An error when setting the event buffer bit means
3132                  * setting the bit is not supported.
3133                  */
3134                 dev_warn(smi_info->dev,
3135                          "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3136                 smi_info->cannot_disable_irq = true;
3137                 smi_info->irq_enable_broken = true;
3138         }
3139 }
3140
3141 static int try_enable_event_buffer(struct smi_info *smi_info)
3142 {
3143         unsigned char         msg[3];
3144         unsigned char         *resp;
3145         unsigned long         resp_len;
3146         int                   rv = 0;
3147
3148         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3149         if (!resp)
3150                 return -ENOMEM;
3151
3152         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3153         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3154         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3155
3156         rv = wait_for_msg_done(smi_info);
3157         if (rv) {
3158                 printk(KERN_WARNING PFX "Error getting response from get"
3159                        " global enables command, the event buffer is not"
3160                        " enabled.\n");
3161                 goto out;
3162         }
3163
3164         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3165                                                   resp, IPMI_MAX_MSG_LENGTH);
3166
3167         if (resp_len < 4 ||
3168                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3169                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3170                         resp[2] != 0) {
3171                 printk(KERN_WARNING PFX "Invalid return from get global"
3172                        " enables command, cannot enable the event buffer.\n");
3173                 rv = -EINVAL;
3174                 goto out;
3175         }
3176
3177         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3178                 /* buffer is already enabled, nothing to do. */
3179                 smi_info->supports_event_msg_buff = true;
3180                 goto out;
3181         }
3182
3183         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3184         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3185         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3186         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3187
3188         rv = wait_for_msg_done(smi_info);
3189         if (rv) {
3190                 printk(KERN_WARNING PFX "Error getting response from set"
3191                        " global, enables command, the event buffer is not"
3192                        " enabled.\n");
3193                 goto out;
3194         }
3195
3196         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3197                                                   resp, IPMI_MAX_MSG_LENGTH);
3198
3199         if (resp_len < 3 ||
3200                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3201                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3202                 printk(KERN_WARNING PFX "Invalid return from get global,"
3203                        "enables command, not enable the event buffer.\n");
3204                 rv = -EINVAL;
3205                 goto out;
3206         }
3207
3208         if (resp[2] != 0)
3209                 /*
3210                  * An error when setting the event buffer bit means
3211                  * that the event buffer is not supported.
3212                  */
3213                 rv = -ENOENT;
3214         else
3215                 smi_info->supports_event_msg_buff = true;
3216
3217 out:
3218         kfree(resp);
3219         return rv;
3220 }
3221
3222 static int smi_type_proc_show(struct seq_file *m, void *v)
3223 {
3224         struct smi_info *smi = m->private;
3225
3226         seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3227
3228         return 0;
3229 }
3230
3231 static int smi_type_proc_open(struct inode *inode, struct file *file)
3232 {
3233         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3234 }
3235
3236 static const struct file_operations smi_type_proc_ops = {
3237         .open           = smi_type_proc_open,
3238         .read           = seq_read,
3239         .llseek         = seq_lseek,
3240         .release        = single_release,
3241 };
3242
3243 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3244 {
3245         struct smi_info *smi = m->private;
3246
3247         seq_printf(m, "interrupts_enabled:    %d\n",
3248                        smi->irq && !smi->interrupt_disabled);
3249         seq_printf(m, "short_timeouts:        %u\n",
3250                        smi_get_stat(smi, short_timeouts));
3251         seq_printf(m, "long_timeouts:         %u\n",
3252                        smi_get_stat(smi, long_timeouts));
3253         seq_printf(m, "idles:                 %u\n",
3254                        smi_get_stat(smi, idles));
3255         seq_printf(m, "interrupts:            %u\n",
3256                        smi_get_stat(smi, interrupts));
3257         seq_printf(m, "attentions:            %u\n",
3258                        smi_get_stat(smi, attentions));
3259         seq_printf(m, "flag_fetches:          %u\n",
3260                        smi_get_stat(smi, flag_fetches));
3261         seq_printf(m, "hosed_count:           %u\n",
3262                        smi_get_stat(smi, hosed_count));
3263         seq_printf(m, "complete_transactions: %u\n",
3264                        smi_get_stat(smi, complete_transactions));
3265         seq_printf(m, "events:                %u\n",
3266                        smi_get_stat(smi, events));
3267         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3268                        smi_get_stat(smi, watchdog_pretimeouts));
3269         seq_printf(m, "incoming_messages:     %u\n",
3270                        smi_get_stat(smi, incoming_messages));
3271         return 0;
3272 }
3273
3274 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3275 {
3276         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3277 }
3278
3279 static const struct file_operations smi_si_stats_proc_ops = {
3280         .open           = smi_si_stats_proc_open,
3281         .read           = seq_read,
3282         .llseek         = seq_lseek,
3283         .release        = single_release,
3284 };
3285
3286 static int smi_params_proc_show(struct seq_file *m, void *v)
3287 {
3288         struct smi_info *smi = m->private;
3289
3290         seq_printf(m,
3291                    "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3292                    si_to_str[smi->si_type],
3293                    addr_space_to_str[smi->io.addr_type],
3294                    smi->io.addr_data,
3295                    smi->io.regspacing,
3296                    smi->io.regsize,
3297                    smi->io.regshift,
3298                    smi->irq,
3299                    smi->slave_addr);
3300
3301         return 0;
3302 }
3303
3304 static int smi_params_proc_open(struct inode *inode, struct file *file)
3305 {
3306         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3307 }
3308
3309 static const struct file_operations smi_params_proc_ops = {
3310         .open           = smi_params_proc_open,
3311         .read           = seq_read,
3312         .llseek         = seq_lseek,
3313         .release        = single_release,
3314 };
3315
3316 /*
3317  * oem_data_avail_to_receive_msg_avail
3318  * @info - smi_info structure with msg_flags set
3319  *
3320  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3321  * Returns 1 indicating need to re-run handle_flags().
3322  */
3323 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3324 {
3325         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3326                                RECEIVE_MSG_AVAIL);
3327         return 1;
3328 }
3329
3330 /*
3331  * setup_dell_poweredge_oem_data_handler
3332  * @info - smi_info.device_id must be populated
3333  *
3334  * Systems that match, but have firmware version < 1.40 may assert
3335  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3336  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3337  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3338  * as RECEIVE_MSG_AVAIL instead.
3339  *
3340  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3341  * assert the OEM[012] bits, and if it did, the driver would have to
3342  * change to handle that properly, we don't actually check for the
3343  * firmware version.
3344  * Device ID = 0x20                BMC on PowerEdge 8G servers
3345  * Device Revision = 0x80
3346  * Firmware Revision1 = 0x01       BMC version 1.40
3347  * Firmware Revision2 = 0x40       BCD encoded
3348  * IPMI Version = 0x51             IPMI 1.5
3349  * Manufacturer ID = A2 02 00      Dell IANA
3350  *
3351  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3352  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3353  *
3354  */
3355 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3356 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3357 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3358 #define DELL_IANA_MFR_ID 0x0002a2
3359 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3360 {
3361         struct ipmi_device_id *id = &smi_info->device_id;
3362         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3363                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3364                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3365                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3366                         smi_info->oem_data_avail_handler =
3367                                 oem_data_avail_to_receive_msg_avail;
3368                 } else if (ipmi_version_major(id) < 1 ||
3369                            (ipmi_version_major(id) == 1 &&
3370                             ipmi_version_minor(id) < 5)) {
3371                         smi_info->oem_data_avail_handler =
3372                                 oem_data_avail_to_receive_msg_avail;
3373                 }
3374         }
3375 }
3376
3377 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3378 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3379 {
3380         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3381
3382         /* Make it a response */
3383         msg->rsp[0] = msg->data[0] | 4;
3384         msg->rsp[1] = msg->data[1];
3385         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3386         msg->rsp_size = 3;
3387         smi_info->curr_msg = NULL;
3388         deliver_recv_msg(smi_info, msg);
3389 }
3390
3391 /*
3392  * dell_poweredge_bt_xaction_handler
3393  * @info - smi_info.device_id must be populated
3394  *
3395  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3396  * not respond to a Get SDR command if the length of the data
3397  * requested is exactly 0x3A, which leads to command timeouts and no
3398  * data returned.  This intercepts such commands, and causes userspace
3399  * callers to try again with a different-sized buffer, which succeeds.
3400  */
3401
3402 #define STORAGE_NETFN 0x0A
3403 #define STORAGE_CMD_GET_SDR 0x23
3404 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3405                                              unsigned long unused,
3406                                              void *in)
3407 {
3408         struct smi_info *smi_info = in;
3409         unsigned char *data = smi_info->curr_msg->data;
3410         unsigned int size   = smi_info->curr_msg->data_size;
3411         if (size >= 8 &&
3412             (data[0]>>2) == STORAGE_NETFN &&
3413             data[1] == STORAGE_CMD_GET_SDR &&
3414             data[7] == 0x3A) {
3415                 return_hosed_msg_badsize(smi_info);
3416                 return NOTIFY_STOP;
3417         }
3418         return NOTIFY_DONE;
3419 }
3420
3421 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3422         .notifier_call  = dell_poweredge_bt_xaction_handler,
3423 };
3424
3425 /*
3426  * setup_dell_poweredge_bt_xaction_handler
3427  * @info - smi_info.device_id must be filled in already
3428  *
3429  * Fills in smi_info.device_id.start_transaction_pre_hook
3430  * when we know what function to use there.
3431  */
3432 static void
3433 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3434 {
3435         struct ipmi_device_id *id = &smi_info->device_id;
3436         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3437             smi_info->si_type == SI_BT)
3438                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3439 }
3440
3441 /*
3442  * setup_oem_data_handler
3443  * @info - smi_info.device_id must be filled in already
3444  *
3445  * Fills in smi_info.device_id.oem_data_available_handler
3446  * when we know what function to use there.
3447  */
3448
3449 static void setup_oem_data_handler(struct smi_info *smi_info)
3450 {
3451         setup_dell_poweredge_oem_data_handler(smi_info);
3452 }
3453
3454 static void setup_xaction_handlers(struct smi_info *smi_info)
3455 {
3456         setup_dell_poweredge_bt_xaction_handler(smi_info);
3457 }
3458
3459 static void check_for_broken_irqs(struct smi_info *smi_info)
3460 {
3461         check_clr_rcv_irq(smi_info);
3462         check_set_rcv_irq(smi_info);
3463 }
3464
3465 static inline void stop_timer_and_thread(struct smi_info *smi_info)
3466 {
3467         if (smi_info->thread != NULL)
3468                 kthread_stop(smi_info->thread);
3469
3470         smi_info->timer_can_start = false;
3471         if (smi_info->timer_running)
3472                 del_timer_sync(&smi_info->si_timer);
3473 }
3474
3475 static int is_new_interface(struct smi_info *info)
3476 {
3477         struct smi_info *e;
3478
3479         list_for_each_entry(e, &smi_infos, link) {
3480                 if (e->io.addr_type != info->io.addr_type)
3481                         continue;
3482                 if (e->io.addr_data == info->io.addr_data)
3483                         return 0;
3484         }
3485
3486         return 1;
3487 }
3488
3489 static int add_smi(struct smi_info *new_smi)
3490 {
3491         int rv = 0;
3492
3493         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3494                ipmi_addr_src_to_str(new_smi->addr_source),
3495                si_to_str[new_smi->si_type]);
3496         mutex_lock(&smi_infos_lock);
3497         if (!is_new_interface(new_smi)) {
3498                 printk(KERN_CONT " duplicate interface\n");
3499                 rv = -EBUSY;
3500                 goto out_err;
3501         }
3502
3503         printk(KERN_CONT "\n");
3504
3505         /* So we know not to free it unless we have allocated one. */
3506         new_smi->intf = NULL;
3507         new_smi->si_sm = NULL;
3508         new_smi->handlers = NULL;
3509
3510         list_add_tail(&new_smi->link, &smi_infos);
3511
3512 out_err:
3513         mutex_unlock(&smi_infos_lock);
3514         return rv;
3515 }
3516
3517 static int try_smi_init(struct smi_info *new_smi)
3518 {
3519         int rv = 0;
3520         int i;
3521
3522         printk(KERN_INFO PFX "Trying %s-specified %s state"
3523                " machine at %s address 0x%lx, slave address 0x%x,"
3524                " irq %d\n",
3525                ipmi_addr_src_to_str(new_smi->addr_source),
3526                si_to_str[new_smi->si_type],
3527                addr_space_to_str[new_smi->io.addr_type],
3528                new_smi->io.addr_data,
3529                new_smi->slave_addr, new_smi->irq);
3530
3531         switch (new_smi->si_type) {
3532         case SI_KCS:
3533                 new_smi->handlers = &kcs_smi_handlers;
3534                 break;
3535
3536         case SI_SMIC:
3537                 new_smi->handlers = &smic_smi_handlers;
3538                 break;
3539
3540         case SI_BT:
3541                 new_smi->handlers = &bt_smi_handlers;
3542                 break;
3543
3544         default:
3545                 /* No support for anything else yet. */
3546                 rv = -EIO;
3547                 goto out_err;
3548         }
3549
3550         /* Allocate the state machine's data and initialize it. */
3551         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3552         if (!new_smi->si_sm) {
3553                 printk(KERN_ERR PFX
3554                        "Could not allocate state machine memory\n");
3555                 rv = -ENOMEM;
3556                 goto out_err;
3557         }
3558         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3559                                                         &new_smi->io);
3560
3561         /* Now that we know the I/O size, we can set up the I/O. */
3562         rv = new_smi->io_setup(new_smi);
3563         if (rv) {
3564                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3565                 goto out_err;
3566         }
3567
3568         /* Do low-level detection first. */
3569         if (new_smi->handlers->detect(new_smi->si_sm)) {
3570                 if (new_smi->addr_source)
3571                         printk(KERN_INFO PFX "Interface detection failed\n");
3572                 rv = -ENODEV;
3573                 goto out_err;
3574         }
3575
3576         /*
3577          * Attempt a get device id command.  If it fails, we probably
3578          * don't have a BMC here.
3579          */
3580         rv = try_get_dev_id(new_smi);
3581         if (rv) {
3582                 if (new_smi->addr_source)
3583                         printk(KERN_INFO PFX "There appears to be no BMC"
3584                                " at this location\n");
3585                 goto out_err;
3586         }
3587
3588         setup_oem_data_handler(new_smi);
3589         setup_xaction_handlers(new_smi);
3590         check_for_broken_irqs(new_smi);
3591
3592         new_smi->waiting_msg = NULL;
3593         new_smi->curr_msg = NULL;
3594         atomic_set(&new_smi->req_events, 0);
3595         new_smi->run_to_completion = false;
3596         for (i = 0; i < SI_NUM_STATS; i++)
3597                 atomic_set(&new_smi->stats[i], 0);
3598
3599         new_smi->interrupt_disabled = true;
3600         atomic_set(&new_smi->need_watch, 0);
3601         new_smi->intf_num = smi_num;
3602         smi_num++;
3603
3604         rv = try_enable_event_buffer(new_smi);
3605         if (rv == 0)
3606                 new_smi->has_event_buffer = true;
3607
3608         /*
3609          * Start clearing the flags before we enable interrupts or the
3610          * timer to avoid racing with the timer.
3611          */
3612         start_clear_flags(new_smi);
3613
3614         /*
3615          * IRQ is defined to be set when non-zero.  req_events will
3616          * cause a global flags check that will enable interrupts.
3617          */
3618         if (new_smi->irq) {
3619                 new_smi->interrupt_disabled = false;
3620                 atomic_set(&new_smi->req_events, 1);
3621         }
3622
3623         if (!new_smi->dev) {
3624                 /*
3625                  * If we don't already have a device from something
3626                  * else (like PCI), then register a new one.
3627                  */
3628                 new_smi->pdev = platform_device_alloc("ipmi_si",
3629                                                       new_smi->intf_num);
3630                 if (!new_smi->pdev) {
3631                         printk(KERN_ERR PFX
3632                                "Unable to allocate platform device\n");
3633                         goto out_err;
3634                 }
3635                 new_smi->dev = &new_smi->pdev->dev;
3636                 new_smi->dev->driver = &ipmi_driver.driver;
3637
3638                 rv = platform_device_add(new_smi->pdev);
3639                 if (rv) {
3640                         printk(KERN_ERR PFX
3641                                "Unable to register system interface device:"
3642                                " %d\n",
3643                                rv);
3644                         goto out_err;
3645                 }
3646                 new_smi->dev_registered = true;
3647         }
3648
3649         rv = ipmi_register_smi(&handlers,
3650                                new_smi,
3651                                &new_smi->device_id,
3652                                new_smi->dev,
3653                                new_smi->slave_addr);
3654         if (rv) {
3655                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3656                         rv);
3657                 goto out_err_stop_timer;
3658         }
3659
3660         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3661                                      &smi_type_proc_ops,
3662                                      new_smi);
3663         if (rv) {
3664                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3665                 goto out_err_stop_timer;
3666         }
3667
3668         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3669                                      &smi_si_stats_proc_ops,
3670                                      new_smi);
3671         if (rv) {
3672                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3673                 goto out_err_stop_timer;
3674         }
3675
3676         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3677                                      &smi_params_proc_ops,
3678                                      new_smi);
3679         if (rv) {
3680                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3681                 goto out_err_stop_timer;
3682         }
3683
3684         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3685                  si_to_str[new_smi->si_type]);
3686
3687         return 0;
3688
3689 out_err_stop_timer:
3690         stop_timer_and_thread(new_smi);
3691
3692 out_err:
3693         new_smi->interrupt_disabled = true;
3694
3695         if (new_smi->intf) {
3696                 ipmi_smi_t intf = new_smi->intf;
3697                 new_smi->intf = NULL;
3698                 ipmi_unregister_smi(intf);
3699         }
3700
3701         if (new_smi->irq_cleanup) {
3702                 new_smi->irq_cleanup(new_smi);
3703                 new_smi->irq_cleanup = NULL;
3704         }
3705
3706         /*
3707          * Wait until we know that we are out of any interrupt
3708          * handlers might have been running before we freed the
3709          * interrupt.
3710          */
3711         synchronize_sched();
3712
3713         if (new_smi->si_sm) {
3714                 if (new_smi->handlers)
3715                         new_smi->handlers->cleanup(new_smi->si_sm);
3716                 kfree(new_smi->si_sm);
3717                 new_smi->si_sm = NULL;
3718         }
3719         if (new_smi->addr_source_cleanup) {
3720                 new_smi->addr_source_cleanup(new_smi);
3721                 new_smi->addr_source_cleanup = NULL;
3722         }
3723         if (new_smi->io_cleanup) {
3724                 new_smi->io_cleanup(new_smi);
3725                 new_smi->io_cleanup = NULL;
3726         }
3727
3728         if (new_smi->dev_registered) {
3729                 platform_device_unregister(new_smi->pdev);
3730                 new_smi->dev_registered = false;
3731         }
3732
3733         return rv;
3734 }
3735
3736 static int init_ipmi_si(void)
3737 {
3738         int  i;
3739         char *str;
3740         int  rv;
3741         struct smi_info *e;
3742         enum ipmi_addr_src type = SI_INVALID;
3743
3744         if (initialized)
3745                 return 0;
3746         initialized = 1;
3747
3748         if (si_tryplatform) {
3749                 rv = platform_driver_register(&ipmi_driver);
3750                 if (rv) {
3751                         printk(KERN_ERR PFX "Unable to register "
3752                                "driver: %d\n", rv);
3753                         return rv;
3754                 }
3755         }
3756
3757         /* Parse out the si_type string into its components. */
3758         str = si_type_str;
3759         if (*str != '\0') {
3760                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3761                         si_type[i] = str;
3762                         str = strchr(str, ',');
3763                         if (str) {
3764                                 *str = '\0';
3765                                 str++;
3766                         } else {
3767                                 break;
3768                         }
3769                 }
3770         }
3771
3772         printk(KERN_INFO "IPMI System Interface driver.\n");
3773
3774         /* If the user gave us a device, they presumably want us to use it */
3775         if (!hardcode_find_bmc())
3776                 return 0;
3777
3778 #ifdef CONFIG_PCI
3779         if (si_trypci) {
3780                 rv = pci_register_driver(&ipmi_pci_driver);
3781                 if (rv)
3782                         printk(KERN_ERR PFX "Unable to register "
3783                                "PCI driver: %d\n", rv);
3784                 else
3785                         pci_registered = true;
3786         }
3787 #endif
3788
3789 #ifdef CONFIG_DMI
3790         if (si_trydmi)
3791                 dmi_find_bmc();
3792 #endif
3793
3794 #ifdef CONFIG_ACPI
3795         if (si_tryacpi)
3796                 spmi_find_bmc();
3797 #endif
3798
3799 #ifdef CONFIG_PARISC
3800         register_parisc_driver(&ipmi_parisc_driver);
3801         parisc_registered = true;
3802 #endif
3803
3804         /* We prefer devices with interrupts, but in the case of a machine
3805            with multiple BMCs we assume that there will be several instances
3806            of a given type so if we succeed in registering a type then also
3807            try to register everything else of the same type */
3808
3809         mutex_lock(&smi_infos_lock);
3810         list_for_each_entry(e, &smi_infos, link) {
3811                 /* Try to register a device if it has an IRQ and we either
3812                    haven't successfully registered a device yet or this
3813                    device has the same type as one we successfully registered */
3814                 if (e->irq && (!type || e->addr_source == type)) {
3815                         if (!try_smi_init(e)) {
3816                                 type = e->addr_source;
3817                         }
3818                 }
3819         }
3820
3821         /* type will only have been set if we successfully registered an si */
3822         if (type) {
3823                 mutex_unlock(&smi_infos_lock);
3824                 return 0;
3825         }
3826
3827         /* Fall back to the preferred device */
3828
3829         list_for_each_entry(e, &smi_infos, link) {
3830                 if (!e->irq && (!type || e->addr_source == type)) {
3831                         if (!try_smi_init(e)) {
3832                                 type = e->addr_source;
3833                         }
3834                 }
3835         }
3836         mutex_unlock(&smi_infos_lock);
3837
3838         if (type)
3839                 return 0;
3840
3841         mutex_lock(&smi_infos_lock);
3842         if (unload_when_empty && list_empty(&smi_infos)) {
3843                 mutex_unlock(&smi_infos_lock);
3844                 cleanup_ipmi_si();
3845                 printk(KERN_WARNING PFX
3846                        "Unable to find any System Interface(s)\n");
3847                 return -ENODEV;
3848         } else {
3849                 mutex_unlock(&smi_infos_lock);
3850                 return 0;
3851         }
3852 }
3853 module_init(init_ipmi_si);
3854
3855 static void cleanup_one_si(struct smi_info *to_clean)
3856 {
3857         int           rv = 0;
3858
3859         if (!to_clean)
3860                 return;
3861
3862         if (to_clean->intf) {
3863                 ipmi_smi_t intf = to_clean->intf;
3864
3865                 to_clean->intf = NULL;
3866                 rv = ipmi_unregister_smi(intf);
3867                 if (rv) {
3868                         pr_err(PFX "Unable to unregister device: errno=%d\n",
3869                                rv);
3870                 }
3871         }
3872
3873         if (to_clean->dev)
3874                 dev_set_drvdata(to_clean->dev, NULL);
3875
3876         list_del(&to_clean->link);
3877
3878         /*
3879          * Make sure that interrupts, the timer and the thread are
3880          * stopped and will not run again.
3881          */
3882         if (to_clean->irq_cleanup)
3883                 to_clean->irq_cleanup(to_clean);
3884         stop_timer_and_thread(to_clean);
3885
3886         /*
3887          * Timeouts are stopped, now make sure the interrupts are off
3888          * in the BMC.  Note that timers and CPU interrupts are off,
3889          * so no need for locks.
3890          */
3891         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3892                 poll(to_clean);
3893                 schedule_timeout_uninterruptible(1);
3894         }
3895         disable_si_irq(to_clean);
3896         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3897                 poll(to_clean);
3898                 schedule_timeout_uninterruptible(1);
3899         }
3900
3901         if (to_clean->handlers)
3902                 to_clean->handlers->cleanup(to_clean->si_sm);
3903
3904         kfree(to_clean->si_sm);
3905
3906         if (to_clean->addr_source_cleanup)
3907                 to_clean->addr_source_cleanup(to_clean);
3908         if (to_clean->io_cleanup)
3909                 to_clean->io_cleanup(to_clean);
3910
3911         if (to_clean->dev_registered)
3912                 platform_device_unregister(to_clean->pdev);
3913
3914         kfree(to_clean);
3915 }
3916
3917 static void cleanup_ipmi_si(void)
3918 {
3919         struct smi_info *e, *tmp_e;
3920
3921         if (!initialized)
3922                 return;
3923
3924 #ifdef CONFIG_PCI
3925         if (pci_registered)
3926                 pci_unregister_driver(&ipmi_pci_driver);
3927 #endif
3928 #ifdef CONFIG_PARISC
3929         if (parisc_registered)
3930                 unregister_parisc_driver(&ipmi_parisc_driver);
3931 #endif
3932
3933         platform_driver_unregister(&ipmi_driver);
3934
3935         mutex_lock(&smi_infos_lock);
3936         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3937                 cleanup_one_si(e);
3938         mutex_unlock(&smi_infos_lock);
3939 }
3940 module_exit(cleanup_ipmi_si);
3941
3942 MODULE_LICENSE("GPL");
3943 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3944 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3945                    " system interfaces.");