GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / char / ipmi / ipmi_msghandler.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13
14 #define pr_fmt(fmt) "IPMI message handler: " fmt
15 #define dev_fmt(fmt) pr_fmt(fmt)
16
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/spinlock.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/ipmi.h>
27 #include <linux/ipmi_smi.h>
28 #include <linux/notifier.h>
29 #include <linux/init.h>
30 #include <linux/proc_fs.h>
31 #include <linux/rcupdate.h>
32 #include <linux/interrupt.h>
33 #include <linux/moduleparam.h>
34 #include <linux/workqueue.h>
35 #include <linux/uuid.h>
36 #include <linux/nospec.h>
37 #include <linux/vmalloc.h>
38 #include <linux/delay.h>
39
40 #define IPMI_DRIVER_VERSION "39.2"
41
42 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
43 static int ipmi_init_msghandler(void);
44 static void smi_recv_tasklet(struct tasklet_struct *t);
45 static void handle_new_recv_msgs(struct ipmi_smi *intf);
46 static void need_waiter(struct ipmi_smi *intf);
47 static int handle_one_recv_msg(struct ipmi_smi *intf,
48                                struct ipmi_smi_msg *msg);
49
50 static bool initialized;
51 static bool drvregistered;
52
53 /* Numbers in this enumerator should be mapped to ipmi_panic_event_str */
54 enum ipmi_panic_event_op {
55         IPMI_SEND_PANIC_EVENT_NONE,
56         IPMI_SEND_PANIC_EVENT,
57         IPMI_SEND_PANIC_EVENT_STRING,
58         IPMI_SEND_PANIC_EVENT_MAX
59 };
60
61 /* Indices in this array should be mapped to enum ipmi_panic_event_op */
62 static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL };
63
64 #ifdef CONFIG_IPMI_PANIC_STRING
65 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
66 #elif defined(CONFIG_IPMI_PANIC_EVENT)
67 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
68 #else
69 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
70 #endif
71
72 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
73
74 static int panic_op_write_handler(const char *val,
75                                   const struct kernel_param *kp)
76 {
77         char valcp[16];
78         int e;
79
80         strscpy(valcp, val, sizeof(valcp));
81         e = match_string(ipmi_panic_event_str, -1, strstrip(valcp));
82         if (e < 0)
83                 return e;
84
85         ipmi_send_panic_event = e;
86         return 0;
87 }
88
89 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
90 {
91         const char *event_str;
92
93         if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX)
94                 event_str = "???";
95         else
96                 event_str = ipmi_panic_event_str[ipmi_send_panic_event];
97
98         return sprintf(buffer, "%s\n", event_str);
99 }
100
101 static const struct kernel_param_ops panic_op_ops = {
102         .set = panic_op_write_handler,
103         .get = panic_op_read_handler
104 };
105 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
106 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
107
108
109 #define MAX_EVENTS_IN_QUEUE     25
110
111 /* Remain in auto-maintenance mode for this amount of time (in ms). */
112 static unsigned long maintenance_mode_timeout_ms = 30000;
113 module_param(maintenance_mode_timeout_ms, ulong, 0644);
114 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
115                  "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
116
117 /*
118  * Don't let a message sit in a queue forever, always time it with at lest
119  * the max message timer.  This is in milliseconds.
120  */
121 #define MAX_MSG_TIMEOUT         60000
122
123 /*
124  * Timeout times below are in milliseconds, and are done off a 1
125  * second timer.  So setting the value to 1000 would mean anything
126  * between 0 and 1000ms.  So really the only reasonable minimum
127  * setting it 2000ms, which is between 1 and 2 seconds.
128  */
129
130 /* The default timeout for message retries. */
131 static unsigned long default_retry_ms = 2000;
132 module_param(default_retry_ms, ulong, 0644);
133 MODULE_PARM_DESC(default_retry_ms,
134                  "The time (milliseconds) between retry sends");
135
136 /* The default timeout for maintenance mode message retries. */
137 static unsigned long default_maintenance_retry_ms = 3000;
138 module_param(default_maintenance_retry_ms, ulong, 0644);
139 MODULE_PARM_DESC(default_maintenance_retry_ms,
140                  "The time (milliseconds) between retry sends in maintenance mode");
141
142 /* The default maximum number of retries */
143 static unsigned int default_max_retries = 4;
144 module_param(default_max_retries, uint, 0644);
145 MODULE_PARM_DESC(default_max_retries,
146                  "The time (milliseconds) between retry sends in maintenance mode");
147
148 /* The default maximum number of users that may register. */
149 static unsigned int max_users = 30;
150 module_param(max_users, uint, 0644);
151 MODULE_PARM_DESC(max_users,
152                  "The most users that may use the IPMI stack at one time.");
153
154 /* The default maximum number of message a user may have outstanding. */
155 static unsigned int max_msgs_per_user = 100;
156 module_param(max_msgs_per_user, uint, 0644);
157 MODULE_PARM_DESC(max_msgs_per_user,
158                  "The most message a user may have outstanding.");
159
160 /* Call every ~1000 ms. */
161 #define IPMI_TIMEOUT_TIME       1000
162
163 /* How many jiffies does it take to get to the timeout time. */
164 #define IPMI_TIMEOUT_JIFFIES    ((IPMI_TIMEOUT_TIME * HZ) / 1000)
165
166 /*
167  * Request events from the queue every second (this is the number of
168  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
169  * future, IPMI will add a way to know immediately if an event is in
170  * the queue and this silliness can go away.
171  */
172 #define IPMI_REQUEST_EV_TIME    (1000 / (IPMI_TIMEOUT_TIME))
173
174 /* How long should we cache dynamic device IDs? */
175 #define IPMI_DYN_DEV_ID_EXPIRY  (10 * HZ)
176
177 /*
178  * The main "user" data structure.
179  */
180 struct ipmi_user {
181         struct list_head link;
182
183         /*
184          * Set to NULL when the user is destroyed, a pointer to myself
185          * so srcu_dereference can be used on it.
186          */
187         struct ipmi_user *self;
188         struct srcu_struct release_barrier;
189
190         struct kref refcount;
191
192         /* The upper layer that handles receive messages. */
193         const struct ipmi_user_hndl *handler;
194         void             *handler_data;
195
196         /* The interface this user is bound to. */
197         struct ipmi_smi *intf;
198
199         /* Does this interface receive IPMI events? */
200         bool gets_events;
201
202         atomic_t nr_msgs;
203
204         /* Free must run in process context for RCU cleanup. */
205         struct work_struct remove_work;
206 };
207
208 static struct workqueue_struct *remove_work_wq;
209
210 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
211         __acquires(user->release_barrier)
212 {
213         struct ipmi_user *ruser;
214
215         *index = srcu_read_lock(&user->release_barrier);
216         ruser = srcu_dereference(user->self, &user->release_barrier);
217         if (!ruser)
218                 srcu_read_unlock(&user->release_barrier, *index);
219         return ruser;
220 }
221
222 static void release_ipmi_user(struct ipmi_user *user, int index)
223 {
224         srcu_read_unlock(&user->release_barrier, index);
225 }
226
227 struct cmd_rcvr {
228         struct list_head link;
229
230         struct ipmi_user *user;
231         unsigned char netfn;
232         unsigned char cmd;
233         unsigned int  chans;
234
235         /*
236          * This is used to form a linked lised during mass deletion.
237          * Since this is in an RCU list, we cannot use the link above
238          * or change any data until the RCU period completes.  So we
239          * use this next variable during mass deletion so we can have
240          * a list and don't have to wait and restart the search on
241          * every individual deletion of a command.
242          */
243         struct cmd_rcvr *next;
244 };
245
246 struct seq_table {
247         unsigned int         inuse : 1;
248         unsigned int         broadcast : 1;
249
250         unsigned long        timeout;
251         unsigned long        orig_timeout;
252         unsigned int         retries_left;
253
254         /*
255          * To verify on an incoming send message response that this is
256          * the message that the response is for, we keep a sequence id
257          * and increment it every time we send a message.
258          */
259         long                 seqid;
260
261         /*
262          * This is held so we can properly respond to the message on a
263          * timeout, and it is used to hold the temporary data for
264          * retransmission, too.
265          */
266         struct ipmi_recv_msg *recv_msg;
267 };
268
269 /*
270  * Store the information in a msgid (long) to allow us to find a
271  * sequence table entry from the msgid.
272  */
273 #define STORE_SEQ_IN_MSGID(seq, seqid) \
274         ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
275
276 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
277         do {                                                            \
278                 seq = (((msgid) >> 26) & 0x3f);                         \
279                 seqid = ((msgid) & 0x3ffffff);                          \
280         } while (0)
281
282 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
283
284 #define IPMI_MAX_CHANNELS       16
285 struct ipmi_channel {
286         unsigned char medium;
287         unsigned char protocol;
288 };
289
290 struct ipmi_channel_set {
291         struct ipmi_channel c[IPMI_MAX_CHANNELS];
292 };
293
294 struct ipmi_my_addrinfo {
295         /*
296          * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
297          * but may be changed by the user.
298          */
299         unsigned char address;
300
301         /*
302          * My LUN.  This should generally stay the SMS LUN, but just in
303          * case...
304          */
305         unsigned char lun;
306 };
307
308 /*
309  * Note that the product id, manufacturer id, guid, and device id are
310  * immutable in this structure, so dyn_mutex is not required for
311  * accessing those.  If those change on a BMC, a new BMC is allocated.
312  */
313 struct bmc_device {
314         struct platform_device pdev;
315         struct list_head       intfs; /* Interfaces on this BMC. */
316         struct ipmi_device_id  id;
317         struct ipmi_device_id  fetch_id;
318         int                    dyn_id_set;
319         unsigned long          dyn_id_expiry;
320         struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
321         guid_t                 guid;
322         guid_t                 fetch_guid;
323         int                    dyn_guid_set;
324         struct kref            usecount;
325         struct work_struct     remove_work;
326         unsigned char          cc; /* completion code */
327 };
328 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
329
330 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
331                              struct ipmi_device_id *id,
332                              bool *guid_set, guid_t *guid);
333
334 /*
335  * Various statistics for IPMI, these index stats[] in the ipmi_smi
336  * structure.
337  */
338 enum ipmi_stat_indexes {
339         /* Commands we got from the user that were invalid. */
340         IPMI_STAT_sent_invalid_commands = 0,
341
342         /* Commands we sent to the MC. */
343         IPMI_STAT_sent_local_commands,
344
345         /* Responses from the MC that were delivered to a user. */
346         IPMI_STAT_handled_local_responses,
347
348         /* Responses from the MC that were not delivered to a user. */
349         IPMI_STAT_unhandled_local_responses,
350
351         /* Commands we sent out to the IPMB bus. */
352         IPMI_STAT_sent_ipmb_commands,
353
354         /* Commands sent on the IPMB that had errors on the SEND CMD */
355         IPMI_STAT_sent_ipmb_command_errs,
356
357         /* Each retransmit increments this count. */
358         IPMI_STAT_retransmitted_ipmb_commands,
359
360         /*
361          * When a message times out (runs out of retransmits) this is
362          * incremented.
363          */
364         IPMI_STAT_timed_out_ipmb_commands,
365
366         /*
367          * This is like above, but for broadcasts.  Broadcasts are
368          * *not* included in the above count (they are expected to
369          * time out).
370          */
371         IPMI_STAT_timed_out_ipmb_broadcasts,
372
373         /* Responses I have sent to the IPMB bus. */
374         IPMI_STAT_sent_ipmb_responses,
375
376         /* The response was delivered to the user. */
377         IPMI_STAT_handled_ipmb_responses,
378
379         /* The response had invalid data in it. */
380         IPMI_STAT_invalid_ipmb_responses,
381
382         /* The response didn't have anyone waiting for it. */
383         IPMI_STAT_unhandled_ipmb_responses,
384
385         /* Commands we sent out to the IPMB bus. */
386         IPMI_STAT_sent_lan_commands,
387
388         /* Commands sent on the IPMB that had errors on the SEND CMD */
389         IPMI_STAT_sent_lan_command_errs,
390
391         /* Each retransmit increments this count. */
392         IPMI_STAT_retransmitted_lan_commands,
393
394         /*
395          * When a message times out (runs out of retransmits) this is
396          * incremented.
397          */
398         IPMI_STAT_timed_out_lan_commands,
399
400         /* Responses I have sent to the IPMB bus. */
401         IPMI_STAT_sent_lan_responses,
402
403         /* The response was delivered to the user. */
404         IPMI_STAT_handled_lan_responses,
405
406         /* The response had invalid data in it. */
407         IPMI_STAT_invalid_lan_responses,
408
409         /* The response didn't have anyone waiting for it. */
410         IPMI_STAT_unhandled_lan_responses,
411
412         /* The command was delivered to the user. */
413         IPMI_STAT_handled_commands,
414
415         /* The command had invalid data in it. */
416         IPMI_STAT_invalid_commands,
417
418         /* The command didn't have anyone waiting for it. */
419         IPMI_STAT_unhandled_commands,
420
421         /* Invalid data in an event. */
422         IPMI_STAT_invalid_events,
423
424         /* Events that were received with the proper format. */
425         IPMI_STAT_events,
426
427         /* Retransmissions on IPMB that failed. */
428         IPMI_STAT_dropped_rexmit_ipmb_commands,
429
430         /* Retransmissions on LAN that failed. */
431         IPMI_STAT_dropped_rexmit_lan_commands,
432
433         /* This *must* remain last, add new values above this. */
434         IPMI_NUM_STATS
435 };
436
437
438 #define IPMI_IPMB_NUM_SEQ       64
439 struct ipmi_smi {
440         struct module *owner;
441
442         /* What interface number are we? */
443         int intf_num;
444
445         struct kref refcount;
446
447         /* Set when the interface is being unregistered. */
448         bool in_shutdown;
449
450         /* Used for a list of interfaces. */
451         struct list_head link;
452
453         /*
454          * The list of upper layers that are using me.  seq_lock write
455          * protects this.  Read protection is with srcu.
456          */
457         struct list_head users;
458         struct srcu_struct users_srcu;
459         atomic_t nr_users;
460         struct device_attribute nr_users_devattr;
461         struct device_attribute nr_msgs_devattr;
462
463
464         /* Used for wake ups at startup. */
465         wait_queue_head_t waitq;
466
467         /*
468          * Prevents the interface from being unregistered when the
469          * interface is used by being looked up through the BMC
470          * structure.
471          */
472         struct mutex bmc_reg_mutex;
473
474         struct bmc_device tmp_bmc;
475         struct bmc_device *bmc;
476         bool bmc_registered;
477         struct list_head bmc_link;
478         char *my_dev_name;
479         bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
480         struct work_struct bmc_reg_work;
481
482         const struct ipmi_smi_handlers *handlers;
483         void                     *send_info;
484
485         /* Driver-model device for the system interface. */
486         struct device          *si_dev;
487
488         /*
489          * A table of sequence numbers for this interface.  We use the
490          * sequence numbers for IPMB messages that go out of the
491          * interface to match them up with their responses.  A routine
492          * is called periodically to time the items in this list.
493          */
494         spinlock_t       seq_lock;
495         struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
496         int curr_seq;
497
498         /*
499          * Messages queued for delivery.  If delivery fails (out of memory
500          * for instance), They will stay in here to be processed later in a
501          * periodic timer interrupt.  The tasklet is for handling received
502          * messages directly from the handler.
503          */
504         spinlock_t       waiting_rcv_msgs_lock;
505         struct list_head waiting_rcv_msgs;
506         atomic_t         watchdog_pretimeouts_to_deliver;
507         struct tasklet_struct recv_tasklet;
508
509         spinlock_t             xmit_msgs_lock;
510         struct list_head       xmit_msgs;
511         struct ipmi_smi_msg    *curr_msg;
512         struct list_head       hp_xmit_msgs;
513
514         /*
515          * The list of command receivers that are registered for commands
516          * on this interface.
517          */
518         struct mutex     cmd_rcvrs_mutex;
519         struct list_head cmd_rcvrs;
520
521         /*
522          * Events that were queues because no one was there to receive
523          * them.
524          */
525         spinlock_t       events_lock; /* For dealing with event stuff. */
526         struct list_head waiting_events;
527         unsigned int     waiting_events_count; /* How many events in queue? */
528         char             delivering_events;
529         char             event_msg_printed;
530
531         /* How many users are waiting for events? */
532         atomic_t         event_waiters;
533         unsigned int     ticks_to_req_ev;
534
535         spinlock_t       watch_lock; /* For dealing with watch stuff below. */
536
537         /* How many users are waiting for commands? */
538         unsigned int     command_waiters;
539
540         /* How many users are waiting for watchdogs? */
541         unsigned int     watchdog_waiters;
542
543         /* How many users are waiting for message responses? */
544         unsigned int     response_waiters;
545
546         /*
547          * Tells what the lower layer has last been asked to watch for,
548          * messages and/or watchdogs.  Protected by watch_lock.
549          */
550         unsigned int     last_watch_mask;
551
552         /*
553          * The event receiver for my BMC, only really used at panic
554          * shutdown as a place to store this.
555          */
556         unsigned char event_receiver;
557         unsigned char event_receiver_lun;
558         unsigned char local_sel_device;
559         unsigned char local_event_generator;
560
561         /* For handling of maintenance mode. */
562         int maintenance_mode;
563         bool maintenance_mode_enable;
564         int auto_maintenance_timeout;
565         spinlock_t maintenance_mode_lock; /* Used in a timer... */
566
567         /*
568          * If we are doing maintenance on something on IPMB, extend
569          * the timeout time to avoid timeouts writing firmware and
570          * such.
571          */
572         int ipmb_maintenance_mode_timeout;
573
574         /*
575          * A cheap hack, if this is non-null and a message to an
576          * interface comes in with a NULL user, call this routine with
577          * it.  Note that the message will still be freed by the
578          * caller.  This only works on the system interface.
579          *
580          * Protected by bmc_reg_mutex.
581          */
582         void (*null_user_handler)(struct ipmi_smi *intf,
583                                   struct ipmi_recv_msg *msg);
584
585         /*
586          * When we are scanning the channels for an SMI, this will
587          * tell which channel we are scanning.
588          */
589         int curr_channel;
590
591         /* Channel information */
592         struct ipmi_channel_set *channel_list;
593         unsigned int curr_working_cset; /* First index into the following. */
594         struct ipmi_channel_set wchannels[2];
595         struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
596         bool channels_ready;
597
598         atomic_t stats[IPMI_NUM_STATS];
599
600         /*
601          * run_to_completion duplicate of smb_info, smi_info
602          * and ipmi_serial_info structures. Used to decrease numbers of
603          * parameters passed by "low" level IPMI code.
604          */
605         int run_to_completion;
606 };
607 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
608
609 static void __get_guid(struct ipmi_smi *intf);
610 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
611 static int __ipmi_bmc_register(struct ipmi_smi *intf,
612                                struct ipmi_device_id *id,
613                                bool guid_set, guid_t *guid, int intf_num);
614 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
615
616
617 /**
618  * The driver model view of the IPMI messaging driver.
619  */
620 static struct platform_driver ipmidriver = {
621         .driver = {
622                 .name = "ipmi",
623                 .bus = &platform_bus_type
624         }
625 };
626 /*
627  * This mutex keeps us from adding the same BMC twice.
628  */
629 static DEFINE_MUTEX(ipmidriver_mutex);
630
631 static LIST_HEAD(ipmi_interfaces);
632 static DEFINE_MUTEX(ipmi_interfaces_mutex);
633 #define ipmi_interfaces_mutex_held() \
634         lockdep_is_held(&ipmi_interfaces_mutex)
635 static struct srcu_struct ipmi_interfaces_srcu;
636
637 /*
638  * List of watchers that want to know when smi's are added and deleted.
639  */
640 static LIST_HEAD(smi_watchers);
641 static DEFINE_MUTEX(smi_watchers_mutex);
642
643 #define ipmi_inc_stat(intf, stat) \
644         atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
645 #define ipmi_get_stat(intf, stat) \
646         ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
647
648 static const char * const addr_src_to_str[] = {
649         "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
650         "device-tree", "platform"
651 };
652
653 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
654 {
655         if (src >= SI_LAST)
656                 src = 0; /* Invalid */
657         return addr_src_to_str[src];
658 }
659 EXPORT_SYMBOL(ipmi_addr_src_to_str);
660
661 static int is_lan_addr(struct ipmi_addr *addr)
662 {
663         return addr->addr_type == IPMI_LAN_ADDR_TYPE;
664 }
665
666 static int is_ipmb_addr(struct ipmi_addr *addr)
667 {
668         return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
669 }
670
671 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
672 {
673         return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
674 }
675
676 static int is_ipmb_direct_addr(struct ipmi_addr *addr)
677 {
678         return addr->addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE;
679 }
680
681 static void free_recv_msg_list(struct list_head *q)
682 {
683         struct ipmi_recv_msg *msg, *msg2;
684
685         list_for_each_entry_safe(msg, msg2, q, link) {
686                 list_del(&msg->link);
687                 ipmi_free_recv_msg(msg);
688         }
689 }
690
691 static void free_smi_msg_list(struct list_head *q)
692 {
693         struct ipmi_smi_msg *msg, *msg2;
694
695         list_for_each_entry_safe(msg, msg2, q, link) {
696                 list_del(&msg->link);
697                 ipmi_free_smi_msg(msg);
698         }
699 }
700
701 static void clean_up_interface_data(struct ipmi_smi *intf)
702 {
703         int              i;
704         struct cmd_rcvr  *rcvr, *rcvr2;
705         struct list_head list;
706
707         tasklet_kill(&intf->recv_tasklet);
708
709         free_smi_msg_list(&intf->waiting_rcv_msgs);
710         free_recv_msg_list(&intf->waiting_events);
711
712         /*
713          * Wholesale remove all the entries from the list in the
714          * interface and wait for RCU to know that none are in use.
715          */
716         mutex_lock(&intf->cmd_rcvrs_mutex);
717         INIT_LIST_HEAD(&list);
718         list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
719         mutex_unlock(&intf->cmd_rcvrs_mutex);
720
721         list_for_each_entry_safe(rcvr, rcvr2, &list, link)
722                 kfree(rcvr);
723
724         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
725                 if ((intf->seq_table[i].inuse)
726                                         && (intf->seq_table[i].recv_msg))
727                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
728         }
729 }
730
731 static void intf_free(struct kref *ref)
732 {
733         struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
734
735         clean_up_interface_data(intf);
736         kfree(intf);
737 }
738
739 struct watcher_entry {
740         int              intf_num;
741         struct ipmi_smi  *intf;
742         struct list_head link;
743 };
744
745 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
746 {
747         struct ipmi_smi *intf;
748         int index, rv;
749
750         /*
751          * Make sure the driver is actually initialized, this handles
752          * problems with initialization order.
753          */
754         rv = ipmi_init_msghandler();
755         if (rv)
756                 return rv;
757
758         mutex_lock(&smi_watchers_mutex);
759
760         list_add(&watcher->link, &smi_watchers);
761
762         index = srcu_read_lock(&ipmi_interfaces_srcu);
763         list_for_each_entry_rcu(intf, &ipmi_interfaces, link,
764                         lockdep_is_held(&smi_watchers_mutex)) {
765                 int intf_num = READ_ONCE(intf->intf_num);
766
767                 if (intf_num == -1)
768                         continue;
769                 watcher->new_smi(intf_num, intf->si_dev);
770         }
771         srcu_read_unlock(&ipmi_interfaces_srcu, index);
772
773         mutex_unlock(&smi_watchers_mutex);
774
775         return 0;
776 }
777 EXPORT_SYMBOL(ipmi_smi_watcher_register);
778
779 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
780 {
781         mutex_lock(&smi_watchers_mutex);
782         list_del(&watcher->link);
783         mutex_unlock(&smi_watchers_mutex);
784         return 0;
785 }
786 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
787
788 /*
789  * Must be called with smi_watchers_mutex held.
790  */
791 static void
792 call_smi_watchers(int i, struct device *dev)
793 {
794         struct ipmi_smi_watcher *w;
795
796         mutex_lock(&smi_watchers_mutex);
797         list_for_each_entry(w, &smi_watchers, link) {
798                 if (try_module_get(w->owner)) {
799                         w->new_smi(i, dev);
800                         module_put(w->owner);
801                 }
802         }
803         mutex_unlock(&smi_watchers_mutex);
804 }
805
806 static int
807 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
808 {
809         if (addr1->addr_type != addr2->addr_type)
810                 return 0;
811
812         if (addr1->channel != addr2->channel)
813                 return 0;
814
815         if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
816                 struct ipmi_system_interface_addr *smi_addr1
817                     = (struct ipmi_system_interface_addr *) addr1;
818                 struct ipmi_system_interface_addr *smi_addr2
819                     = (struct ipmi_system_interface_addr *) addr2;
820                 return (smi_addr1->lun == smi_addr2->lun);
821         }
822
823         if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
824                 struct ipmi_ipmb_addr *ipmb_addr1
825                     = (struct ipmi_ipmb_addr *) addr1;
826                 struct ipmi_ipmb_addr *ipmb_addr2
827                     = (struct ipmi_ipmb_addr *) addr2;
828
829                 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
830                         && (ipmb_addr1->lun == ipmb_addr2->lun));
831         }
832
833         if (is_ipmb_direct_addr(addr1)) {
834                 struct ipmi_ipmb_direct_addr *daddr1
835                         = (struct ipmi_ipmb_direct_addr *) addr1;
836                 struct ipmi_ipmb_direct_addr *daddr2
837                         = (struct ipmi_ipmb_direct_addr *) addr2;
838
839                 return daddr1->slave_addr == daddr2->slave_addr &&
840                         daddr1->rq_lun == daddr2->rq_lun &&
841                         daddr1->rs_lun == daddr2->rs_lun;
842         }
843
844         if (is_lan_addr(addr1)) {
845                 struct ipmi_lan_addr *lan_addr1
846                         = (struct ipmi_lan_addr *) addr1;
847                 struct ipmi_lan_addr *lan_addr2
848                     = (struct ipmi_lan_addr *) addr2;
849
850                 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
851                         && (lan_addr1->local_SWID == lan_addr2->local_SWID)
852                         && (lan_addr1->session_handle
853                             == lan_addr2->session_handle)
854                         && (lan_addr1->lun == lan_addr2->lun));
855         }
856
857         return 1;
858 }
859
860 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
861 {
862         if (len < sizeof(struct ipmi_system_interface_addr))
863                 return -EINVAL;
864
865         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
866                 if (addr->channel != IPMI_BMC_CHANNEL)
867                         return -EINVAL;
868                 return 0;
869         }
870
871         if ((addr->channel == IPMI_BMC_CHANNEL)
872             || (addr->channel >= IPMI_MAX_CHANNELS)
873             || (addr->channel < 0))
874                 return -EINVAL;
875
876         if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
877                 if (len < sizeof(struct ipmi_ipmb_addr))
878                         return -EINVAL;
879                 return 0;
880         }
881
882         if (is_ipmb_direct_addr(addr)) {
883                 struct ipmi_ipmb_direct_addr *daddr = (void *) addr;
884
885                 if (addr->channel != 0)
886                         return -EINVAL;
887                 if (len < sizeof(struct ipmi_ipmb_direct_addr))
888                         return -EINVAL;
889
890                 if (daddr->slave_addr & 0x01)
891                         return -EINVAL;
892                 if (daddr->rq_lun >= 4)
893                         return -EINVAL;
894                 if (daddr->rs_lun >= 4)
895                         return -EINVAL;
896                 return 0;
897         }
898
899         if (is_lan_addr(addr)) {
900                 if (len < sizeof(struct ipmi_lan_addr))
901                         return -EINVAL;
902                 return 0;
903         }
904
905         return -EINVAL;
906 }
907 EXPORT_SYMBOL(ipmi_validate_addr);
908
909 unsigned int ipmi_addr_length(int addr_type)
910 {
911         if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
912                 return sizeof(struct ipmi_system_interface_addr);
913
914         if ((addr_type == IPMI_IPMB_ADDR_TYPE)
915                         || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
916                 return sizeof(struct ipmi_ipmb_addr);
917
918         if (addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE)
919                 return sizeof(struct ipmi_ipmb_direct_addr);
920
921         if (addr_type == IPMI_LAN_ADDR_TYPE)
922                 return sizeof(struct ipmi_lan_addr);
923
924         return 0;
925 }
926 EXPORT_SYMBOL(ipmi_addr_length);
927
928 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
929 {
930         int rv = 0;
931
932         if (!msg->user) {
933                 /* Special handling for NULL users. */
934                 if (intf->null_user_handler) {
935                         intf->null_user_handler(intf, msg);
936                 } else {
937                         /* No handler, so give up. */
938                         rv = -EINVAL;
939                 }
940                 ipmi_free_recv_msg(msg);
941         } else if (oops_in_progress) {
942                 /*
943                  * If we are running in the panic context, calling the
944                  * receive handler doesn't much meaning and has a deadlock
945                  * risk.  At this moment, simply skip it in that case.
946                  */
947                 ipmi_free_recv_msg(msg);
948                 atomic_dec(&msg->user->nr_msgs);
949         } else {
950                 int index;
951                 struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
952
953                 if (user) {
954                         atomic_dec(&user->nr_msgs);
955                         user->handler->ipmi_recv_hndl(msg, user->handler_data);
956                         release_ipmi_user(user, index);
957                 } else {
958                         /* User went away, give up. */
959                         ipmi_free_recv_msg(msg);
960                         rv = -EINVAL;
961                 }
962         }
963
964         return rv;
965 }
966
967 static void deliver_local_response(struct ipmi_smi *intf,
968                                    struct ipmi_recv_msg *msg)
969 {
970         if (deliver_response(intf, msg))
971                 ipmi_inc_stat(intf, unhandled_local_responses);
972         else
973                 ipmi_inc_stat(intf, handled_local_responses);
974 }
975
976 static void deliver_err_response(struct ipmi_smi *intf,
977                                  struct ipmi_recv_msg *msg, int err)
978 {
979         msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
980         msg->msg_data[0] = err;
981         msg->msg.netfn |= 1; /* Convert to a response. */
982         msg->msg.data_len = 1;
983         msg->msg.data = msg->msg_data;
984         deliver_local_response(intf, msg);
985 }
986
987 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
988 {
989         unsigned long iflags;
990
991         if (!intf->handlers->set_need_watch)
992                 return;
993
994         spin_lock_irqsave(&intf->watch_lock, iflags);
995         if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
996                 intf->response_waiters++;
997
998         if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
999                 intf->watchdog_waiters++;
1000
1001         if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1002                 intf->command_waiters++;
1003
1004         if ((intf->last_watch_mask & flags) != flags) {
1005                 intf->last_watch_mask |= flags;
1006                 intf->handlers->set_need_watch(intf->send_info,
1007                                                intf->last_watch_mask);
1008         }
1009         spin_unlock_irqrestore(&intf->watch_lock, iflags);
1010 }
1011
1012 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
1013 {
1014         unsigned long iflags;
1015
1016         if (!intf->handlers->set_need_watch)
1017                 return;
1018
1019         spin_lock_irqsave(&intf->watch_lock, iflags);
1020         if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
1021                 intf->response_waiters--;
1022
1023         if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
1024                 intf->watchdog_waiters--;
1025
1026         if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1027                 intf->command_waiters--;
1028
1029         flags = 0;
1030         if (intf->response_waiters)
1031                 flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
1032         if (intf->watchdog_waiters)
1033                 flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
1034         if (intf->command_waiters)
1035                 flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
1036
1037         if (intf->last_watch_mask != flags) {
1038                 intf->last_watch_mask = flags;
1039                 intf->handlers->set_need_watch(intf->send_info,
1040                                                intf->last_watch_mask);
1041         }
1042         spin_unlock_irqrestore(&intf->watch_lock, iflags);
1043 }
1044
1045 /*
1046  * Find the next sequence number not being used and add the given
1047  * message with the given timeout to the sequence table.  This must be
1048  * called with the interface's seq_lock held.
1049  */
1050 static int intf_next_seq(struct ipmi_smi      *intf,
1051                          struct ipmi_recv_msg *recv_msg,
1052                          unsigned long        timeout,
1053                          int                  retries,
1054                          int                  broadcast,
1055                          unsigned char        *seq,
1056                          long                 *seqid)
1057 {
1058         int          rv = 0;
1059         unsigned int i;
1060
1061         if (timeout == 0)
1062                 timeout = default_retry_ms;
1063         if (retries < 0)
1064                 retries = default_max_retries;
1065
1066         for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1067                                         i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1068                 if (!intf->seq_table[i].inuse)
1069                         break;
1070         }
1071
1072         if (!intf->seq_table[i].inuse) {
1073                 intf->seq_table[i].recv_msg = recv_msg;
1074
1075                 /*
1076                  * Start with the maximum timeout, when the send response
1077                  * comes in we will start the real timer.
1078                  */
1079                 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1080                 intf->seq_table[i].orig_timeout = timeout;
1081                 intf->seq_table[i].retries_left = retries;
1082                 intf->seq_table[i].broadcast = broadcast;
1083                 intf->seq_table[i].inuse = 1;
1084                 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1085                 *seq = i;
1086                 *seqid = intf->seq_table[i].seqid;
1087                 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1088                 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1089                 need_waiter(intf);
1090         } else {
1091                 rv = -EAGAIN;
1092         }
1093
1094         return rv;
1095 }
1096
1097 /*
1098  * Return the receive message for the given sequence number and
1099  * release the sequence number so it can be reused.  Some other data
1100  * is passed in to be sure the message matches up correctly (to help
1101  * guard against message coming in after their timeout and the
1102  * sequence number being reused).
1103  */
1104 static int intf_find_seq(struct ipmi_smi      *intf,
1105                          unsigned char        seq,
1106                          short                channel,
1107                          unsigned char        cmd,
1108                          unsigned char        netfn,
1109                          struct ipmi_addr     *addr,
1110                          struct ipmi_recv_msg **recv_msg)
1111 {
1112         int           rv = -ENODEV;
1113         unsigned long flags;
1114
1115         if (seq >= IPMI_IPMB_NUM_SEQ)
1116                 return -EINVAL;
1117
1118         spin_lock_irqsave(&intf->seq_lock, flags);
1119         if (intf->seq_table[seq].inuse) {
1120                 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1121
1122                 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1123                                 && (msg->msg.netfn == netfn)
1124                                 && (ipmi_addr_equal(addr, &msg->addr))) {
1125                         *recv_msg = msg;
1126                         intf->seq_table[seq].inuse = 0;
1127                         smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1128                         rv = 0;
1129                 }
1130         }
1131         spin_unlock_irqrestore(&intf->seq_lock, flags);
1132
1133         return rv;
1134 }
1135
1136
1137 /* Start the timer for a specific sequence table entry. */
1138 static int intf_start_seq_timer(struct ipmi_smi *intf,
1139                                 long       msgid)
1140 {
1141         int           rv = -ENODEV;
1142         unsigned long flags;
1143         unsigned char seq;
1144         unsigned long seqid;
1145
1146
1147         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1148
1149         spin_lock_irqsave(&intf->seq_lock, flags);
1150         /*
1151          * We do this verification because the user can be deleted
1152          * while a message is outstanding.
1153          */
1154         if ((intf->seq_table[seq].inuse)
1155                                 && (intf->seq_table[seq].seqid == seqid)) {
1156                 struct seq_table *ent = &intf->seq_table[seq];
1157                 ent->timeout = ent->orig_timeout;
1158                 rv = 0;
1159         }
1160         spin_unlock_irqrestore(&intf->seq_lock, flags);
1161
1162         return rv;
1163 }
1164
1165 /* Got an error for the send message for a specific sequence number. */
1166 static int intf_err_seq(struct ipmi_smi *intf,
1167                         long         msgid,
1168                         unsigned int err)
1169 {
1170         int                  rv = -ENODEV;
1171         unsigned long        flags;
1172         unsigned char        seq;
1173         unsigned long        seqid;
1174         struct ipmi_recv_msg *msg = NULL;
1175
1176
1177         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1178
1179         spin_lock_irqsave(&intf->seq_lock, flags);
1180         /*
1181          * We do this verification because the user can be deleted
1182          * while a message is outstanding.
1183          */
1184         if ((intf->seq_table[seq].inuse)
1185                                 && (intf->seq_table[seq].seqid == seqid)) {
1186                 struct seq_table *ent = &intf->seq_table[seq];
1187
1188                 ent->inuse = 0;
1189                 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1190                 msg = ent->recv_msg;
1191                 rv = 0;
1192         }
1193         spin_unlock_irqrestore(&intf->seq_lock, flags);
1194
1195         if (msg)
1196                 deliver_err_response(intf, msg, err);
1197
1198         return rv;
1199 }
1200
1201 static void free_user_work(struct work_struct *work)
1202 {
1203         struct ipmi_user *user = container_of(work, struct ipmi_user,
1204                                               remove_work);
1205
1206         cleanup_srcu_struct(&user->release_barrier);
1207         vfree(user);
1208 }
1209
1210 int ipmi_create_user(unsigned int          if_num,
1211                      const struct ipmi_user_hndl *handler,
1212                      void                  *handler_data,
1213                      struct ipmi_user      **user)
1214 {
1215         unsigned long flags;
1216         struct ipmi_user *new_user;
1217         int           rv, index;
1218         struct ipmi_smi *intf;
1219
1220         /*
1221          * There is no module usecount here, because it's not
1222          * required.  Since this can only be used by and called from
1223          * other modules, they will implicitly use this module, and
1224          * thus this can't be removed unless the other modules are
1225          * removed.
1226          */
1227
1228         if (handler == NULL)
1229                 return -EINVAL;
1230
1231         /*
1232          * Make sure the driver is actually initialized, this handles
1233          * problems with initialization order.
1234          */
1235         rv = ipmi_init_msghandler();
1236         if (rv)
1237                 return rv;
1238
1239         new_user = vzalloc(sizeof(*new_user));
1240         if (!new_user)
1241                 return -ENOMEM;
1242
1243         index = srcu_read_lock(&ipmi_interfaces_srcu);
1244         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1245                 if (intf->intf_num == if_num)
1246                         goto found;
1247         }
1248         /* Not found, return an error */
1249         rv = -EINVAL;
1250         goto out_kfree;
1251
1252  found:
1253         if (atomic_add_return(1, &intf->nr_users) > max_users) {
1254                 rv = -EBUSY;
1255                 goto out_kfree;
1256         }
1257
1258         INIT_WORK(&new_user->remove_work, free_user_work);
1259
1260         rv = init_srcu_struct(&new_user->release_barrier);
1261         if (rv)
1262                 goto out_kfree;
1263
1264         if (!try_module_get(intf->owner)) {
1265                 rv = -ENODEV;
1266                 goto out_kfree;
1267         }
1268
1269         /* Note that each existing user holds a refcount to the interface. */
1270         kref_get(&intf->refcount);
1271
1272         atomic_set(&new_user->nr_msgs, 0);
1273         kref_init(&new_user->refcount);
1274         new_user->handler = handler;
1275         new_user->handler_data = handler_data;
1276         new_user->intf = intf;
1277         new_user->gets_events = false;
1278
1279         rcu_assign_pointer(new_user->self, new_user);
1280         spin_lock_irqsave(&intf->seq_lock, flags);
1281         list_add_rcu(&new_user->link, &intf->users);
1282         spin_unlock_irqrestore(&intf->seq_lock, flags);
1283         if (handler->ipmi_watchdog_pretimeout)
1284                 /* User wants pretimeouts, so make sure to watch for them. */
1285                 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1286         srcu_read_unlock(&ipmi_interfaces_srcu, index);
1287         *user = new_user;
1288         return 0;
1289
1290 out_kfree:
1291         atomic_dec(&intf->nr_users);
1292         srcu_read_unlock(&ipmi_interfaces_srcu, index);
1293         vfree(new_user);
1294         return rv;
1295 }
1296 EXPORT_SYMBOL(ipmi_create_user);
1297
1298 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1299 {
1300         int rv, index;
1301         struct ipmi_smi *intf;
1302
1303         index = srcu_read_lock(&ipmi_interfaces_srcu);
1304         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1305                 if (intf->intf_num == if_num)
1306                         goto found;
1307         }
1308         srcu_read_unlock(&ipmi_interfaces_srcu, index);
1309
1310         /* Not found, return an error */
1311         return -EINVAL;
1312
1313 found:
1314         if (!intf->handlers->get_smi_info)
1315                 rv = -ENOTTY;
1316         else
1317                 rv = intf->handlers->get_smi_info(intf->send_info, data);
1318         srcu_read_unlock(&ipmi_interfaces_srcu, index);
1319
1320         return rv;
1321 }
1322 EXPORT_SYMBOL(ipmi_get_smi_info);
1323
1324 static void free_user(struct kref *ref)
1325 {
1326         struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1327
1328         /* SRCU cleanup must happen in task context. */
1329         queue_work(remove_work_wq, &user->remove_work);
1330 }
1331
1332 static void _ipmi_destroy_user(struct ipmi_user *user)
1333 {
1334         struct ipmi_smi  *intf = user->intf;
1335         int              i;
1336         unsigned long    flags;
1337         struct cmd_rcvr  *rcvr;
1338         struct cmd_rcvr  *rcvrs = NULL;
1339
1340         if (!acquire_ipmi_user(user, &i)) {
1341                 /*
1342                  * The user has already been cleaned up, just make sure
1343                  * nothing is using it and return.
1344                  */
1345                 synchronize_srcu(&user->release_barrier);
1346                 return;
1347         }
1348
1349         rcu_assign_pointer(user->self, NULL);
1350         release_ipmi_user(user, i);
1351
1352         synchronize_srcu(&user->release_barrier);
1353
1354         if (user->handler->shutdown)
1355                 user->handler->shutdown(user->handler_data);
1356
1357         if (user->handler->ipmi_watchdog_pretimeout)
1358                 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1359
1360         if (user->gets_events)
1361                 atomic_dec(&intf->event_waiters);
1362
1363         /* Remove the user from the interface's sequence table. */
1364         spin_lock_irqsave(&intf->seq_lock, flags);
1365         list_del_rcu(&user->link);
1366         atomic_dec(&intf->nr_users);
1367
1368         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1369                 if (intf->seq_table[i].inuse
1370                     && (intf->seq_table[i].recv_msg->user == user)) {
1371                         intf->seq_table[i].inuse = 0;
1372                         smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1373                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1374                 }
1375         }
1376         spin_unlock_irqrestore(&intf->seq_lock, flags);
1377
1378         /*
1379          * Remove the user from the command receiver's table.  First
1380          * we build a list of everything (not using the standard link,
1381          * since other things may be using it till we do
1382          * synchronize_srcu()) then free everything in that list.
1383          */
1384         mutex_lock(&intf->cmd_rcvrs_mutex);
1385         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1386                                 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1387                 if (rcvr->user == user) {
1388                         list_del_rcu(&rcvr->link);
1389                         rcvr->next = rcvrs;
1390                         rcvrs = rcvr;
1391                 }
1392         }
1393         mutex_unlock(&intf->cmd_rcvrs_mutex);
1394         synchronize_rcu();
1395         while (rcvrs) {
1396                 rcvr = rcvrs;
1397                 rcvrs = rcvr->next;
1398                 kfree(rcvr);
1399         }
1400
1401         kref_put(&intf->refcount, intf_free);
1402         module_put(intf->owner);
1403 }
1404
1405 int ipmi_destroy_user(struct ipmi_user *user)
1406 {
1407         _ipmi_destroy_user(user);
1408
1409         kref_put(&user->refcount, free_user);
1410
1411         return 0;
1412 }
1413 EXPORT_SYMBOL(ipmi_destroy_user);
1414
1415 int ipmi_get_version(struct ipmi_user *user,
1416                      unsigned char *major,
1417                      unsigned char *minor)
1418 {
1419         struct ipmi_device_id id;
1420         int rv, index;
1421
1422         user = acquire_ipmi_user(user, &index);
1423         if (!user)
1424                 return -ENODEV;
1425
1426         rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1427         if (!rv) {
1428                 *major = ipmi_version_major(&id);
1429                 *minor = ipmi_version_minor(&id);
1430         }
1431         release_ipmi_user(user, index);
1432
1433         return rv;
1434 }
1435 EXPORT_SYMBOL(ipmi_get_version);
1436
1437 int ipmi_set_my_address(struct ipmi_user *user,
1438                         unsigned int  channel,
1439                         unsigned char address)
1440 {
1441         int index, rv = 0;
1442
1443         user = acquire_ipmi_user(user, &index);
1444         if (!user)
1445                 return -ENODEV;
1446
1447         if (channel >= IPMI_MAX_CHANNELS) {
1448                 rv = -EINVAL;
1449         } else {
1450                 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1451                 user->intf->addrinfo[channel].address = address;
1452         }
1453         release_ipmi_user(user, index);
1454
1455         return rv;
1456 }
1457 EXPORT_SYMBOL(ipmi_set_my_address);
1458
1459 int ipmi_get_my_address(struct ipmi_user *user,
1460                         unsigned int  channel,
1461                         unsigned char *address)
1462 {
1463         int index, rv = 0;
1464
1465         user = acquire_ipmi_user(user, &index);
1466         if (!user)
1467                 return -ENODEV;
1468
1469         if (channel >= IPMI_MAX_CHANNELS) {
1470                 rv = -EINVAL;
1471         } else {
1472                 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1473                 *address = user->intf->addrinfo[channel].address;
1474         }
1475         release_ipmi_user(user, index);
1476
1477         return rv;
1478 }
1479 EXPORT_SYMBOL(ipmi_get_my_address);
1480
1481 int ipmi_set_my_LUN(struct ipmi_user *user,
1482                     unsigned int  channel,
1483                     unsigned char LUN)
1484 {
1485         int index, rv = 0;
1486
1487         user = acquire_ipmi_user(user, &index);
1488         if (!user)
1489                 return -ENODEV;
1490
1491         if (channel >= IPMI_MAX_CHANNELS) {
1492                 rv = -EINVAL;
1493         } else {
1494                 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1495                 user->intf->addrinfo[channel].lun = LUN & 0x3;
1496         }
1497         release_ipmi_user(user, index);
1498
1499         return rv;
1500 }
1501 EXPORT_SYMBOL(ipmi_set_my_LUN);
1502
1503 int ipmi_get_my_LUN(struct ipmi_user *user,
1504                     unsigned int  channel,
1505                     unsigned char *address)
1506 {
1507         int index, rv = 0;
1508
1509         user = acquire_ipmi_user(user, &index);
1510         if (!user)
1511                 return -ENODEV;
1512
1513         if (channel >= IPMI_MAX_CHANNELS) {
1514                 rv = -EINVAL;
1515         } else {
1516                 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1517                 *address = user->intf->addrinfo[channel].lun;
1518         }
1519         release_ipmi_user(user, index);
1520
1521         return rv;
1522 }
1523 EXPORT_SYMBOL(ipmi_get_my_LUN);
1524
1525 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1526 {
1527         int mode, index;
1528         unsigned long flags;
1529
1530         user = acquire_ipmi_user(user, &index);
1531         if (!user)
1532                 return -ENODEV;
1533
1534         spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1535         mode = user->intf->maintenance_mode;
1536         spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1537         release_ipmi_user(user, index);
1538
1539         return mode;
1540 }
1541 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1542
1543 static void maintenance_mode_update(struct ipmi_smi *intf)
1544 {
1545         if (intf->handlers->set_maintenance_mode)
1546                 intf->handlers->set_maintenance_mode(
1547                         intf->send_info, intf->maintenance_mode_enable);
1548 }
1549
1550 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1551 {
1552         int rv = 0, index;
1553         unsigned long flags;
1554         struct ipmi_smi *intf = user->intf;
1555
1556         user = acquire_ipmi_user(user, &index);
1557         if (!user)
1558                 return -ENODEV;
1559
1560         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1561         if (intf->maintenance_mode != mode) {
1562                 switch (mode) {
1563                 case IPMI_MAINTENANCE_MODE_AUTO:
1564                         intf->maintenance_mode_enable
1565                                 = (intf->auto_maintenance_timeout > 0);
1566                         break;
1567
1568                 case IPMI_MAINTENANCE_MODE_OFF:
1569                         intf->maintenance_mode_enable = false;
1570                         break;
1571
1572                 case IPMI_MAINTENANCE_MODE_ON:
1573                         intf->maintenance_mode_enable = true;
1574                         break;
1575
1576                 default:
1577                         rv = -EINVAL;
1578                         goto out_unlock;
1579                 }
1580                 intf->maintenance_mode = mode;
1581
1582                 maintenance_mode_update(intf);
1583         }
1584  out_unlock:
1585         spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1586         release_ipmi_user(user, index);
1587
1588         return rv;
1589 }
1590 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1591
1592 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1593 {
1594         unsigned long        flags;
1595         struct ipmi_smi      *intf = user->intf;
1596         struct ipmi_recv_msg *msg, *msg2;
1597         struct list_head     msgs;
1598         int index;
1599
1600         user = acquire_ipmi_user(user, &index);
1601         if (!user)
1602                 return -ENODEV;
1603
1604         INIT_LIST_HEAD(&msgs);
1605
1606         spin_lock_irqsave(&intf->events_lock, flags);
1607         if (user->gets_events == val)
1608                 goto out;
1609
1610         user->gets_events = val;
1611
1612         if (val) {
1613                 if (atomic_inc_return(&intf->event_waiters) == 1)
1614                         need_waiter(intf);
1615         } else {
1616                 atomic_dec(&intf->event_waiters);
1617         }
1618
1619         if (intf->delivering_events)
1620                 /*
1621                  * Another thread is delivering events for this, so
1622                  * let it handle any new events.
1623                  */
1624                 goto out;
1625
1626         /* Deliver any queued events. */
1627         while (user->gets_events && !list_empty(&intf->waiting_events)) {
1628                 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1629                         list_move_tail(&msg->link, &msgs);
1630                 intf->waiting_events_count = 0;
1631                 if (intf->event_msg_printed) {
1632                         dev_warn(intf->si_dev, "Event queue no longer full\n");
1633                         intf->event_msg_printed = 0;
1634                 }
1635
1636                 intf->delivering_events = 1;
1637                 spin_unlock_irqrestore(&intf->events_lock, flags);
1638
1639                 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1640                         msg->user = user;
1641                         kref_get(&user->refcount);
1642                         deliver_local_response(intf, msg);
1643                 }
1644
1645                 spin_lock_irqsave(&intf->events_lock, flags);
1646                 intf->delivering_events = 0;
1647         }
1648
1649  out:
1650         spin_unlock_irqrestore(&intf->events_lock, flags);
1651         release_ipmi_user(user, index);
1652
1653         return 0;
1654 }
1655 EXPORT_SYMBOL(ipmi_set_gets_events);
1656
1657 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1658                                       unsigned char netfn,
1659                                       unsigned char cmd,
1660                                       unsigned char chan)
1661 {
1662         struct cmd_rcvr *rcvr;
1663
1664         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1665                                 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1666                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1667                                         && (rcvr->chans & (1 << chan)))
1668                         return rcvr;
1669         }
1670         return NULL;
1671 }
1672
1673 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1674                                  unsigned char netfn,
1675                                  unsigned char cmd,
1676                                  unsigned int  chans)
1677 {
1678         struct cmd_rcvr *rcvr;
1679
1680         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1681                                 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1682                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1683                                         && (rcvr->chans & chans))
1684                         return 0;
1685         }
1686         return 1;
1687 }
1688
1689 int ipmi_register_for_cmd(struct ipmi_user *user,
1690                           unsigned char netfn,
1691                           unsigned char cmd,
1692                           unsigned int  chans)
1693 {
1694         struct ipmi_smi *intf = user->intf;
1695         struct cmd_rcvr *rcvr;
1696         int rv = 0, index;
1697
1698         user = acquire_ipmi_user(user, &index);
1699         if (!user)
1700                 return -ENODEV;
1701
1702         rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1703         if (!rcvr) {
1704                 rv = -ENOMEM;
1705                 goto out_release;
1706         }
1707         rcvr->cmd = cmd;
1708         rcvr->netfn = netfn;
1709         rcvr->chans = chans;
1710         rcvr->user = user;
1711
1712         mutex_lock(&intf->cmd_rcvrs_mutex);
1713         /* Make sure the command/netfn is not already registered. */
1714         if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1715                 rv = -EBUSY;
1716                 goto out_unlock;
1717         }
1718
1719         smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1720
1721         list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1722
1723 out_unlock:
1724         mutex_unlock(&intf->cmd_rcvrs_mutex);
1725         if (rv)
1726                 kfree(rcvr);
1727 out_release:
1728         release_ipmi_user(user, index);
1729
1730         return rv;
1731 }
1732 EXPORT_SYMBOL(ipmi_register_for_cmd);
1733
1734 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1735                             unsigned char netfn,
1736                             unsigned char cmd,
1737                             unsigned int  chans)
1738 {
1739         struct ipmi_smi *intf = user->intf;
1740         struct cmd_rcvr *rcvr;
1741         struct cmd_rcvr *rcvrs = NULL;
1742         int i, rv = -ENOENT, index;
1743
1744         user = acquire_ipmi_user(user, &index);
1745         if (!user)
1746                 return -ENODEV;
1747
1748         mutex_lock(&intf->cmd_rcvrs_mutex);
1749         for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1750                 if (((1 << i) & chans) == 0)
1751                         continue;
1752                 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1753                 if (rcvr == NULL)
1754                         continue;
1755                 if (rcvr->user == user) {
1756                         rv = 0;
1757                         rcvr->chans &= ~chans;
1758                         if (rcvr->chans == 0) {
1759                                 list_del_rcu(&rcvr->link);
1760                                 rcvr->next = rcvrs;
1761                                 rcvrs = rcvr;
1762                         }
1763                 }
1764         }
1765         mutex_unlock(&intf->cmd_rcvrs_mutex);
1766         synchronize_rcu();
1767         release_ipmi_user(user, index);
1768         while (rcvrs) {
1769                 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1770                 rcvr = rcvrs;
1771                 rcvrs = rcvr->next;
1772                 kfree(rcvr);
1773         }
1774
1775         return rv;
1776 }
1777 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1778
1779 unsigned char
1780 ipmb_checksum(unsigned char *data, int size)
1781 {
1782         unsigned char csum = 0;
1783
1784         for (; size > 0; size--, data++)
1785                 csum += *data;
1786
1787         return -csum;
1788 }
1789 EXPORT_SYMBOL(ipmb_checksum);
1790
1791 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1792                                    struct kernel_ipmi_msg *msg,
1793                                    struct ipmi_ipmb_addr *ipmb_addr,
1794                                    long                  msgid,
1795                                    unsigned char         ipmb_seq,
1796                                    int                   broadcast,
1797                                    unsigned char         source_address,
1798                                    unsigned char         source_lun)
1799 {
1800         int i = broadcast;
1801
1802         /* Format the IPMB header data. */
1803         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1804         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1805         smi_msg->data[2] = ipmb_addr->channel;
1806         if (broadcast)
1807                 smi_msg->data[3] = 0;
1808         smi_msg->data[i+3] = ipmb_addr->slave_addr;
1809         smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1810         smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1811         smi_msg->data[i+6] = source_address;
1812         smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1813         smi_msg->data[i+8] = msg->cmd;
1814
1815         /* Now tack on the data to the message. */
1816         if (msg->data_len > 0)
1817                 memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1818         smi_msg->data_size = msg->data_len + 9;
1819
1820         /* Now calculate the checksum and tack it on. */
1821         smi_msg->data[i+smi_msg->data_size]
1822                 = ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1823
1824         /*
1825          * Add on the checksum size and the offset from the
1826          * broadcast.
1827          */
1828         smi_msg->data_size += 1 + i;
1829
1830         smi_msg->msgid = msgid;
1831 }
1832
1833 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1834                                   struct kernel_ipmi_msg *msg,
1835                                   struct ipmi_lan_addr  *lan_addr,
1836                                   long                  msgid,
1837                                   unsigned char         ipmb_seq,
1838                                   unsigned char         source_lun)
1839 {
1840         /* Format the IPMB header data. */
1841         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1842         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1843         smi_msg->data[2] = lan_addr->channel;
1844         smi_msg->data[3] = lan_addr->session_handle;
1845         smi_msg->data[4] = lan_addr->remote_SWID;
1846         smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1847         smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1848         smi_msg->data[7] = lan_addr->local_SWID;
1849         smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1850         smi_msg->data[9] = msg->cmd;
1851
1852         /* Now tack on the data to the message. */
1853         if (msg->data_len > 0)
1854                 memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1855         smi_msg->data_size = msg->data_len + 10;
1856
1857         /* Now calculate the checksum and tack it on. */
1858         smi_msg->data[smi_msg->data_size]
1859                 = ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1860
1861         /*
1862          * Add on the checksum size and the offset from the
1863          * broadcast.
1864          */
1865         smi_msg->data_size += 1;
1866
1867         smi_msg->msgid = msgid;
1868 }
1869
1870 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1871                                              struct ipmi_smi_msg *smi_msg,
1872                                              int priority)
1873 {
1874         if (intf->curr_msg) {
1875                 if (priority > 0)
1876                         list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1877                 else
1878                         list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1879                 smi_msg = NULL;
1880         } else {
1881                 intf->curr_msg = smi_msg;
1882         }
1883
1884         return smi_msg;
1885 }
1886
1887 static void smi_send(struct ipmi_smi *intf,
1888                      const struct ipmi_smi_handlers *handlers,
1889                      struct ipmi_smi_msg *smi_msg, int priority)
1890 {
1891         int run_to_completion = intf->run_to_completion;
1892         unsigned long flags = 0;
1893
1894         if (!run_to_completion)
1895                 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1896         smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1897
1898         if (!run_to_completion)
1899                 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1900
1901         if (smi_msg)
1902                 handlers->sender(intf->send_info, smi_msg);
1903 }
1904
1905 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1906 {
1907         return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1908                  && ((msg->cmd == IPMI_COLD_RESET_CMD)
1909                      || (msg->cmd == IPMI_WARM_RESET_CMD)))
1910                 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1911 }
1912
1913 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1914                               struct ipmi_addr       *addr,
1915                               long                   msgid,
1916                               struct kernel_ipmi_msg *msg,
1917                               struct ipmi_smi_msg    *smi_msg,
1918                               struct ipmi_recv_msg   *recv_msg,
1919                               int                    retries,
1920                               unsigned int           retry_time_ms)
1921 {
1922         struct ipmi_system_interface_addr *smi_addr;
1923
1924         if (msg->netfn & 1)
1925                 /* Responses are not allowed to the SMI. */
1926                 return -EINVAL;
1927
1928         smi_addr = (struct ipmi_system_interface_addr *) addr;
1929         if (smi_addr->lun > 3) {
1930                 ipmi_inc_stat(intf, sent_invalid_commands);
1931                 return -EINVAL;
1932         }
1933
1934         memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1935
1936         if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1937             && ((msg->cmd == IPMI_SEND_MSG_CMD)
1938                 || (msg->cmd == IPMI_GET_MSG_CMD)
1939                 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1940                 /*
1941                  * We don't let the user do these, since we manage
1942                  * the sequence numbers.
1943                  */
1944                 ipmi_inc_stat(intf, sent_invalid_commands);
1945                 return -EINVAL;
1946         }
1947
1948         if (is_maintenance_mode_cmd(msg)) {
1949                 unsigned long flags;
1950
1951                 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1952                 intf->auto_maintenance_timeout
1953                         = maintenance_mode_timeout_ms;
1954                 if (!intf->maintenance_mode
1955                     && !intf->maintenance_mode_enable) {
1956                         intf->maintenance_mode_enable = true;
1957                         maintenance_mode_update(intf);
1958                 }
1959                 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1960                                        flags);
1961         }
1962
1963         if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1964                 ipmi_inc_stat(intf, sent_invalid_commands);
1965                 return -EMSGSIZE;
1966         }
1967
1968         smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1969         smi_msg->data[1] = msg->cmd;
1970         smi_msg->msgid = msgid;
1971         smi_msg->user_data = recv_msg;
1972         if (msg->data_len > 0)
1973                 memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1974         smi_msg->data_size = msg->data_len + 2;
1975         ipmi_inc_stat(intf, sent_local_commands);
1976
1977         return 0;
1978 }
1979
1980 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1981                            struct ipmi_addr       *addr,
1982                            long                   msgid,
1983                            struct kernel_ipmi_msg *msg,
1984                            struct ipmi_smi_msg    *smi_msg,
1985                            struct ipmi_recv_msg   *recv_msg,
1986                            unsigned char          source_address,
1987                            unsigned char          source_lun,
1988                            int                    retries,
1989                            unsigned int           retry_time_ms)
1990 {
1991         struct ipmi_ipmb_addr *ipmb_addr;
1992         unsigned char ipmb_seq;
1993         long seqid;
1994         int broadcast = 0;
1995         struct ipmi_channel *chans;
1996         int rv = 0;
1997
1998         if (addr->channel >= IPMI_MAX_CHANNELS) {
1999                 ipmi_inc_stat(intf, sent_invalid_commands);
2000                 return -EINVAL;
2001         }
2002
2003         chans = READ_ONCE(intf->channel_list)->c;
2004
2005         if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
2006                 ipmi_inc_stat(intf, sent_invalid_commands);
2007                 return -EINVAL;
2008         }
2009
2010         if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
2011                 /*
2012                  * Broadcasts add a zero at the beginning of the
2013                  * message, but otherwise is the same as an IPMB
2014                  * address.
2015                  */
2016                 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
2017                 broadcast = 1;
2018                 retries = 0; /* Don't retry broadcasts. */
2019         }
2020
2021         /*
2022          * 9 for the header and 1 for the checksum, plus
2023          * possibly one for the broadcast.
2024          */
2025         if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
2026                 ipmi_inc_stat(intf, sent_invalid_commands);
2027                 return -EMSGSIZE;
2028         }
2029
2030         ipmb_addr = (struct ipmi_ipmb_addr *) addr;
2031         if (ipmb_addr->lun > 3) {
2032                 ipmi_inc_stat(intf, sent_invalid_commands);
2033                 return -EINVAL;
2034         }
2035
2036         memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
2037
2038         if (recv_msg->msg.netfn & 0x1) {
2039                 /*
2040                  * It's a response, so use the user's sequence
2041                  * from msgid.
2042                  */
2043                 ipmi_inc_stat(intf, sent_ipmb_responses);
2044                 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
2045                                 msgid, broadcast,
2046                                 source_address, source_lun);
2047
2048                 /*
2049                  * Save the receive message so we can use it
2050                  * to deliver the response.
2051                  */
2052                 smi_msg->user_data = recv_msg;
2053         } else {
2054                 /* It's a command, so get a sequence for it. */
2055                 unsigned long flags;
2056
2057                 spin_lock_irqsave(&intf->seq_lock, flags);
2058
2059                 if (is_maintenance_mode_cmd(msg))
2060                         intf->ipmb_maintenance_mode_timeout =
2061                                 maintenance_mode_timeout_ms;
2062
2063                 if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2064                         /* Different default in maintenance mode */
2065                         retry_time_ms = default_maintenance_retry_ms;
2066
2067                 /*
2068                  * Create a sequence number with a 1 second
2069                  * timeout and 4 retries.
2070                  */
2071                 rv = intf_next_seq(intf,
2072                                    recv_msg,
2073                                    retry_time_ms,
2074                                    retries,
2075                                    broadcast,
2076                                    &ipmb_seq,
2077                                    &seqid);
2078                 if (rv)
2079                         /*
2080                          * We have used up all the sequence numbers,
2081                          * probably, so abort.
2082                          */
2083                         goto out_err;
2084
2085                 ipmi_inc_stat(intf, sent_ipmb_commands);
2086
2087                 /*
2088                  * Store the sequence number in the message,
2089                  * so that when the send message response
2090                  * comes back we can start the timer.
2091                  */
2092                 format_ipmb_msg(smi_msg, msg, ipmb_addr,
2093                                 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2094                                 ipmb_seq, broadcast,
2095                                 source_address, source_lun);
2096
2097                 /*
2098                  * Copy the message into the recv message data, so we
2099                  * can retransmit it later if necessary.
2100                  */
2101                 memcpy(recv_msg->msg_data, smi_msg->data,
2102                        smi_msg->data_size);
2103                 recv_msg->msg.data = recv_msg->msg_data;
2104                 recv_msg->msg.data_len = smi_msg->data_size;
2105
2106                 /*
2107                  * We don't unlock until here, because we need
2108                  * to copy the completed message into the
2109                  * recv_msg before we release the lock.
2110                  * Otherwise, race conditions may bite us.  I
2111                  * know that's pretty paranoid, but I prefer
2112                  * to be correct.
2113                  */
2114 out_err:
2115                 spin_unlock_irqrestore(&intf->seq_lock, flags);
2116         }
2117
2118         return rv;
2119 }
2120
2121 static int i_ipmi_req_ipmb_direct(struct ipmi_smi        *intf,
2122                                   struct ipmi_addr       *addr,
2123                                   long                   msgid,
2124                                   struct kernel_ipmi_msg *msg,
2125                                   struct ipmi_smi_msg    *smi_msg,
2126                                   struct ipmi_recv_msg   *recv_msg,
2127                                   unsigned char          source_lun)
2128 {
2129         struct ipmi_ipmb_direct_addr *daddr;
2130         bool is_cmd = !(recv_msg->msg.netfn & 0x1);
2131
2132         if (!(intf->handlers->flags & IPMI_SMI_CAN_HANDLE_IPMB_DIRECT))
2133                 return -EAFNOSUPPORT;
2134
2135         /* Responses must have a completion code. */
2136         if (!is_cmd && msg->data_len < 1) {
2137                 ipmi_inc_stat(intf, sent_invalid_commands);
2138                 return -EINVAL;
2139         }
2140
2141         if ((msg->data_len + 4) > IPMI_MAX_MSG_LENGTH) {
2142                 ipmi_inc_stat(intf, sent_invalid_commands);
2143                 return -EMSGSIZE;
2144         }
2145
2146         daddr = (struct ipmi_ipmb_direct_addr *) addr;
2147         if (daddr->rq_lun > 3 || daddr->rs_lun > 3) {
2148                 ipmi_inc_stat(intf, sent_invalid_commands);
2149                 return -EINVAL;
2150         }
2151
2152         smi_msg->type = IPMI_SMI_MSG_TYPE_IPMB_DIRECT;
2153         smi_msg->msgid = msgid;
2154
2155         if (is_cmd) {
2156                 smi_msg->data[0] = msg->netfn << 2 | daddr->rs_lun;
2157                 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rq_lun;
2158         } else {
2159                 smi_msg->data[0] = msg->netfn << 2 | daddr->rq_lun;
2160                 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rs_lun;
2161         }
2162         smi_msg->data[1] = daddr->slave_addr;
2163         smi_msg->data[3] = msg->cmd;
2164
2165         memcpy(smi_msg->data + 4, msg->data, msg->data_len);
2166         smi_msg->data_size = msg->data_len + 4;
2167
2168         smi_msg->user_data = recv_msg;
2169
2170         return 0;
2171 }
2172
2173 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
2174                           struct ipmi_addr       *addr,
2175                           long                   msgid,
2176                           struct kernel_ipmi_msg *msg,
2177                           struct ipmi_smi_msg    *smi_msg,
2178                           struct ipmi_recv_msg   *recv_msg,
2179                           unsigned char          source_lun,
2180                           int                    retries,
2181                           unsigned int           retry_time_ms)
2182 {
2183         struct ipmi_lan_addr  *lan_addr;
2184         unsigned char ipmb_seq;
2185         long seqid;
2186         struct ipmi_channel *chans;
2187         int rv = 0;
2188
2189         if (addr->channel >= IPMI_MAX_CHANNELS) {
2190                 ipmi_inc_stat(intf, sent_invalid_commands);
2191                 return -EINVAL;
2192         }
2193
2194         chans = READ_ONCE(intf->channel_list)->c;
2195
2196         if ((chans[addr->channel].medium
2197                                 != IPMI_CHANNEL_MEDIUM_8023LAN)
2198                         && (chans[addr->channel].medium
2199                             != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2200                 ipmi_inc_stat(intf, sent_invalid_commands);
2201                 return -EINVAL;
2202         }
2203
2204         /* 11 for the header and 1 for the checksum. */
2205         if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2206                 ipmi_inc_stat(intf, sent_invalid_commands);
2207                 return -EMSGSIZE;
2208         }
2209
2210         lan_addr = (struct ipmi_lan_addr *) addr;
2211         if (lan_addr->lun > 3) {
2212                 ipmi_inc_stat(intf, sent_invalid_commands);
2213                 return -EINVAL;
2214         }
2215
2216         memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2217
2218         if (recv_msg->msg.netfn & 0x1) {
2219                 /*
2220                  * It's a response, so use the user's sequence
2221                  * from msgid.
2222                  */
2223                 ipmi_inc_stat(intf, sent_lan_responses);
2224                 format_lan_msg(smi_msg, msg, lan_addr, msgid,
2225                                msgid, source_lun);
2226
2227                 /*
2228                  * Save the receive message so we can use it
2229                  * to deliver the response.
2230                  */
2231                 smi_msg->user_data = recv_msg;
2232         } else {
2233                 /* It's a command, so get a sequence for it. */
2234                 unsigned long flags;
2235
2236                 spin_lock_irqsave(&intf->seq_lock, flags);
2237
2238                 /*
2239                  * Create a sequence number with a 1 second
2240                  * timeout and 4 retries.
2241                  */
2242                 rv = intf_next_seq(intf,
2243                                    recv_msg,
2244                                    retry_time_ms,
2245                                    retries,
2246                                    0,
2247                                    &ipmb_seq,
2248                                    &seqid);
2249                 if (rv)
2250                         /*
2251                          * We have used up all the sequence numbers,
2252                          * probably, so abort.
2253                          */
2254                         goto out_err;
2255
2256                 ipmi_inc_stat(intf, sent_lan_commands);
2257
2258                 /*
2259                  * Store the sequence number in the message,
2260                  * so that when the send message response
2261                  * comes back we can start the timer.
2262                  */
2263                 format_lan_msg(smi_msg, msg, lan_addr,
2264                                STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2265                                ipmb_seq, source_lun);
2266
2267                 /*
2268                  * Copy the message into the recv message data, so we
2269                  * can retransmit it later if necessary.
2270                  */
2271                 memcpy(recv_msg->msg_data, smi_msg->data,
2272                        smi_msg->data_size);
2273                 recv_msg->msg.data = recv_msg->msg_data;
2274                 recv_msg->msg.data_len = smi_msg->data_size;
2275
2276                 /*
2277                  * We don't unlock until here, because we need
2278                  * to copy the completed message into the
2279                  * recv_msg before we release the lock.
2280                  * Otherwise, race conditions may bite us.  I
2281                  * know that's pretty paranoid, but I prefer
2282                  * to be correct.
2283                  */
2284 out_err:
2285                 spin_unlock_irqrestore(&intf->seq_lock, flags);
2286         }
2287
2288         return rv;
2289 }
2290
2291 /*
2292  * Separate from ipmi_request so that the user does not have to be
2293  * supplied in certain circumstances (mainly at panic time).  If
2294  * messages are supplied, they will be freed, even if an error
2295  * occurs.
2296  */
2297 static int i_ipmi_request(struct ipmi_user     *user,
2298                           struct ipmi_smi      *intf,
2299                           struct ipmi_addr     *addr,
2300                           long                 msgid,
2301                           struct kernel_ipmi_msg *msg,
2302                           void                 *user_msg_data,
2303                           void                 *supplied_smi,
2304                           struct ipmi_recv_msg *supplied_recv,
2305                           int                  priority,
2306                           unsigned char        source_address,
2307                           unsigned char        source_lun,
2308                           int                  retries,
2309                           unsigned int         retry_time_ms)
2310 {
2311         struct ipmi_smi_msg *smi_msg;
2312         struct ipmi_recv_msg *recv_msg;
2313         int rv = 0;
2314
2315         if (user) {
2316                 if (atomic_add_return(1, &user->nr_msgs) > max_msgs_per_user) {
2317                         /* Decrement will happen at the end of the routine. */
2318                         rv = -EBUSY;
2319                         goto out;
2320                 }
2321         }
2322
2323         if (supplied_recv)
2324                 recv_msg = supplied_recv;
2325         else {
2326                 recv_msg = ipmi_alloc_recv_msg();
2327                 if (recv_msg == NULL) {
2328                         rv = -ENOMEM;
2329                         goto out;
2330                 }
2331         }
2332         recv_msg->user_msg_data = user_msg_data;
2333
2334         if (supplied_smi)
2335                 smi_msg = supplied_smi;
2336         else {
2337                 smi_msg = ipmi_alloc_smi_msg();
2338                 if (smi_msg == NULL) {
2339                         if (!supplied_recv)
2340                                 ipmi_free_recv_msg(recv_msg);
2341                         rv = -ENOMEM;
2342                         goto out;
2343                 }
2344         }
2345
2346         rcu_read_lock();
2347         if (intf->in_shutdown) {
2348                 rv = -ENODEV;
2349                 goto out_err;
2350         }
2351
2352         recv_msg->user = user;
2353         if (user)
2354                 /* The put happens when the message is freed. */
2355                 kref_get(&user->refcount);
2356         recv_msg->msgid = msgid;
2357         /*
2358          * Store the message to send in the receive message so timeout
2359          * responses can get the proper response data.
2360          */
2361         recv_msg->msg = *msg;
2362
2363         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2364                 rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2365                                         recv_msg, retries, retry_time_ms);
2366         } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2367                 rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2368                                      source_address, source_lun,
2369                                      retries, retry_time_ms);
2370         } else if (is_ipmb_direct_addr(addr)) {
2371                 rv = i_ipmi_req_ipmb_direct(intf, addr, msgid, msg, smi_msg,
2372                                             recv_msg, source_lun);
2373         } else if (is_lan_addr(addr)) {
2374                 rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2375                                     source_lun, retries, retry_time_ms);
2376         } else {
2377             /* Unknown address type. */
2378                 ipmi_inc_stat(intf, sent_invalid_commands);
2379                 rv = -EINVAL;
2380         }
2381
2382         if (rv) {
2383 out_err:
2384                 ipmi_free_smi_msg(smi_msg);
2385                 ipmi_free_recv_msg(recv_msg);
2386         } else {
2387                 dev_dbg(intf->si_dev, "Send: %*ph\n",
2388                         smi_msg->data_size, smi_msg->data);
2389
2390                 smi_send(intf, intf->handlers, smi_msg, priority);
2391         }
2392         rcu_read_unlock();
2393
2394 out:
2395         if (rv && user)
2396                 atomic_dec(&user->nr_msgs);
2397         return rv;
2398 }
2399
2400 static int check_addr(struct ipmi_smi  *intf,
2401                       struct ipmi_addr *addr,
2402                       unsigned char    *saddr,
2403                       unsigned char    *lun)
2404 {
2405         if (addr->channel >= IPMI_MAX_CHANNELS)
2406                 return -EINVAL;
2407         addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2408         *lun = intf->addrinfo[addr->channel].lun;
2409         *saddr = intf->addrinfo[addr->channel].address;
2410         return 0;
2411 }
2412
2413 int ipmi_request_settime(struct ipmi_user *user,
2414                          struct ipmi_addr *addr,
2415                          long             msgid,
2416                          struct kernel_ipmi_msg  *msg,
2417                          void             *user_msg_data,
2418                          int              priority,
2419                          int              retries,
2420                          unsigned int     retry_time_ms)
2421 {
2422         unsigned char saddr = 0, lun = 0;
2423         int rv, index;
2424
2425         if (!user)
2426                 return -EINVAL;
2427
2428         user = acquire_ipmi_user(user, &index);
2429         if (!user)
2430                 return -ENODEV;
2431
2432         rv = check_addr(user->intf, addr, &saddr, &lun);
2433         if (!rv)
2434                 rv = i_ipmi_request(user,
2435                                     user->intf,
2436                                     addr,
2437                                     msgid,
2438                                     msg,
2439                                     user_msg_data,
2440                                     NULL, NULL,
2441                                     priority,
2442                                     saddr,
2443                                     lun,
2444                                     retries,
2445                                     retry_time_ms);
2446
2447         release_ipmi_user(user, index);
2448         return rv;
2449 }
2450 EXPORT_SYMBOL(ipmi_request_settime);
2451
2452 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2453                              struct ipmi_addr     *addr,
2454                              long                 msgid,
2455                              struct kernel_ipmi_msg *msg,
2456                              void                 *user_msg_data,
2457                              void                 *supplied_smi,
2458                              struct ipmi_recv_msg *supplied_recv,
2459                              int                  priority)
2460 {
2461         unsigned char saddr = 0, lun = 0;
2462         int rv, index;
2463
2464         if (!user)
2465                 return -EINVAL;
2466
2467         user = acquire_ipmi_user(user, &index);
2468         if (!user)
2469                 return -ENODEV;
2470
2471         rv = check_addr(user->intf, addr, &saddr, &lun);
2472         if (!rv)
2473                 rv = i_ipmi_request(user,
2474                                     user->intf,
2475                                     addr,
2476                                     msgid,
2477                                     msg,
2478                                     user_msg_data,
2479                                     supplied_smi,
2480                                     supplied_recv,
2481                                     priority,
2482                                     saddr,
2483                                     lun,
2484                                     -1, 0);
2485
2486         release_ipmi_user(user, index);
2487         return rv;
2488 }
2489 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2490
2491 static void bmc_device_id_handler(struct ipmi_smi *intf,
2492                                   struct ipmi_recv_msg *msg)
2493 {
2494         int rv;
2495
2496         if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2497                         || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2498                         || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2499                 dev_warn(intf->si_dev,
2500                          "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2501                          msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2502                 return;
2503         }
2504
2505         if (msg->msg.data[0]) {
2506                 dev_warn(intf->si_dev, "device id fetch failed: 0x%2.2x\n",
2507                          msg->msg.data[0]);
2508                 intf->bmc->dyn_id_set = 0;
2509                 goto out;
2510         }
2511
2512         rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2513                         msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2514         if (rv) {
2515                 dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2516                 /* record completion code when error */
2517                 intf->bmc->cc = msg->msg.data[0];
2518                 intf->bmc->dyn_id_set = 0;
2519         } else {
2520                 /*
2521                  * Make sure the id data is available before setting
2522                  * dyn_id_set.
2523                  */
2524                 smp_wmb();
2525                 intf->bmc->dyn_id_set = 1;
2526         }
2527 out:
2528         wake_up(&intf->waitq);
2529 }
2530
2531 static int
2532 send_get_device_id_cmd(struct ipmi_smi *intf)
2533 {
2534         struct ipmi_system_interface_addr si;
2535         struct kernel_ipmi_msg msg;
2536
2537         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2538         si.channel = IPMI_BMC_CHANNEL;
2539         si.lun = 0;
2540
2541         msg.netfn = IPMI_NETFN_APP_REQUEST;
2542         msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2543         msg.data = NULL;
2544         msg.data_len = 0;
2545
2546         return i_ipmi_request(NULL,
2547                               intf,
2548                               (struct ipmi_addr *) &si,
2549                               0,
2550                               &msg,
2551                               intf,
2552                               NULL,
2553                               NULL,
2554                               0,
2555                               intf->addrinfo[0].address,
2556                               intf->addrinfo[0].lun,
2557                               -1, 0);
2558 }
2559
2560 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2561 {
2562         int rv;
2563         unsigned int retry_count = 0;
2564
2565         intf->null_user_handler = bmc_device_id_handler;
2566
2567 retry:
2568         bmc->cc = 0;
2569         bmc->dyn_id_set = 2;
2570
2571         rv = send_get_device_id_cmd(intf);
2572         if (rv)
2573                 goto out_reset_handler;
2574
2575         wait_event(intf->waitq, bmc->dyn_id_set != 2);
2576
2577         if (!bmc->dyn_id_set) {
2578                 if (bmc->cc != IPMI_CC_NO_ERROR &&
2579                     ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2580                         msleep(500);
2581                         dev_warn(intf->si_dev,
2582                             "BMC returned 0x%2.2x, retry get bmc device id\n",
2583                             bmc->cc);
2584                         goto retry;
2585                 }
2586
2587                 rv = -EIO; /* Something went wrong in the fetch. */
2588         }
2589
2590         /* dyn_id_set makes the id data available. */
2591         smp_rmb();
2592
2593 out_reset_handler:
2594         intf->null_user_handler = NULL;
2595
2596         return rv;
2597 }
2598
2599 /*
2600  * Fetch the device id for the bmc/interface.  You must pass in either
2601  * bmc or intf, this code will get the other one.  If the data has
2602  * been recently fetched, this will just use the cached data.  Otherwise
2603  * it will run a new fetch.
2604  *
2605  * Except for the first time this is called (in ipmi_add_smi()),
2606  * this will always return good data;
2607  */
2608 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2609                                struct ipmi_device_id *id,
2610                                bool *guid_set, guid_t *guid, int intf_num)
2611 {
2612         int rv = 0;
2613         int prev_dyn_id_set, prev_guid_set;
2614         bool intf_set = intf != NULL;
2615
2616         if (!intf) {
2617                 mutex_lock(&bmc->dyn_mutex);
2618 retry_bmc_lock:
2619                 if (list_empty(&bmc->intfs)) {
2620                         mutex_unlock(&bmc->dyn_mutex);
2621                         return -ENOENT;
2622                 }
2623                 intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2624                                         bmc_link);
2625                 kref_get(&intf->refcount);
2626                 mutex_unlock(&bmc->dyn_mutex);
2627                 mutex_lock(&intf->bmc_reg_mutex);
2628                 mutex_lock(&bmc->dyn_mutex);
2629                 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2630                                              bmc_link)) {
2631                         mutex_unlock(&intf->bmc_reg_mutex);
2632                         kref_put(&intf->refcount, intf_free);
2633                         goto retry_bmc_lock;
2634                 }
2635         } else {
2636                 mutex_lock(&intf->bmc_reg_mutex);
2637                 bmc = intf->bmc;
2638                 mutex_lock(&bmc->dyn_mutex);
2639                 kref_get(&intf->refcount);
2640         }
2641
2642         /* If we have a valid and current ID, just return that. */
2643         if (intf->in_bmc_register ||
2644             (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2645                 goto out_noprocessing;
2646
2647         prev_guid_set = bmc->dyn_guid_set;
2648         __get_guid(intf);
2649
2650         prev_dyn_id_set = bmc->dyn_id_set;
2651         rv = __get_device_id(intf, bmc);
2652         if (rv)
2653                 goto out;
2654
2655         /*
2656          * The guid, device id, manufacturer id, and product id should
2657          * not change on a BMC.  If it does we have to do some dancing.
2658          */
2659         if (!intf->bmc_registered
2660             || (!prev_guid_set && bmc->dyn_guid_set)
2661             || (!prev_dyn_id_set && bmc->dyn_id_set)
2662             || (prev_guid_set && bmc->dyn_guid_set
2663                 && !guid_equal(&bmc->guid, &bmc->fetch_guid))
2664             || bmc->id.device_id != bmc->fetch_id.device_id
2665             || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2666             || bmc->id.product_id != bmc->fetch_id.product_id) {
2667                 struct ipmi_device_id id = bmc->fetch_id;
2668                 int guid_set = bmc->dyn_guid_set;
2669                 guid_t guid;
2670
2671                 guid = bmc->fetch_guid;
2672                 mutex_unlock(&bmc->dyn_mutex);
2673
2674                 __ipmi_bmc_unregister(intf);
2675                 /* Fill in the temporary BMC for good measure. */
2676                 intf->bmc->id = id;
2677                 intf->bmc->dyn_guid_set = guid_set;
2678                 intf->bmc->guid = guid;
2679                 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2680                         need_waiter(intf); /* Retry later on an error. */
2681                 else
2682                         __scan_channels(intf, &id);
2683
2684
2685                 if (!intf_set) {
2686                         /*
2687                          * We weren't given the interface on the
2688                          * command line, so restart the operation on
2689                          * the next interface for the BMC.
2690                          */
2691                         mutex_unlock(&intf->bmc_reg_mutex);
2692                         mutex_lock(&bmc->dyn_mutex);
2693                         goto retry_bmc_lock;
2694                 }
2695
2696                 /* We have a new BMC, set it up. */
2697                 bmc = intf->bmc;
2698                 mutex_lock(&bmc->dyn_mutex);
2699                 goto out_noprocessing;
2700         } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2701                 /* Version info changes, scan the channels again. */
2702                 __scan_channels(intf, &bmc->fetch_id);
2703
2704         bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2705
2706 out:
2707         if (rv && prev_dyn_id_set) {
2708                 rv = 0; /* Ignore failures if we have previous data. */
2709                 bmc->dyn_id_set = prev_dyn_id_set;
2710         }
2711         if (!rv) {
2712                 bmc->id = bmc->fetch_id;
2713                 if (bmc->dyn_guid_set)
2714                         bmc->guid = bmc->fetch_guid;
2715                 else if (prev_guid_set)
2716                         /*
2717                          * The guid used to be valid and it failed to fetch,
2718                          * just use the cached value.
2719                          */
2720                         bmc->dyn_guid_set = prev_guid_set;
2721         }
2722 out_noprocessing:
2723         if (!rv) {
2724                 if (id)
2725                         *id = bmc->id;
2726
2727                 if (guid_set)
2728                         *guid_set = bmc->dyn_guid_set;
2729
2730                 if (guid && bmc->dyn_guid_set)
2731                         *guid =  bmc->guid;
2732         }
2733
2734         mutex_unlock(&bmc->dyn_mutex);
2735         mutex_unlock(&intf->bmc_reg_mutex);
2736
2737         kref_put(&intf->refcount, intf_free);
2738         return rv;
2739 }
2740
2741 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2742                              struct ipmi_device_id *id,
2743                              bool *guid_set, guid_t *guid)
2744 {
2745         return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2746 }
2747
2748 static ssize_t device_id_show(struct device *dev,
2749                               struct device_attribute *attr,
2750                               char *buf)
2751 {
2752         struct bmc_device *bmc = to_bmc_device(dev);
2753         struct ipmi_device_id id;
2754         int rv;
2755
2756         rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2757         if (rv)
2758                 return rv;
2759
2760         return sysfs_emit(buf, "%u\n", id.device_id);
2761 }
2762 static DEVICE_ATTR_RO(device_id);
2763
2764 static ssize_t provides_device_sdrs_show(struct device *dev,
2765                                          struct device_attribute *attr,
2766                                          char *buf)
2767 {
2768         struct bmc_device *bmc = to_bmc_device(dev);
2769         struct ipmi_device_id id;
2770         int rv;
2771
2772         rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2773         if (rv)
2774                 return rv;
2775
2776         return sysfs_emit(buf, "%u\n", (id.device_revision & 0x80) >> 7);
2777 }
2778 static DEVICE_ATTR_RO(provides_device_sdrs);
2779
2780 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2781                              char *buf)
2782 {
2783         struct bmc_device *bmc = to_bmc_device(dev);
2784         struct ipmi_device_id id;
2785         int rv;
2786
2787         rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2788         if (rv)
2789                 return rv;
2790
2791         return sysfs_emit(buf, "%u\n", id.device_revision & 0x0F);
2792 }
2793 static DEVICE_ATTR_RO(revision);
2794
2795 static ssize_t firmware_revision_show(struct device *dev,
2796                                       struct device_attribute *attr,
2797                                       char *buf)
2798 {
2799         struct bmc_device *bmc = to_bmc_device(dev);
2800         struct ipmi_device_id id;
2801         int rv;
2802
2803         rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2804         if (rv)
2805                 return rv;
2806
2807         return sysfs_emit(buf, "%u.%x\n", id.firmware_revision_1,
2808                         id.firmware_revision_2);
2809 }
2810 static DEVICE_ATTR_RO(firmware_revision);
2811
2812 static ssize_t ipmi_version_show(struct device *dev,
2813                                  struct device_attribute *attr,
2814                                  char *buf)
2815 {
2816         struct bmc_device *bmc = to_bmc_device(dev);
2817         struct ipmi_device_id id;
2818         int rv;
2819
2820         rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2821         if (rv)
2822                 return rv;
2823
2824         return sysfs_emit(buf, "%u.%u\n",
2825                         ipmi_version_major(&id),
2826                         ipmi_version_minor(&id));
2827 }
2828 static DEVICE_ATTR_RO(ipmi_version);
2829
2830 static ssize_t add_dev_support_show(struct device *dev,
2831                                     struct device_attribute *attr,
2832                                     char *buf)
2833 {
2834         struct bmc_device *bmc = to_bmc_device(dev);
2835         struct ipmi_device_id id;
2836         int rv;
2837
2838         rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2839         if (rv)
2840                 return rv;
2841
2842         return sysfs_emit(buf, "0x%02x\n", id.additional_device_support);
2843 }
2844 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2845                    NULL);
2846
2847 static ssize_t manufacturer_id_show(struct device *dev,
2848                                     struct device_attribute *attr,
2849                                     char *buf)
2850 {
2851         struct bmc_device *bmc = to_bmc_device(dev);
2852         struct ipmi_device_id id;
2853         int rv;
2854
2855         rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2856         if (rv)
2857                 return rv;
2858
2859         return sysfs_emit(buf, "0x%6.6x\n", id.manufacturer_id);
2860 }
2861 static DEVICE_ATTR_RO(manufacturer_id);
2862
2863 static ssize_t product_id_show(struct device *dev,
2864                                struct device_attribute *attr,
2865                                char *buf)
2866 {
2867         struct bmc_device *bmc = to_bmc_device(dev);
2868         struct ipmi_device_id id;
2869         int rv;
2870
2871         rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2872         if (rv)
2873                 return rv;
2874
2875         return sysfs_emit(buf, "0x%4.4x\n", id.product_id);
2876 }
2877 static DEVICE_ATTR_RO(product_id);
2878
2879 static ssize_t aux_firmware_rev_show(struct device *dev,
2880                                      struct device_attribute *attr,
2881                                      char *buf)
2882 {
2883         struct bmc_device *bmc = to_bmc_device(dev);
2884         struct ipmi_device_id id;
2885         int rv;
2886
2887         rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2888         if (rv)
2889                 return rv;
2890
2891         return sysfs_emit(buf, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2892                         id.aux_firmware_revision[3],
2893                         id.aux_firmware_revision[2],
2894                         id.aux_firmware_revision[1],
2895                         id.aux_firmware_revision[0]);
2896 }
2897 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2898
2899 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2900                          char *buf)
2901 {
2902         struct bmc_device *bmc = to_bmc_device(dev);
2903         bool guid_set;
2904         guid_t guid;
2905         int rv;
2906
2907         rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2908         if (rv)
2909                 return rv;
2910         if (!guid_set)
2911                 return -ENOENT;
2912
2913         return sysfs_emit(buf, "%pUl\n", &guid);
2914 }
2915 static DEVICE_ATTR_RO(guid);
2916
2917 static struct attribute *bmc_dev_attrs[] = {
2918         &dev_attr_device_id.attr,
2919         &dev_attr_provides_device_sdrs.attr,
2920         &dev_attr_revision.attr,
2921         &dev_attr_firmware_revision.attr,
2922         &dev_attr_ipmi_version.attr,
2923         &dev_attr_additional_device_support.attr,
2924         &dev_attr_manufacturer_id.attr,
2925         &dev_attr_product_id.attr,
2926         &dev_attr_aux_firmware_revision.attr,
2927         &dev_attr_guid.attr,
2928         NULL
2929 };
2930
2931 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2932                                        struct attribute *attr, int idx)
2933 {
2934         struct device *dev = kobj_to_dev(kobj);
2935         struct bmc_device *bmc = to_bmc_device(dev);
2936         umode_t mode = attr->mode;
2937         int rv;
2938
2939         if (attr == &dev_attr_aux_firmware_revision.attr) {
2940                 struct ipmi_device_id id;
2941
2942                 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2943                 return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2944         }
2945         if (attr == &dev_attr_guid.attr) {
2946                 bool guid_set;
2947
2948                 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2949                 return (!rv && guid_set) ? mode : 0;
2950         }
2951         return mode;
2952 }
2953
2954 static const struct attribute_group bmc_dev_attr_group = {
2955         .attrs          = bmc_dev_attrs,
2956         .is_visible     = bmc_dev_attr_is_visible,
2957 };
2958
2959 static const struct attribute_group *bmc_dev_attr_groups[] = {
2960         &bmc_dev_attr_group,
2961         NULL
2962 };
2963
2964 static const struct device_type bmc_device_type = {
2965         .groups         = bmc_dev_attr_groups,
2966 };
2967
2968 static int __find_bmc_guid(struct device *dev, const void *data)
2969 {
2970         const guid_t *guid = data;
2971         struct bmc_device *bmc;
2972         int rv;
2973
2974         if (dev->type != &bmc_device_type)
2975                 return 0;
2976
2977         bmc = to_bmc_device(dev);
2978         rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2979         if (rv)
2980                 rv = kref_get_unless_zero(&bmc->usecount);
2981         return rv;
2982 }
2983
2984 /*
2985  * Returns with the bmc's usecount incremented, if it is non-NULL.
2986  */
2987 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2988                                              guid_t *guid)
2989 {
2990         struct device *dev;
2991         struct bmc_device *bmc = NULL;
2992
2993         dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2994         if (dev) {
2995                 bmc = to_bmc_device(dev);
2996                 put_device(dev);
2997         }
2998         return bmc;
2999 }
3000
3001 struct prod_dev_id {
3002         unsigned int  product_id;
3003         unsigned char device_id;
3004 };
3005
3006 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
3007 {
3008         const struct prod_dev_id *cid = data;
3009         struct bmc_device *bmc;
3010         int rv;
3011
3012         if (dev->type != &bmc_device_type)
3013                 return 0;
3014
3015         bmc = to_bmc_device(dev);
3016         rv = (bmc->id.product_id == cid->product_id
3017               && bmc->id.device_id == cid->device_id);
3018         if (rv)
3019                 rv = kref_get_unless_zero(&bmc->usecount);
3020         return rv;
3021 }
3022
3023 /*
3024  * Returns with the bmc's usecount incremented, if it is non-NULL.
3025  */
3026 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
3027         struct device_driver *drv,
3028         unsigned int product_id, unsigned char device_id)
3029 {
3030         struct prod_dev_id id = {
3031                 .product_id = product_id,
3032                 .device_id = device_id,
3033         };
3034         struct device *dev;
3035         struct bmc_device *bmc = NULL;
3036
3037         dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
3038         if (dev) {
3039                 bmc = to_bmc_device(dev);
3040                 put_device(dev);
3041         }
3042         return bmc;
3043 }
3044
3045 static DEFINE_IDA(ipmi_bmc_ida);
3046
3047 static void
3048 release_bmc_device(struct device *dev)
3049 {
3050         kfree(to_bmc_device(dev));
3051 }
3052
3053 static void cleanup_bmc_work(struct work_struct *work)
3054 {
3055         struct bmc_device *bmc = container_of(work, struct bmc_device,
3056                                               remove_work);
3057         int id = bmc->pdev.id; /* Unregister overwrites id */
3058
3059         platform_device_unregister(&bmc->pdev);
3060         ida_simple_remove(&ipmi_bmc_ida, id);
3061 }
3062
3063 static void
3064 cleanup_bmc_device(struct kref *ref)
3065 {
3066         struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
3067
3068         /*
3069          * Remove the platform device in a work queue to avoid issues
3070          * with removing the device attributes while reading a device
3071          * attribute.
3072          */
3073         queue_work(remove_work_wq, &bmc->remove_work);
3074 }
3075
3076 /*
3077  * Must be called with intf->bmc_reg_mutex held.
3078  */
3079 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
3080 {
3081         struct bmc_device *bmc = intf->bmc;
3082
3083         if (!intf->bmc_registered)
3084                 return;
3085
3086         sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3087         sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
3088         kfree(intf->my_dev_name);
3089         intf->my_dev_name = NULL;
3090
3091         mutex_lock(&bmc->dyn_mutex);
3092         list_del(&intf->bmc_link);
3093         mutex_unlock(&bmc->dyn_mutex);
3094         intf->bmc = &intf->tmp_bmc;
3095         kref_put(&bmc->usecount, cleanup_bmc_device);
3096         intf->bmc_registered = false;
3097 }
3098
3099 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
3100 {
3101         mutex_lock(&intf->bmc_reg_mutex);
3102         __ipmi_bmc_unregister(intf);
3103         mutex_unlock(&intf->bmc_reg_mutex);
3104 }
3105
3106 /*
3107  * Must be called with intf->bmc_reg_mutex held.
3108  */
3109 static int __ipmi_bmc_register(struct ipmi_smi *intf,
3110                                struct ipmi_device_id *id,
3111                                bool guid_set, guid_t *guid, int intf_num)
3112 {
3113         int               rv;
3114         struct bmc_device *bmc;
3115         struct bmc_device *old_bmc;
3116
3117         /*
3118          * platform_device_register() can cause bmc_reg_mutex to
3119          * be claimed because of the is_visible functions of
3120          * the attributes.  Eliminate possible recursion and
3121          * release the lock.
3122          */
3123         intf->in_bmc_register = true;
3124         mutex_unlock(&intf->bmc_reg_mutex);
3125
3126         /*
3127          * Try to find if there is an bmc_device struct
3128          * representing the interfaced BMC already
3129          */
3130         mutex_lock(&ipmidriver_mutex);
3131         if (guid_set)
3132                 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3133         else
3134                 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3135                                                     id->product_id,
3136                                                     id->device_id);
3137
3138         /*
3139          * If there is already an bmc_device, free the new one,
3140          * otherwise register the new BMC device
3141          */
3142         if (old_bmc) {
3143                 bmc = old_bmc;
3144                 /*
3145                  * Note: old_bmc already has usecount incremented by
3146                  * the BMC find functions.
3147                  */
3148                 intf->bmc = old_bmc;
3149                 mutex_lock(&bmc->dyn_mutex);
3150                 list_add_tail(&intf->bmc_link, &bmc->intfs);
3151                 mutex_unlock(&bmc->dyn_mutex);
3152
3153                 dev_info(intf->si_dev,
3154                          "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3155                          bmc->id.manufacturer_id,
3156                          bmc->id.product_id,
3157                          bmc->id.device_id);
3158         } else {
3159                 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3160                 if (!bmc) {
3161                         rv = -ENOMEM;
3162                         goto out;
3163                 }
3164                 INIT_LIST_HEAD(&bmc->intfs);
3165                 mutex_init(&bmc->dyn_mutex);
3166                 INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3167
3168                 bmc->id = *id;
3169                 bmc->dyn_id_set = 1;
3170                 bmc->dyn_guid_set = guid_set;
3171                 bmc->guid = *guid;
3172                 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3173
3174                 bmc->pdev.name = "ipmi_bmc";
3175
3176                 rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3177                 if (rv < 0) {
3178                         kfree(bmc);
3179                         goto out;
3180                 }
3181
3182                 bmc->pdev.dev.driver = &ipmidriver.driver;
3183                 bmc->pdev.id = rv;
3184                 bmc->pdev.dev.release = release_bmc_device;
3185                 bmc->pdev.dev.type = &bmc_device_type;
3186                 kref_init(&bmc->usecount);
3187
3188                 intf->bmc = bmc;
3189                 mutex_lock(&bmc->dyn_mutex);
3190                 list_add_tail(&intf->bmc_link, &bmc->intfs);
3191                 mutex_unlock(&bmc->dyn_mutex);
3192
3193                 rv = platform_device_register(&bmc->pdev);
3194                 if (rv) {
3195                         dev_err(intf->si_dev,
3196                                 "Unable to register bmc device: %d\n",
3197                                 rv);
3198                         goto out_list_del;
3199                 }
3200
3201                 dev_info(intf->si_dev,
3202                          "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3203                          bmc->id.manufacturer_id,
3204                          bmc->id.product_id,
3205                          bmc->id.device_id);
3206         }
3207
3208         /*
3209          * create symlink from system interface device to bmc device
3210          * and back.
3211          */
3212         rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3213         if (rv) {
3214                 dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3215                 goto out_put_bmc;
3216         }
3217
3218         if (intf_num == -1)
3219                 intf_num = intf->intf_num;
3220         intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3221         if (!intf->my_dev_name) {
3222                 rv = -ENOMEM;
3223                 dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3224                         rv);
3225                 goto out_unlink1;
3226         }
3227
3228         rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3229                                intf->my_dev_name);
3230         if (rv) {
3231                 dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3232                         rv);
3233                 goto out_free_my_dev_name;
3234         }
3235
3236         intf->bmc_registered = true;
3237
3238 out:
3239         mutex_unlock(&ipmidriver_mutex);
3240         mutex_lock(&intf->bmc_reg_mutex);
3241         intf->in_bmc_register = false;
3242         return rv;
3243
3244
3245 out_free_my_dev_name:
3246         kfree(intf->my_dev_name);
3247         intf->my_dev_name = NULL;
3248
3249 out_unlink1:
3250         sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3251
3252 out_put_bmc:
3253         mutex_lock(&bmc->dyn_mutex);
3254         list_del(&intf->bmc_link);
3255         mutex_unlock(&bmc->dyn_mutex);
3256         intf->bmc = &intf->tmp_bmc;
3257         kref_put(&bmc->usecount, cleanup_bmc_device);
3258         goto out;
3259
3260 out_list_del:
3261         mutex_lock(&bmc->dyn_mutex);
3262         list_del(&intf->bmc_link);
3263         mutex_unlock(&bmc->dyn_mutex);
3264         intf->bmc = &intf->tmp_bmc;
3265         put_device(&bmc->pdev.dev);
3266         goto out;
3267 }
3268
3269 static int
3270 send_guid_cmd(struct ipmi_smi *intf, int chan)
3271 {
3272         struct kernel_ipmi_msg            msg;
3273         struct ipmi_system_interface_addr si;
3274
3275         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3276         si.channel = IPMI_BMC_CHANNEL;
3277         si.lun = 0;
3278
3279         msg.netfn = IPMI_NETFN_APP_REQUEST;
3280         msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3281         msg.data = NULL;
3282         msg.data_len = 0;
3283         return i_ipmi_request(NULL,
3284                               intf,
3285                               (struct ipmi_addr *) &si,
3286                               0,
3287                               &msg,
3288                               intf,
3289                               NULL,
3290                               NULL,
3291                               0,
3292                               intf->addrinfo[0].address,
3293                               intf->addrinfo[0].lun,
3294                               -1, 0);
3295 }
3296
3297 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3298 {
3299         struct bmc_device *bmc = intf->bmc;
3300
3301         if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3302             || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3303             || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3304                 /* Not for me */
3305                 return;
3306
3307         if (msg->msg.data[0] != 0) {
3308                 /* Error from getting the GUID, the BMC doesn't have one. */
3309                 bmc->dyn_guid_set = 0;
3310                 goto out;
3311         }
3312
3313         if (msg->msg.data_len < UUID_SIZE + 1) {
3314                 bmc->dyn_guid_set = 0;
3315                 dev_warn(intf->si_dev,
3316                          "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
3317                          msg->msg.data_len, UUID_SIZE + 1);
3318                 goto out;
3319         }
3320
3321         import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3322         /*
3323          * Make sure the guid data is available before setting
3324          * dyn_guid_set.
3325          */
3326         smp_wmb();
3327         bmc->dyn_guid_set = 1;
3328  out:
3329         wake_up(&intf->waitq);
3330 }
3331
3332 static void __get_guid(struct ipmi_smi *intf)
3333 {
3334         int rv;
3335         struct bmc_device *bmc = intf->bmc;
3336
3337         bmc->dyn_guid_set = 2;
3338         intf->null_user_handler = guid_handler;
3339         rv = send_guid_cmd(intf, 0);
3340         if (rv)
3341                 /* Send failed, no GUID available. */
3342                 bmc->dyn_guid_set = 0;
3343         else
3344                 wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3345
3346         /* dyn_guid_set makes the guid data available. */
3347         smp_rmb();
3348
3349         intf->null_user_handler = NULL;
3350 }
3351
3352 static int
3353 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3354 {
3355         struct kernel_ipmi_msg            msg;
3356         unsigned char                     data[1];
3357         struct ipmi_system_interface_addr si;
3358
3359         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3360         si.channel = IPMI_BMC_CHANNEL;
3361         si.lun = 0;
3362
3363         msg.netfn = IPMI_NETFN_APP_REQUEST;
3364         msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3365         msg.data = data;
3366         msg.data_len = 1;
3367         data[0] = chan;
3368         return i_ipmi_request(NULL,
3369                               intf,
3370                               (struct ipmi_addr *) &si,
3371                               0,
3372                               &msg,
3373                               intf,
3374                               NULL,
3375                               NULL,
3376                               0,
3377                               intf->addrinfo[0].address,
3378                               intf->addrinfo[0].lun,
3379                               -1, 0);
3380 }
3381
3382 static void
3383 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3384 {
3385         int rv = 0;
3386         int ch;
3387         unsigned int set = intf->curr_working_cset;
3388         struct ipmi_channel *chans;
3389
3390         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3391             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3392             && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3393                 /* It's the one we want */
3394                 if (msg->msg.data[0] != 0) {
3395                         /* Got an error from the channel, just go on. */
3396                         if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3397                                 /*
3398                                  * If the MC does not support this
3399                                  * command, that is legal.  We just
3400                                  * assume it has one IPMB at channel
3401                                  * zero.
3402                                  */
3403                                 intf->wchannels[set].c[0].medium
3404                                         = IPMI_CHANNEL_MEDIUM_IPMB;
3405                                 intf->wchannels[set].c[0].protocol
3406                                         = IPMI_CHANNEL_PROTOCOL_IPMB;
3407
3408                                 intf->channel_list = intf->wchannels + set;
3409                                 intf->channels_ready = true;
3410                                 wake_up(&intf->waitq);
3411                                 goto out;
3412                         }
3413                         goto next_channel;
3414                 }
3415                 if (msg->msg.data_len < 4) {
3416                         /* Message not big enough, just go on. */
3417                         goto next_channel;
3418                 }
3419                 ch = intf->curr_channel;
3420                 chans = intf->wchannels[set].c;
3421                 chans[ch].medium = msg->msg.data[2] & 0x7f;
3422                 chans[ch].protocol = msg->msg.data[3] & 0x1f;
3423
3424  next_channel:
3425                 intf->curr_channel++;
3426                 if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3427                         intf->channel_list = intf->wchannels + set;
3428                         intf->channels_ready = true;
3429                         wake_up(&intf->waitq);
3430                 } else {
3431                         intf->channel_list = intf->wchannels + set;
3432                         intf->channels_ready = true;
3433                         rv = send_channel_info_cmd(intf, intf->curr_channel);
3434                 }
3435
3436                 if (rv) {
3437                         /* Got an error somehow, just give up. */
3438                         dev_warn(intf->si_dev,
3439                                  "Error sending channel information for channel %d: %d\n",
3440                                  intf->curr_channel, rv);
3441
3442                         intf->channel_list = intf->wchannels + set;
3443                         intf->channels_ready = true;
3444                         wake_up(&intf->waitq);
3445                 }
3446         }
3447  out:
3448         return;
3449 }
3450
3451 /*
3452  * Must be holding intf->bmc_reg_mutex to call this.
3453  */
3454 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3455 {
3456         int rv;
3457
3458         if (ipmi_version_major(id) > 1
3459                         || (ipmi_version_major(id) == 1
3460                             && ipmi_version_minor(id) >= 5)) {
3461                 unsigned int set;
3462
3463                 /*
3464                  * Start scanning the channels to see what is
3465                  * available.
3466                  */
3467                 set = !intf->curr_working_cset;
3468                 intf->curr_working_cset = set;
3469                 memset(&intf->wchannels[set], 0,
3470                        sizeof(struct ipmi_channel_set));
3471
3472                 intf->null_user_handler = channel_handler;
3473                 intf->curr_channel = 0;
3474                 rv = send_channel_info_cmd(intf, 0);
3475                 if (rv) {
3476                         dev_warn(intf->si_dev,
3477                                  "Error sending channel information for channel 0, %d\n",
3478                                  rv);
3479                         intf->null_user_handler = NULL;
3480                         return -EIO;
3481                 }
3482
3483                 /* Wait for the channel info to be read. */
3484                 wait_event(intf->waitq, intf->channels_ready);
3485                 intf->null_user_handler = NULL;
3486         } else {
3487                 unsigned int set = intf->curr_working_cset;
3488
3489                 /* Assume a single IPMB channel at zero. */
3490                 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3491                 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3492                 intf->channel_list = intf->wchannels + set;
3493                 intf->channels_ready = true;
3494         }
3495
3496         return 0;
3497 }
3498
3499 static void ipmi_poll(struct ipmi_smi *intf)
3500 {
3501         if (intf->handlers->poll)
3502                 intf->handlers->poll(intf->send_info);
3503         /* In case something came in */
3504         handle_new_recv_msgs(intf);
3505 }
3506
3507 void ipmi_poll_interface(struct ipmi_user *user)
3508 {
3509         ipmi_poll(user->intf);
3510 }
3511 EXPORT_SYMBOL(ipmi_poll_interface);
3512
3513 static ssize_t nr_users_show(struct device *dev,
3514                              struct device_attribute *attr,
3515                              char *buf)
3516 {
3517         struct ipmi_smi *intf = container_of(attr,
3518                          struct ipmi_smi, nr_users_devattr);
3519
3520         return sysfs_emit(buf, "%d\n", atomic_read(&intf->nr_users));
3521 }
3522 static DEVICE_ATTR_RO(nr_users);
3523
3524 static ssize_t nr_msgs_show(struct device *dev,
3525                             struct device_attribute *attr,
3526                             char *buf)
3527 {
3528         struct ipmi_smi *intf = container_of(attr,
3529                          struct ipmi_smi, nr_msgs_devattr);
3530         struct ipmi_user *user;
3531         int index;
3532         unsigned int count = 0;
3533
3534         index = srcu_read_lock(&intf->users_srcu);
3535         list_for_each_entry_rcu(user, &intf->users, link)
3536                 count += atomic_read(&user->nr_msgs);
3537         srcu_read_unlock(&intf->users_srcu, index);
3538
3539         return sysfs_emit(buf, "%u\n", count);
3540 }
3541 static DEVICE_ATTR_RO(nr_msgs);
3542
3543 static void redo_bmc_reg(struct work_struct *work)
3544 {
3545         struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3546                                              bmc_reg_work);
3547
3548         if (!intf->in_shutdown)
3549                 bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3550
3551         kref_put(&intf->refcount, intf_free);
3552 }
3553
3554 int ipmi_add_smi(struct module         *owner,
3555                  const struct ipmi_smi_handlers *handlers,
3556                  void                  *send_info,
3557                  struct device         *si_dev,
3558                  unsigned char         slave_addr)
3559 {
3560         int              i, j;
3561         int              rv;
3562         struct ipmi_smi *intf, *tintf;
3563         struct list_head *link;
3564         struct ipmi_device_id id;
3565
3566         /*
3567          * Make sure the driver is actually initialized, this handles
3568          * problems with initialization order.
3569          */
3570         rv = ipmi_init_msghandler();
3571         if (rv)
3572                 return rv;
3573
3574         intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3575         if (!intf)
3576                 return -ENOMEM;
3577
3578         rv = init_srcu_struct(&intf->users_srcu);
3579         if (rv) {
3580                 kfree(intf);
3581                 return rv;
3582         }
3583
3584         intf->owner = owner;
3585         intf->bmc = &intf->tmp_bmc;
3586         INIT_LIST_HEAD(&intf->bmc->intfs);
3587         mutex_init(&intf->bmc->dyn_mutex);
3588         INIT_LIST_HEAD(&intf->bmc_link);
3589         mutex_init(&intf->bmc_reg_mutex);
3590         intf->intf_num = -1; /* Mark it invalid for now. */
3591         kref_init(&intf->refcount);
3592         INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3593         intf->si_dev = si_dev;
3594         for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3595                 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3596                 intf->addrinfo[j].lun = 2;
3597         }
3598         if (slave_addr != 0)
3599                 intf->addrinfo[0].address = slave_addr;
3600         INIT_LIST_HEAD(&intf->users);
3601         atomic_set(&intf->nr_users, 0);
3602         intf->handlers = handlers;
3603         intf->send_info = send_info;
3604         spin_lock_init(&intf->seq_lock);
3605         for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3606                 intf->seq_table[j].inuse = 0;
3607                 intf->seq_table[j].seqid = 0;
3608         }
3609         intf->curr_seq = 0;
3610         spin_lock_init(&intf->waiting_rcv_msgs_lock);
3611         INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3612         tasklet_setup(&intf->recv_tasklet,
3613                      smi_recv_tasklet);
3614         atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3615         spin_lock_init(&intf->xmit_msgs_lock);
3616         INIT_LIST_HEAD(&intf->xmit_msgs);
3617         INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3618         spin_lock_init(&intf->events_lock);
3619         spin_lock_init(&intf->watch_lock);
3620         atomic_set(&intf->event_waiters, 0);
3621         intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3622         INIT_LIST_HEAD(&intf->waiting_events);
3623         intf->waiting_events_count = 0;
3624         mutex_init(&intf->cmd_rcvrs_mutex);
3625         spin_lock_init(&intf->maintenance_mode_lock);
3626         INIT_LIST_HEAD(&intf->cmd_rcvrs);
3627         init_waitqueue_head(&intf->waitq);
3628         for (i = 0; i < IPMI_NUM_STATS; i++)
3629                 atomic_set(&intf->stats[i], 0);
3630
3631         mutex_lock(&ipmi_interfaces_mutex);
3632         /* Look for a hole in the numbers. */
3633         i = 0;
3634         link = &ipmi_interfaces;
3635         list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3636                                 ipmi_interfaces_mutex_held()) {
3637                 if (tintf->intf_num != i) {
3638                         link = &tintf->link;
3639                         break;
3640                 }
3641                 i++;
3642         }
3643         /* Add the new interface in numeric order. */
3644         if (i == 0)
3645                 list_add_rcu(&intf->link, &ipmi_interfaces);
3646         else
3647                 list_add_tail_rcu(&intf->link, link);
3648
3649         rv = handlers->start_processing(send_info, intf);
3650         if (rv)
3651                 goto out_err;
3652
3653         rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3654         if (rv) {
3655                 dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3656                 goto out_err_started;
3657         }
3658
3659         mutex_lock(&intf->bmc_reg_mutex);
3660         rv = __scan_channels(intf, &id);
3661         mutex_unlock(&intf->bmc_reg_mutex);
3662         if (rv)
3663                 goto out_err_bmc_reg;
3664
3665         intf->nr_users_devattr = dev_attr_nr_users;
3666         sysfs_attr_init(&intf->nr_users_devattr.attr);
3667         rv = device_create_file(intf->si_dev, &intf->nr_users_devattr);
3668         if (rv)
3669                 goto out_err_bmc_reg;
3670
3671         intf->nr_msgs_devattr = dev_attr_nr_msgs;
3672         sysfs_attr_init(&intf->nr_msgs_devattr.attr);
3673         rv = device_create_file(intf->si_dev, &intf->nr_msgs_devattr);
3674         if (rv) {
3675                 device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3676                 goto out_err_bmc_reg;
3677         }
3678
3679         /*
3680          * Keep memory order straight for RCU readers.  Make
3681          * sure everything else is committed to memory before
3682          * setting intf_num to mark the interface valid.
3683          */
3684         smp_wmb();
3685         intf->intf_num = i;
3686         mutex_unlock(&ipmi_interfaces_mutex);
3687
3688         /* After this point the interface is legal to use. */
3689         call_smi_watchers(i, intf->si_dev);
3690
3691         return 0;
3692
3693  out_err_bmc_reg:
3694         ipmi_bmc_unregister(intf);
3695  out_err_started:
3696         if (intf->handlers->shutdown)
3697                 intf->handlers->shutdown(intf->send_info);
3698  out_err:
3699         list_del_rcu(&intf->link);
3700         mutex_unlock(&ipmi_interfaces_mutex);
3701         synchronize_srcu(&ipmi_interfaces_srcu);
3702         cleanup_srcu_struct(&intf->users_srcu);
3703         kref_put(&intf->refcount, intf_free);
3704
3705         return rv;
3706 }
3707 EXPORT_SYMBOL(ipmi_add_smi);
3708
3709 static void deliver_smi_err_response(struct ipmi_smi *intf,
3710                                      struct ipmi_smi_msg *msg,
3711                                      unsigned char err)
3712 {
3713         msg->rsp[0] = msg->data[0] | 4;
3714         msg->rsp[1] = msg->data[1];
3715         msg->rsp[2] = err;
3716         msg->rsp_size = 3;
3717         /* It's an error, so it will never requeue, no need to check return. */
3718         handle_one_recv_msg(intf, msg);
3719 }
3720
3721 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3722 {
3723         int              i;
3724         struct seq_table *ent;
3725         struct ipmi_smi_msg *msg;
3726         struct list_head *entry;
3727         struct list_head tmplist;
3728
3729         /* Clear out our transmit queues and hold the messages. */
3730         INIT_LIST_HEAD(&tmplist);
3731         list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3732         list_splice_tail(&intf->xmit_msgs, &tmplist);
3733
3734         /* Current message first, to preserve order */
3735         while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3736                 /* Wait for the message to clear out. */
3737                 schedule_timeout(1);
3738         }
3739
3740         /* No need for locks, the interface is down. */
3741
3742         /*
3743          * Return errors for all pending messages in queue and in the
3744          * tables waiting for remote responses.
3745          */
3746         while (!list_empty(&tmplist)) {
3747                 entry = tmplist.next;
3748                 list_del(entry);
3749                 msg = list_entry(entry, struct ipmi_smi_msg, link);
3750                 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3751         }
3752
3753         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3754                 ent = &intf->seq_table[i];
3755                 if (!ent->inuse)
3756                         continue;
3757                 deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3758         }
3759 }
3760
3761 void ipmi_unregister_smi(struct ipmi_smi *intf)
3762 {
3763         struct ipmi_smi_watcher *w;
3764         int intf_num, index;
3765
3766         if (!intf)
3767                 return;
3768         intf_num = intf->intf_num;
3769         mutex_lock(&ipmi_interfaces_mutex);
3770         intf->intf_num = -1;
3771         intf->in_shutdown = true;
3772         list_del_rcu(&intf->link);
3773         mutex_unlock(&ipmi_interfaces_mutex);
3774         synchronize_srcu(&ipmi_interfaces_srcu);
3775
3776         /* At this point no users can be added to the interface. */
3777
3778         device_remove_file(intf->si_dev, &intf->nr_msgs_devattr);
3779         device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3780
3781         /*
3782          * Call all the watcher interfaces to tell them that
3783          * an interface is going away.
3784          */
3785         mutex_lock(&smi_watchers_mutex);
3786         list_for_each_entry(w, &smi_watchers, link)
3787                 w->smi_gone(intf_num);
3788         mutex_unlock(&smi_watchers_mutex);
3789
3790         index = srcu_read_lock(&intf->users_srcu);
3791         while (!list_empty(&intf->users)) {
3792                 struct ipmi_user *user =
3793                         container_of(list_next_rcu(&intf->users),
3794                                      struct ipmi_user, link);
3795
3796                 _ipmi_destroy_user(user);
3797         }
3798         srcu_read_unlock(&intf->users_srcu, index);
3799
3800         if (intf->handlers->shutdown)
3801                 intf->handlers->shutdown(intf->send_info);
3802
3803         cleanup_smi_msgs(intf);
3804
3805         ipmi_bmc_unregister(intf);
3806
3807         cleanup_srcu_struct(&intf->users_srcu);
3808         kref_put(&intf->refcount, intf_free);
3809 }
3810 EXPORT_SYMBOL(ipmi_unregister_smi);
3811
3812 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3813                                    struct ipmi_smi_msg *msg)
3814 {
3815         struct ipmi_ipmb_addr ipmb_addr;
3816         struct ipmi_recv_msg  *recv_msg;
3817
3818         /*
3819          * This is 11, not 10, because the response must contain a
3820          * completion code.
3821          */
3822         if (msg->rsp_size < 11) {
3823                 /* Message not big enough, just ignore it. */
3824                 ipmi_inc_stat(intf, invalid_ipmb_responses);
3825                 return 0;
3826         }
3827
3828         if (msg->rsp[2] != 0) {
3829                 /* An error getting the response, just ignore it. */
3830                 return 0;
3831         }
3832
3833         ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3834         ipmb_addr.slave_addr = msg->rsp[6];
3835         ipmb_addr.channel = msg->rsp[3] & 0x0f;
3836         ipmb_addr.lun = msg->rsp[7] & 3;
3837
3838         /*
3839          * It's a response from a remote entity.  Look up the sequence
3840          * number and handle the response.
3841          */
3842         if (intf_find_seq(intf,
3843                           msg->rsp[7] >> 2,
3844                           msg->rsp[3] & 0x0f,
3845                           msg->rsp[8],
3846                           (msg->rsp[4] >> 2) & (~1),
3847                           (struct ipmi_addr *) &ipmb_addr,
3848                           &recv_msg)) {
3849                 /*
3850                  * We were unable to find the sequence number,
3851                  * so just nuke the message.
3852                  */
3853                 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3854                 return 0;
3855         }
3856
3857         memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3858         /*
3859          * The other fields matched, so no need to set them, except
3860          * for netfn, which needs to be the response that was
3861          * returned, not the request value.
3862          */
3863         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3864         recv_msg->msg.data = recv_msg->msg_data;
3865         recv_msg->msg.data_len = msg->rsp_size - 10;
3866         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3867         if (deliver_response(intf, recv_msg))
3868                 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3869         else
3870                 ipmi_inc_stat(intf, handled_ipmb_responses);
3871
3872         return 0;
3873 }
3874
3875 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3876                                    struct ipmi_smi_msg *msg)
3877 {
3878         struct cmd_rcvr          *rcvr;
3879         int                      rv = 0;
3880         unsigned char            netfn;
3881         unsigned char            cmd;
3882         unsigned char            chan;
3883         struct ipmi_user         *user = NULL;
3884         struct ipmi_ipmb_addr    *ipmb_addr;
3885         struct ipmi_recv_msg     *recv_msg;
3886
3887         if (msg->rsp_size < 10) {
3888                 /* Message not big enough, just ignore it. */
3889                 ipmi_inc_stat(intf, invalid_commands);
3890                 return 0;
3891         }
3892
3893         if (msg->rsp[2] != 0) {
3894                 /* An error getting the response, just ignore it. */
3895                 return 0;
3896         }
3897
3898         netfn = msg->rsp[4] >> 2;
3899         cmd = msg->rsp[8];
3900         chan = msg->rsp[3] & 0xf;
3901
3902         rcu_read_lock();
3903         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3904         if (rcvr) {
3905                 user = rcvr->user;
3906                 kref_get(&user->refcount);
3907         } else
3908                 user = NULL;
3909         rcu_read_unlock();
3910
3911         if (user == NULL) {
3912                 /* We didn't find a user, deliver an error response. */
3913                 ipmi_inc_stat(intf, unhandled_commands);
3914
3915                 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3916                 msg->data[1] = IPMI_SEND_MSG_CMD;
3917                 msg->data[2] = msg->rsp[3];
3918                 msg->data[3] = msg->rsp[6];
3919                 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3920                 msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3921                 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3922                 /* rqseq/lun */
3923                 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3924                 msg->data[8] = msg->rsp[8]; /* cmd */
3925                 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3926                 msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3927                 msg->data_size = 11;
3928
3929                 dev_dbg(intf->si_dev, "Invalid command: %*ph\n",
3930                         msg->data_size, msg->data);
3931
3932                 rcu_read_lock();
3933                 if (!intf->in_shutdown) {
3934                         smi_send(intf, intf->handlers, msg, 0);
3935                         /*
3936                          * We used the message, so return the value
3937                          * that causes it to not be freed or
3938                          * queued.
3939                          */
3940                         rv = -1;
3941                 }
3942                 rcu_read_unlock();
3943         } else {
3944                 recv_msg = ipmi_alloc_recv_msg();
3945                 if (!recv_msg) {
3946                         /*
3947                          * We couldn't allocate memory for the
3948                          * message, so requeue it for handling
3949                          * later.
3950                          */
3951                         rv = 1;
3952                         kref_put(&user->refcount, free_user);
3953                 } else {
3954                         /* Extract the source address from the data. */
3955                         ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3956                         ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3957                         ipmb_addr->slave_addr = msg->rsp[6];
3958                         ipmb_addr->lun = msg->rsp[7] & 3;
3959                         ipmb_addr->channel = msg->rsp[3] & 0xf;
3960
3961                         /*
3962                          * Extract the rest of the message information
3963                          * from the IPMB header.
3964                          */
3965                         recv_msg->user = user;
3966                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3967                         recv_msg->msgid = msg->rsp[7] >> 2;
3968                         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3969                         recv_msg->msg.cmd = msg->rsp[8];
3970                         recv_msg->msg.data = recv_msg->msg_data;
3971
3972                         /*
3973                          * We chop off 10, not 9 bytes because the checksum
3974                          * at the end also needs to be removed.
3975                          */
3976                         recv_msg->msg.data_len = msg->rsp_size - 10;
3977                         memcpy(recv_msg->msg_data, &msg->rsp[9],
3978                                msg->rsp_size - 10);
3979                         if (deliver_response(intf, recv_msg))
3980                                 ipmi_inc_stat(intf, unhandled_commands);
3981                         else
3982                                 ipmi_inc_stat(intf, handled_commands);
3983                 }
3984         }
3985
3986         return rv;
3987 }
3988
3989 static int handle_ipmb_direct_rcv_cmd(struct ipmi_smi *intf,
3990                                       struct ipmi_smi_msg *msg)
3991 {
3992         struct cmd_rcvr          *rcvr;
3993         int                      rv = 0;
3994         struct ipmi_user         *user = NULL;
3995         struct ipmi_ipmb_direct_addr *daddr;
3996         struct ipmi_recv_msg     *recv_msg;
3997         unsigned char netfn = msg->rsp[0] >> 2;
3998         unsigned char cmd = msg->rsp[3];
3999
4000         rcu_read_lock();
4001         /* We always use channel 0 for direct messages. */
4002         rcvr = find_cmd_rcvr(intf, netfn, cmd, 0);
4003         if (rcvr) {
4004                 user = rcvr->user;
4005                 kref_get(&user->refcount);
4006         } else
4007                 user = NULL;
4008         rcu_read_unlock();
4009
4010         if (user == NULL) {
4011                 /* We didn't find a user, deliver an error response. */
4012                 ipmi_inc_stat(intf, unhandled_commands);
4013
4014                 msg->data[0] = (netfn + 1) << 2;
4015                 msg->data[0] |= msg->rsp[2] & 0x3; /* rqLUN */
4016                 msg->data[1] = msg->rsp[1]; /* Addr */
4017                 msg->data[2] = msg->rsp[2] & ~0x3; /* rqSeq */
4018                 msg->data[2] |= msg->rsp[0] & 0x3; /* rsLUN */
4019                 msg->data[3] = cmd;
4020                 msg->data[4] = IPMI_INVALID_CMD_COMPLETION_CODE;
4021                 msg->data_size = 5;
4022
4023                 rcu_read_lock();
4024                 if (!intf->in_shutdown) {
4025                         smi_send(intf, intf->handlers, msg, 0);
4026                         /*
4027                          * We used the message, so return the value
4028                          * that causes it to not be freed or
4029                          * queued.
4030                          */
4031                         rv = -1;
4032                 }
4033                 rcu_read_unlock();
4034         } else {
4035                 recv_msg = ipmi_alloc_recv_msg();
4036                 if (!recv_msg) {
4037                         /*
4038                          * We couldn't allocate memory for the
4039                          * message, so requeue it for handling
4040                          * later.
4041                          */
4042                         rv = 1;
4043                         kref_put(&user->refcount, free_user);
4044                 } else {
4045                         /* Extract the source address from the data. */
4046                         daddr = (struct ipmi_ipmb_direct_addr *)&recv_msg->addr;
4047                         daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4048                         daddr->channel = 0;
4049                         daddr->slave_addr = msg->rsp[1];
4050                         daddr->rs_lun = msg->rsp[0] & 3;
4051                         daddr->rq_lun = msg->rsp[2] & 3;
4052
4053                         /*
4054                          * Extract the rest of the message information
4055                          * from the IPMB header.
4056                          */
4057                         recv_msg->user = user;
4058                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4059                         recv_msg->msgid = (msg->rsp[2] >> 2);
4060                         recv_msg->msg.netfn = msg->rsp[0] >> 2;
4061                         recv_msg->msg.cmd = msg->rsp[3];
4062                         recv_msg->msg.data = recv_msg->msg_data;
4063
4064                         recv_msg->msg.data_len = msg->rsp_size - 4;
4065                         memcpy(recv_msg->msg_data, msg->rsp + 4,
4066                                msg->rsp_size - 4);
4067                         if (deliver_response(intf, recv_msg))
4068                                 ipmi_inc_stat(intf, unhandled_commands);
4069                         else
4070                                 ipmi_inc_stat(intf, handled_commands);
4071                 }
4072         }
4073
4074         return rv;
4075 }
4076
4077 static int handle_ipmb_direct_rcv_rsp(struct ipmi_smi *intf,
4078                                       struct ipmi_smi_msg *msg)
4079 {
4080         struct ipmi_recv_msg *recv_msg;
4081         struct ipmi_ipmb_direct_addr *daddr;
4082
4083         recv_msg = msg->user_data;
4084         if (recv_msg == NULL) {
4085                 dev_warn(intf->si_dev,
4086                          "IPMI direct message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4087                 return 0;
4088         }
4089
4090         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4091         recv_msg->msgid = msg->msgid;
4092         daddr = (struct ipmi_ipmb_direct_addr *) &recv_msg->addr;
4093         daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4094         daddr->channel = 0;
4095         daddr->slave_addr = msg->rsp[1];
4096         daddr->rq_lun = msg->rsp[0] & 3;
4097         daddr->rs_lun = msg->rsp[2] & 3;
4098         recv_msg->msg.netfn = msg->rsp[0] >> 2;
4099         recv_msg->msg.cmd = msg->rsp[3];
4100         memcpy(recv_msg->msg_data, &msg->rsp[4], msg->rsp_size - 4);
4101         recv_msg->msg.data = recv_msg->msg_data;
4102         recv_msg->msg.data_len = msg->rsp_size - 4;
4103         deliver_local_response(intf, recv_msg);
4104
4105         return 0;
4106 }
4107
4108 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
4109                                   struct ipmi_smi_msg *msg)
4110 {
4111         struct ipmi_lan_addr  lan_addr;
4112         struct ipmi_recv_msg  *recv_msg;
4113
4114
4115         /*
4116          * This is 13, not 12, because the response must contain a
4117          * completion code.
4118          */
4119         if (msg->rsp_size < 13) {
4120                 /* Message not big enough, just ignore it. */
4121                 ipmi_inc_stat(intf, invalid_lan_responses);
4122                 return 0;
4123         }
4124
4125         if (msg->rsp[2] != 0) {
4126                 /* An error getting the response, just ignore it. */
4127                 return 0;
4128         }
4129
4130         lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
4131         lan_addr.session_handle = msg->rsp[4];
4132         lan_addr.remote_SWID = msg->rsp[8];
4133         lan_addr.local_SWID = msg->rsp[5];
4134         lan_addr.channel = msg->rsp[3] & 0x0f;
4135         lan_addr.privilege = msg->rsp[3] >> 4;
4136         lan_addr.lun = msg->rsp[9] & 3;
4137
4138         /*
4139          * It's a response from a remote entity.  Look up the sequence
4140          * number and handle the response.
4141          */
4142         if (intf_find_seq(intf,
4143                           msg->rsp[9] >> 2,
4144                           msg->rsp[3] & 0x0f,
4145                           msg->rsp[10],
4146                           (msg->rsp[6] >> 2) & (~1),
4147                           (struct ipmi_addr *) &lan_addr,
4148                           &recv_msg)) {
4149                 /*
4150                  * We were unable to find the sequence number,
4151                  * so just nuke the message.
4152                  */
4153                 ipmi_inc_stat(intf, unhandled_lan_responses);
4154                 return 0;
4155         }
4156
4157         memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
4158         /*
4159          * The other fields matched, so no need to set them, except
4160          * for netfn, which needs to be the response that was
4161          * returned, not the request value.
4162          */
4163         recv_msg->msg.netfn = msg->rsp[6] >> 2;
4164         recv_msg->msg.data = recv_msg->msg_data;
4165         recv_msg->msg.data_len = msg->rsp_size - 12;
4166         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4167         if (deliver_response(intf, recv_msg))
4168                 ipmi_inc_stat(intf, unhandled_lan_responses);
4169         else
4170                 ipmi_inc_stat(intf, handled_lan_responses);
4171
4172         return 0;
4173 }
4174
4175 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
4176                                   struct ipmi_smi_msg *msg)
4177 {
4178         struct cmd_rcvr          *rcvr;
4179         int                      rv = 0;
4180         unsigned char            netfn;
4181         unsigned char            cmd;
4182         unsigned char            chan;
4183         struct ipmi_user         *user = NULL;
4184         struct ipmi_lan_addr     *lan_addr;
4185         struct ipmi_recv_msg     *recv_msg;
4186
4187         if (msg->rsp_size < 12) {
4188                 /* Message not big enough, just ignore it. */
4189                 ipmi_inc_stat(intf, invalid_commands);
4190                 return 0;
4191         }
4192
4193         if (msg->rsp[2] != 0) {
4194                 /* An error getting the response, just ignore it. */
4195                 return 0;
4196         }
4197
4198         netfn = msg->rsp[6] >> 2;
4199         cmd = msg->rsp[10];
4200         chan = msg->rsp[3] & 0xf;
4201
4202         rcu_read_lock();
4203         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4204         if (rcvr) {
4205                 user = rcvr->user;
4206                 kref_get(&user->refcount);
4207         } else
4208                 user = NULL;
4209         rcu_read_unlock();
4210
4211         if (user == NULL) {
4212                 /* We didn't find a user, just give up. */
4213                 ipmi_inc_stat(intf, unhandled_commands);
4214
4215                 /*
4216                  * Don't do anything with these messages, just allow
4217                  * them to be freed.
4218                  */
4219                 rv = 0;
4220         } else {
4221                 recv_msg = ipmi_alloc_recv_msg();
4222                 if (!recv_msg) {
4223                         /*
4224                          * We couldn't allocate memory for the
4225                          * message, so requeue it for handling later.
4226                          */
4227                         rv = 1;
4228                         kref_put(&user->refcount, free_user);
4229                 } else {
4230                         /* Extract the source address from the data. */
4231                         lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
4232                         lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
4233                         lan_addr->session_handle = msg->rsp[4];
4234                         lan_addr->remote_SWID = msg->rsp[8];
4235                         lan_addr->local_SWID = msg->rsp[5];
4236                         lan_addr->lun = msg->rsp[9] & 3;
4237                         lan_addr->channel = msg->rsp[3] & 0xf;
4238                         lan_addr->privilege = msg->rsp[3] >> 4;
4239
4240                         /*
4241                          * Extract the rest of the message information
4242                          * from the IPMB header.
4243                          */
4244                         recv_msg->user = user;
4245                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4246                         recv_msg->msgid = msg->rsp[9] >> 2;
4247                         recv_msg->msg.netfn = msg->rsp[6] >> 2;
4248                         recv_msg->msg.cmd = msg->rsp[10];
4249                         recv_msg->msg.data = recv_msg->msg_data;
4250
4251                         /*
4252                          * We chop off 12, not 11 bytes because the checksum
4253                          * at the end also needs to be removed.
4254                          */
4255                         recv_msg->msg.data_len = msg->rsp_size - 12;
4256                         memcpy(recv_msg->msg_data, &msg->rsp[11],
4257                                msg->rsp_size - 12);
4258                         if (deliver_response(intf, recv_msg))
4259                                 ipmi_inc_stat(intf, unhandled_commands);
4260                         else
4261                                 ipmi_inc_stat(intf, handled_commands);
4262                 }
4263         }
4264
4265         return rv;
4266 }
4267
4268 /*
4269  * This routine will handle "Get Message" command responses with
4270  * channels that use an OEM Medium. The message format belongs to
4271  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
4272  * Chapter 22, sections 22.6 and 22.24 for more details.
4273  */
4274 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
4275                                   struct ipmi_smi_msg *msg)
4276 {
4277         struct cmd_rcvr       *rcvr;
4278         int                   rv = 0;
4279         unsigned char         netfn;
4280         unsigned char         cmd;
4281         unsigned char         chan;
4282         struct ipmi_user *user = NULL;
4283         struct ipmi_system_interface_addr *smi_addr;
4284         struct ipmi_recv_msg  *recv_msg;
4285
4286         /*
4287          * We expect the OEM SW to perform error checking
4288          * so we just do some basic sanity checks
4289          */
4290         if (msg->rsp_size < 4) {
4291                 /* Message not big enough, just ignore it. */
4292                 ipmi_inc_stat(intf, invalid_commands);
4293                 return 0;
4294         }
4295
4296         if (msg->rsp[2] != 0) {
4297                 /* An error getting the response, just ignore it. */
4298                 return 0;
4299         }
4300
4301         /*
4302          * This is an OEM Message so the OEM needs to know how
4303          * handle the message. We do no interpretation.
4304          */
4305         netfn = msg->rsp[0] >> 2;
4306         cmd = msg->rsp[1];
4307         chan = msg->rsp[3] & 0xf;
4308
4309         rcu_read_lock();
4310         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4311         if (rcvr) {
4312                 user = rcvr->user;
4313                 kref_get(&user->refcount);
4314         } else
4315                 user = NULL;
4316         rcu_read_unlock();
4317
4318         if (user == NULL) {
4319                 /* We didn't find a user, just give up. */
4320                 ipmi_inc_stat(intf, unhandled_commands);
4321
4322                 /*
4323                  * Don't do anything with these messages, just allow
4324                  * them to be freed.
4325                  */
4326
4327                 rv = 0;
4328         } else {
4329                 recv_msg = ipmi_alloc_recv_msg();
4330                 if (!recv_msg) {
4331                         /*
4332                          * We couldn't allocate memory for the
4333                          * message, so requeue it for handling
4334                          * later.
4335                          */
4336                         rv = 1;
4337                         kref_put(&user->refcount, free_user);
4338                 } else {
4339                         /*
4340                          * OEM Messages are expected to be delivered via
4341                          * the system interface to SMS software.  We might
4342                          * need to visit this again depending on OEM
4343                          * requirements
4344                          */
4345                         smi_addr = ((struct ipmi_system_interface_addr *)
4346                                     &recv_msg->addr);
4347                         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4348                         smi_addr->channel = IPMI_BMC_CHANNEL;
4349                         smi_addr->lun = msg->rsp[0] & 3;
4350
4351                         recv_msg->user = user;
4352                         recv_msg->user_msg_data = NULL;
4353                         recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4354                         recv_msg->msg.netfn = msg->rsp[0] >> 2;
4355                         recv_msg->msg.cmd = msg->rsp[1];
4356                         recv_msg->msg.data = recv_msg->msg_data;
4357
4358                         /*
4359                          * The message starts at byte 4 which follows the
4360                          * the Channel Byte in the "GET MESSAGE" command
4361                          */
4362                         recv_msg->msg.data_len = msg->rsp_size - 4;
4363                         memcpy(recv_msg->msg_data, &msg->rsp[4],
4364                                msg->rsp_size - 4);
4365                         if (deliver_response(intf, recv_msg))
4366                                 ipmi_inc_stat(intf, unhandled_commands);
4367                         else
4368                                 ipmi_inc_stat(intf, handled_commands);
4369                 }
4370         }
4371
4372         return rv;
4373 }
4374
4375 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4376                                      struct ipmi_smi_msg  *msg)
4377 {
4378         struct ipmi_system_interface_addr *smi_addr;
4379
4380         recv_msg->msgid = 0;
4381         smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4382         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4383         smi_addr->channel = IPMI_BMC_CHANNEL;
4384         smi_addr->lun = msg->rsp[0] & 3;
4385         recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4386         recv_msg->msg.netfn = msg->rsp[0] >> 2;
4387         recv_msg->msg.cmd = msg->rsp[1];
4388         memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4389         recv_msg->msg.data = recv_msg->msg_data;
4390         recv_msg->msg.data_len = msg->rsp_size - 3;
4391 }
4392
4393 static int handle_read_event_rsp(struct ipmi_smi *intf,
4394                                  struct ipmi_smi_msg *msg)
4395 {
4396         struct ipmi_recv_msg *recv_msg, *recv_msg2;
4397         struct list_head     msgs;
4398         struct ipmi_user     *user;
4399         int rv = 0, deliver_count = 0, index;
4400         unsigned long        flags;
4401
4402         if (msg->rsp_size < 19) {
4403                 /* Message is too small to be an IPMB event. */
4404                 ipmi_inc_stat(intf, invalid_events);
4405                 return 0;
4406         }
4407
4408         if (msg->rsp[2] != 0) {
4409                 /* An error getting the event, just ignore it. */
4410                 return 0;
4411         }
4412
4413         INIT_LIST_HEAD(&msgs);
4414
4415         spin_lock_irqsave(&intf->events_lock, flags);
4416
4417         ipmi_inc_stat(intf, events);
4418
4419         /*
4420          * Allocate and fill in one message for every user that is
4421          * getting events.
4422          */
4423         index = srcu_read_lock(&intf->users_srcu);
4424         list_for_each_entry_rcu(user, &intf->users, link) {
4425                 if (!user->gets_events)
4426                         continue;
4427
4428                 recv_msg = ipmi_alloc_recv_msg();
4429                 if (!recv_msg) {
4430                         rcu_read_unlock();
4431                         list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4432                                                  link) {
4433                                 list_del(&recv_msg->link);
4434                                 ipmi_free_recv_msg(recv_msg);
4435                         }
4436                         /*
4437                          * We couldn't allocate memory for the
4438                          * message, so requeue it for handling
4439                          * later.
4440                          */
4441                         rv = 1;
4442                         goto out;
4443                 }
4444
4445                 deliver_count++;
4446
4447                 copy_event_into_recv_msg(recv_msg, msg);
4448                 recv_msg->user = user;
4449                 kref_get(&user->refcount);
4450                 list_add_tail(&recv_msg->link, &msgs);
4451         }
4452         srcu_read_unlock(&intf->users_srcu, index);
4453
4454         if (deliver_count) {
4455                 /* Now deliver all the messages. */
4456                 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4457                         list_del(&recv_msg->link);
4458                         deliver_local_response(intf, recv_msg);
4459                 }
4460         } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4461                 /*
4462                  * No one to receive the message, put it in queue if there's
4463                  * not already too many things in the queue.
4464                  */
4465                 recv_msg = ipmi_alloc_recv_msg();
4466                 if (!recv_msg) {
4467                         /*
4468                          * We couldn't allocate memory for the
4469                          * message, so requeue it for handling
4470                          * later.
4471                          */
4472                         rv = 1;
4473                         goto out;
4474                 }
4475
4476                 copy_event_into_recv_msg(recv_msg, msg);
4477                 list_add_tail(&recv_msg->link, &intf->waiting_events);
4478                 intf->waiting_events_count++;
4479         } else if (!intf->event_msg_printed) {
4480                 /*
4481                  * There's too many things in the queue, discard this
4482                  * message.
4483                  */
4484                 dev_warn(intf->si_dev,
4485                          "Event queue full, discarding incoming events\n");
4486                 intf->event_msg_printed = 1;
4487         }
4488
4489  out:
4490         spin_unlock_irqrestore(&intf->events_lock, flags);
4491
4492         return rv;
4493 }
4494
4495 static int handle_bmc_rsp(struct ipmi_smi *intf,
4496                           struct ipmi_smi_msg *msg)
4497 {
4498         struct ipmi_recv_msg *recv_msg;
4499         struct ipmi_system_interface_addr *smi_addr;
4500
4501         recv_msg = msg->user_data;
4502         if (recv_msg == NULL) {
4503                 dev_warn(intf->si_dev,
4504                          "IPMI SMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4505                 return 0;
4506         }
4507
4508         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4509         recv_msg->msgid = msg->msgid;
4510         smi_addr = ((struct ipmi_system_interface_addr *)
4511                     &recv_msg->addr);
4512         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4513         smi_addr->channel = IPMI_BMC_CHANNEL;
4514         smi_addr->lun = msg->rsp[0] & 3;
4515         recv_msg->msg.netfn = msg->rsp[0] >> 2;
4516         recv_msg->msg.cmd = msg->rsp[1];
4517         memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4518         recv_msg->msg.data = recv_msg->msg_data;
4519         recv_msg->msg.data_len = msg->rsp_size - 2;
4520         deliver_local_response(intf, recv_msg);
4521
4522         return 0;
4523 }
4524
4525 /*
4526  * Handle a received message.  Return 1 if the message should be requeued,
4527  * 0 if the message should be freed, or -1 if the message should not
4528  * be freed or requeued.
4529  */
4530 static int handle_one_recv_msg(struct ipmi_smi *intf,
4531                                struct ipmi_smi_msg *msg)
4532 {
4533         int requeue = 0;
4534         int chan;
4535         unsigned char cc;
4536         bool is_cmd = !((msg->rsp[0] >> 2) & 1);
4537
4538         dev_dbg(intf->si_dev, "Recv: %*ph\n", msg->rsp_size, msg->rsp);
4539
4540         if (msg->rsp_size < 2) {
4541                 /* Message is too small to be correct. */
4542                 dev_warn(intf->si_dev,
4543                          "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4544                          (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4545
4546 return_unspecified:
4547                 /* Generate an error response for the message. */
4548                 msg->rsp[0] = msg->data[0] | (1 << 2);
4549                 msg->rsp[1] = msg->data[1];
4550                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4551                 msg->rsp_size = 3;
4552         } else if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4553                 /* commands must have at least 4 bytes, responses 5. */
4554                 if (is_cmd && (msg->rsp_size < 4)) {
4555                         ipmi_inc_stat(intf, invalid_commands);
4556                         goto out;
4557                 }
4558                 if (!is_cmd && (msg->rsp_size < 5)) {
4559                         ipmi_inc_stat(intf, invalid_ipmb_responses);
4560                         /* Construct a valid error response. */
4561                         msg->rsp[0] = msg->data[0] & 0xfc; /* NetFN */
4562                         msg->rsp[0] |= (1 << 2); /* Make it a response */
4563                         msg->rsp[0] |= msg->data[2] & 3; /* rqLUN */
4564                         msg->rsp[1] = msg->data[1]; /* Addr */
4565                         msg->rsp[2] = msg->data[2] & 0xfc; /* rqSeq */
4566                         msg->rsp[2] |= msg->data[0] & 0x3; /* rsLUN */
4567                         msg->rsp[3] = msg->data[3]; /* Cmd */
4568                         msg->rsp[4] = IPMI_ERR_UNSPECIFIED;
4569                         msg->rsp_size = 5;
4570                 }
4571         } else if ((msg->data_size >= 2)
4572             && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4573             && (msg->data[1] == IPMI_SEND_MSG_CMD)
4574             && (msg->user_data == NULL)) {
4575
4576                 if (intf->in_shutdown)
4577                         goto out;
4578
4579                 /*
4580                  * This is the local response to a command send, start
4581                  * the timer for these.  The user_data will not be
4582                  * NULL if this is a response send, and we will let
4583                  * response sends just go through.
4584                  */
4585
4586                 /*
4587                  * Check for errors, if we get certain errors (ones
4588                  * that mean basically we can try again later), we
4589                  * ignore them and start the timer.  Otherwise we
4590                  * report the error immediately.
4591                  */
4592                 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4593                     && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4594                     && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4595                     && (msg->rsp[2] != IPMI_BUS_ERR)
4596                     && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4597                         int ch = msg->rsp[3] & 0xf;
4598                         struct ipmi_channel *chans;
4599
4600                         /* Got an error sending the message, handle it. */
4601
4602                         chans = READ_ONCE(intf->channel_list)->c;
4603                         if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4604                             || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4605                                 ipmi_inc_stat(intf, sent_lan_command_errs);
4606                         else
4607                                 ipmi_inc_stat(intf, sent_ipmb_command_errs);
4608                         intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4609                 } else
4610                         /* The message was sent, start the timer. */
4611                         intf_start_seq_timer(intf, msg->msgid);
4612                 requeue = 0;
4613                 goto out;
4614         } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4615                    || (msg->rsp[1] != msg->data[1])) {
4616                 /*
4617                  * The NetFN and Command in the response is not even
4618                  * marginally correct.
4619                  */
4620                 dev_warn(intf->si_dev,
4621                          "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4622                          (msg->data[0] >> 2) | 1, msg->data[1],
4623                          msg->rsp[0] >> 2, msg->rsp[1]);
4624
4625                 goto return_unspecified;
4626         }
4627
4628         if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4629                 if ((msg->data[0] >> 2) & 1) {
4630                         /* It's a response to a sent response. */
4631                         chan = 0;
4632                         cc = msg->rsp[4];
4633                         goto process_response_response;
4634                 }
4635                 if (is_cmd)
4636                         requeue = handle_ipmb_direct_rcv_cmd(intf, msg);
4637                 else
4638                         requeue = handle_ipmb_direct_rcv_rsp(intf, msg);
4639         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4640                    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4641                    && (msg->user_data != NULL)) {
4642                 /*
4643                  * It's a response to a response we sent.  For this we
4644                  * deliver a send message response to the user.
4645                  */
4646                 struct ipmi_recv_msg *recv_msg;
4647
4648                 chan = msg->data[2] & 0x0f;
4649                 if (chan >= IPMI_MAX_CHANNELS)
4650                         /* Invalid channel number */
4651                         goto out;
4652                 cc = msg->rsp[2];
4653
4654 process_response_response:
4655                 recv_msg = msg->user_data;
4656
4657                 requeue = 0;
4658                 if (!recv_msg)
4659                         goto out;
4660
4661                 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4662                 recv_msg->msg.data = recv_msg->msg_data;
4663                 recv_msg->msg_data[0] = cc;
4664                 recv_msg->msg.data_len = 1;
4665                 deliver_local_response(intf, recv_msg);
4666         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4667                    && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4668                 struct ipmi_channel   *chans;
4669
4670                 /* It's from the receive queue. */
4671                 chan = msg->rsp[3] & 0xf;
4672                 if (chan >= IPMI_MAX_CHANNELS) {
4673                         /* Invalid channel number */
4674                         requeue = 0;
4675                         goto out;
4676                 }
4677
4678                 /*
4679                  * We need to make sure the channels have been initialized.
4680                  * The channel_handler routine will set the "curr_channel"
4681                  * equal to or greater than IPMI_MAX_CHANNELS when all the
4682                  * channels for this interface have been initialized.
4683                  */
4684                 if (!intf->channels_ready) {
4685                         requeue = 0; /* Throw the message away */
4686                         goto out;
4687                 }
4688
4689                 chans = READ_ONCE(intf->channel_list)->c;
4690
4691                 switch (chans[chan].medium) {
4692                 case IPMI_CHANNEL_MEDIUM_IPMB:
4693                         if (msg->rsp[4] & 0x04) {
4694                                 /*
4695                                  * It's a response, so find the
4696                                  * requesting message and send it up.
4697                                  */
4698                                 requeue = handle_ipmb_get_msg_rsp(intf, msg);
4699                         } else {
4700                                 /*
4701                                  * It's a command to the SMS from some other
4702                                  * entity.  Handle that.
4703                                  */
4704                                 requeue = handle_ipmb_get_msg_cmd(intf, msg);
4705                         }
4706                         break;
4707
4708                 case IPMI_CHANNEL_MEDIUM_8023LAN:
4709                 case IPMI_CHANNEL_MEDIUM_ASYNC:
4710                         if (msg->rsp[6] & 0x04) {
4711                                 /*
4712                                  * It's a response, so find the
4713                                  * requesting message and send it up.
4714                                  */
4715                                 requeue = handle_lan_get_msg_rsp(intf, msg);
4716                         } else {
4717                                 /*
4718                                  * It's a command to the SMS from some other
4719                                  * entity.  Handle that.
4720                                  */
4721                                 requeue = handle_lan_get_msg_cmd(intf, msg);
4722                         }
4723                         break;
4724
4725                 default:
4726                         /* Check for OEM Channels.  Clients had better
4727                            register for these commands. */
4728                         if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4729                             && (chans[chan].medium
4730                                 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4731                                 requeue = handle_oem_get_msg_cmd(intf, msg);
4732                         } else {
4733                                 /*
4734                                  * We don't handle the channel type, so just
4735                                  * free the message.
4736                                  */
4737                                 requeue = 0;
4738                         }
4739                 }
4740
4741         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4742                    && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4743                 /* It's an asynchronous event. */
4744                 requeue = handle_read_event_rsp(intf, msg);
4745         } else {
4746                 /* It's a response from the local BMC. */
4747                 requeue = handle_bmc_rsp(intf, msg);
4748         }
4749
4750  out:
4751         return requeue;
4752 }
4753
4754 /*
4755  * If there are messages in the queue or pretimeouts, handle them.
4756  */
4757 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4758 {
4759         struct ipmi_smi_msg  *smi_msg;
4760         unsigned long        flags = 0;
4761         int                  rv;
4762         int                  run_to_completion = intf->run_to_completion;
4763
4764         /* See if any waiting messages need to be processed. */
4765         if (!run_to_completion)
4766                 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4767         while (!list_empty(&intf->waiting_rcv_msgs)) {
4768                 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4769                                      struct ipmi_smi_msg, link);
4770                 list_del(&smi_msg->link);
4771                 if (!run_to_completion)
4772                         spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4773                                                flags);
4774                 rv = handle_one_recv_msg(intf, smi_msg);
4775                 if (!run_to_completion)
4776                         spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4777                 if (rv > 0) {
4778                         /*
4779                          * To preserve message order, quit if we
4780                          * can't handle a message.  Add the message
4781                          * back at the head, this is safe because this
4782                          * tasklet is the only thing that pulls the
4783                          * messages.
4784                          */
4785                         list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4786                         break;
4787                 } else {
4788                         if (rv == 0)
4789                                 /* Message handled */
4790                                 ipmi_free_smi_msg(smi_msg);
4791                         /* If rv < 0, fatal error, del but don't free. */
4792                 }
4793         }
4794         if (!run_to_completion)
4795                 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4796
4797         /*
4798          * If the pretimout count is non-zero, decrement one from it and
4799          * deliver pretimeouts to all the users.
4800          */
4801         if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4802                 struct ipmi_user *user;
4803                 int index;
4804
4805                 index = srcu_read_lock(&intf->users_srcu);
4806                 list_for_each_entry_rcu(user, &intf->users, link) {
4807                         if (user->handler->ipmi_watchdog_pretimeout)
4808                                 user->handler->ipmi_watchdog_pretimeout(
4809                                         user->handler_data);
4810                 }
4811                 srcu_read_unlock(&intf->users_srcu, index);
4812         }
4813 }
4814
4815 static void smi_recv_tasklet(struct tasklet_struct *t)
4816 {
4817         unsigned long flags = 0; /* keep us warning-free. */
4818         struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4819         int run_to_completion = intf->run_to_completion;
4820         struct ipmi_smi_msg *newmsg = NULL;
4821
4822         /*
4823          * Start the next message if available.
4824          *
4825          * Do this here, not in the actual receiver, because we may deadlock
4826          * because the lower layer is allowed to hold locks while calling
4827          * message delivery.
4828          */
4829
4830         rcu_read_lock();
4831
4832         if (!run_to_completion)
4833                 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4834         if (intf->curr_msg == NULL && !intf->in_shutdown) {
4835                 struct list_head *entry = NULL;
4836
4837                 /* Pick the high priority queue first. */
4838                 if (!list_empty(&intf->hp_xmit_msgs))
4839                         entry = intf->hp_xmit_msgs.next;
4840                 else if (!list_empty(&intf->xmit_msgs))
4841                         entry = intf->xmit_msgs.next;
4842
4843                 if (entry) {
4844                         list_del(entry);
4845                         newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4846                         intf->curr_msg = newmsg;
4847                 }
4848         }
4849
4850         if (!run_to_completion)
4851                 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4852         if (newmsg)
4853                 intf->handlers->sender(intf->send_info, newmsg);
4854
4855         rcu_read_unlock();
4856
4857         handle_new_recv_msgs(intf);
4858 }
4859
4860 /* Handle a new message from the lower layer. */
4861 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4862                            struct ipmi_smi_msg *msg)
4863 {
4864         unsigned long flags = 0; /* keep us warning-free. */
4865         int run_to_completion = intf->run_to_completion;
4866
4867         /*
4868          * To preserve message order, we keep a queue and deliver from
4869          * a tasklet.
4870          */
4871         if (!run_to_completion)
4872                 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4873         list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4874         if (!run_to_completion)
4875                 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4876                                        flags);
4877
4878         if (!run_to_completion)
4879                 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4880         /*
4881          * We can get an asynchronous event or receive message in addition
4882          * to commands we send.
4883          */
4884         if (msg == intf->curr_msg)
4885                 intf->curr_msg = NULL;
4886         if (!run_to_completion)
4887                 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4888
4889         if (run_to_completion)
4890                 smi_recv_tasklet(&intf->recv_tasklet);
4891         else
4892                 tasklet_schedule(&intf->recv_tasklet);
4893 }
4894 EXPORT_SYMBOL(ipmi_smi_msg_received);
4895
4896 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4897 {
4898         if (intf->in_shutdown)
4899                 return;
4900
4901         atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4902         tasklet_schedule(&intf->recv_tasklet);
4903 }
4904 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4905
4906 static struct ipmi_smi_msg *
4907 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4908                   unsigned char seq, long seqid)
4909 {
4910         struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4911         if (!smi_msg)
4912                 /*
4913                  * If we can't allocate the message, then just return, we
4914                  * get 4 retries, so this should be ok.
4915                  */
4916                 return NULL;
4917
4918         memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4919         smi_msg->data_size = recv_msg->msg.data_len;
4920         smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4921
4922         dev_dbg(intf->si_dev, "Resend: %*ph\n",
4923                 smi_msg->data_size, smi_msg->data);
4924
4925         return smi_msg;
4926 }
4927
4928 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4929                               struct list_head *timeouts,
4930                               unsigned long timeout_period,
4931                               int slot, unsigned long *flags,
4932                               bool *need_timer)
4933 {
4934         struct ipmi_recv_msg *msg;
4935
4936         if (intf->in_shutdown)
4937                 return;
4938
4939         if (!ent->inuse)
4940                 return;
4941
4942         if (timeout_period < ent->timeout) {
4943                 ent->timeout -= timeout_period;
4944                 *need_timer = true;
4945                 return;
4946         }
4947
4948         if (ent->retries_left == 0) {
4949                 /* The message has used all its retries. */
4950                 ent->inuse = 0;
4951                 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4952                 msg = ent->recv_msg;
4953                 list_add_tail(&msg->link, timeouts);
4954                 if (ent->broadcast)
4955                         ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4956                 else if (is_lan_addr(&ent->recv_msg->addr))
4957                         ipmi_inc_stat(intf, timed_out_lan_commands);
4958                 else
4959                         ipmi_inc_stat(intf, timed_out_ipmb_commands);
4960         } else {
4961                 struct ipmi_smi_msg *smi_msg;
4962                 /* More retries, send again. */
4963
4964                 *need_timer = true;
4965
4966                 /*
4967                  * Start with the max timer, set to normal timer after
4968                  * the message is sent.
4969                  */
4970                 ent->timeout = MAX_MSG_TIMEOUT;
4971                 ent->retries_left--;
4972                 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4973                                             ent->seqid);
4974                 if (!smi_msg) {
4975                         if (is_lan_addr(&ent->recv_msg->addr))
4976                                 ipmi_inc_stat(intf,
4977                                               dropped_rexmit_lan_commands);
4978                         else
4979                                 ipmi_inc_stat(intf,
4980                                               dropped_rexmit_ipmb_commands);
4981                         return;
4982                 }
4983
4984                 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4985
4986                 /*
4987                  * Send the new message.  We send with a zero
4988                  * priority.  It timed out, I doubt time is that
4989                  * critical now, and high priority messages are really
4990                  * only for messages to the local MC, which don't get
4991                  * resent.
4992                  */
4993                 if (intf->handlers) {
4994                         if (is_lan_addr(&ent->recv_msg->addr))
4995                                 ipmi_inc_stat(intf,
4996                                               retransmitted_lan_commands);
4997                         else
4998                                 ipmi_inc_stat(intf,
4999                                               retransmitted_ipmb_commands);
5000
5001                         smi_send(intf, intf->handlers, smi_msg, 0);
5002                 } else
5003                         ipmi_free_smi_msg(smi_msg);
5004
5005                 spin_lock_irqsave(&intf->seq_lock, *flags);
5006         }
5007 }
5008
5009 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
5010                                  unsigned long timeout_period)
5011 {
5012         struct list_head     timeouts;
5013         struct ipmi_recv_msg *msg, *msg2;
5014         unsigned long        flags;
5015         int                  i;
5016         bool                 need_timer = false;
5017
5018         if (!intf->bmc_registered) {
5019                 kref_get(&intf->refcount);
5020                 if (!schedule_work(&intf->bmc_reg_work)) {
5021                         kref_put(&intf->refcount, intf_free);
5022                         need_timer = true;
5023                 }
5024         }
5025
5026         /*
5027          * Go through the seq table and find any messages that
5028          * have timed out, putting them in the timeouts
5029          * list.
5030          */
5031         INIT_LIST_HEAD(&timeouts);
5032         spin_lock_irqsave(&intf->seq_lock, flags);
5033         if (intf->ipmb_maintenance_mode_timeout) {
5034                 if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
5035                         intf->ipmb_maintenance_mode_timeout = 0;
5036                 else
5037                         intf->ipmb_maintenance_mode_timeout -= timeout_period;
5038         }
5039         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
5040                 check_msg_timeout(intf, &intf->seq_table[i],
5041                                   &timeouts, timeout_period, i,
5042                                   &flags, &need_timer);
5043         spin_unlock_irqrestore(&intf->seq_lock, flags);
5044
5045         list_for_each_entry_safe(msg, msg2, &timeouts, link)
5046                 deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
5047
5048         /*
5049          * Maintenance mode handling.  Check the timeout
5050          * optimistically before we claim the lock.  It may
5051          * mean a timeout gets missed occasionally, but that
5052          * only means the timeout gets extended by one period
5053          * in that case.  No big deal, and it avoids the lock
5054          * most of the time.
5055          */
5056         if (intf->auto_maintenance_timeout > 0) {
5057                 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
5058                 if (intf->auto_maintenance_timeout > 0) {
5059                         intf->auto_maintenance_timeout
5060                                 -= timeout_period;
5061                         if (!intf->maintenance_mode
5062                             && (intf->auto_maintenance_timeout <= 0)) {
5063                                 intf->maintenance_mode_enable = false;
5064                                 maintenance_mode_update(intf);
5065                         }
5066                 }
5067                 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
5068                                        flags);
5069         }
5070
5071         tasklet_schedule(&intf->recv_tasklet);
5072
5073         return need_timer;
5074 }
5075
5076 static void ipmi_request_event(struct ipmi_smi *intf)
5077 {
5078         /* No event requests when in maintenance mode. */
5079         if (intf->maintenance_mode_enable)
5080                 return;
5081
5082         if (!intf->in_shutdown)
5083                 intf->handlers->request_events(intf->send_info);
5084 }
5085
5086 static struct timer_list ipmi_timer;
5087
5088 static atomic_t stop_operation;
5089
5090 static void ipmi_timeout(struct timer_list *unused)
5091 {
5092         struct ipmi_smi *intf;
5093         bool need_timer = false;
5094         int index;
5095
5096         if (atomic_read(&stop_operation))
5097                 return;
5098
5099         index = srcu_read_lock(&ipmi_interfaces_srcu);
5100         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5101                 if (atomic_read(&intf->event_waiters)) {
5102                         intf->ticks_to_req_ev--;
5103                         if (intf->ticks_to_req_ev == 0) {
5104                                 ipmi_request_event(intf);
5105                                 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
5106                         }
5107                         need_timer = true;
5108                 }
5109
5110                 need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
5111         }
5112         srcu_read_unlock(&ipmi_interfaces_srcu, index);
5113
5114         if (need_timer)
5115                 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5116 }
5117
5118 static void need_waiter(struct ipmi_smi *intf)
5119 {
5120         /* Racy, but worst case we start the timer twice. */
5121         if (!timer_pending(&ipmi_timer))
5122                 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5123 }
5124
5125 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
5126 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
5127
5128 static void free_smi_msg(struct ipmi_smi_msg *msg)
5129 {
5130         atomic_dec(&smi_msg_inuse_count);
5131         /* Try to keep as much stuff out of the panic path as possible. */
5132         if (!oops_in_progress)
5133                 kfree(msg);
5134 }
5135
5136 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
5137 {
5138         struct ipmi_smi_msg *rv;
5139         rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
5140         if (rv) {
5141                 rv->done = free_smi_msg;
5142                 rv->user_data = NULL;
5143                 rv->type = IPMI_SMI_MSG_TYPE_NORMAL;
5144                 atomic_inc(&smi_msg_inuse_count);
5145         }
5146         return rv;
5147 }
5148 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
5149
5150 static void free_recv_msg(struct ipmi_recv_msg *msg)
5151 {
5152         atomic_dec(&recv_msg_inuse_count);
5153         /* Try to keep as much stuff out of the panic path as possible. */
5154         if (!oops_in_progress)
5155                 kfree(msg);
5156 }
5157
5158 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
5159 {
5160         struct ipmi_recv_msg *rv;
5161
5162         rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
5163         if (rv) {
5164                 rv->user = NULL;
5165                 rv->done = free_recv_msg;
5166                 atomic_inc(&recv_msg_inuse_count);
5167         }
5168         return rv;
5169 }
5170
5171 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
5172 {
5173         if (msg->user && !oops_in_progress)
5174                 kref_put(&msg->user->refcount, free_user);
5175         msg->done(msg);
5176 }
5177 EXPORT_SYMBOL(ipmi_free_recv_msg);
5178
5179 static atomic_t panic_done_count = ATOMIC_INIT(0);
5180
5181 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
5182 {
5183         atomic_dec(&panic_done_count);
5184 }
5185
5186 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
5187 {
5188         atomic_dec(&panic_done_count);
5189 }
5190
5191 /*
5192  * Inside a panic, send a message and wait for a response.
5193  */
5194 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
5195                                         struct ipmi_addr *addr,
5196                                         struct kernel_ipmi_msg *msg)
5197 {
5198         struct ipmi_smi_msg  smi_msg;
5199         struct ipmi_recv_msg recv_msg;
5200         int rv;
5201
5202         smi_msg.done = dummy_smi_done_handler;
5203         recv_msg.done = dummy_recv_done_handler;
5204         atomic_add(2, &panic_done_count);
5205         rv = i_ipmi_request(NULL,
5206                             intf,
5207                             addr,
5208                             0,
5209                             msg,
5210                             intf,
5211                             &smi_msg,
5212                             &recv_msg,
5213                             0,
5214                             intf->addrinfo[0].address,
5215                             intf->addrinfo[0].lun,
5216                             0, 1); /* Don't retry, and don't wait. */
5217         if (rv)
5218                 atomic_sub(2, &panic_done_count);
5219         else if (intf->handlers->flush_messages)
5220                 intf->handlers->flush_messages(intf->send_info);
5221
5222         while (atomic_read(&panic_done_count) != 0)
5223                 ipmi_poll(intf);
5224 }
5225
5226 static void event_receiver_fetcher(struct ipmi_smi *intf,
5227                                    struct ipmi_recv_msg *msg)
5228 {
5229         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5230             && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
5231             && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
5232             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5233                 /* A get event receiver command, save it. */
5234                 intf->event_receiver = msg->msg.data[1];
5235                 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
5236         }
5237 }
5238
5239 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
5240 {
5241         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5242             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
5243             && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
5244             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5245                 /*
5246                  * A get device id command, save if we are an event
5247                  * receiver or generator.
5248                  */
5249                 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
5250                 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
5251         }
5252 }
5253
5254 static void send_panic_events(struct ipmi_smi *intf, char *str)
5255 {
5256         struct kernel_ipmi_msg msg;
5257         unsigned char data[16];
5258         struct ipmi_system_interface_addr *si;
5259         struct ipmi_addr addr;
5260         char *p = str;
5261         struct ipmi_ipmb_addr *ipmb;
5262         int j;
5263
5264         if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
5265                 return;
5266
5267         si = (struct ipmi_system_interface_addr *) &addr;
5268         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5269         si->channel = IPMI_BMC_CHANNEL;
5270         si->lun = 0;
5271
5272         /* Fill in an event telling that we have failed. */
5273         msg.netfn = 0x04; /* Sensor or Event. */
5274         msg.cmd = 2; /* Platform event command. */
5275         msg.data = data;
5276         msg.data_len = 8;
5277         data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
5278         data[1] = 0x03; /* This is for IPMI 1.0. */
5279         data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
5280         data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
5281         data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
5282
5283         /*
5284          * Put a few breadcrumbs in.  Hopefully later we can add more things
5285          * to make the panic events more useful.
5286          */
5287         if (str) {
5288                 data[3] = str[0];
5289                 data[6] = str[1];
5290                 data[7] = str[2];
5291         }
5292
5293         /* Send the event announcing the panic. */
5294         ipmi_panic_request_and_wait(intf, &addr, &msg);
5295
5296         /*
5297          * On every interface, dump a bunch of OEM event holding the
5298          * string.
5299          */
5300         if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
5301                 return;
5302
5303         /*
5304          * intf_num is used as an marker to tell if the
5305          * interface is valid.  Thus we need a read barrier to
5306          * make sure data fetched before checking intf_num
5307          * won't be used.
5308          */
5309         smp_rmb();
5310
5311         /*
5312          * First job here is to figure out where to send the
5313          * OEM events.  There's no way in IPMI to send OEM
5314          * events using an event send command, so we have to
5315          * find the SEL to put them in and stick them in
5316          * there.
5317          */
5318
5319         /* Get capabilities from the get device id. */
5320         intf->local_sel_device = 0;
5321         intf->local_event_generator = 0;
5322         intf->event_receiver = 0;
5323
5324         /* Request the device info from the local MC. */
5325         msg.netfn = IPMI_NETFN_APP_REQUEST;
5326         msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5327         msg.data = NULL;
5328         msg.data_len = 0;
5329         intf->null_user_handler = device_id_fetcher;
5330         ipmi_panic_request_and_wait(intf, &addr, &msg);
5331
5332         if (intf->local_event_generator) {
5333                 /* Request the event receiver from the local MC. */
5334                 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5335                 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5336                 msg.data = NULL;
5337                 msg.data_len = 0;
5338                 intf->null_user_handler = event_receiver_fetcher;
5339                 ipmi_panic_request_and_wait(intf, &addr, &msg);
5340         }
5341         intf->null_user_handler = NULL;
5342
5343         /*
5344          * Validate the event receiver.  The low bit must not
5345          * be 1 (it must be a valid IPMB address), it cannot
5346          * be zero, and it must not be my address.
5347          */
5348         if (((intf->event_receiver & 1) == 0)
5349             && (intf->event_receiver != 0)
5350             && (intf->event_receiver != intf->addrinfo[0].address)) {
5351                 /*
5352                  * The event receiver is valid, send an IPMB
5353                  * message.
5354                  */
5355                 ipmb = (struct ipmi_ipmb_addr *) &addr;
5356                 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5357                 ipmb->channel = 0; /* FIXME - is this right? */
5358                 ipmb->lun = intf->event_receiver_lun;
5359                 ipmb->slave_addr = intf->event_receiver;
5360         } else if (intf->local_sel_device) {
5361                 /*
5362                  * The event receiver was not valid (or was
5363                  * me), but I am an SEL device, just dump it
5364                  * in my SEL.
5365                  */
5366                 si = (struct ipmi_system_interface_addr *) &addr;
5367                 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5368                 si->channel = IPMI_BMC_CHANNEL;
5369                 si->lun = 0;
5370         } else
5371                 return; /* No where to send the event. */
5372
5373         msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5374         msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5375         msg.data = data;
5376         msg.data_len = 16;
5377
5378         j = 0;
5379         while (*p) {
5380                 int size = strlen(p);
5381
5382                 if (size > 11)
5383                         size = 11;
5384                 data[0] = 0;
5385                 data[1] = 0;
5386                 data[2] = 0xf0; /* OEM event without timestamp. */
5387                 data[3] = intf->addrinfo[0].address;
5388                 data[4] = j++; /* sequence # */
5389                 /*
5390                  * Always give 11 bytes, so strncpy will fill
5391                  * it with zeroes for me.
5392                  */
5393                 strncpy(data+5, p, 11);
5394                 p += size;
5395
5396                 ipmi_panic_request_and_wait(intf, &addr, &msg);
5397         }
5398 }
5399
5400 static int has_panicked;
5401
5402 static int panic_event(struct notifier_block *this,
5403                        unsigned long         event,
5404                        void                  *ptr)
5405 {
5406         struct ipmi_smi *intf;
5407         struct ipmi_user *user;
5408
5409         if (has_panicked)
5410                 return NOTIFY_DONE;
5411         has_panicked = 1;
5412
5413         /* For every registered interface, set it to run to completion. */
5414         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5415                 if (!intf->handlers || intf->intf_num == -1)
5416                         /* Interface is not ready. */
5417                         continue;
5418
5419                 if (!intf->handlers->poll)
5420                         continue;
5421
5422                 /*
5423                  * If we were interrupted while locking xmit_msgs_lock or
5424                  * waiting_rcv_msgs_lock, the corresponding list may be
5425                  * corrupted.  In this case, drop items on the list for
5426                  * the safety.
5427                  */
5428                 if (!spin_trylock(&intf->xmit_msgs_lock)) {
5429                         INIT_LIST_HEAD(&intf->xmit_msgs);
5430                         INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5431                 } else
5432                         spin_unlock(&intf->xmit_msgs_lock);
5433
5434                 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5435                         INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5436                 else
5437                         spin_unlock(&intf->waiting_rcv_msgs_lock);
5438
5439                 intf->run_to_completion = 1;
5440                 if (intf->handlers->set_run_to_completion)
5441                         intf->handlers->set_run_to_completion(intf->send_info,
5442                                                               1);
5443
5444                 list_for_each_entry_rcu(user, &intf->users, link) {
5445                         if (user->handler->ipmi_panic_handler)
5446                                 user->handler->ipmi_panic_handler(
5447                                         user->handler_data);
5448                 }
5449
5450                 send_panic_events(intf, ptr);
5451         }
5452
5453         return NOTIFY_DONE;
5454 }
5455
5456 /* Must be called with ipmi_interfaces_mutex held. */
5457 static int ipmi_register_driver(void)
5458 {
5459         int rv;
5460
5461         if (drvregistered)
5462                 return 0;
5463
5464         rv = driver_register(&ipmidriver.driver);
5465         if (rv)
5466                 pr_err("Could not register IPMI driver\n");
5467         else
5468                 drvregistered = true;
5469         return rv;
5470 }
5471
5472 static struct notifier_block panic_block = {
5473         .notifier_call  = panic_event,
5474         .next           = NULL,
5475         .priority       = 200   /* priority: INT_MAX >= x >= 0 */
5476 };
5477
5478 static int ipmi_init_msghandler(void)
5479 {
5480         int rv;
5481
5482         mutex_lock(&ipmi_interfaces_mutex);
5483         rv = ipmi_register_driver();
5484         if (rv)
5485                 goto out;
5486         if (initialized)
5487                 goto out;
5488
5489         rv = init_srcu_struct(&ipmi_interfaces_srcu);
5490         if (rv)
5491                 goto out;
5492
5493         remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
5494         if (!remove_work_wq) {
5495                 pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
5496                 rv = -ENOMEM;
5497                 goto out_wq;
5498         }
5499
5500         timer_setup(&ipmi_timer, ipmi_timeout, 0);
5501         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5502
5503         atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5504
5505         initialized = true;
5506
5507 out_wq:
5508         if (rv)
5509                 cleanup_srcu_struct(&ipmi_interfaces_srcu);
5510 out:
5511         mutex_unlock(&ipmi_interfaces_mutex);
5512         return rv;
5513 }
5514
5515 static int __init ipmi_init_msghandler_mod(void)
5516 {
5517         int rv;
5518
5519         pr_info("version " IPMI_DRIVER_VERSION "\n");
5520
5521         mutex_lock(&ipmi_interfaces_mutex);
5522         rv = ipmi_register_driver();
5523         mutex_unlock(&ipmi_interfaces_mutex);
5524
5525         return rv;
5526 }
5527
5528 static void __exit cleanup_ipmi(void)
5529 {
5530         int count;
5531
5532         if (initialized) {
5533                 destroy_workqueue(remove_work_wq);
5534
5535                 atomic_notifier_chain_unregister(&panic_notifier_list,
5536                                                  &panic_block);
5537
5538                 /*
5539                  * This can't be called if any interfaces exist, so no worry
5540                  * about shutting down the interfaces.
5541                  */
5542
5543                 /*
5544                  * Tell the timer to stop, then wait for it to stop.  This
5545                  * avoids problems with race conditions removing the timer
5546                  * here.
5547                  */
5548                 atomic_set(&stop_operation, 1);
5549                 del_timer_sync(&ipmi_timer);
5550
5551                 initialized = false;
5552
5553                 /* Check for buffer leaks. */
5554                 count = atomic_read(&smi_msg_inuse_count);
5555                 if (count != 0)
5556                         pr_warn("SMI message count %d at exit\n", count);
5557                 count = atomic_read(&recv_msg_inuse_count);
5558                 if (count != 0)
5559                         pr_warn("recv message count %d at exit\n", count);
5560
5561                 cleanup_srcu_struct(&ipmi_interfaces_srcu);
5562         }
5563         if (drvregistered)
5564                 driver_unregister(&ipmidriver.driver);
5565 }
5566 module_exit(cleanup_ipmi);
5567
5568 module_init(ipmi_init_msghandler_mod);
5569 MODULE_LICENSE("GPL");
5570 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5571 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
5572 MODULE_VERSION(IPMI_DRIVER_VERSION);
5573 MODULE_SOFTDEP("post: ipmi_devintf");