GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / char / ipmi / ipmi_bt_sm.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  ipmi_bt_sm.c
4  *
5  *  The state machine for an Open IPMI BT sub-driver under ipmi_si.c, part
6  *  of the driver architecture at http://sourceforge.net/projects/openipmi 
7  *
8  *  Author:     Rocky Craig <first.last@hp.com>
9  */
10
11 #include <linux/kernel.h> /* For printk. */
12 #include <linux/string.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/ipmi_msgdefs.h>         /* for completion codes */
16 #include "ipmi_si_sm.h"
17
18 #define BT_DEBUG_OFF    0       /* Used in production */
19 #define BT_DEBUG_ENABLE 1       /* Generic messages */
20 #define BT_DEBUG_MSG    2       /* Prints all request/response buffers */
21 #define BT_DEBUG_STATES 4       /* Verbose look at state changes */
22 /*
23  * BT_DEBUG_OFF must be zero to correspond to the default uninitialized
24  * value
25  */
26
27 static int bt_debug; /* 0 == BT_DEBUG_OFF */
28
29 module_param(bt_debug, int, 0644);
30 MODULE_PARM_DESC(bt_debug, "debug bitmask, 1=enable, 2=messages, 4=states");
31
32 /*
33  * Typical "Get BT Capabilities" values are 2-3 retries, 5-10 seconds,
34  * and 64 byte buffers.  However, one HP implementation wants 255 bytes of
35  * buffer (with a documented message of 160 bytes) so go for the max.
36  * Since the Open IPMI architecture is single-message oriented at this
37  * stage, the queue depth of BT is of no concern.
38  */
39
40 #define BT_NORMAL_TIMEOUT       5       /* seconds */
41 #define BT_NORMAL_RETRY_LIMIT   2
42 #define BT_RESET_DELAY          6       /* seconds after warm reset */
43
44 /*
45  * States are written in chronological order and usually cover
46  * multiple rows of the state table discussion in the IPMI spec.
47  */
48
49 enum bt_states {
50         BT_STATE_IDLE = 0,      /* Order is critical in this list */
51         BT_STATE_XACTION_START,
52         BT_STATE_WRITE_BYTES,
53         BT_STATE_WRITE_CONSUME,
54         BT_STATE_READ_WAIT,
55         BT_STATE_CLEAR_B2H,
56         BT_STATE_READ_BYTES,
57         BT_STATE_RESET1,        /* These must come last */
58         BT_STATE_RESET2,
59         BT_STATE_RESET3,
60         BT_STATE_RESTART,
61         BT_STATE_PRINTME,
62         BT_STATE_LONG_BUSY      /* BT doesn't get hosed :-) */
63 };
64
65 /*
66  * Macros seen at the end of state "case" blocks.  They help with legibility
67  * and debugging.
68  */
69
70 #define BT_STATE_CHANGE(X, Y) { bt->state = X; return Y; }
71
72 #define BT_SI_SM_RETURN(Y)   { last_printed = BT_STATE_PRINTME; return Y; }
73
74 struct si_sm_data {
75         enum bt_states  state;
76         unsigned char   seq;            /* BT sequence number */
77         struct si_sm_io *io;
78         unsigned char   write_data[IPMI_MAX_MSG_LENGTH + 2]; /* +2 for memcpy */
79         int             write_count;
80         unsigned char   read_data[IPMI_MAX_MSG_LENGTH + 2]; /* +2 for memcpy */
81         int             read_count;
82         int             truncated;
83         long            timeout;        /* microseconds countdown */
84         int             error_retries;  /* end of "common" fields */
85         int             nonzero_status; /* hung BMCs stay all 0 */
86         enum bt_states  complete;       /* to divert the state machine */
87         long            BT_CAP_req2rsp;
88         int             BT_CAP_retries; /* Recommended retries */
89 };
90
91 #define BT_CLR_WR_PTR   0x01    /* See IPMI 1.5 table 11.6.4 */
92 #define BT_CLR_RD_PTR   0x02
93 #define BT_H2B_ATN      0x04
94 #define BT_B2H_ATN      0x08
95 #define BT_SMS_ATN      0x10
96 #define BT_OEM0         0x20
97 #define BT_H_BUSY       0x40
98 #define BT_B_BUSY       0x80
99
100 /*
101  * Some bits are toggled on each write: write once to set it, once
102  * more to clear it; writing a zero does nothing.  To absolutely
103  * clear it, check its state and write if set.  This avoids the "get
104  * current then use as mask" scheme to modify one bit.  Note that the
105  * variable "bt" is hardcoded into these macros.
106  */
107
108 #define BT_STATUS       bt->io->inputb(bt->io, 0)
109 #define BT_CONTROL(x)   bt->io->outputb(bt->io, 0, x)
110
111 #define BMC2HOST        bt->io->inputb(bt->io, 1)
112 #define HOST2BMC(x)     bt->io->outputb(bt->io, 1, x)
113
114 #define BT_INTMASK_R    bt->io->inputb(bt->io, 2)
115 #define BT_INTMASK_W(x) bt->io->outputb(bt->io, 2, x)
116
117 /*
118  * Convenience routines for debugging.  These are not multi-open safe!
119  * Note the macros have hardcoded variables in them.
120  */
121
122 static char *state2txt(unsigned char state)
123 {
124         switch (state) {
125         case BT_STATE_IDLE:             return("IDLE");
126         case BT_STATE_XACTION_START:    return("XACTION");
127         case BT_STATE_WRITE_BYTES:      return("WR_BYTES");
128         case BT_STATE_WRITE_CONSUME:    return("WR_CONSUME");
129         case BT_STATE_READ_WAIT:        return("RD_WAIT");
130         case BT_STATE_CLEAR_B2H:        return("CLEAR_B2H");
131         case BT_STATE_READ_BYTES:       return("RD_BYTES");
132         case BT_STATE_RESET1:           return("RESET1");
133         case BT_STATE_RESET2:           return("RESET2");
134         case BT_STATE_RESET3:           return("RESET3");
135         case BT_STATE_RESTART:          return("RESTART");
136         case BT_STATE_LONG_BUSY:        return("LONG_BUSY");
137         }
138         return("BAD STATE");
139 }
140 #define STATE2TXT state2txt(bt->state)
141
142 static char *status2txt(unsigned char status)
143 {
144         /*
145          * This cannot be called by two threads at the same time and
146          * the buffer is always consumed immediately, so the static is
147          * safe to use.
148          */
149         static char buf[40];
150
151         strcpy(buf, "[ ");
152         if (status & BT_B_BUSY)
153                 strcat(buf, "B_BUSY ");
154         if (status & BT_H_BUSY)
155                 strcat(buf, "H_BUSY ");
156         if (status & BT_OEM0)
157                 strcat(buf, "OEM0 ");
158         if (status & BT_SMS_ATN)
159                 strcat(buf, "SMS ");
160         if (status & BT_B2H_ATN)
161                 strcat(buf, "B2H ");
162         if (status & BT_H2B_ATN)
163                 strcat(buf, "H2B ");
164         strcat(buf, "]");
165         return buf;
166 }
167 #define STATUS2TXT status2txt(status)
168
169 /* called externally at insmod time, and internally on cleanup */
170
171 static unsigned int bt_init_data(struct si_sm_data *bt, struct si_sm_io *io)
172 {
173         memset(bt, 0, sizeof(struct si_sm_data));
174         if (bt->io != io) {
175                 /* external: one-time only things */
176                 bt->io = io;
177                 bt->seq = 0;
178         }
179         bt->state = BT_STATE_IDLE;      /* start here */
180         bt->complete = BT_STATE_IDLE;   /* end here */
181         bt->BT_CAP_req2rsp = BT_NORMAL_TIMEOUT * USEC_PER_SEC;
182         bt->BT_CAP_retries = BT_NORMAL_RETRY_LIMIT;
183         return 3; /* We claim 3 bytes of space; ought to check SPMI table */
184 }
185
186 /* Jam a completion code (probably an error) into a response */
187
188 static void force_result(struct si_sm_data *bt, unsigned char completion_code)
189 {
190         bt->read_data[0] = 4;                           /* # following bytes */
191         bt->read_data[1] = bt->write_data[1] | 4;       /* Odd NetFn/LUN */
192         bt->read_data[2] = bt->write_data[2];           /* seq (ignored) */
193         bt->read_data[3] = bt->write_data[3];           /* Command */
194         bt->read_data[4] = completion_code;
195         bt->read_count = 5;
196 }
197
198 /* The upper state machine starts here */
199
200 static int bt_start_transaction(struct si_sm_data *bt,
201                                 unsigned char *data,
202                                 unsigned int size)
203 {
204         unsigned int i;
205
206         if (size < 2)
207                 return IPMI_REQ_LEN_INVALID_ERR;
208         if (size > IPMI_MAX_MSG_LENGTH)
209                 return IPMI_REQ_LEN_EXCEEDED_ERR;
210
211         if (bt->state == BT_STATE_LONG_BUSY)
212                 return IPMI_NODE_BUSY_ERR;
213
214         if (bt->state != BT_STATE_IDLE)
215                 return IPMI_NOT_IN_MY_STATE_ERR;
216
217         if (bt_debug & BT_DEBUG_MSG) {
218                 printk(KERN_WARNING "BT: +++++++++++++++++ New command\n");
219                 printk(KERN_WARNING "BT: NetFn/LUN CMD [%d data]:", size - 2);
220                 for (i = 0; i < size; i ++)
221                         printk(" %02x", data[i]);
222                 printk("\n");
223         }
224         bt->write_data[0] = size + 1;   /* all data plus seq byte */
225         bt->write_data[1] = *data;      /* NetFn/LUN */
226         bt->write_data[2] = bt->seq++;
227         memcpy(bt->write_data + 3, data + 1, size - 1);
228         bt->write_count = size + 2;
229         bt->error_retries = 0;
230         bt->nonzero_status = 0;
231         bt->truncated = 0;
232         bt->state = BT_STATE_XACTION_START;
233         bt->timeout = bt->BT_CAP_req2rsp;
234         force_result(bt, IPMI_ERR_UNSPECIFIED);
235         return 0;
236 }
237
238 /*
239  * After the upper state machine has been told SI_SM_TRANSACTION_COMPLETE
240  * it calls this.  Strip out the length and seq bytes.
241  */
242
243 static int bt_get_result(struct si_sm_data *bt,
244                          unsigned char *data,
245                          unsigned int length)
246 {
247         int i, msg_len;
248
249         msg_len = bt->read_count - 2;           /* account for length & seq */
250         if (msg_len < 3 || msg_len > IPMI_MAX_MSG_LENGTH) {
251                 force_result(bt, IPMI_ERR_UNSPECIFIED);
252                 msg_len = 3;
253         }
254         data[0] = bt->read_data[1];
255         data[1] = bt->read_data[3];
256         if (length < msg_len || bt->truncated) {
257                 data[2] = IPMI_ERR_MSG_TRUNCATED;
258                 msg_len = 3;
259         } else
260                 memcpy(data + 2, bt->read_data + 4, msg_len - 2);
261
262         if (bt_debug & BT_DEBUG_MSG) {
263                 printk(KERN_WARNING "BT: result %d bytes:", msg_len);
264                 for (i = 0; i < msg_len; i++)
265                         printk(" %02x", data[i]);
266                 printk("\n");
267         }
268         return msg_len;
269 }
270
271 /* This bit's functionality is optional */
272 #define BT_BMC_HWRST    0x80
273
274 static void reset_flags(struct si_sm_data *bt)
275 {
276         if (bt_debug)
277                 printk(KERN_WARNING "IPMI BT: flag reset %s\n",
278                                         status2txt(BT_STATUS));
279         if (BT_STATUS & BT_H_BUSY)
280                 BT_CONTROL(BT_H_BUSY);  /* force clear */
281         BT_CONTROL(BT_CLR_WR_PTR);      /* always reset */
282         BT_CONTROL(BT_SMS_ATN);         /* always clear */
283         BT_INTMASK_W(BT_BMC_HWRST);
284 }
285
286 /*
287  * Get rid of an unwanted/stale response.  This should only be needed for
288  * BMCs that support multiple outstanding requests.
289  */
290
291 static void drain_BMC2HOST(struct si_sm_data *bt)
292 {
293         int i, size;
294
295         if (!(BT_STATUS & BT_B2H_ATN))  /* Not signalling a response */
296                 return;
297
298         BT_CONTROL(BT_H_BUSY);          /* now set */
299         BT_CONTROL(BT_B2H_ATN);         /* always clear */
300         BT_STATUS;                      /* pause */
301         BT_CONTROL(BT_B2H_ATN);         /* some BMCs are stubborn */
302         BT_CONTROL(BT_CLR_RD_PTR);      /* always reset */
303         if (bt_debug)
304                 printk(KERN_WARNING "IPMI BT: stale response %s; ",
305                         status2txt(BT_STATUS));
306         size = BMC2HOST;
307         for (i = 0; i < size ; i++)
308                 BMC2HOST;
309         BT_CONTROL(BT_H_BUSY);          /* now clear */
310         if (bt_debug)
311                 printk("drained %d bytes\n", size + 1);
312 }
313
314 static inline void write_all_bytes(struct si_sm_data *bt)
315 {
316         int i;
317
318         if (bt_debug & BT_DEBUG_MSG) {
319                 printk(KERN_WARNING "BT: write %d bytes seq=0x%02X",
320                         bt->write_count, bt->seq);
321                 for (i = 0; i < bt->write_count; i++)
322                         printk(" %02x", bt->write_data[i]);
323                 printk("\n");
324         }
325         for (i = 0; i < bt->write_count; i++)
326                 HOST2BMC(bt->write_data[i]);
327 }
328
329 static inline int read_all_bytes(struct si_sm_data *bt)
330 {
331         unsigned int i;
332
333         /*
334          * length is "framing info", minimum = 4: NetFn, Seq, Cmd, cCode.
335          * Keep layout of first four bytes aligned with write_data[]
336          */
337
338         bt->read_data[0] = BMC2HOST;
339         bt->read_count = bt->read_data[0];
340
341         if (bt->read_count < 4 || bt->read_count >= IPMI_MAX_MSG_LENGTH) {
342                 if (bt_debug & BT_DEBUG_MSG)
343                         printk(KERN_WARNING "BT: bad raw rsp len=%d\n",
344                                 bt->read_count);
345                 bt->truncated = 1;
346                 return 1;       /* let next XACTION START clean it up */
347         }
348         for (i = 1; i <= bt->read_count; i++)
349                 bt->read_data[i] = BMC2HOST;
350         bt->read_count++;       /* Account internally for length byte */
351
352         if (bt_debug & BT_DEBUG_MSG) {
353                 int max = bt->read_count;
354
355                 printk(KERN_WARNING "BT: got %d bytes seq=0x%02X",
356                         max, bt->read_data[2]);
357                 if (max > 16)
358                         max = 16;
359                 for (i = 0; i < max; i++)
360                         printk(KERN_CONT " %02x", bt->read_data[i]);
361                 printk(KERN_CONT "%s\n", bt->read_count == max ? "" : " ...");
362         }
363
364         /* per the spec, the (NetFn[1], Seq[2], Cmd[3]) tuples must match */
365         if ((bt->read_data[3] == bt->write_data[3]) &&
366             (bt->read_data[2] == bt->write_data[2]) &&
367             ((bt->read_data[1] & 0xF8) == (bt->write_data[1] & 0xF8)))
368                         return 1;
369
370         if (bt_debug & BT_DEBUG_MSG)
371                 printk(KERN_WARNING "IPMI BT: bad packet: "
372                 "want 0x(%02X, %02X, %02X) got (%02X, %02X, %02X)\n",
373                 bt->write_data[1] | 0x04, bt->write_data[2], bt->write_data[3],
374                 bt->read_data[1],  bt->read_data[2],  bt->read_data[3]);
375         return 0;
376 }
377
378 /* Restart if retries are left, or return an error completion code */
379
380 static enum si_sm_result error_recovery(struct si_sm_data *bt,
381                                         unsigned char status,
382                                         unsigned char cCode)
383 {
384         char *reason;
385
386         bt->timeout = bt->BT_CAP_req2rsp;
387
388         switch (cCode) {
389         case IPMI_TIMEOUT_ERR:
390                 reason = "timeout";
391                 break;
392         default:
393                 reason = "internal error";
394                 break;
395         }
396
397         printk(KERN_WARNING "IPMI BT: %s in %s %s ",    /* open-ended line */
398                 reason, STATE2TXT, STATUS2TXT);
399
400         /*
401          * Per the IPMI spec, retries are based on the sequence number
402          * known only to this module, so manage a restart here.
403          */
404         (bt->error_retries)++;
405         if (bt->error_retries < bt->BT_CAP_retries) {
406                 printk("%d retries left\n",
407                         bt->BT_CAP_retries - bt->error_retries);
408                 bt->state = BT_STATE_RESTART;
409                 return SI_SM_CALL_WITHOUT_DELAY;
410         }
411
412         printk(KERN_WARNING "failed %d retries, sending error response\n",
413                bt->BT_CAP_retries);
414         if (!bt->nonzero_status)
415                 printk(KERN_ERR "IPMI BT: stuck, try power cycle\n");
416
417         /* this is most likely during insmod */
418         else if (bt->seq <= (unsigned char)(bt->BT_CAP_retries & 0xFF)) {
419                 printk(KERN_WARNING "IPMI: BT reset (takes 5 secs)\n");
420                 bt->state = BT_STATE_RESET1;
421                 return SI_SM_CALL_WITHOUT_DELAY;
422         }
423
424         /*
425          * Concoct a useful error message, set up the next state, and
426          * be done with this sequence.
427          */
428
429         bt->state = BT_STATE_IDLE;
430         switch (cCode) {
431         case IPMI_TIMEOUT_ERR:
432                 if (status & BT_B_BUSY) {
433                         cCode = IPMI_NODE_BUSY_ERR;
434                         bt->state = BT_STATE_LONG_BUSY;
435                 }
436                 break;
437         default:
438                 break;
439         }
440         force_result(bt, cCode);
441         return SI_SM_TRANSACTION_COMPLETE;
442 }
443
444 /* Check status and (usually) take action and change this state machine. */
445
446 static enum si_sm_result bt_event(struct si_sm_data *bt, long time)
447 {
448         unsigned char status;
449         static enum bt_states last_printed = BT_STATE_PRINTME;
450         int i;
451
452         status = BT_STATUS;
453         bt->nonzero_status |= status;
454         if ((bt_debug & BT_DEBUG_STATES) && (bt->state != last_printed)) {
455                 printk(KERN_WARNING "BT: %s %s TO=%ld - %ld \n",
456                         STATE2TXT,
457                         STATUS2TXT,
458                         bt->timeout,
459                         time);
460                 last_printed = bt->state;
461         }
462
463         /*
464          * Commands that time out may still (eventually) provide a response.
465          * This stale response will get in the way of a new response so remove
466          * it if possible (hopefully during IDLE).  Even if it comes up later
467          * it will be rejected by its (now-forgotten) seq number.
468          */
469
470         if ((bt->state < BT_STATE_WRITE_BYTES) && (status & BT_B2H_ATN)) {
471                 drain_BMC2HOST(bt);
472                 BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
473         }
474
475         if ((bt->state != BT_STATE_IDLE) &&
476             (bt->state <  BT_STATE_PRINTME)) {
477                 /* check timeout */
478                 bt->timeout -= time;
479                 if ((bt->timeout < 0) && (bt->state < BT_STATE_RESET1))
480                         return error_recovery(bt,
481                                               status,
482                                               IPMI_TIMEOUT_ERR);
483         }
484
485         switch (bt->state) {
486
487         /*
488          * Idle state first checks for asynchronous messages from another
489          * channel, then does some opportunistic housekeeping.
490          */
491
492         case BT_STATE_IDLE:
493                 if (status & BT_SMS_ATN) {
494                         BT_CONTROL(BT_SMS_ATN); /* clear it */
495                         return SI_SM_ATTN;
496                 }
497
498                 if (status & BT_H_BUSY)         /* clear a leftover H_BUSY */
499                         BT_CONTROL(BT_H_BUSY);
500
501                 BT_SI_SM_RETURN(SI_SM_IDLE);
502
503         case BT_STATE_XACTION_START:
504                 if (status & (BT_B_BUSY | BT_H2B_ATN))
505                         BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
506                 if (BT_STATUS & BT_H_BUSY)
507                         BT_CONTROL(BT_H_BUSY);  /* force clear */
508                 BT_STATE_CHANGE(BT_STATE_WRITE_BYTES,
509                                 SI_SM_CALL_WITHOUT_DELAY);
510
511         case BT_STATE_WRITE_BYTES:
512                 if (status & BT_H_BUSY)
513                         BT_CONTROL(BT_H_BUSY);  /* clear */
514                 BT_CONTROL(BT_CLR_WR_PTR);
515                 write_all_bytes(bt);
516                 BT_CONTROL(BT_H2B_ATN); /* can clear too fast to catch */
517                 BT_STATE_CHANGE(BT_STATE_WRITE_CONSUME,
518                                 SI_SM_CALL_WITHOUT_DELAY);
519
520         case BT_STATE_WRITE_CONSUME:
521                 if (status & (BT_B_BUSY | BT_H2B_ATN))
522                         BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
523                 BT_STATE_CHANGE(BT_STATE_READ_WAIT,
524                                 SI_SM_CALL_WITHOUT_DELAY);
525
526         /* Spinning hard can suppress B2H_ATN and force a timeout */
527
528         case BT_STATE_READ_WAIT:
529                 if (!(status & BT_B2H_ATN))
530                         BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
531                 BT_CONTROL(BT_H_BUSY);          /* set */
532
533                 /*
534                  * Uncached, ordered writes should just proceed serially but
535                  * some BMCs don't clear B2H_ATN with one hit.  Fast-path a
536                  * workaround without too much penalty to the general case.
537                  */
538
539                 BT_CONTROL(BT_B2H_ATN);         /* clear it to ACK the BMC */
540                 BT_STATE_CHANGE(BT_STATE_CLEAR_B2H,
541                                 SI_SM_CALL_WITHOUT_DELAY);
542
543         case BT_STATE_CLEAR_B2H:
544                 if (status & BT_B2H_ATN) {
545                         /* keep hitting it */
546                         BT_CONTROL(BT_B2H_ATN);
547                         BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
548                 }
549                 BT_STATE_CHANGE(BT_STATE_READ_BYTES,
550                                 SI_SM_CALL_WITHOUT_DELAY);
551
552         case BT_STATE_READ_BYTES:
553                 if (!(status & BT_H_BUSY))
554                         /* check in case of retry */
555                         BT_CONTROL(BT_H_BUSY);
556                 BT_CONTROL(BT_CLR_RD_PTR);      /* start of BMC2HOST buffer */
557                 i = read_all_bytes(bt);         /* true == packet seq match */
558                 BT_CONTROL(BT_H_BUSY);          /* NOW clear */
559                 if (!i)                         /* Not my message */
560                         BT_STATE_CHANGE(BT_STATE_READ_WAIT,
561                                         SI_SM_CALL_WITHOUT_DELAY);
562                 bt->state = bt->complete;
563                 return bt->state == BT_STATE_IDLE ?     /* where to next? */
564                         SI_SM_TRANSACTION_COMPLETE :    /* normal */
565                         SI_SM_CALL_WITHOUT_DELAY;       /* Startup magic */
566
567         case BT_STATE_LONG_BUSY:        /* For example: after FW update */
568                 if (!(status & BT_B_BUSY)) {
569                         reset_flags(bt);        /* next state is now IDLE */
570                         bt_init_data(bt, bt->io);
571                 }
572                 return SI_SM_CALL_WITH_DELAY;   /* No repeat printing */
573
574         case BT_STATE_RESET1:
575                 reset_flags(bt);
576                 drain_BMC2HOST(bt);
577                 BT_STATE_CHANGE(BT_STATE_RESET2,
578                                 SI_SM_CALL_WITH_DELAY);
579
580         case BT_STATE_RESET2:           /* Send a soft reset */
581                 BT_CONTROL(BT_CLR_WR_PTR);
582                 HOST2BMC(3);            /* number of bytes following */
583                 HOST2BMC(0x18);         /* NetFn/LUN == Application, LUN 0 */
584                 HOST2BMC(42);           /* Sequence number */
585                 HOST2BMC(3);            /* Cmd == Soft reset */
586                 BT_CONTROL(BT_H2B_ATN);
587                 bt->timeout = BT_RESET_DELAY * USEC_PER_SEC;
588                 BT_STATE_CHANGE(BT_STATE_RESET3,
589                                 SI_SM_CALL_WITH_DELAY);
590
591         case BT_STATE_RESET3:           /* Hold off everything for a bit */
592                 if (bt->timeout > 0)
593                         return SI_SM_CALL_WITH_DELAY;
594                 drain_BMC2HOST(bt);
595                 BT_STATE_CHANGE(BT_STATE_RESTART,
596                                 SI_SM_CALL_WITH_DELAY);
597
598         case BT_STATE_RESTART:          /* don't reset retries or seq! */
599                 bt->read_count = 0;
600                 bt->nonzero_status = 0;
601                 bt->timeout = bt->BT_CAP_req2rsp;
602                 BT_STATE_CHANGE(BT_STATE_XACTION_START,
603                                 SI_SM_CALL_WITH_DELAY);
604
605         default:        /* should never occur */
606                 return error_recovery(bt,
607                                       status,
608                                       IPMI_ERR_UNSPECIFIED);
609         }
610         return SI_SM_CALL_WITH_DELAY;
611 }
612
613 static int bt_detect(struct si_sm_data *bt)
614 {
615         unsigned char GetBT_CAP[] = { 0x18, 0x36 };
616         unsigned char BT_CAP[8];
617         enum si_sm_result smi_result;
618         int rv;
619
620         /*
621          * It's impossible for the BT status and interrupt registers to be
622          * all 1's, (assuming a properly functioning, self-initialized BMC)
623          * but that's what you get from reading a bogus address, so we
624          * test that first.  The calling routine uses negative logic.
625          */
626
627         if ((BT_STATUS == 0xFF) && (BT_INTMASK_R == 0xFF))
628                 return 1;
629         reset_flags(bt);
630
631         /*
632          * Try getting the BT capabilities here.
633          */
634         rv = bt_start_transaction(bt, GetBT_CAP, sizeof(GetBT_CAP));
635         if (rv) {
636                 dev_warn(bt->io->dev,
637                          "Can't start capabilities transaction: %d\n", rv);
638                 goto out_no_bt_cap;
639         }
640
641         smi_result = SI_SM_CALL_WITHOUT_DELAY;
642         for (;;) {
643                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
644                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
645                         schedule_timeout_uninterruptible(1);
646                         smi_result = bt_event(bt, jiffies_to_usecs(1));
647                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
648                         smi_result = bt_event(bt, 0);
649                 } else
650                         break;
651         }
652
653         rv = bt_get_result(bt, BT_CAP, sizeof(BT_CAP));
654         bt_init_data(bt, bt->io);
655         if (rv < 8) {
656                 dev_warn(bt->io->dev, "bt cap response too short: %d\n", rv);
657                 goto out_no_bt_cap;
658         }
659
660         if (BT_CAP[2]) {
661                 dev_warn(bt->io->dev, "Error fetching bt cap: %x\n", BT_CAP[2]);
662 out_no_bt_cap:
663                 dev_warn(bt->io->dev, "using default values\n");
664         } else {
665                 bt->BT_CAP_req2rsp = BT_CAP[6] * USEC_PER_SEC;
666                 bt->BT_CAP_retries = BT_CAP[7];
667         }
668
669         dev_info(bt->io->dev, "req2rsp=%ld secs retries=%d\n",
670                  bt->BT_CAP_req2rsp / USEC_PER_SEC, bt->BT_CAP_retries);
671
672         return 0;
673 }
674
675 static void bt_cleanup(struct si_sm_data *bt)
676 {
677 }
678
679 static int bt_size(void)
680 {
681         return sizeof(struct si_sm_data);
682 }
683
684 const struct si_sm_handlers bt_smi_handlers = {
685         .init_data              = bt_init_data,
686         .start_transaction      = bt_start_transaction,
687         .get_result             = bt_get_result,
688         .event                  = bt_event,
689         .detect                 = bt_detect,
690         .cleanup                = bt_cleanup,
691         .size                   = bt_size,
692 };